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Abstract. We introduce subspace trail cryptanalysis, a generalization of invariant sub-
space cryptanalysis. With this more generic treatment of subspaces we do no longer rely
on specific choices of round constants or subkeys, and the resulting method is as such a
potentially more powerful attack vector. Interestingly, subspace trail cryptanalysis in fact
includes techniques based on impossible or truncated differentials and integrals as special
cases.
Choosing AES-128 as the perhaps most studied cipher, we describe distinguishers up to 5-
round AES with a single unknown key. We report (and practically verify) competitive key-
recovery attacks with very low data-complexity on 2, 3 and 4 rounds of AES. Additionally,
we consider AES with a secret S-Box and we present a (generic) technique that allows to
directly recover the secret key without finding any information about the secret S-Box.
This approach allows to use e.g. truncated differential, impossible differential and integral
attacks to find the secret key. Moreover, this technique works also for other AES-like
constructions, if some very common conditions on the S-Box and on the MixColumns
matrix (or its inverse) hold.
Finally, we show that our impossible differential attack on 5 rounds of AES with secret
S-Box can be turned into a distinguisher for AES in the same setting as the one recently
proposed by Sun, Liu, Guo, Qu and Rijmen at CRYPTO 2016. Besides having a much
lower data complexity, our result also provides a counter-example to the conjecture that
the security margin for round-reduced AES under the chosen plaintext attack is different
from that under the chosen-ciphertexts attack.

Keywords: AES, Invariant Subspace, Subspace Trail, Secret-Key Distinguisher, Key-
Recovery Attack, Truncated Differential, Impossible Differential, Integral, Secret S-Box
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1 Introduction

If a cryptographic primitive succumbs to a particular non-random behavior, it might be
possible to distinguish it from what one would expect from sufficiently generic behavior.
Invariant subspace cryptanalysis is a cryptanalytic technique that is powerful for certain
block ciphers. If there exists an invariant subspace for the round function and for the
key schedule, then this technique can be used to mount fast distinguishers and key
recovery. This technique was introduced in [34] at CRYPTO 2011 for the cryptanalysis
of PRINTcipher. Its efficiency has also been demonstrated on the CAESAR candidate
iSCREAM, on the LS-design Robin and on the lightweight cipher Zorro in [35], and on
the block cipher Midori64 [29]. However, if such symmetries do not exist or are not found,
invariant subspace cryptanalysis is not applicable. This leads to the natural question:
Can subspace properties still be used, even if no special symmetries or constants allow
for invariant subspaces? This paper will answer this question in the affirmative.

1.1 High-Level Overview of Subspace-Trail Technique

Our main contribution is the analysis of subspaces in SPNs (Substitution-Permutation
Networks) constructions with a technique that can be seen as a generalization of invari-
ant subspace attacks [34,35]. While invariant subspace cryptanalysis relies on iterative
subspace structures, our analysis is concerned with trails of different subspaces1. To use
an analogy, if invariant subspaces would correspond to iterative differential characteris-
tics, then our method would be “subspace-counterpart” of differential characteristics.

In particular, we study the propagation of subspaces trough various building blocks
like S-Boxes and linear layers. In that sense it has similarities with SASAS cryptanal-
ysis [11], but also with Evertse’s linear structures [28], while another way to generalize
invariant subspaces - called “nonlinear invariant attack” - has recently been introduced
in [45].

In this paper we investigate the behavior of subspaces in keyed permutations. At a
high level, we fix subspaces of the plaintext that maintain predictable properties after
repeated applications of a key-dependent round function. First we identify what we
call subspace trails which is essentially a coset of a plaintext subspace that encrypts to
proper subspaces of the state space over several rounds. The trails are formed by the
affine hulls of the intermediate ciphertexts. Subspace trails typically consist of subspaces
that increase in dimension for each round, meaning that if the plaintext subspace has
low dimension in comparison to the block length, the subsequent subspaces dimension
increases for each round. For byte-based ciphers (like AES), a quick and dirty test for
subspaces is to compute the affine hulls of a n-round encryption (for a certain n ≥ 1)
of all values for each byte and then identify these subspaces. For bit-based ciphers, it
is more important to determine what was coined a nucleon in [35], that is candidate
plaintext subspaces that seem to fit symmetries in the round function. Trails of affine
hulls of the intermediate ciphertexts that grow slowly in dimension for each round,
typically reflect slow diffusion in the round function. This is often the case for ciphers
that iterate simple round functions many times. In this paper we will focus on what
we call constant dimensional subspace trails, which are trails of cosets that preserve
dimension over several rounds. We show how to connect two or more trails and form
longer trails that preserve predictable structure. In particular, when we connect two

1 Note that since we don’t look for subspaces trails that are restricted to be invariant, the algorithm
provided in [35] is not suitable for finding subspace trails.



trails we typically seek to describe an output coset of a first trail in terms of cosets of
the input coset for the second trail.

To make the presentation more concrete, we focus on AES-128. The Rijndael block
cipher [19] has been designed by Daemen and Rijmen in 1997 and accepted as the AES
(Advanced Encryption Standard) since 2000 by NIST. Nowadays, it is probably the
most used block cipher.

1.2 Contributions

There are four types of contributions in this paper. Firstly the definition and descrip-
tion of the subspace trails technique. As first examples, we describe it’s application
to secret-key distinguishers for up to 4 rounds of AES. In more details, the approach
to the generalization of invariant subspace cryptanalysis to subspace trails is outlined
in Sect. 2. In Sect. 3 we give technical preliminaries with respect to AES-like permu-
tations, and in Sect. 3.3 we state central theorems related to subspace trails and their
intersections. When concretely applying it to AES, we describe in Sect. 4 distinguishers
of round-reduced AES with a single unknown key up to 4 rounds. They correspond to
known truncated differential, impossible differential, and integral distinguishers. From
this it will become clear that these properties can be seen as special cases of subspace
trails.

Secondly, in Sect. 5 we describe new low data-complexity key-recovery attacks on
AES up to 4 rounds, based on a combination of a truncated differential property (i.e.
a relation among pairs of texts) and of properties of individual texts, which follows
naturally from the proposed subspace trail approach.The relationship between these
attacks and truncated differential cryptanalysis is discussed in Sect. 5.2.

Thirdly, in Sect. 6 and 7 we describe a new and generic technique that can be
used to attack AES with a secret S-Box. Even if we do not improve the current
best results in this model by Tiesen et al. [42], our technique allows (for the first time) to
discover the secret key directly, without necessarily finding any equivalent representation
or any other information about the S-Box. We show how not only integral attacks, but
also truncated differential attacks and impossible differential attacks can exploit this
technique. This technique can also be used to attack other AES-like block ciphers, if
some very common conditions on the S-Box and on the MixColumns matrix (or its
inverse) are guaranteed.

Finally, starting from the impossible differential attack on 5-rounds of AES with a se-
cret S-Box, in Sect. 8 we describe a new 5-round secret-key distinguisher for AES
in the same setting as the one presented in [40]. It provides a counter-example to the
conjecture made in that paper, namely that the security margin for round-reduced AES
under the chosen plaintext attack is different from that under the chosen-ciphertexts
attack. Before to conclude we will also critically discuss that particular distinguisher
setting in Section 8.2.

Before starting with these detailed sections, we survey our concrete results: the
distinguishers in the unknown (secret)-key model, and the key-recovery attacks in the
cases of known and secret S-Box, and in both cases we compare them with earlier work.

1.3 Secret-Key Distinguishers for AES

The aim of a distinguishing attack is to find some properties of a cipher that random
permutations don’t have such that it is possible to distinguish a cipher from random
permutations. In the usual security model, the adversary is given a black box (oracle)



Table 1. AES secret-key distinguishers, working independent of key schedule. Data complexity is mea-
sured in minimum number of chosen plaintexts CP or/and chosen ciphertexts CC which are needed
to distinguish the AES permutation from a random permutation with probability higher than 95%.
The case in which the final MixColumns operation is omitted is denoted by “r.5 rounds”, that is r full
rounds and the final round. The symbol ? denotes a distinguisher that requires knowledge of the S-Box
description.

Rounds Data CP CC Property Reference

1 - 1.5 - 2 2 × × Truncated Differential [20] - Sect. 4.1

2.5 - 3 20 ' 24.3 × × Truncated Differential [9] - Sect. 4.2

2.5 - 3 28 × × Integral [18] - Sect. 4.2

3.5 - 4 216.25 × × Impossible Differential [6] - Sect. 4.3

3.5 - 4 232 × × Integral [18] - Sect. 4.3

4.5 - 5 298.2 × Impossible Differential Sect. 8

5 2128 × Integral [40]

4.5 - 5 259.7 × × Impossible Differential? App. H

access to an instance of the encryption function associated with a random secret key
and its inverse. The goal is to find the key or more generally to efficiently distinguish
the encryption function from a random permutation.

In Table 1 we summarize the secret-key distinguishers for 1 up to 5 rounds. Such
results often serve as a basis for key recovery attacks in the most relevant single-key
setting. The subspace trail cryptanalysis includes as special cases of differential crypt-
analysis techniques (like truncated or impossible differentials) and integral cryptanalysis,
hence the complexities for distinguishers up to 4 rounds is the same.

The first distinguisher for five rounds of AES-128 has been proposed recently in
CRYPTO 2016 [40]. However, this distinguisher requires the whole input-output space
to work, or less than the full codebooks if some knowledge of subkey bytes is assumed. In
the same setting of this distinguisher, in Sect. 8 we propose our secret key distinguisher
for five rounds of AES, which requires (much) less than the whole input-output space
without any knowledge about subkeys. Since we derive this distinguisher in a natural
way from the impossible differential attack on five rounds of AES with a secret S-Box,
we introduce it in Sect. 1.6 together with the mentioned attack, and we focus for the
moment only on the distinguishers up to four rounds.

Relation to other Distinguishers. The 1-, 2- and 3-round distinguishers presented in
Sect. 4.1 and 4.2 exploit the same well-known structural properties that also truncated
differentials exhibit. Using a different notation (namely the AES “Super S-Box”), 2-
rounds subspace trails were already discovered and investigated in [20] and [21], with
the objective to understand how the components of the AES interact. In these papers,
authors study the probability of differentials and characteristics over 2 rounds of AES,
giving bound on the maximum differential probability.

In [18], Daemen et al. proposed a new method that can break more rounds of
SQUARE than differential and linear cryptanalysis, which is named the SQUARE at-
tack consequently. In [32], Knudsen and Wagner proposed the integral cryptanalysis as
a generalized case of such attacks. The first key-recovery attacks on round-reduced AES
were obtained by exploiting a 3-round integral distinguisher to attack up to 6 rounds.
A re-interpretation of this integral distinguisher (also commonly labeled as square dis-
tinguisher) using the subspace trail notation is proposed in Sect. 4.3.



Knudsen [33] and Biham et al. [5] independently proposed the impossible-differential
cryptanalysis. This distinguisher exploits differential with probability zero, and it is re-
proposed using the subspace trail notation in Sect. 4.3.

The subspace trail approach is mostly providing an alternative description of known
properties under the umbrella of a single framework. However, there are other recent
techniques that this approach does not seem to include. Recently integral distinguishers
have been generalized by Todo [44] and in there also applied to AES-like primitives.
Distinguishers for AES itself were not improved, but clear progress e.g. with MISTY
cryptanalysis was demonstrated [43]. Todo’s generalization can take S-Box properties
into account, on the other hand the property exploited is still a type of zero-sum. Thus
it complements our approach which is independent of the S-Box, but exploits properties
more subtle than zero-sums. Subspace trails do not seem to capture other types of
distinguisher. Among them are Polytopic distinguishers [41], DS-type distinguishers [22],
or non-linear invariants [45].

1.4 Low Data-Complexity Key-Recovery Attacks on AES

Since practical attacks on block ciphers became extremely rare in the last two decades,
the approaches of the cryptanalysis community have been concentrating on attacking
reduced-round variants of block ciphers and/or to allow the adversary more degrees of
freedom in its control. In the first approach, the usual goal of the adversary is to maxi-
mize the number of rounds that can be broken, using less data than the entire codebook
and less time than exhaustive key search. Attacks following such an approach are of
importance, since they ensure that the block ciphers are strong enough and because
they help to establish the security margins offered by the cipher. However, aiming for
the highest number of rounds often leads cryptanalyst to attacks very close to brute
force ones, or requiring completely impractical amounts of chosen/known inputs up to
the full codebook. Practical attacks, especially those focusing on low data complexity,
rightfully gained more attention recently, and this is also the focus of the key-recovery
part in this paper.

State of the Art. AES with its wide-trail strategy was designed to withstand dif-
ferential and linear cryptanalysis [19], so pure versions of these techniques have limited
applications in attacks. Hence, it is widely believed that no regular differential attack
can be mounted on more than 5 rounds of AES (see [39] for details). For achieving the
highest number of rounds, the most effective single-key recovery methods are impos-
sible differential cryptanalysis (which yielded the first attack on the 7-round AES-128
[47] with non-marginal data complexity) and integral attacks [18]. Another attack that
initially has obtained less attention than the previous ones is the Meet-in-the-Middle at-
tack [23], which has potential if enhanced by other techniques/attacks, as the differential
attack [27,25,24] or as the bicliques technique [12].

In works like [14] authors consider Low-Data Complexity attacks on reduced-rounds
of AES, that is they apply attacks assuming the attacker has limited resources, e.g. few
plaintext/ciphertext pairs, which is often much more relevant in practice than attacks
only aiming at the highest number of rounds. The results of this work have then been
improved in [15]. In that paper, authors set up tools which try to find attacks automati-
cally by searching some classes of Guess-and-Determine and Meet-in-the-Middle attacks.
These tools take as input a system of equations that describes the cryptographic primi-
tive and some constraints on the plaintext and ciphertext variables. Then, they first run



Table 2. Comparison of low-data attacks on round-reduced AES. Data complexity is measured in number
of required known/chosen plaintexts (KP/CP). Time complexity is measured in round-reduced AES
encryption equivalents (E) and in memory accesses (M). Memory complexity is measured in plaintexts
(16 bytes). The case in which the MixColumns operation is omitted in the last round is denoted by “r.5
rounds”, that is r full rounds and the final round. New attacks are in bold.

Attack Rounds Data Computation (E) Memory Reference

G&D-MitM 2.5 1 KP 288 288 [15]

G&D-MitM 3 1 KP 296 296 [15]

G&D-MitM 2.5 2 KP 280 280 [15]

G&D-MitM 2.5 2 CP 224 216 [15]

D-MitM 3 2 CP 232 21 [14]

G&D-MitM 3 2 CP 216 28 [15]

TrD 2.5 - 3 2 CP 232 M +231.55 E ≈ 231.6 28 Sect. 5

TrD 2.5 - 3 3 CP 211.2 1 Sect. 5

TrD 2.5 - 3 3 CP 210 M +25.1 E ≈ 25.7 212 Sect. 5

D-MitM 3 9 KP 240 235 [14]

D-MitM 4 2 CP 2104 1 [14]

G&D-MitM 3.5 2 CP 272 272 [15]

G&D-MitM 4 2 CP 280 280 [15]

TrD (EE) 3.5 - 4 2 CP 296 1 Sect. 5.3

TrD (EE) 3.5 - 4 3 CP 274.7 1 Sect. 5.3

TrD (EE) 3.5 - 4 3 CP 276 M +264 E ≈ 269.7 212 Sect. 5.3

G&D-MitM 4 4 CP 232 224 [15]

D-MitM 4 5 CP 264 268 [14]

I-Pol 3.5 - 4 8 CP 238 215 [41]

D-MitM 4 10 CP 240 243 [14]

TrD (EB) 3.5 - 4 24 CP 240.6 M +233.9 E ≈ 235.1 217 App. E

I 3.5 - 4 29 CP 214 small [18]

G&D: Guess & Det., D: Diff., MitM: Meet-in-the-Middle, TrD: Truncated Differential, I: Integral,
I-Pol: Imp. polytopic, EE: Extension at End, EB: Extension at Beginning.

a search for an “ad hoc” solver for the equations to solve, build it, and then run it to
obtain the actual solutions.

Another work in the low-data complexity scenario is the Polytopic Cryptanalysis
presented in [41], which is a generalization of differential cryptanalysis. In particular,
the impossible polytopic cryptanalysis variant (that is, polytopic cryptanalysis that
makes use of differentials with probability zero) was shown to allow competitive low-
data attacks on round-reduced AES.

Our Key-Recovery Results In this paper, we present key-recovery truncated differen-
tial attacks on reduced-round variants of AES-128 based on subspace trail cryptanalysis.
A comparison of all known and relevant attacks on AES and our attacks presented in this
paper is given in Table 2. To better understand this table, we highlight some aspects.
Without going into the details here, AES is a key-iterated block cipher that consists
of the repeated application of a round transformation on the state (called intermedi-
ate result). Each round transformation is a sequence of four steps. All the rounds are
equal, except for the last one which is a slightly different. One of the steps that compose
each round (the MixColumns operation) is omitted in the last round. The effect of the
omission of the last round MixColumns has been studied in detail e.g. in [26], and often
doesn’t affect the security of AES.



On the other hand, MitM-style attacks can sometimes work better when all rounds
are the same. Since the attacks presented in [14] and found by the tool described in [15]
mainly exploit the MitM technique, they are sometimes affected by the presence of the
final MixColumns, that is the data and the computational complexities are not equal
if the final MixColumns is omitted2. In contrast, note that our attack (based on the
truncated differential technique) is independent of the presence of the last MixColumns.

As the data complexity and number of rounds attacked is not always directly compa-
rable, we re-ran the tool from [15] in our settings. As a result, we are able to provide the
computational cost of the best attack found by the tool for the case of 3.5 rounds (that
is, 4 rounds of AES without the final MixColumns operation) using 2 chosen plaintexts3.

Our attack on 3 rounds as described in Sect. 5. Briefly, this attack is based on
the property that a coset of a particular subspace D of the plaintexts space is always
mapped into a coset of another particular subspaceM after two rounds. Exploiting the
particular shape of the subspaceM and given two ciphertexts (which plaintexts belong
to the same coset of D), the right key is one of those such that these two ciphertexts
belong to the same coset ofM one round before. We show how to extend this approach
in order to attack 4 rounds in Sect. 5.3 by extend our attack at the end, while in App.
E we show how to extend it at the beginning.

1.5 Attack on AES with a Single Secret S-Box

The subspace trail framework also allows to consider attacks on AES with a single secret
S-Box, i.e. the case in which the AES S-Box is replaced by a secret 8-bit one while keeping
everything else unchanged. If the choice of the S-Box is made uniformly at random from
all 8-bits S-Boxes, the size of the secret information increases from 128-256 bits (i.e. the
key size in AES) to 1812-1940. Thus, this could be a good attempt to strengthen the
cipher or all to reduce the number of rounds. Note that AES was designed in order to
achieve good resistance against differential and linear cryptanalysis, and this includes
the choice of the S-Box. However, a randomly chosen S-Box is very highly resistant
against these attacks as well.

In [42], authors are able to attack up to 6-rounds of AES with identical and secret
S-Box using techniques from integral cryptanalysis. Authors demonstrate that despite
the increased size of the secret information in the cipher, they are able to recover both
the secret key and the S-Box for the 4-round, 5-round and 6-round versions of AES-128.
More precisely, authors are able to find the whitening key up to 256 variants, that is
(k0, k0⊕k1, ..., k0⊕k15) (where ki is the i-th byte of the whitening key) for unknown k0.
We emphasize that to obtain this result, authors must determine the secret S-Box (up
to an additive constant before and after the S-Box, i.e. S-Box(x) ∼ a⊕S-Box(b⊕ x)) in
order to find the key. In other words, using their technique it is not possible to find the
key independent of the S-Box. To the best of our knowledge, this is the only work in
the literature regarding attacks on AES with a secret S-Box.

2 As an example, the attack on 3 rounds with 2 chosen plaintexts has lower computational complexity
and memory requirements when the final MixColumns is not omitted (216 encryption and 28 of
memory) rather than omitted (224 encryption and 216 memory).

3 We have also considered other cases for completeness (e.g. 2.5 - 3 - 3.5 - 4 rounds using 3 chosen
plaintexts), but without success. It has to be noted that the tool, despite being very versatile, still
works better with some cryptanalytic intuition guiding the way input constraints are expressed as
equations, and there is no way to predict (1) if that tool will find an attack given some constraints
and (2) how much time it will need to find one.



However, several other results in literature consider (other) encryption schemes with
secret part. PRESENT with a secret S-Box has for example been considered in [13,36].
One of the first work in this context has been presented by Biryukov and Shamir [10],
who applied integral cryptanalysis to a generalized SPN structure denoted SASAS, which
consists of three substitution layers separated by two affine layers. In their paper, the
attacker is assumed not to have any knowledge about the linear layer or the S-boxes
which are all allowed to be chosen independently at random. The SASAS attack recovers
an equivalent representation of this SPN and thus allows decryption of any ciphertext.
The attack allows to break the equivalent of three rounds of AES. A follow up work
is [8], where authors considered the ASASA scheme in order to design public key or
white-box constructions using symmetric cipher components.

In all the previous works, an attacker must work both on the secret S-Box and on
the secret key, that is she has to first find information on the secret S-Box in order to
discover the secret key. Thus, a natural questions arise: Is it also possible to directly find
the secret key without having to discover any information about the secret S-Box? In this
paper, we show that it’s possible if some (very common) assumptions are guaranteed.
Using the subspace-trail framework, we present a generic technique to discover directly
(i.e. without working on the S-Box) the secret key of AES up to some variants, and we
show how it is exploited a truncated differential attack in Sect. 6.1 - App.G.1 (3-rounds
of AES) and Sect. 6.1 - App. G.3 (4-rounds of AES), by an impossible differential attack
in Sect. 7 and by an integral attack in App. G.2.

The assumptions required are that the S-Boxes are identical, that each row of the
MixColumns matrix has two identical elements and that each row has these two identical
element in different positions. An example is the MixColumns matrix of AES, or any
cyclic matrix with two identical elements.

A comparison between this technique and the one presented in [42] is shown in Table
3. Even if the assumptions are the same (i.e. the assumption of secret and identical S-
Box), our goals are different from the one of [42]. Similar to [42], using our attack it is
only possible to find the whitening key up to (256)4 = 232 variants, if no information
about the S-Box are discovered and used. Anyway, these 232 variants can be reduced up
to 256, working also on the secret S-Box and using a strategy similar to the one of [42],
as shown in detail in App. G.1.

Finally, we recall the advice given in [40] “when design an AES-like cipher, it is
better to choose those MDS matrices MMC such that both MMC and M−1MC do not have
identical elements in the same columns”, which allows to protect the cipher against our
attacks presented in this paper.

1.6 The 5-rounds Secret Key Distinguisher for AES-128

In [40], authors presented the first 5-round secret key distinguisher for AES-128, based
on the balanced property.

This distinguisher is constructed in two steps. At first step, authors assume that
some of the subkey bits are known. Using this knowledge, they show how to choose the
ciphertexts such that the balanced property holds on 5 rounds of AES. This distinguisher
requires 2120 texts if the difference of two bytes (i.e. 8 bits) of the subkey is known, or 296

texts if the differences of four pairs of bytes (i.e. 32 bits) are known. In the second step,
authors assume that no secret key material is known. The idea is basically to repeat the
first step of the distinguisher for each possible values of the subkey bits used to choose
the ciphertexts. For the AES case, when this guess is correct (i.e. when these guessed



Table 3. Comparison of attacks on round-reduced AES with secret S-Box. Data complexity is measured
in number of required chosen plaintexts/ciphertexts (CP/CC). Time complexity is measured in round-
reduced AES encryption equivalents (E), in memory accesses (M) or XOR operations (XOR). Memory
complexity is measured in plaintexts (16 bytes). The case in which the final MixColumns operation is
omitted is denoted by “r.5 rounds”, that is r full rounds and the final round. New attacks are in bold.
The symbol ? denotes an attack that can not work independently of the S-Box and the key.

Attack Rounds Data Computation Memory Reference

SASAS 2.5 216 CP 221 E 216 [10]

TrD 2.5 - 3 213.6 CP 213.2 XOR small Sect. 6.1 - App. G.1

I 2.5 - 3 219.6 CP 219.6 XOR small App. G.2

TrD 3.5 - 4 230 CP 236 M ≈ 229.7 E 230 Sect. 6.1 - App. G.3

I? 3.5 - 4 216 CC 217.7 E 216 [42]

I? 3.5 - 4 216 CP 228.7 E 216 [42] (see Sect. 3.5)

ImD 4.5 - 5 2102 CP 2107 M ≈ 2100.4 E 298.4 Sect. 7

I? 4.5 - 5 240 CC 238.7 E 240 [42]

I? 4.5 - 5 240 CP 254.7 E 240 [42] (see Sect. 3.5)

I 5 2128 CC 2129.6 XOR small [40] - Sect. 8.1

TrD: Truncated Differential, I: Integral, ImD: Impossible Differential.

bits are equal to that of the secret key) the balanced property holds for 5 rounds, which
surely occurs in an exhaustive search.

Note that this distinguisher requires all the input-output space to work, that is the
data complexity is 2128 texts when no subkey byte is known4. Moreover, the distinguisher
presented in [40] doesn’t exploit the details of the S-Box (which can be considered secret),
that is the ciphertexts are chosen independently of the definition of the S-Box, but it
requires some assumptions on the MixColumns matrix (which are the same ones we
described for the key recovery attacks on AES with secret S-Box).

As we show in Sect. 8, our impossible differential attack on 5-rounds of AES with a
secret S-Box can be turned into a distinguisher in the same setting of the one proposed
by [40]. In our case, we consider an impossible differential trail instead of the balance
property. As in the CRYPTO paper, the idea is to check the existence of a key for which
the impossible differential trail is satisfied. Note that with respect to a key recovery
attack, both our distinguisher and the one presented in the CRYPTO paper have the
advantage that it is not necessary to find the entire key to distinguish the two cases, since
a limited number of bytes (e.g. the XOR difference of two bytes) is sufficient. Moreover,
as in [40], our distinguisher is independent by the details of the S-Box operation, but
requires the same assumption on the MixColumn matrix MMC (i.e. at least one column
must have two identical elements). A critical discussion of these distinguishers is provided
in Sect. 8.2, arguing that in some sense the quest for the first 5-round distinguisher is
still open despite the recent results.

As maybe the most interesting aspect, this distinguisher provides a counter-example
to the conjectures made in [40], besides the fact that it doesn’t need the entire input-
output space but only 298.2 chosen plaintexts. Indeed, the distinguisher presented in [40]
is constructed in the chosen-ciphertext mode, and only in the case in which MixColumns
in the last round is not omitted. For this reason, authors claim that “since the 5-
round distinguisher for AES can only be constructed in the chosen-ciphertexts mode,
the security margin for the round-reduced AES under the chosen-plaintext attack may
be different from that under the chosen-ciphertext attack”. However, our distinguisher

4 This was also confirmed with Bing Sun via personal communication.



is constructed in the chosen-plaintexts setting, and it works independent of the last
MixColumns operation. Hence it provides a counterexample to the conjecture made in
[40], i.e. it seems there is no clear evidence that chosen-ciphertext security is less than
chosen-plaintext security in AES.

In Sect. 8.1 we show that also the distinguisher of [40] can be turned into a key recov-
ery attack, while in Sect. 8.2 we critically discuss the model in which these distinguishers
work. Finally, in App. H we present a variant of our distinguisher in the case in which all
the details of the S-Box are known. With respect to the previous ones, this distinguisher
is again more competitive with a complexity of less than 260, and it doesn’t require any
assumption neither on the SubBytes operation nor on the MDS-MixColumns operation.

1.7 Practical Verification

All results in the paper have been verified using a C implementation:

Secret-Key Distinguishers. We practically verified the secret-key distinguishers for
up to 5 rounds, and we have found that the practical results are consistent with our
theory. Regarding the 5-rounds secret-key distinguishers presented in App. H, we
verified it on a small scale variant of AES as described in [16], since the complexity
of this distinguisher is too high for a practical verification. We give all the details
for this case in App. H.3. The source codes of the secret-key distinguishers can be
found in [3].

Low-Data Complexity Key-Recovery Attacks on AES. We practically verified the
low-data complexity attacks on 1, 2, 3 and 4 rounds. For the 3 rounds attack, one
or two pairs of plaintexts (that is two or three different plaintexts) are sufficient
to discover the key of the final round, as predicted. Since the attack on 4 rounds
described in Sect. 5.3 has a very high computational cost, we have tested it in a
different way, which is explained in detail with the presentation of the attack. The
source codes of the low-data complexity attacks can be found in [2].

Key-Recovery Attacks on AES with a Secret S-Box. We practically verified the
truncated differential attacks on AES with a secret S-Box on 3 and 4 rounds, and the
integral attack on AES with a secret S-Box on 3 rounds. The experimental results
are in according to our theory. In particular, considerations about the practical
computational costs of these attacks (in comparison with the theoretical ones) are
reported in App. G. The source codes of the key-recovery attacks on AES with a
single secret S-Box can be found in [1].

2 Subspace Trails

In this section, we recall the invariant subspace cryptanalysis of [34,35] (depicted in Fig.
1), and then we introduce the concept of subspace trails (Fig. 2).

Invariant subspace cryptanalysis can be a powerful cryptanalytic tool. Let F denote
a round function in an iterative key-alternating block cipher EK(·):

EK(m) = kn ⊕ F (... k2 ⊕ F (k1 ⊕ F (k0 ⊕m)))),

where the round keys k0, ..., kn are derived from the master key K using some key
schedule f : (k0, ..., kn) = f(K). Assume there exists a coset5 V ⊕a such that F (V ⊕a) =

5 We recall the definition of coset, often used in the paper. Let W a vector space and V a subspace of
W . If a is an element of W , a coset V ⊕ a of V in W is a subset of the form V ⊕ a = {v⊕ a | ∀v ∈ V }.



V ⊕a′. Then if the round key K resides in V ⊕(a⊕a′), it follows that F (V ⊕a)⊕K = V ⊕a
and we get an iterative invariant subspace.

F

V ⊕ a V ⊕ a′

K ∈ V ⊕ (a⊕ a′)

V ⊕ a

Fig. 1. Invariant subspaces.

A slightly more powerful property can occur if for each a, there exists unique b
such that FK(V ⊕ a) := F (V ⊕ a) ⊕ K = V ⊕ b meaning that the subspace property
is invariant, but not the initial coset. That is, for each initial coset V ⊕ a, its image
under the application of FK is another coset of V , in general different from the initial
one. Equivalently, the initial coset V ⊕ a is mapped into another coset V ⊕ b, where b
depends on a and on the round key. In this paper, we generalize this concept and search
for trails of subspaces. In the simplest case we look for pairs of subspaces V1 and V2 such
that

F (V1 ⊕ a)⊕K = V2 ⊕ b

holds for any constant a, that is for each a there exists unique b for which the previous
equivalence is satisfied.

F

V1 ⊕ a V2 ⊕ a′

K

V2 ⊕ b

Fig. 2. Trail of subspaces.

A subspace trail of length r is then simply a set of r+ 1 subspaces (V1, V2, . . . , Vr+1)
that satisfy

F (Vi ⊕ ai)⊕K ⊆ Vi+1 ⊕ ai+1.

When the relation holds with equality, the trail is called a constant-dimensional subspace
trail. In this case, if F tK denotes the application of t rounds with fixed keys, it follows
that

F tK(V1 ⊕ a1) = Vt+1 ⊕ at+1.

Definition 1. Let (V1, V2, ..., Vr+1) denote a set of r + 1 subspaces with dim(Vi) ≤
dim(Vi+1). If for each i = 1, ..., r and for each ai ∈ V ⊥i , there exist (unique) ai+1 ∈ V ⊥i+1

such that

FK(Vi ⊕ ai) ⊆ Vi+1 ⊕ ai+1,

then (V1, V2, ..., Vr+1) is subspace trail of length r for the function FK . If all the previous
relations hold with equality, the trail is called a constant-dimensional subspace trail.



Note that ai+1 depends on ai and on the secret round key, but to simplify notation we
use ai+1 instead of ai+1(ai, k). With subspace structures at hand, we might ask questions
about the probability that ciphertexts or sums of ciphertexts reside in certain subspaces,
given that the plaintexts obey certain subspace structure (e.g. their sum is also in a fixed
subspace). If the sum is over two texts this approaches resembles (truncated) differential
cryptanalysis, if the sum is over more it can resemble integral cryptanalysis.

For AES-type block ciphers, we are typically not able to construct very long trails. In
this case we can connect trails together and depending on the intersection properties of
the endpoints of the trails, get predictable subspace properties for longer trails. However,
in general these are not necessarily simple constant dimensional trails. In the following
we describe subspace trail cryptanalysis and later-on distinguishers based on it. For
sake of concreteness and better exposition, we focus on the case of AES. We’d like to
emphasize that the properties described here extend almost immediately to any AES-like
cipher with little modifications.

3 Preliminaries

3.1 Description of AES

The Advanced Encryption Standard [19] is a Substitution-Permutation network that
supports key size of 128, 192 and 256 bits. The 128-bit plaintext initializes the internal
state as a 4 × 4 matrix of bytes as values in the finite fields F256, defined using the
irreducible polynomial x8 +x4 +x3 +x+ 1. Depending on the version of AES, Nr round
are applied to the state: Nr = 10 for AES-128, Nr = 12 for AES-192 and Nr = 14 for
AES-256. An AES round applies four operations to the state matrix:

– SubBytes (S-Box) - applying the same 8-bit to 8-bit invertible S-Box 16 times in
parallel on each byte of the state (it provides the non-linearity in the cipher);

– ShiftRows (SR) - cyclic shift of each row (i-th row is shifted by i bytes to the left);
– MixColumns (MC) - multiplication of each column by a constant 4 × 4 invertible

matrix over the field GF (28) (it and ShiftRows provide diffusion in the cipher6);
– AddRoundKey (ARK) - XORing the state with a 128-bit subkey.

One round of AES can be described as R(x) = K ⊕MC ◦ SR ◦ S-Box(x). In the first
round an additional AddRoundKey operation (using a whitening key) is applied, and in
the last round the MixColumns operation is omitted.

As we consider only AES with 128-bit key, we shall describe only its key schedule
algorithm. The key schedule of AES-128 takes the user key and transforms it into 11
subkeys of 128 bits each. The subkey array is denoted by W [0, ..., 43], where each word
of W [·] consists of 32 bits and where the first 4 words of W [·] are loaded with the user
secret key. The remaining words of W [·] are updated according to the following rule:

– if i ≡ 0 mod 4, then W [i] = W [i− 4]⊕RotByte(S-Box(W [i− 1]))⊕RCON [i/4],
– otherwise, W [i] = W [i− 1]⊕W [i− 4],

where i = 4, ..., 43, RotByte rotates the word by 8 bits to the left and RCON [·] is an
array of predetermined constant.

The Notation Used in the Paper. Let x denote a plaintext, a ciphertext, an
intermediate state or a key. Then xi,j with i, j ∈ {0, ..., 3} denotes the byte in the row i

6 ShiftRows makes sure column values are spread and MixColumns makes sure each column is mixed.



and in the column j. We denote by kr the key of the r-th round, where k0 is the secret
key. If only the key of the final round is used, then we denote it by k to simplify the
notation. Finally, we denote by R one round of AES7, while we denote i rounds of AES
by R(i). If the MixColumns operation is omitted in the last round, then we denote it
by Rf . As last thing, in the paper we often use the term “partial collision” (or, more
simply, collision) when two texts belong to the same coset of a given subspace X.

3.2 Subspaces through One Round of AES

For a vector space V and a function F on F4×4
28

, let F (V ) = {F (v) | v ∈ V } (as usual).
For a subset I ⊆ {1, 2, . . . , n} and a subset of vector spaces {G1, G2, . . . , Gn}, we define
GI as GI :=

⊕
i∈I Gi.

In the following we define four families of subspaces essential to AES: the diagonal
spaces DI , the inverse-diagonal spaces IDI , the column spaces CI and the mixed spaces
MI . Since AES operates on 4 × 4 matrices over F28 , then we work with vectors and
vector spaces over F4×4

28
(that is, all the subspaces considered in the paper are subspace

over F4×4
28

). Moreover, we denote with E = {e0,0, ..., e3,3} the unit vectors of F4×4
28

(e.g.
ei,j has a single 1 in row i and column j).

Definition 2. (Column spaces) The column spaces Ci are defined as

Ci = 〈e0,i, e1,i, e2,i, e3,i〉.

For instance, the column space C0 corresponds to the symbolic matrix

C0 =

{
x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 ∣∣∣∣∀x1, x2, x3, x4 ∈ F28

}
.

Definition 3. (Diagonal spaces) The diagonal spaces Di are defined as

Di = SR−1(Ci) = 〈e0,i, e1,i+1, e2,i+2, e3,i+3〉

where the index i+ j is computed modulo 4. For instance, the diagonal space D0 corre-
sponds to the symbolic matrix

D0 =

{
x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

 ∣∣∣∣ ∀x1, x2, x3, x4 ∈ F28

}
.

Definition 4. (Inverse-Diagonal spaces) The inverse-diagonal spaces IDi are de-
fined as

IDi = SR(Ci) = 〈e0,i, e1,i−1, e2,i−2, e3,i−3〉.

where the index i − j is computed modulo 4. For instance, ID0 = SR(C0) corresponds
to the symbolic matrix

ID0 =

{
x1 0 0 0
0 0 0 x2
0 0 x3 0
0 x4 0 0

 ∣∣∣∣∀x1, x2, x3, x4 ∈ F28

}
.

The last type of subspaces we define are called mixed subspaces.

7 Sometimes we use the notation RK instead of R to highlight that the round key is K.



Definition 5. (Mixed spaces) The i-th mixed subspace Mi is defined as

Mi = MC(IDi).

These subspaces are formed by applying ShiftRows and then MixColumns to a column
space. For instance, M0 corresponds to symbolic matrix

M0 =

{
α · x1 x4 x3 (α+ 1) · x2
x1 x4 (α+ 1) · x3 α · x2
x1 (α+ 1) · x4 α · x3 x2

(α+ 1) · x1 α · x4 x3 x2

 ∣∣∣∣∀x1, x2, x3, x4 ∈ F28

}
.

where 0x02 ≡ α and 0x03 ≡ α+ 1.

Definition 6. Given I ⊆ {0, 1, 2, 3} where 0 < |I| ≤ 3, we define:

CI =
⊕
i∈I
Ci, DI =

⊕
i∈I
Di, IDI =

⊕
i∈I
IDi MI =

⊕
i∈I
Mi.

The dimension8 of any of the spaces DI , IDI , CI andMI is 4·|I|. The essential subspaces
in AES are built from diagonal spaces Di, inverse-diagonal spaces IDi, column spaces
Cj and mixed spaces Mk. There are four of each of these spaces, and direct sums of
them result in higher-dimensional diagonal, inverse-diagonal, column and mixed spaces.

It is easy to see that SubBytes maps cosets of diagonal and column spaces to cosets
of diagonal and column spaces. Since SubBytes operates on each byte individually and
it is bijective, and since the bytes of column and diagonal spaces are independent, its
only effect is to change the coset. It is also easy to see that ShiftRows maps a coset of
a diagonal space to a coset of a column space, since diagonals are mapped to columns,
and it maps a coset of a column space to a coset of an inverse-diagonal space. The effect
of MixColumns to a columns space CI ⊕ a is simply to change the coset, since applying
the MixColumns matrix to a column space Ci has no effect.

Lemma 1. Let I ⊆ {0, 1, 2, 3} where 0 < |I| ≤ 3 and a ∈ D⊥I . There exists unique
b ∈ C⊥I such that

RK(DI ⊕ a) = CI ⊕ b.

Proof. As we have just seen, since SubBytes is bijective and operates on each byte
independently, it simply changes the coset DI⊕a to DI⊕a′, where a′i,j = S-Box(ai,j) for

each i, j = 0, ..., 3. ShiftRows simply moves the bytes of DI⊕a′ to a column space CI⊕b
′
,

where b′ = SR(a′). MixColumns affects only the constant columns, thus MC(CI ⊕ b
′
) =

CI ⊕MC(b′) = CI ⊕ b
′′
. Key addition then changes the coset to CI ⊕ b. ut

This simply states that a coset of a sum of diagonal spaces DI encrypt to a coset of a
corresponding sum of column spaces CI through one round. We recall that two different
cosets V ⊕ a and V ⊕ b (i.e. a 6= b) of the same generic subspace V are equivalent (i.e.
V ⊕ a ∼ V ⊕ b) if and only if a⊕ b ∈ V . Thus, in the previous lemma (similarly in the
following), b is unique with respect to this equivalence relationship.

8 Since AES is a byte-oriented encryption scheme, we consider the dimension of the subspace as the
number of active and independent bytes. This implies for example that the dimension of the subspaces
is constant through SubBytes and MixColumns operations.
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CI ⊕ (d⊕K)
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IDI ⊕ c
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K

MI ⊕ (d⊕K)

Fig. 3. The essential subspaces in the AES round.

Lemma 2. Let I ⊆ {0, 1, 2, 3} where 0 < |I| ≤ 3 and a ∈ C⊥I . There exists unique
b ∈M⊥I such that

RK(CI ⊕ a) =MI ⊕ b.

Proof. By definition 5, the mixed spaces MI are defined as the application of the Mix-
Columns operation to inverse-diagonal space IDI . Since a ShiftRows operation maps a
column space to an inverse-diagonal space, a mixed space MI is equivalently defined
as the application of the linear layer in AES to column spaces CI . Since the SubBytes
layer only moves a coset CI ⊕ a to a coset CI ⊕ a′, it follows that for any fixed coset
CI ⊕ a, there exists b ∈M⊥I such that MC ◦ SR ◦ S-Box(CI ⊕ a)⊕K =MI ⊕ b, where
b = MC ◦ SR(a′)⊕K and a′i,j = S-Box(ai,j) for each i, j = 0, ..., 3. ut

Similarly to before, this simply states that a coset of a sum of column spaces CI
encrypts to a coset of the corresponding sum of mixed spaces MI over one round.

3.3 Intersecting AES Subspaces

We continue with useful properties of AES subspaces. In this section we show the fol-
lowing: diagonal spaces and column spaces have non-trivial intersection, column spaces
and mixed spaces have non-trivial intersection, but diagonal spaces and mixed spaces
have only trivial intersection. This will be useful for creating subspace trails covering a
higher number of rounds. For the following, let I, J ⊆ {0, 1, 2, 3} and we assume that all
the indexes are taken modulo 4. All the proofs are given in App. A.

Lemma 3. Di ∩ Cj = 〈ei+j,j〉 and IDi ∩ Cj = 〈ei−j,j〉.

It follows that DI ∩CJ = 〈ej+i,j | i ∈ I, j ∈ J〉 and IDI ∩CJ = 〈ei−j,j | i ∈ I, j ∈ J〉 (j+ i
and i− j are taken modulo 4), where the intersections have dimension |I| · |J |.

Lemma 4. Ci ∩Mj = 〈MC(ej+i,i)〉.

It follows that CI ∩MJ = 〈MC(ej+i,i) | i ∈ I, j ∈ J〉 (i + j is taken modulo 4), which
has dimension |I| · |J |.

While the spaces DI and CJ , IDI and CJ , and CI and MJ intersect non-trivially,
the spaces DI and MJ and the spaces IDI and MJ intersect trivially. In particular:

Lemma 5. DI ∩MJ = IDI ∩MJ = {0} for all I and J such that |I|+ |J | ≤ 4.
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DI ⊕ a CI ⊕ b

K

CI ⊕ (b⊕K)
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Fig. 4. Subspaces over two rounds.

4 Distinguishers for 1, 2, 3 and 4 Rounds of AES with Secret
Round-Keys

In this section we describe a series of subspace trails for AES. Additionally we also
describe how these trails can be used to formulate ways to detect non-randomness,
often colloquially referred to a distinguishers. All distinguishers in this section, ranging
from two up to four rounds, are independent of the round keys and are formulated
without the knowledge of the key. From now on, we assume that any subspaces DI , CI
or MI has nonzero dimension (that is, I ⊆ {0, 1, 2, 3} is not empty). Moreover, when
we intersect two subspaces DI and MJ , where both I and J are assumed non-empty,
we always assume that the sum of their dimensions is not larger than 16. Typically, the
sum of their dimensions will be exactly 16.

4.1 2-Round Subspace Trail for AES

It follows directly from Section 3.2 that plaintexts from diagonal spaces are encrypted
over two rounds to ciphertexts in mixed subspaces. Let R(2) denote two AES rounds
with fixed random round keys K = K1,K2. Let I ⊆ {1, 2, 3, 4} nonzero and fixed. By
Lemma 1, a coset DI ⊕ a of dimension 4 · |I| encrypts to a coset RK1(DI ⊕ a) = CI ⊕ a′
over one round. By Lemma 2, there exists unique b (relative to the round keys and the
constant a′) such that RK2(CI ⊕ a′) = MI ⊕ b. By combining the two rounds, we get
that for each a ∈ D⊥I , there exists unique b ∈M⊥I such that R(2)(DI ⊕ a) =MI ⊕ b.

Consequently, we get the following properties. If two plaintexts belong to the same
coset of a diagonal space DI , then their encryption belongs to the same coset of a mixed
space MI . In particular, for a two round encryption R2 with fixed keys, we have that

Pr(R(2)(u)⊕R(2)(v) ∈MI |u⊕ v ∈ DI) = 1 (1)

for nonzero set I of {0, 1, 2, 3} (i.e. |I| 6= 0). The opposite follows directly: if two plain-
texts belong to different cosets of a diagonal space DI , then their encryption belongs to
different cosets of a mixed space MI . In other words

Pr(R(2)(u)⊕R(2)(v) ∈MI |u⊕ v /∈ DI) = 0.

These properties are used to set up the distinguisher for two rounds. However, other
interesting properties hold when one considers two rounds of encryption. In particular,
by Lemma 5, the intersection between a mixed space MI space and a diagonal space
DJ space contains only zero, if |I|+ |J | is less than 4. Thus, if two plaintexts are in the
same coset of MI , they must belong to different cosets of DJ . In other words, for DI
and DJ such that dim(DI) + dim(DJ) ≤ 16 (and |I|, |J | 6= 0)

Pr(R(2)(u)⊕R(2)(v) ∈ DJ |u⊕ v ∈ DI) = 0 (2)



Data: Pair of texts c1 and c2.
Result: i such that c1 ⊕ c2 ∈Mi, −1 otherwise.
c←MC−1(c1 ⊕ c2);
for i from 0 to 3 do

if c(i+1)%4,0 = 0 AND c(i+2)%4,0 = 0 AND c(i+3)%4,0 = 0
AND ci,1 = 0 AND c(i+1)%4,1 = 0 AND c(i+2)%4,1 = 0
AND ci,2 = 0 AND c(i+1)%4,2 = 0 AND c(i+3)%4,2 = 0
AND ci,3 = 0 AND c(i+2)%4,3 = 0 AND c(i+3)%4,3 = 0 then

return i;
end

end
return −1.

Algorithm 1: Pseudo-code for distinguisher of 2 rounds of AES.

where u 6= v, since R(2)(u) and R(2)(v) are both in the same coset of MI and thus are
always in different cosets of DJ . We can get similar results for the mixed spacesMI . In
particular, if two plaintexts belong to the same coset of a mixed space MI , then their
two round encryptions belong to different cosets of any mixed space MJ . Indeed, two
(different) elements ofMI belong to different cosets of DJ (sinceMI ∩DJ = {0}). Since
R(2)(u) ⊕ R(2)(v) ∈ MJ if and only if u ⊕ v ∈ DJ , we obtain the desired result. Thus,
for MI and MJ such that 0 < dim(MI) + dim(MJ) ≤ 16, we have that

Pr(R(2)(u)⊕R(2)(v) ∈MJ |u⊕ v ∈MI) = 0 (3)

if u 6= v. We’ll use these probabilities to set up an efficient 4 rounds distinguisher.

A Concrete Distinguisher for 2 Rounds. As we have seen, if two plaintexts be-
long to the same coset of DI , then they belong to the same coset ofMI with probability
1 after two rounds - for each I. Consider instead two random texts. By simple computa-
tion, the probability that there exists I such that they belong to the same cosets ofMI

is
(
4
|I|
)
· (28)−16+4·|I| (note that there are

(
4
|I|
)

different subspaces MI). Setting |I| = 1,

this probability is equal to 2−94.
Thus, one pair of plaintexts (that is two texts) is sufficient to distinguish the random

case from the other one. Indeed, on average in the random case we expect 2−94 · 2 =
2−93 ' 0 collisions (a “collision” occurs when two elements belong to the same coset
of MI), while this number is always equal to 1 in the other case. The cost of this
distinguisher is hence two texts. An equivalent distinguisher over 2 rounds was already
introduced in [21], where authors investigated how the components of the AES interact
over 2 rounds.

Finally, note that a similar distinguisher can be used for the 1 round case. Indeed,
note that if two plaintexts belong to the same coset of DI (equivalently CI), then they
belong to the same coset of CI (equivalently MI) with probability 1 for each I after 1
round. Moreover, observe that it also is possible to set up a 2 rounds distinguisher using
the impossible differential properties defined in (2) or (3).

4.2 3-Round Subspace Trail for AES

There are several techniques that can be used to set up a 3-rounds distinguisher for
AES, as for example (1) truncated differential, (2) balance property and (3) impossible
differential. In this section, we only describe the truncated differential distinguisher
using the subspace trail, which we’ll be used to set up the attack on 4-rounds of AES



with secret S-Box. The other two distinguishers based on the balance property and on
the impossible differential are presented in details using the subspace trail in the next
section. Note that the arguments in next section used for 4 rounds of AES holds also
for the 3-rounds case.

The most competitive distinguisher on 3-rounds of AES is based on truncated differ-
ential trails, and an example of it is depicted in Fig. 5. In the following, we re-interpret
it using the subspace trail.

Fig. 5. Truncated differential characteristic over 3-round AES. White box denotes a byte with a zero
difference, while black box denotes a byte with a non-zero difference.

Consider a coset of DI as starting point. After two rounds, this coset is mapped into
a coset of MI with probability 1. Indeed, as we have seen in Lemma 1, a coset of DI is
mapped into a coset of CI with probability 1 after one round, and, as we have seen in
Lemma 2, a coset of CI is mapped into a coset ofMI with probability 1 after one round.
Thus, if we consider two elements that belong to the same cosets of DI , after two rounds
they belong in the same coset of MI for sure. However, at the same time and with a
certain probability, it is possible that these two elements belong to the same coset of
CJ ∩MI ⊆ CJ for a certain J after two rounds. In particular, the following proposition
holds:

Proposition 1. For anyMI and CJ , we have that Pr(x ∈ CJ |x ∈MI) = (28)−4|I|+|I|·|J |.

The proof can be found in App. A. That is, if two elements belong to the same coset
of MI , then they belong to the same coset of CJ with probability (28)−4|I|+|I|·|J |. More
precisely, given two texts in the same coset of DI , after two rounds they belong to the
same coset of MI ∩ CJ with probability (28)−4|I|+|I|·|J | (where MI ∩ CJ ⊆ CJ). As we
have just seen, a coset of CJ is mapped into a coset of MJ after one round. It follows
that if two elements belong to the same coset of DI , the probability that they belong
to the same coset of MJ after three rounds is equal to (28)−4|I|+|I|·|J |. The case |I| = 1
and |J | = 3 is depicted in Fig. 5.

For a more detailed explanation using subspace trail, consider the following argu-
ment. Given a coset of MI , it can be seen as a union of coset of CJ , that is:

MI ⊕ a =
⋃

x∈MI⊕a\CJ

CJ ⊕ x,

as depicted in Fig. 6. In particular, note that the number of x ∈MI ⊕ a \ CJ is exactly
(28)4·|I|−|I|·|J |. Given two elements in the same coset of DI , then after two rounds they
belong to the same coset of MI . Since a coset of MI can be seen as the union of
(28)4·|I|−|I|·|J | cosets of CJ , the probability that these two elements belong to the same
coset of CJ after two rounds is exactly (28)−4·|I|+|I|·|J |. Also in this way, one obtains the
previous result.

Moreover, note the a similar result can be obtained in the decryption direction. That
is, if two elements belong to the same coset of MI , then they belong to the same coset
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MI ⊕ d

An ⊆ CJ ⊕ an

A1 ⊆ CJ ⊕ a1
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Bn ⊆MJ ⊕ bn
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B1 ⊆MJ ⊕ b1

Fig. 6. 3-round distinguishers for AES (the index n is defined as n := (28)4·|I|−|I|·|J|).

of DJ three rounds before with probability (28)4·|I|−|I|·|J |. Finally and only for complete-
ness, it is possible to obtain the same result considering the intersection of CI and DJ
after one round, instead of the intersection of MI and CJ after two rounds. All the
details of this (analogous) case are given in App. B.

A Concrete Distinguisher for 3 Rounds. In order to set up the distinguisher,
we exploit the difference of probability to have a collision in the ciphertexts set between
the case in which two plaintexts are taken in a random way and the case in which two
plaintexts belong to the same coset of DI .

The probabilities that two elements drawn randomly from F4×4
28

(denoted by p1) and
that two plaintexts drawn from a coset of DI (denoted by p2) belong to the same coset
of MJ are respectively:

p1 =

(
4

|J |

)
· (28)−16+4|J |, p2 =

(
4

|J |

)
· (28)−4|I|+|I||J |.

It is very easy to observe that the probability to have a collision in the second case
is higher than in the random case. In particular, for |J | = 3 and |I| = 1, we obtain that
p2 = 2−6 while p1 = 2−30. Thus, the idea is to look for the minimum number of texts
m in order to guarantee at least one collision in the “subspace case” and zero in the
random case (with high probability).

To do this, we recall the birthday paradox. Given d (equally likely) values and n
variables, the probability that at least two of them have the same value is given by:

p = 1− n!

(n− d)! · nd
= 1− (d)!

nd
·
(
n

d

)
' 1− e

−d(d−1)
2n , (4)

where the last one is an useful approximation.
Since if we encrypt two plaintexts from a coset of DI , each of them can only belong

to one of the 28 cosets of MJ defined as before, the probability that there is at least
one collision in a coset is equal to the probability that two elements belong to the same
cosets ofMJ , that is p = 1− e−m(m−1)/(2·28). However, this property holds if we choose
any of the four 12-dimensional space MJ as a target distinguisher space, each yielding
an independent experiment. Since this experiments are independent, we have that the
probability to have at least one collision in the subspace case given m texts is:

p = 1−
(

28!

(28 −m)! · (28)d

)4

' 1−
(
e
−m(m−1)

2·28

)4

= 1− e
−m(m−1)

2·26 .



Data: 20 texts ci (for i = 1, ..., 20).
Result: number of collisions.
n← 0;
for each pair (ci, cj) with i 6= j do

c←MC−1(ci ⊕ cj);
for k from 0 to 3 do

if ck,0 = 0 AND c(3+k)%4,1 = 0 AND c(2+k)%4,2 = 0 AND c(1+k)%4,3 = 0 then
n← n+ 1;
next pair

end

end

end
return n.

Algorithm 2: Distinguisher for 3-rounds of AES - Pseudo-code.

Thus, if we set m = 20, the probability to have at least one collision in one of the
four different MJ spaces (with |J | = 1) is 95.25% (14 texts are sufficient to have at
least one collision with probability greater than 75%). In order to distinguish the two
sets (that is, the random one and the “subspace” one), the verifier has to construct all
the possible pairs of texts and to count the number of collisions, for each of them. In
particular, given 20 texts (that is, 190 different pairs), we expect 190 · 2−6 ' 3 collisions
in the subspace case and 190 · 2−30 = 2−22.4 ' 0 in the random case. Finally, observe
that the distinguisher works in similar way in the decryption direction, with the same
complexity.

4.3 4-Round Subspace Trail for AES

As for 3-rounds of AES, there are several techniques that can be used to set up a 4-
rounds distinguisher for AES, as (1) impossible differential and (2) balance property. In
the following, we present them in details. The same analysis holds also for 3-rounds of
AES.

An Impossible Differential Distinguisher From now on, we assume that I and
J satisfy the condition 0 < |I| + |J | ≤ 4 (in order to use Lemma 5). To set up the
4-round distinguisher, we start from the 2-round one. Fix DI and DJ such that 0 <
dim(DI) + dim(DJ) ≤ 16. We can construct a four round trail by simply combining
two-round subspaces properties. Indeed, we have seen that

Pr(R(2)(u)⊕R(2)(v) ∈MI |u⊕v ∈ DI) = 1, P r(R(2)(u)⊕R(2)(v) ∈MJ |u⊕v ∈MI) = 0

if u 6= v. Combining these two probabilities for two-rounds yields a four-round proba-
bility

Pr(R(4)(u)⊕R(4)(v) ∈MJ |u⊕ v ∈ DI) = 0 (5)

where u 6= v. This means that the adversary can pick any coset of a non-zero plaintext
space DI and a non-zero ciphertext spaceMJ , as long as 0 < dim(DI)+dim(MJ) ≤ 16,
and distinguish on the fact that the probability that two plaintexts encrypt to the same
coset of the ciphertext space is zero over four rounds.

A Concrete Distinguisher for 4 Rounds. The idea is pick parameters that
maximize probability in the random case. The best minimal data complexity is found if
we choose |J | = 3. This implies that |I| = 1, since we have the condition that |I|+|J | ≤ 4.
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Fig. 7. 4-round distinguishers for AES (where the index n is defined as n := (28)
4|I|

and the indexes I
and J satisfy the condition 0 < |I|+ |J | ≤ 4).

In this case, the probability that two random elements belong to the same coset of MJ

for a certain J with |J | = 3 is 2−30 (as we have already seen). Instead, the probability
that two elements, that belong to the same coset of DI , belong to the same coset ofMJ

after four rounds is 0.
Exactly as before, the idea is to look for the minimum number of texts m in order

to guarantee at least one collision in the random case with high probability. Since there
are four 12-dimensional space MJ and using the birthday paradox, the probability to
have at least one collision in the random case given m texts is well approximated by
p = 1 − e−m(m−1)/(2·230). Thus, m ' 216.25 texts are sufficient to set up a 4-Rounds
distinguisher (in this case, the probability to have a collision in the random case is
approximately 95% - note that 215.75 texts are sufficient to have at least one collision
with probability of 75%). Indeed, given 216.25 texts (that is about 231.5 pairs), the number
of collision in the random case is on average 231.5 · 2−30 = 21.5 ≈ 3, while the number of
collision in the other case is 231.5 · 0 = 0. That is, 216.25 chosen plaintexts are sufficient
for this distinguisher.

Note that this distinguisher exploits the Impossible Differential property presented in
[6]. Thus, it is not a surprise that the computational complexity of these two distinguish-
ers is the same. Only for completeness, note that it is possible to set up a 0-probability
distinguishers also for the 3-round case:

Pr(R(3)(x)⊕R(3)(y) ∈MI |x⊕ y ∈ CJ) = Pr(R(3)(x)⊕R(3)(y) ∈ CI |x⊕ y ∈ DJ) = 0

where 0 < |I|+ |J | ≤ 4. Since in the random case, the probability that two elements
belong to the same coset of CI or MI is upper bounded by 2−30 for each I and J , one
needs at least 215.75 chosen plaintexts to set up this distinguisher. That is, in the case
of 3-round AES, the 0-probability distinguisher is worse than the one described in the
previous section9.

Moreover, note that this 4-round distinguisher (as also the 3-round one) works also
in the decryption direction. In this case, using the same argument as before, if we two
texts belong to the same coset of MI , then they belong to two different cosets of DJ
four rounds before for |I|+ |J | ≤ 4.

Finally, starting from this 4-rounds impossible subspace trail, it is possible to re-
define the impossible differential attack in a very natural way. We highlight this rela-
tionship in App. C, giving all the details.

9 Only for completeness, a similar result can also be obtained for the 2-round case, exploiting the
probability Pr(R(2)(x)⊕R(2)(y) ∈ CI |x⊕ y ∈ CJ) = 0 where 0 < |I|+ |J | ≤ 4.



Data: 216.25 texts ci (for i = 1, ..., 216.25).
Result: 1 if there is at least one collision, 0 otherwise.
for each pair (ci, cj) with i 6= j do

c←MC−1(ci ⊕ cj);
for k from 0 to 3 do

if ck,0 = 0 AND c(3+k)%4,1 = 0 AND c(2+k)%4,2 = 0 AND c(1+k)%4,3 = 0 then
return 1;

end

end

end
return 0.

Algorithm 3: Pseudocode for Distinguisher for 4-round AES.

Description of the 4-round Zero-Sum Distinguisher using the Subspace Trail
Integral cryptanalysis [18]-[32] is a cryptanalytic attack that is particularly applicable to
block ciphers based on substitution-permutation networks, like AES. Unlike differential
cryptanalysis, which uses pairs of chosen plaintexts with a fixed XOR difference, integral
cryptanalysis uses sets (or multi-sets) of chosen plaintexts in which one part is held
constant and another part varies through all possibilities. For example, an attack might
use 256 chosen plaintexts that have all but 1 of its byte the same, and all differ in that
1 byte. Such a set has a XOR sum of 0, and it is possible to prove that the XOR sum
of the corresponding sets after three rounds is equal to 0.

An integral distinguisher can also be constructed for four rounds of AES. In particu-
lar, a 4-round integral distinguisher for AES exploits the fact that summing over all 232

ciphertexts (formed by encrypting a coset of a diagonal space Di four rounds) is zero
(e.g. [31] for details). Here we show how this zero-sum distinguisher can be re-interpreted
in terms of subspace trails. The same analysis can also be done for 3-rounds AES.

First of all, note that the entire space F4×4
28

can be decomposed as F4×4
28

=M0⊕M1⊕
M2⊕M3, whereMj is the j-th mixed space defined above. LetMI =M0⊕M1⊕M2. If
we encrypt the 232 plaintexts of a coset of Di (for four round with the final MixColumns),
we get a set of 232 ciphertexts C = {c1, c2, . . . , c232}, where each ci belongs to a different
coset of MI . If we decompose these vectors with respect to the subspaces Mi, each ci
can be written as ci = ci,0 ⊕ ci,1 ⊕ ci,2 ⊕ ci,3 where ci,j ∈Mj . Since each ci belongs to a
different coset ofMI , it means that the components ci,3 are all different; thus their sum
must be zero since it amounts to summing over all vectors in M3. Since this property
holds for all four choices ofMI , it means that all of the components ci,j must be different
with respect to the same subspace Mj , thus the sum over all the vectors in C is zero.

For completeness, another explanation of the 4-rounds zero-sum distinguisher is pos-
sible, and exploits the subspace trail and the zero-sum property over 3 rounds. As we have
seen, a coset of a diagonal space Di⊕a is mapped after one round into a coset of a column
space Ci⊕ b. Let i = 0 for simplicity. By definition, C0⊕ b = (C0 ∩D0)⊕ (C0 ∩D1,2,3)⊕ b,
that is:

C0 ⊕ b =
⋃

x∈(C0∩D1,2,3)⊕b

(C0 ∩ D0)⊕ x,

where |C0 ∩ D1,2,3| = 224. Since each coset (C0 ∩ D0)⊕ x corresponds to a set with only
one active bytes, the sum of corresponding ciphertexts after three rounds is equal to
zero (due to the three-round zero sum property of AES). Note that this property holds
for each coset (C0 ∩ D0) ⊕ x, that is for each x ∈ (C0 ∩ D1,2,3) ⊕ b. Thus, the sum over
all 232 ciphertexts formed by encrypting a coset of a diagonal space Di four rounds is
equal to zero.



Finally, note that the integral distinguisher works exactly in the same way also in the
decryption direction (independently of the presence of the final MixColumns operation).
In particular, for the 4-round case and if the final MixColumns operation is not omitted,
given 232 ciphertexts that belong to the same coset of Mi with |i| = 1, then the sum of
the corresponding plaintexts is equal to zero. Instead, if the final MixColumns operation
is omitted, given 232 ciphertexts in the same coset of IDi with |i| = 1, then the sum of
the corresponding plaintexts is zero.

5 Key recovery attack on 3 and 4 Rounds of AES

Starting from the subspace trails of AES found in the previous section, in the following
we show how to exploit them to set up low-data complexity attacks. In particular, in
the following we focus only on the subspace trail distinguisher on 2 rounds presented
in Sect. 4.1 and on AES-128. The following attack is a truncated differential attack,
where the attacker exploits the relationship among the differences of bytes in different
positions to recover the key. The attack on 3 rounds can be extended at the end - Sect.
5.3 - or at the beginning - App. E - in order to set up competitive attacks on 4 rounds of
AES. Moreover, it is also possible to attack 5 rounds of AES using both the extension,
but this attack is no more competitive with respect to the others present in literature.

Consider DI with dim(DI) = 4 (that is |I| = 1). For simplicity, we show our attack
only for the case I = {0}. In this case, DI and MI are the subsets of dimension 4
corresponding to the following symbolic matrix:

DI ≡


x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

 MI ≡


a1(x1) a2(x4) a2(x3) a3(x2)
a2(x1) a2(x4) a3(x3) a1(x2)
a2(x1) a3(x4) a1(x3) a2(x2)
a3(x1) a1(x4) a2(x3) a2(x2)

 , (6)

where ai(·) are linear functions defined as follow:

a1(x) = αx, a2(x) = x, a3(x) = (α+ 1)x. (7)

As we have seen, for all a ∈ D⊥I there exists one and only one b ∈ M⊥I such that
R(2)(DI ⊕ a) = MI ⊕ b. The attack that we are going to present is based on this
property and on probability from Eq. (1). Moreover, the following low-data complexity
attack can be applied exactly in the same way also on 1- and 2-rounds of AES. All
details are given in App. D.4.

5.1 The Attack on 3 Rounds of AES

Consider 3 rounds of AES:

p
R(2)(·)−−−−→ s

Rf (·)−−−→ c,

where p ∈ DI ⊕ a (for a fixed a ∈ D⊥I ), and where MixColumns operation is omitted
in the final round for simplicity. However, adding the MixColumns operation in the last
round would not increase the resistance (see App. D.3 for more details).

Let p1 and p2 two different plaintexts that belong to the same coset of DI , and let
c1 and c2 the corresponding ciphertexts. The idea of the attack is to find all the keys of
the final round such that

R−1f (c1)⊕R−1f (c2) = s1 ⊕ s2 ∈MI , (8)

that is such that s1 and s2 belong to the same coset of MI .



Theorem 1. Let p1 and p2 be two plaintexts of the same coset of DI , and let c1 and c2

the respective ciphertexts. Let k be the secret round-key of the final round. If there exists
a pair of ciphertexts (c1, c2) such that k doesn’t satisfy (8), then k is certainly wrong.

The proof of this and of the following theorems are given in App. D. By the previous
Theorem, it follows that the secret key is certainly one of those that satisfy the equiva-
lence (8). In order to find all the keys that satisfy (8), the idea is to take advantage of
the particular form ofMI . In particular, observe that the columns of the subspace MI

depend on different and independent variables, and that each element of a fixed column
depends on a single variable in a very particular form.

Theorem 2. Let a, b ∈ M⊥I , and let s1 ∈ MI ⊕ a and s2 ∈ MI ⊕ b. Denote s as the
sum of s1 and s2, i.e. s = s1 ⊕ s2.

Then, a = b if and only if all the following equivalences are satisfied:

s0,0 = αs1,0, s2,0 = s1,0, s3,0 = (α+ 1)s1,0;

s0,1 = s1,1, s2,1 = (α+ 1)s1,1, s3,1 = αs1,1;

s1,2 = (α+ 1)s0,2, s2,2 = αs0,2, s3,2 = s0,2;

s0,3 = (α+ 1)s2,3, s1,3 = αs2,3, s3,3 = s2,3.

Using the previous Theorem and the fact that the columns ofMI depend on different
and independent variables, the attacker can work independently on each column ofMI

and so on each column of SR−1(k). Thus, we show our attack only on the first column
(it is completely equivalent for the others).

Given c1 and c2, the attacker guesses (for example) the bytes k1,3 and finds all the
values of bytes k0,0, k2,2 and k3,1 of the key of the final round such that s1 and s2 belong
to the same coset ofMI . Using the previous Theorem and given k1,3, the other bytes of
the first column of SR−1(k) have to satisfy the following equalities:

S-Box−1(c10,0 ⊕ k0,0)⊕ S-Box−1(c20,0 ⊕ k0,0) =

=α[S-Box−1(c11,3 ⊕ k1,3)⊕ S-Box−1(c21,3 ⊕ k1,3)];

S-Box−1(c12,2 ⊕ k2,2)⊕ S-Box−1(c22,2 ⊕ k2,2) =

=S-Box−1(c11,3 ⊕ k1,3)⊕ S-Box−1(c21,3 ⊕ k1,3)];

S-Box−1(c13,1 ⊕ k3,1)⊕ S-Box−1(c23,1 ⊕ k3,1) =

=(α+ 1)[S-Box−1(c11,3 ⊕ k1,3)⊕ S-Box−1(c21,3 ⊕ k1,3)].

(9)

Suppose to guess one value of k1,3. Then, it is very easy to observe that each equality
of (9) can be rewritten in the following way

S-Box−1(α⊕ x)⊕ S-Box−1(x) = β(k1,3), (10)

where α = c1i,j ⊕ c2i,j , β depends on k1,3 and on two ciphertexts bytes, and x = c2i,j ⊕ ki,j
is the unknown variable. First of all, note that if α = 0 then this equality is impossible
if β 6= 0, while it is always satisfied if β = 0.

The solutions of equation (10) are related to the differential uniformity of the S-
Box. Since the inverse function S-Box−1 is differential 4-uniform, there are at most four



different solutions10. In particular, there are two solutions with probability 126/256,
four solutions with probability 1/256 and zero solutions with probability 129/256. That
is, on average there exist about 2.016 different values that satisfy equation (10) with
probability 49.6%.

Suppose for the moment that c1 and c2 are two ciphertexts such that c1i,j 6= c2i,j for

each i, j ∈ {0, ..., 3}. Guessed the byte key k1,3, then the attacker finds 2.0163 ' 8.194
possible combinations (k0,0, k2,2, k3,1) that satisfy the equivalence (9) with probability
(49.6%)3 ' 12.2%. Since there are 256 values of k1,3, we have in total 0.122 × 256 ×
(2.016)3 ' 255.95 combinations (k0,0, k1,3, k2,2, k3,1) for the first column (analogous for
the others).

The computational cost to find these 256 combinations (k0,0, k1,3, k2,2, k3,1) for the
first column (and analogous for the other ones) can be estimated at 3 (conditions)×28

(values of k1,3)×[2 + 2 × 28 (values of k0,0, k2,2, k3,1 for each condition)]= 218.59 S-Box
look-ups and 217.59 XOR operations.

Actually, it is possible to improve this result. Indeed, observe that if the value k0,0
satisfies (or not) equation (9) for a given value k1,3, then this equation is also satisfied
(or not) by the value k0,0 ⊕ c10,0 ⊕ c20,0. That is, for each k1,3 the attacker has to test
only 128 values of k0,0 and not 256. The same consideration holds for the other bytes of
the key. Thus, the computational cost to find the 256 combinations (k0,0, k1,3, k2,2, k3,1)
for the first column (and analogous for other columns) can be estimated at 216.59 S-Box
look-ups.

Recover the Secret Key using only 2 Chosen Plaintexts. Using the previous
procedure, the attacker is able to find 28 combinations for each column, that is (28)4 =
232 candidates of the keys in total. A first possibility is simple to store them in the
memory and to do a brute force attack on these 232 possible keys, that is to check
for which of these keys the condition c1 = R(3)(p1) (or equivalently c2 = R(3)(p2)) is
satisfied. In this case, the total cost of the attack is approximately 232 executions of the
three-round cipher (observe that this second step is more expensive than the first one),
232 memory access and the memory cost is approximately 256 × 4 (byte)×4 (columns)
= 212 byte. As we show in details in App. D.2, this result can be a little improved if the
plaintexts belong to the same coset of D0 ∩ C0. In this case, the total complexity of the
attack can be approximately at 231.6 executions of the three-round encryption.

Remember that these results are based on the hypothesis that c1i,j 6= c2i,j for each
i, j ∈ {0, ..., 3}. By simple computation, the probability that this condition is satisfied
is (255/256)16 = 0.9393, so everything works with high probability.

Recover the Secret Key using 3 Chosen Plaintexts Another possibility is to use
a third plaintext p3 that belongs to the same coset of DI of p1 and p2 (i.e. p1⊕p3 ∈ DI),
and such that the corresponding ciphertexts satisfy the following conditions:

c1i,j 6= c2i,j , c1i,j 6= c3i,j , c2i,j 6= c3i,j ∀i, j ∈ {0, ..., 3}. (11)

The idea is simply to repeat the first step of the attack, on the combinations of key
columns that satisfy condition (9) for the first pair of texts, using a second pair of texts
composed of p3 and one of the first two plaintexts. That is, to eliminate the wrong keys
checking the keys found previously (at the first step) with this second pair. As before, the

10 Observe that if x satisfies (10), then also x⊕α satisfies it, so the number of solutions can not be odd.



idea is to work again on each column independently. Remember that, for each column,
the right combination is the only one that satisfies the condition (9) for each pair of
ciphertexts such that the corresponding plaintexts belong to the same coset of DI .

Using 3 chosen plaintexts and to improve the total computational cost, the attack
should be a little modified. Working independently for each column, the best idea is
to work only on one of the equations of (9), e.g. the first one. Given the first pair
of plaintexts, the attacker is able to recover 256 possible combinations for the pair
(k0,0, k1,3). For each one of them, the attacker checks if it verifies the condition (9) also
for the second pair of plaintexts. Since on average each equation of the condition (9) is
satisfied with probability 2−8, the attacker finds the correct combination of (k0,0, k1,3).
In this way, the attacker knows k1,3 and so she knows the right part of equations (9).
Thus, in the same way of before, she can easily discover k2,2 and k3,1. However, since
the attacker knows the right part of the equations, only two texts pass the first step.
Indeed, observe that there are 28 possible values and that each equation is satisfied only
with probability 2−8, thus only one text passes the test. Anyway, if x satisfies (10), then
also x⊕ α satisfies it. Using the second pair of texts, the attacker finds the right bytes
of the key.

Working independently on each column, a good idea is to perform these two steps at
the same time, that is to check the combination found with the first pair of plaintexts
immediately using the second one: in this way, the attacker doesn’t need to store anything
(except the right combination for each column).

Remember that this result is based on the hypothesis that condition (11) is satisfied.
By simple computation, this happens with probability (255 · 254/2562)16 = 82.85%.
Actually, the condition (11) can be (a little) relaxed. For example, three chosen plaintext
such that c10,0 = c20,0 6= c30,0 and c11,3 6= c21,3 6= c31,3 can also be used to find the key. Thus,

using 3 chosen plaintexts the probability of success is:
[∑3

i=0

(
4
i

)(
255·254
2562

)4−i( 255
2562

)i]4
=

88.83%.

The computational cost for the first step can be approximated by 2−1 · 28 (values of
k1,3) ×(2 + 2× 2−1 · 28 (values of k0,0) ) + 4× 256 (check with 2-nd pair) = 215.055 S-Box
look-ups, while the cost for the second step is 2×2−1 ·28 (values of k2,2 and k3,1) +2×2
(check with 2-nd pair) = 28 S-Box look-ups. In conclusion, our attack needs 3 chosen
plaintexts (one plaintext is in common for the two pairs) and the total computational
cost is approximately 4 (columns) ×(215.055 + 2 × 28) = 217.08 S-Box look-ups, that is
about 211.2 executions of the three-round cipher (the memory cost is negligible).

Finally, note that after the identification of a subspace trail the previous attack can
be easily generalized to other AES-like ciphers.

Perform the Attack using Table Look-ups It is also possible to perform the pre-
vious attack in a slight different way, that is using look-ups table. First of all, for each
values of α and β, the idea is to precompute the values of x that satisfy condition (10)
and to store them in a table. The cost of this precomputation is approximately 216 S-Box
look-ups11, that is about 210.1 executions of three-round AES. The memory cost to store
this table is approximately (28)2 = 216 bytes.

Then, for each column, the attacker is able to discover the 256 key combinations
with 3 · 28 look-ups table (that is, 3 look-ups table for each values of k1,3). In order to

11 For each of the 28 values of β and of the 27 values of x (remember that if x satisfies (10), then also
x ⊕ α satisfies it), the attacker finds the value of α that satisfies the equality (10), and stores this
combination in the memory. For the remaining pairs (α, β), the equality (10) has no solutions.



Data: 2 ciphertexts pairs (c1, c2) and (c1, c3), whose corresponding plaintexts belong in the
same coset of D0.

Result: First diagonal of the secret key k3 (i.e. k3i,i for each i = 0, ..., 3).
(Note: the same procedure with the same ciphertexts can be used to recover the other diagonals
of the key.)
for all values of k31,3 do

for all values of k30,0 do
check if 1-st equivalence of (9) is satisfied for both pairs of ciphertexts
If satisfied, then identify candidates for k31,3 and k30,0

end

end
for all candidates k31,3 do // on average only 1 candidate for k31,3

for all values of k32,2 do
check if 2-nd equivalence of (9) is satisfied for both pairs of ciphertexts
If satisfied, then identify candidate for k32,2
else reject k31,3 as candidate

end
for all values of k33,1 do

check if 3-rd equivalence of (9) is satisfied for both pairs of ciphertexts
If satisfied, then identify candidate for k33,1
else reject k31,3 as candidate

end

end
return k3i,i for each i = 0, ..., 3.

Algorithm 4: Attack on 3 rounds of AES-128 - Pseudo Code. For simplicity, in this
pseudo-code, we show how to find only the first diagonal of the secret key of the last
round, and we don’t use the following optimization: if x satisfies (10) then also x⊕ α
satisfies it. To recover the entire key, it is sufficient to repeat exactly the same attack
for the other diagonals using the same pairs of ciphertexts.

find the right key among these combinations, she can use the same techniques described
previously, or she can use another pair of plaintexts and again the look-ups table. On
average, using 3 chosen plaintexts and working in the same way described previously,
for each column the attacker needs 28 look-ups table and 28 · 4 = 210 S-Box look-ups to
discover k0,0 and k1,3 (i.e. the attacker finds the 256 possible values of (k0,0, k1,3) using
look-ups table, and then tests them with the second pair of texts), and 2 look-ups table
to discover the other 2 bytes. Thus, the total computational cost is of 4 · (28 +2) = 210.02

look-ups table (with a memory cost of 216 bytes) and 210 · 2 = 211 S-Box look-ups (since
she needs 210 S-Box look-ups to compute the value of β for each value of k1,3), that is
25.1 executions of three-round AES (the precomputation cost is about 210.1 executions
of three-round AES). Since 1 round of AES can be approximated by 20 ' 24.32 memory
accesses12, one can declare that the total complexity of the attack is approximately
(20 · 3)−1 × 210 + 25.1 = 25.68 executions of the three-round encryption.

5.2 Relationship to Standard Truncated Differential Attack

Differential cryptanalysis [7] is a general form of cryptanalysis applicable to block ci-
phers. It studies how differences in information input can affect the resulting difference
at the output. Differential attacks exploit the fact that pairs of plaintexts with certain
differences yield other differences in the corresponding ciphertexts with a non-uniformity
probability distribution. Statistical key information is deduced from ciphertext blocks

12 This approximation has been proposed and used for example in [38]. For comparison, note that in
[42] authors approximate 1 rounds of AES with 25 memory accesses.



obtained by encrypting pairs of plaintext block with a specific (bitwise) difference under
the target key. In particular, for a pair of plaintexts related by a constant (bitwise)
difference, one tries for all values of the round key in the last round if the expected
difference in the ciphertexts occurs. This is repeated several times and the most sug-
gested values are assumed to be the value of the secret key of the last round. Attacks
following this basic attack vector can not be described without considering the details of
the S-Boxes of the cipher as it affects the probability of events. A variant of this attack
is the truncated differential attack [30], in which the attacker considers only part of the
difference between pairs of texts, i.e. it is a differential attack where only part of the
difference in the ciphertexts can be predicted. As truncated differential cryptanalysis
can be described without considering details of S-Box and since subspace trail crypt-
analysis is largely independent of concrete choices of an S-Box, truncated differential
cryptanalysis is hence much closer in nature to subspace trail cryptanalysis.

Our attack falls into the category of truncated differential cryptanalysis attacks.
Indeed, the attacker considers plaintexts which belong to the same coset of a diagonal
space DI , that is plaintexts where the input differences in 4− |I| diagonals are equal to
zero (the difference in the others diagonal are instead not fixed). Then, she looks for a
key such that the bytes differences one round before satisfy certain relationships. That
is, the attacker exploits the relationship between bytes differences which are in different
positions. As we have seen, if I = {0} and for the first column, the relationships among
this differences are given in (10). This guarantees that the two ciphertexts c1 and c2

belong to the same coset ofMI one round before, that is R−1(c1)⊕R−1(c2) ∈MI . This
last condition is equivalent to the following one:

MC−1 ◦R−1(c1)⊕MC−1 ◦R−1(c2) ∈ IDI ,

where an Inverse MixColumns operation is applied on both sides and whereMC−1(MI) =
IDI by definition (note that MC−1 is linear and that MC−1(R−1

k3
(c1)⊕ k2⊕R−1

k3
(c2)⊕

k2) = MC−1 ◦R−1(c1)⊕MC−1 ◦R−1(c2), where k2 and k3 are respectively the keys of
the second and of the third/final round). By definition of IDI , the attacker is looking
for a key such that the differences in 16− 4 · |I| bytes are equal to zero (4− |I| for each
column), while no condition is imposed on the difference in the other 4 · |I| bytes. For
example, the condition (10) for the first column can be re-written as:

MC−1 ×


α · [S-Box−1(c10,0 ⊕ k0,0)⊕ S-Box−1(c20,0 ⊕ k0,0)]

S-Box−1(c11,3 ⊕ k1,3)⊕ S-Box−1(c21,3 ⊕ k1,3)]
S-Box−1(c12,2 ⊕ k2,2)⊕ S-Box−1(c22,2 ⊕ k2,2)

(α+ 1) · [S-Box−1(c13,1 ⊕ k3,1)⊕ S-Box−1(c23,1 ⊕ k3,1)]

 =


·
0
0
0

 ,
where no restriction holds on the first byte. Solving this equality, one obtains the rela-
tionships among the bytes differences given in (10). That is, the attacker looks for a key
that guarantees certain differences (zero in this case) for certain bytes, while she doesn’t
care of the differences in the other bytes, as by definition of Truncated Differential
Attack.

5.3 The Attack on 4 Rounds of AES - Extending the 3 Rounds Attack at
the End

Starting from the previous attack on 3 rounds, in this section we show how to extend it
at the end in order to attack 4 rounds of AES. In a similar way, in App. E we show how



to attack 4 rounds of AES extending the previous attack on 3 rounds at the beginning.
Consider the following situation:

p
R(2)(·)−−−−→ s

R(·)−−→ z
Rf (·)−−−→ c,

where p ∈ DI ⊕ a (for a fixed a ∈ D⊥I ) and MixColumns operation is omitted (only for
simplicity) in the final round.

As we have seen, if p1 ⊕ p2 ∈ DI , then s1 ⊕ s2 ∈ MI . The idea of the attack is
simply to guess part of the key of the final round, in order to partially decrypt c and
obtain (part of) z. Then the attacker can repeat the attack on 3 rounds, working on z
and exploiting the relationships that hold between the bytes of s1⊕ s2. In this case, the
attacker founds on average one values of k3 for each guessed value of k4. Thus, she can
not say anything about k3 a priori, since it depends on the guessed value of k4. That is,
she has to check that the key of the third round k3 and of the final round k4 satisfy the
key schedule. If they satisfy the key schedule, then the attacker has found the right key,
otherwise she has to repeat the previous procedure for the other values of k4.

In the following, we give all the details of the attack. In the first part, the at-
tacker guesses two columns of the last key k4, partial decrypts the pairs of ciphertexts
and discovers part of the key of the third round k3, using the attack on 3 rounds de-
scribed previously. Then she checks that the found key satisfies the key schedule with
the guessed key k4. In the second part of the attack, for the key candidates that satisfy
the key schedule, the attacker is able to recover other bytes of k4 and k3 (using again
the key schedule). In order to find the complete secret key, the attacker has to guess the
remaining unknown bytes of the secret key and to do a brute force attack. The attack
can be performed using three or only two chosen plaintexts.

Details of the First Part of the Attack. In order to show our attack, suppose
that the attacker guesses the following eight bytes of the key of the final round k4:

SR(k4i,3) = k4i,3−i and SR(k4i,0) = k4i,−i ∀i ∈ {0, 1, 2, 3}, (12)

that is the first and the fourth columns of k4 after the ShiftRows operation (the index
−i is taken module 4). Observe that there are (28)8 = 264 possibilities in total. Note
that since the attacker can not impose any restriction/condition on the secret key, she
has to repeat the following steps for each possible values of these eight bytes of k4.

Using these guessed key bytes of k4 and three given ciphertexts c1, c2, c3 (which
plaintexts p1, p2, p3 belong to the same coset of DI), the attacker is able to compute:

zhi,j = S-Box−1(chi,j+i mod 4 ⊕ k4i,j+i mod 4) ∀h ∈ {1, 2, 3}, ∀j ∈ {0, 3}, ∀i.

The cost of this step is 264 · 8 · 3 = 268.6 S-Box look-ups. Note that the positions of the
guessed bytes of the key k4 can not be chosen in an arbitrary way, since in the following
step the attacker has to apply the InverseMixColumns operation on two columns of z.

Using z1, z2 and z3 (instead of c1, c2, c3), the attacker can repeat the previous attack
on 3 rounds and finds eight bytes (i.e. first and fourth columns) of the key k3, in order to
guarantee that si⊕sj ∈MI for each i, j = 1, 2, 3. In this case, note that for each column
the attacker can impose only one relationship that involves two bytes, and not three
relationships as in the previous attack on 3 round. For example, the only relationship
that holds for the first column is the following (analogous for the others):

S-Box−1(ẑ10,0⊕k̃30,0)⊕S-Box−1(ẑ20,0⊕k̃30,0) = α[S-Box−1(ẑ11,0⊕k̃31,0)⊕S-Box−1(ẑ21,0⊕k̃31,0)],



where k̃3 = SR−1(MC−1(k3)) and ẑ = SR−1(MC−1(z)).

Thus, given eight byte of k4, the computational cost to find 8 bytes of k3 is approx-
imately 4× 27 × (2 + 2 · 27) = 217 S-Box look-ups and 25 byte of memory. That is, the
computational cost to find the 264 combinations of all the eight bytes of k3 (equivalently
k̃3 - note that we are working with columns of SR(k3)) and k4 is 264 × 217 = 281 S-Box
look-ups.

When the attacker has found eight bytes of k3, she has to check if they satisfy the
key schedule. In particular, the following three conditions between the eight bytes of k3

and the eight bytes of k4 hold:

k40,0 = S-Box(k31,3)⊕ k30,0 ⊕ 0x08, k43,0 = S-Box(k30,3)⊕ k33,0, k41,3 = k31,3 ⊕ k41,2. (13)

Since these conditions are satisfied with probability 2−24, only 264× 2−24 = 240 possible
combinations of the 8 bytes of k3 (equivalently k̃3) and k4 satisfied them. The cost of
this step is 2× 264 × 2−8 = 257 S-Box look-ups (since one condition doesn’t involve any
S-Box, and the probability that it is satisfied is 2−8).

Details of the Second Part of the Attack. In order to find the right key, the idea
is to test the 240 found combinations using a brute force attack. Observe that for each
of these combinations (composed of eight bytes of k4 and 8 bytes of k3), the attacker
can compute other four bytes of k4 using the key schedule, that is:

k41,0 = S-Box(k32,3)⊕ k31,0, k42,3 = k32,3 ⊕ k42,2,
k42,0 = S-Box(k33,3)⊕ k32,0, k40,2 = k30,3 ⊕ k40,3. (14)

and (in an analogous way) three bytes of k3, which are k32,1, k
3
2,2 and k33,1. Thus, four

bytes of the key of the final round k4 are still unknown, which are:

k40,1 k41,1 k43,2 k43,3, (15)

where

k43,2 ⊕ k43,3 = k33,0 (16)

and k33,0 is known. To do the brute force attack, the idea is simply to guess those three

bytes. That is, the attacker has to test 240 · (28)3 = 264 possible keys by brute force.
The cost of this step is 264 four-round AES. Only for completeness, note that another
possibility is to consider plaintexts that belong to the same coset of D0 ∩ C0, and to use
the fact that after one round they belong to the same coset of C0 ∩M0.

As for the attack on 3 rounds, a good idea is to perform these two steps at the same
time, that is to test the keys found in the first step by the brute force attack. In this
way, the attacker doesn’t need to store anything.

In conclusion, for this attack the attacker needs 3 different chosen plaintexts and the
computational cost is approximately 268.6 + 281 ' 281 S-Box look-ups for the first part
of the attack, that is about 274.7 four-round AES, and then a further 264 four-round
AES for the brute force attack of the second part, that is in total 274.7 + 264 ' 274.7

four-round AES (the memory cost is negligible).

Observe that the first step of this attack can be performed using only table look-ups,
in the same way of the attack described in Sect. 5. In this case, the cost of the first step
of the attack becomes 264 · 212 = 276 memory access, since the cost of the attack on
3 rounds is 212 memory access and the attacker has to repeat this step for all the 264



Data: 2 ciphertexts pairs (c1, c2) and (c1, c3), whose corresponding plaintexts belong in the
same coset of D0.

Result: Secret key k4.
for all 264 values of two columns of k4 defined as in (12) do

partial decrypt
3-Rounds Attack (see Algorithm 4): identify candidates for eight bytes of k3 (two per

column) // on average only 1 candidate

check key schedule conditions given in (13)
if key schedule satisfied then // probability equal to 2−24

find other four bytes of k4 using (14)
for all 224 values of the four remaining bytes of k4 (see (15)-(16)) do

Brute Force attack on all possible candidates
if key k4 found then

return k4.
end

end

end

end

Algorithm 5: Pseudo-code for key-recovery attack on 4 rounds (EE) of AES-128.

possible values of the 8 bytes of the key of the final rounds. Thus, in this case the attacker
needs 3 different chosen plaintexts, the computational cost is approximately 276 memory
accesses and 264 four-round AES encryptions, and the memory cost is about 216 bytes.
Using a previous observation (1 round of AES ≈ 20 memory accesses), one can declare
that the total complexity of the attack is approximately (20 · 4)−1 × 276 + 264 = 269.71

executions of the four-round encryption.

Attack with only 2 Chosen Plaintexts (or more than 3) It is also possible to
mount this attack using only 1 pair of chosen plaintexts, that is 2 chosen plaintexts
are sufficient to discover the secret key. At the first step, using a single pair of chosen
plaintexts, the attacker is able to discover 232 combinations for the eight bytes of k3 for
each combination of the eight bytes of k4. Instead to use a third chosen plaintext to find
the right combination, the idea is simply to do a brute force attack. In particular, using
the conditions (13), the attacker is able to eliminate 224 wrong combinations. Then, for
each of the 28 survived combinations, she can easily find other four bytes of k4 using
the conditions (14), and (in the same way as before) she guesses the remaining four
bytes of k4 (remember that it is sufficient to guess only three of them). Thus, for each
combination of the eight bytes of k4, the attacker has to test by brute force 232 values.
This means that in total she has to test by brute force 232× (28)8 = 296 possible values.
In conclusion, for this attack, the attacker needs 2 different chosen plaintexts and the
computational cost is 296 four-round AES (the memory cost is negligible).

We also show that it is not possible to improve the computational cost of the attack
using more chosen plaintexts. Indeed, in the second step of the attack with three chosen
plaintexts, suppose to check the 240 survived combinations with other two pairs of plain-
texts that belong to the same coset DI ⊕ a. That is, given p4 and p5, the attacker check
for which combinations of the 8 bytes of the keys k3 and k4, the conditions s1⊕s4 ∈MI

and s1⊕ s5 ∈MI are satisfied. Observe that the probability that both these conditions
are satisfied is 2−64, thus only one key (the right one) survived. Anyway, the total com-
putational cost of this variant is again approximately 274.7 four-round AES, since the
most expensive step of the attack is the first one, which doesn’t change if the attacker
uses more than three chosen plaintexts.



Finally, these two versions of this attack work in a similar way if MixColumns op-
eration is not omitted in the last round. In this case, the idea is simply to change the
position of MixColumns operation with the final AddRoundKey operation. As these op-
erations are linear they can be interchanged, by first XORing the data with an equivalent
version of the key (that is k̃4 := MC−1(k4)) and only then applying the MixColumns
operation.

Practical Result. Since this attack on 4 rounds with the extension at the end has
a very high computational cost, we tested it in a different way. As we have seen, the
attacker has to guess eight bytes of the final key, for a total of 264 possibilities. In our
experiments, the attacker guesses only two bytes of the final key instead of eight, where
the remaining six bytes are fixed and equal to those of the secret key. In this way, the
total complexity of the attack becomes more feasible for a real test and allows us to
have a practical verification of the attack.

6 Key-recovery Attack on AES with a Secret S-Box

From now on, we focus on AES with a single secret S-Box, and we show how to exploit
subspace trails in order to set up key-recovery attacks. More precisely, assume to consider
AES with secret and identical (bijective) S-Box. Here we present a generic strategy
related to the presented subspace trail that can be used to recover directly the secret
key (that is, without finding any information or equivalent representation of the secret
S-Box). In particular, in the following we show how truncated differential, impossible
differential, and square attacks can exploit this strategy to attack 3- up to 5-rounds of
AES.

The main idea of our attack on AES with a secret S-Box is the following. As we have
seen, a coset of Di is mapped into a coset of Ci after one round. Using some particular
(but very common) properties of the MixColumns matrix, it is possible to choose a
subset of a coset of Di which depends on the secret key, such that it is mapped after
one round into a subset of a coset of DJ ∩ Ci ⊆ DJ with probability 1. That is, consider
a subset of a coset of Di which depends on the guess values of some bytes of the secret
key. If these guess values are wrong, then after one round this subset of Di is mapped
into a subset of a coset of Ci. Instead, if these guess values are correct, then after one
round this subset of Di is mapped into a subset of a coset of DJ with probability 1.
Note that also when the guessed values are wrong it is possible that the initial subset is
mapped into a subset of a coset of DJ after one round, but this happens with probability
strictly less than 1. Using this property together with other considerations, the attacker
can identify the right key.

This attack exploits some particular (but very common) properties of the Mix-
Columns matrix MMC . However, before to list these properties of MMC used for the
attack, we define the concepts of (two) consecutive-row bytes and of (two) consecutive-
diagonal bytes.

Definition 7. Let t ∈ F4×4
28

a text. Given two different bytes ti,j and tl,k (where the
indexes are taken modulo 4):

– if they lie in the same row, they are “consecutive-row bytes” if i = l, and if j+1 = k
for j < k ≤ 3 or k + 1 = j otherwise;

– if they lie in the same diagonal, they are “consecutive-diagonal bytes” if i + 1 = l
for i < l ≤ 3 or l + 1 = i otherwise, and if j + 1 = k for j < k ≤ 3 or k + 1 = j
otherwise.



Examples of two consecutive-row bytes are (t0,0, t0,1) or (t0,0, t0,3), while examples of
two consecutive-diagonal bytes are (t0,0, t1,1) or (t0,0, t3,3). Using this definition, the two
properties of the MixColumns matrix MMC that we are going to use are:

– each row of MMC has two identical consecutive-row bytes;
– each row of MMC has these two identical consecutive-row bytes in different positions,

that is two different rows can not have the two identical consecutive-row bytes in
the same columns.

Note that a cyclic matrix13 with two identical elements for each row satisfies these
conditions. Moreover, these conditions can be a little generalized, since for example it
is not necessary that the two identical byte are consecutive.

Using this properties of MMC , our attack is based on the following proposition.

Proposition 2. Let p1 and p2 two texts such that p1i,j = p2i,j for each (i, j) 6= {(0, 0), (1, 1)}
and p10,0 ⊕ p11,1 = p20,0 ⊕ p21,1. If p10,0 ⊕ p11,1 = p20,0 ⊕ p21,1 = k0,0 ⊕ k1,1 (where k is the
secret key of the first round), then after one round they belong to the same coset of
C0 ∩ D0,1,3 ⊆ D0,1,3, that is R(p1)⊕R(p2) ∈ C0 ∩ D0,1,3 ⊆ D0,1,3.

Proof. First of all, note that these two texts p1 and p2 belong in the same coset of
D0 ∩C0,1 ⊆ D0 (by definition of D0). As we have already seen, if two elements belong to
the same coset of D0, then after one round they belong to the same coset of C0. Thus,
it is sufficient to prove that R(p1)⊕R(p2) ∈ D0,1,3.

Since R(p1)⊕R(p2) ∈ C0, in order to prove that R(p1)⊕R(p2) ∈ D0,1,3 it is sufficient
to prove that R(p1)2,0 ⊕R(p2)2,0 = 0. By simple computation:

R(p1)2,0 = S-Box(p10,0 ⊕ k00,0)⊕ S-Box(p11,1 ⊕ k01,1)⊕
⊕ α · S-Box(p12,2 ⊕ k2,2)⊕ (α+ 1) · S-Box(p13,3 ⊕ k3,3).

First of all observe that S-Box(p10,0 ⊕ k00,0)⊕ S-Box(p11,1 ⊕ k01,1) = 0. Indeed, since p10,0 ⊕
p11,1 = k0,0 ⊕ k1,1 by definition, then p10,0 ⊕ k00,0 = p11,1 ⊕ k01,1, that is S-Box(p10,0 ⊕ k00,0) =

S-Box(p11,1 ⊕ k01,1), or equivalently S-Box(p10,0 ⊕ k00,0)⊕ S-Box(p11,1 ⊕ k01,1) = 0. Thus:

R(p1)2,0 = α · S-Box(p12,2 ⊕ k2,2)⊕ (α+ 1) · S-Box(p13,3 ⊕ k3,3)

and in a similar way:

R(p2)2,0 = α · S-Box(p22,2 ⊕ k2,2)⊕ (α+ 1) · S-Box(p23,3 ⊕ k3,3).

Since p12,2 = p22,2 and p13,3 = p23,3 by definition, it follows that R(p1)2,0 = R(p2)2,0, and
so the thesis. ut

Note that no information on the S-Box is used, and, as shown in the following, this fact
allows to discover directly the secret key. This proposition can be easily generalized for
each possible combination of consecutive-diagonal bytes.

13 A circulant or cyclic matrix is a matrix where each row vector is rotated one element to the right
relative to the preceding row vector, that is:

circ(c0, c1, ..., cn−1) =


c0 c1 . . . cn−1

cn−1 c0 . . . cn−2

...
...

. . .
...

c1 c2 . . . c0

.



Fig. 8. Strategy of the attacks on AES with a secret S-Box. Starting with a subset of a coset of Di which
depends on the guessed values of the secret key, it is mapped after one round into a subset of a coset of
DJ if the guess values is correct - case (1), or into a subset of a coset of Ci if the guess values is wrong -
case (2). As a consequence, the subspace trails up to the 5-th round are different for the two cases, and
this allows to set up various key-recovery attacks.

Proposition 3. Let p1 and p2 two texts such that

p1i,j = p2i,j ∀(i, j) 6= {(n,m), (k, l)}

and

p1k,l ⊕ p1n,m = p2k,l ⊕ p2n,m,

where pk,l and pn,m are two consecutive-diagonal bytes. If p1k,l ⊕ p1n,m = p2k,l ⊕ p2n,m =
kk,l⊕kn,m (where k is the secret key of the first round), then after one round they belong
to the same coset of Cl−k ∩ D{0,1,2,3}\r ⊆ D{0,1,2,3}\r (the indexes are taken modulo 4),
where r is defined as the row of the MixColumn matrix MMC such that MCr,n = MCr,k.
Equivalently, R(p1)⊕R(p2) ∈ Ck−l ∩ D{0,1,2,3}\r.

Note that l − k ≡4 m− n since they are two consecutive-diagonal bytes.

The idea is to exploit this property in order to set up attacks on AES. Indeed,
consider a subset of a coset of Di related to the guess secret key as plaintexts. If the
guess value is correct - case (1) of Fig. 8 (that is, if the difference of two consecutive-
diagonal bytes of the plaintexts is equal to the difference of the same bytes of the secret
key), then this set is mapped into a subset of a coset of Ci ∩ DJ ⊆ DJ for a certain J
with |J | = 3. If the guess value is wrong - case (2) of Fig. 8, then this set is mapped into
a subset of a coset of Ci. Using the subspace trails of Sect. 4, this implies for example
that:

– after 3 rounds, the previous subset of Di is mapped into a subset of a coset of MJ

with probability 1 in case (1), while this happens only with probability strictly less
than 1 in case (2);

– after 4 rounds, the probability that two texts in the previous subset of Di are mapped
into the same coset of MJ is much higher in case (1) than in case (2);

– after 5 rounds, the probability that two texts in the previous subset of Di are mapped
into the same coset ofMj is equal to zero in case (1), while is strictly different from
zero in case (2).

These different subspace trails allow to recover information about the secret key. In
particular, in the following we show how to exploits it to set up a truncated differential
attack on 3- and 4- rounds, an impossible differential attack on 5-rounds and a square
attack on 3-rounds of AES with a secret S-Box.

Finally, observe that a similar strategy can be used to set up attacks on AES-like
block ciphers, with identical (secret) S-Box and with a MixColumns matrix that satisfies
the previous requirement. Moreover, we stress that, with respect to other attacks present



Fig. 9. 3-rounds Truncated Differential Attack on AES with a single secret S-Box. The choice of the
plaintexts (i.e. p0,0 ⊕ p1,1 = k0,0 ⊕ k1,1) guarantees that after one round there are only three bytes
with non-zero difference instead of four, that is the plaintexts belong to the same coset of C0 ∩ D0,1,3.
White box denotes denotes a byte with a zero-difference, while a black box denotes a byte with non-zero
difference.

in literature in the same setting (i.e. AES with a secret S-Box), for the first time we
show that it is possible to discover the secret key directly, that is without discovering
any information (e.g. an equivalent class) about the secret S-Box.

6.1 Attacks on 3 and 4 Rounds of AES with a Secret S-Box

In this section, we show how to exploit the previous strategy to set up truncated dif-
ferential attacks on 3- and 4-rounds of AES with a secret S-Box. We limit here to give
the idea of these attacks, and we refer to App. G for all the details together with the
presentation of the square attack on AES with a Secret S-Box.

The attack on 3-rounds works as follows. Consider a pair of plaintexts p1 and p2

with the condition p1i,j = p2i,j for each (i, j) 6= {(0, 0), (1, 1)} and p10,0⊕ p11,1 = p20,0⊕ p21,1.
As we have seen, if p10,0 ⊕ p11,1 = p20,0 ⊕ p21,1 = k0,0 ⊕ k1,1, then p1 and p2 belong to
the same coset of D0,1,3 after one round with probability 1. Consequently, after three
rounds they belong to the same coset of M0,1,3 with probability 1 (or of ID0,1,3 if the
final MixColumns is omitted), since a coset of D0,1,3 is mapped into a coset of M0,1,3

with probability 1. Instead, if p10,0 ⊕ p11,1 = p20,0 ⊕ p21,1 6= k0,0 ⊕ k1,1, then p1 and p2

belong to the same coset of D0,1,3 after one round only with probability 2−8 (that is,
only if R(p1)2,0 ⊕R(p2)2,0 = 0). Thus, after three rounds they belong to the same coset
of M0,1,3 only with probability 2−8. Our attack exploits these different probability in
order to find k0,0 ⊕ k1,1.

In particular, to implement the attack, one has to consider (at least) 3 different pairs
of plaintexts for each possible value of δ, that is 29.6 pairs of plaintexts (p1, pl) for l =
2, 3, 4 such that p1i,j = pli,j for each (i, j) 6= {(0, 0), (1, 1)} and p10,0⊕p11,1 = pl0,0⊕pl1,1 = δ
for each l. For a given δ, the attacker checks if the corresponding 3 pairs of ciphertexts
belong or not to the same coset ofM0,1,3. If not, then the key is wrong due to previous
considerations. In order to find the entire secret key, for each of the four diagonals the
attacker has to repeat the same attack for three consecutive-diagonal bytes differences
of the same diagonal, as for example k0,0 ⊕ k1,1, k1,1 ⊕ k2,2 and k2,2 ⊕ k3,3 for the first



diagonal. In this way, using 213.6 chosen plaintexts, the attacker is able to find the secret
key up to 232 variants. As we show in details in App. G.1, it is not possible to reduce
the number of these variants without exploiting any information of the secret S-Box.

The truncated differential attack on 4 rounds of AES works in a similar way, and
it exploits the subspace trail described in Sect. 4.2. In particular, if two texts belong
to the same coset of DJ for |J | = 3 fixed, then after three rounds they belong to the
same coset of MI for |I| = 3 with probability 4 · 2−24 = 2−22 in the AES case and with
probability 4 · 2−32 = 2−30 in the random case. Exploiting these different probabilities
and the fact that a coset of a subset of Di (which depends on the guess values of the
key) is mapped into a subset of a coset of D0,1,3 only for the correct guess values of the
key, it is possible to discover the whitening key of 4-rounds of AES with a secret S-Box
up to 232 variants. More details are given in App. G.3.

7 Impossible Differential Attack on 5-round of AES with a single
Secret S-Box

Using the same strategy presented in the previous section, it is possible to set up an
impossible differential attack on 5 rounds of AES with a secret S-Box. As before, the
goal is to find the secret key without needing to discover any information about the
S-Box.

Starting from this attack, we show how to turn it into a secret key distinguisher for
AES, and we compare it in details with the distinguisher presented in [40] at CRYPTO
2016. As we have already said, also the key recovery attack can be used as distinguisher.
However, we show that in order to distinguish a random permutation from an AES one,
it is not necessary to find the entire key.

Key-Recovery Attack using Impossible Differential - General Idea. For the
following, we define the set of plaintexts-ciphertexts Vδ with |Vδ| = 28:

Vδ ={(pi, ci) for i = 0, ..., 28 − 1 | pi0,0 ⊕ pi1,1 = δ ∀i and

and pik,l = pjk,l ∀(k, l) 6= {(0, 0), (1, 1)} and i 6= j},
(17)

i.e. plaintexts with 14 constants bytes and with the difference on the other two bytes
fixed.

Consider two different pairs (p1, c1) and (p2, c2) that belong to the same Vδ. By
Prop. 7, we know that if δ = k0,0 ⊕ k1,1, then p1 and p2 belong to the same coset of
D0,1,3 ∩ C0 ⊆ D0,1,3 after one round (that is, R(p1)⊕ R(p2) ∈ D0,1,3 ∩ C0 ⊆ D0,1,3) with
probability 1. If δ 6= k0,0⊕k1,1, they belong to the same coset of C0 after one round with
probability 1, and to the same coset of D0,1,3 ∩ C0 ⊆ D0,1,3 with probability 2−8 (or to
the same coset of DJ for |J | = 3 after one round with probability 4 · 2−8 = 2−6).

Consider first the case δ = k0,0 ⊕ k1,1. Since R(p1)⊕ R(p2) ∈ D0,1,3 for each pair of
plaintexts p1 and p2 in Vδ, then R(4) ◦R(p1)⊕R(4)◦R(p2) = R(5)(p1)⊕R(5)(p2) /∈MJ for
|I|+ |J | ≤ 4 with probability 1 due to the 4-rounds impossible differential distinguisher
of Sect. 4.3. That is, for each (p1, c1) 6= (p2, c2)

Pr(R(5)(p1)⊕R(5)(p2) ∈MJ | (p1, c1), (p2, c2) ∈ Vδ) = 0,

for each J with |J | = 1 and where δ := k0,0 ⊕ k1,1 is known. As usual, a similar result
holds also in the case in which the final MixColumns operation is omitted (in this case,
MJ is replaced by IDJ).



Fig. 10. 5-Rounds Secret Key Distinguisher for AES with a single secret S-Box with data complexity
298.2 based on the Impossible Subspace Trail on 4-Rounds (from Sect. 4.3). The choice of the plaintexts
(i.e. p0,0 ⊕ p1,1 = k0,0 ⊕ k1,1) guarantees that after one round there are only three bytes with non-zero
difference instead of four, that is the plaintexts belong to the same coset of C0 ∩D0,1,3. The probability
the two ciphertexts belong to the same coset of Mk for |k| = 1 is zero. White box denotes denotes a
byte with a zero-difference, while a black box denotes a byte with non-zero difference.

Instead, if δ 6= k0,0 ⊕ k1,1, note that it’s possible that two elements of Vδ belong to
the same coset ofMJ for |J | = 1 after 5-rounds. In particular, the probability that two
elements p and q in Vδ belong to the same coset of MJ after 5-rounds for a certain J
with |J | = 1 is approximately14 4 · 2−96 = 2−94.

The idea is to exploit these different probabilities in order to find the key. In partic-
ular, a key candidate δ can be declared wrong if there is at least one collision, i.e. two
different pairs of texts (p1, c1) and (p2, c2) such that p1 ⊕ p2 ∈ Vδ and c1 ⊕ c2 ∈MJ for
|J | = 1. Thus, in the following we look for the minimum number of texts necessary to
have at least one collision for each δ 6= k0,0 ⊕ k1,1 with high probability.

Before to proceed, note that a similar impossible differential attack can be set up
for 4-rounds AES with secret S-Box, exploiting the fact that two elements in the same
coset of DJ can not belong to the same coset of CI after three rounds for |I|+ |J | ≤ 4.

14 The exact probability for a wrong δ 6= k0,0⊕ k1,1 is given by Pr(R(5)(p1)⊕R(5)(p2) ∈MJ | p1⊕ p2 ∈
Vδ) = 2−6 · 0 + (1− 2−6) · 4 · 2−96 = 2−94 − 2−100 ' 2−94, which is derived considering the two cases
R(p1)⊕R(p2) ∈ DJ and R(p1)⊕R(p2) /∈ DJ for |J | = 3.



Data: 298.5 collections (290.2 one for each possible value of δ, or equivalently 282.2 different sets
Vδ as defined in (17).

Result: k0,0 ⊕ k1,1.
for ∆ from 0 to 28 − 1 do

flag ← 0;
divide the 290.2 ciphertexts in the corresponding 282.2 different sets Vδ;
for each one of the 282.2 different sets V∆ do

let (pi, ci) for i = 0, ..., 28 − 1 the 28 (plaintexts, ciphertexts) of a single set Vδ;
re-order this set of elements as described in App. F;
for i from 0 to 28 − 2 do

if ci ⊕ ci+1 ∈Mk for |k| = 1 then // e.g. see Algorithm 1
flag ← 1;
next collection (i.e. next δ);

end

end
if flag = 0 then

identify δ as candidates of k0,0 ⊕ k1,1;
end

end

end
return Candidates of k0,0 ⊕ k1,1.

Algorithm 6: Attack for 5-rounds of AES using Impossible Differential - Pseudo
Code. The same attack can be use to find the remaining part of the key.

Details of the Attack - Data Complexity and Computational Cost

The attack is constructed in two steps. First we focus on a single difference among two
bytes of the secret key, and then we show how to find the entire key.

Find a Single Byte of the Secret Key - Data Complexity. As we have seen, the
probability that two texts belong to the same coset ofMJ for |J | = 1 is 2−94 (analogous
for IDJ). Thus, given n pairs, the probability to have at least one collision in the same
coset ofMJ for |J | = 1 for a fixed δ 6= k0,0⊕ k1,1 is given by p = 1− e−n/294 , due to the
birthday paradox probability (4). If the number of pairs n is approximately 295.6, then
p is greater than 95%. Given a single set Vδ, it is possible to construct 27 · (28− 1) ' 215

different pairs. Thus, for the distinguisher one needs approximately 295.6 · 2−15 = 280.6

different sets Vδ. Since each of these sets contains 28 texts, the data complexity of the
distinguisher is 280.6 · 28 = 288.6 texts.

However, one needs at least one collision in the same coset of MJ for |J | = 1 for
each one of the 28 − 1 ' 28 δ 6= k0,0 ⊕ k1,1. If we consider 280.6 sets for each δ as be-
fore, then the probability to have one collision is 95% for each single collection of sets
corresponding to a given value δ. However, the probability that there is at least one
collision for each one of the 28 − 1 wrong δ is only of 0.95255 ' 2 · 10−6 (note that the
28 collections of sets are independent). In order to have a total probability of about
95%, the probability to have at least one collision for each wrong δ must be increased
to approximately (0.95)1/2

8
= 0.9998. Indeed, in this way the total probability is equal

by 0.9998256 = 0.95, as desired. Using similar calculation as before, for each one of the
28 collections (i.e. for each δ), one needs at least 297.2 pairs to have at least one collision
with probability 0.9998. Since each set Vδ has about 215 different pairs, then one needs
about 297.2 · 2−15 = 282.2 different sets for each δ (instead of 280.6 as before), that is
290.2 texts for each δ. Since there are 28 different values of δ, the total number of texts
required for this distinguisher is 28 · 290.2 = 298.2 texts. In this way, one is able to find



one byte of the secret key.

Find the Secret Key - Data Complexity. In order to find the entire key, the
idea is simply to repeat the previous attack 12 times (i.e. three times for each possible
diagonal), in order to find 232 variants of the whitening secret key. As shown in App.
G.1 for the three round case, it is useless to repeat more times this attack, since it
is not possible to reduce this number of variants without exploiting the details of the
S-Box. However, due to similar argumentation of before, the total probability of success
becomes of (0.95)12 = 54% using only 12 ·298.2 = 2101.8 chosen plaintexts. Thus, in order
to have a total probability of success of at least 95%, we need to increase the number of
chosen plaintexts. In particular, for each one of the 12 cases, the probability to have at
least one collision must be increased to 0.951/(256·12) ' 0.9999833. Thus, for each one of
the 12 possible two consecutive-diagonal bytes and for each one of the corresponding 28

δ, one needs at least 297.4 pairs to have at least one collision with probability 0.999983
(using analogous computation as before). Since each set Vδ has about 215 different pairs,
then one needs about 297.4 · 2−15 = 282.4 different sets for each δ (instead of 282.2 as
before), that is 290.4 texts for each δ. Since there are 28 different values of δ and since
the attack is repeated 12 times, the total number of texts required for this attack is
12 · 28 · 290.4 = 2102, which is lower than the entire input-output space.

Computational Complexity. The attacker has to construct all the possible pairs
and to count the number of collision in the same coset of MJ for |J | = 3. As shown
in details for the 4 rounds truncated differential attack - App. G.3, the best strategy
to minimize the computational cost is first to re-order the elements of each set using
the algorithm described in App. F, and then to count the number of collisions working
only on (ordered) consecutive texts. Since in this case each set contains 28 elements,
the cost to re-order each set and count the number of collision for each possible J with
|J | = 3 can be approximated to 4 · 28 · (log 28 + 1) = 213 table look-ups. Since this
operation is the most expensive one, we can approximate the cost of this attack with
12 · 290.4 · 213 ≈ 2107 table-look ups, or 2100.35 five rounds AES encryption. The memory
cost can be approximated to 298.4 to store all the texts.

Finally, it is also possible to modify the attack considering the difference of two sub-
key bytes for more than one column at the same time. However, as we show in details
in App. H.1, this case is worse both for the data complexity and the computational cost
than the one presented here.

8 The 5-Round Secret Key Distinguisher for AES

Next we show how to turn the previous key recovery attack into a distinguisher for AES,
in the same setting of the distinguisher presented in [40]. The idea is simply to consider
only the first part of the attack, i.e. it is sufficient to recover one byte of the key as
k0,0 ⊕ k1,1.

Consider the previous key recovery attack, and let the set Vδ defined as before. For
each one of the 28 possible values of δ, the idea is to consider 282.2 different sets Vδ, for
a total of 298.2 chosen plaintexts. As we have just seen, for the AES permutation, there
exists one δ (which is equal to k0,0 ⊕ k1,1) for which there are no collisions. That is, for
the AES permutation and for δ = k0,0 ⊕ k1,1, no pairs (p1, c1) and (p2, c2) can satisfy
p1 ⊕ p2 ∈ Vδ and c1 ⊕ c2 ∈ MJ for |J | = 1. Instead, for the random permutation and



with probability 95%, for each δ there is at least one pair with the previous property.
Thus, it is possible to distinguish the random permutation from an AES one.

To summarize, suppose to have 28 collections (one for each δ), each one with 282.2

different sets Vδ, where each of this set contains 28 texts, for a total of 298.2 texts. In
the random case and with probability 95%, we expect that in each one of these 28

collections there is at least one collision. Note that the average number of collisions for
each collection (i.e. for each δ) is about 2−94 ·297.2 = 23.2 ' 9. For the AES permutation,
we expect that there exists one δ for which there is no collision with probability 1 in
the corresponding collection of sets. For all the other collections, we expect to have at
least one collision with probability 95%. We highlight that given the 298.2 texts defined
as before, it is always possible to divide them in 28 collections (one for each δ), and that
each collection can be divided in a very simple way in 282.2 different sets Vδ (simply
using the definition of Vδ). Finally, using the argument of our impossible differential key
recovery attack, the computational cost of this distinguisher (i.e. the cost to check if
there exists at least one pair of ciphertexts that belong to the same coset of MJ for
a certain J with |J | = 1 for all possible values of δ) is 2103.2 table look-ups, using the
ordering algorithm.

For completeness, in App. H we present a modified version of our distinguisher
presented in this section. In particular, we show that if the details of the S-Box are
known, then it is possible to improve considerably the distinguisher, and no assumption
on the MixColumns matrix is required. Moreover, the same distinguisher can be used
both in the encryption and in the decryption direction, with the same complexity.

8.1 Comparison with 5-Rounds Distinguisher proposed by Sun, Liu, Guo,
Qu and Rijmen, and Possible Generalizations

In [40], authors presented a similar secret key distinguisher to the one just presented,
using the balance property instead of our impossible differential trail.

In order to construct the secret key distinguisher presented in [40], authors simply
consider all the input-output space, and divide it in the 28 subsets Ṽ∆ defined as Ṽ∆ =
{(p, c) | c0,0 ⊕ c1,3 = ∆} for each possible ∆ ∈ F28 , and without any other assumptions
on the other bytes. Note that |Ṽ∆| = 2120. Then, using the link between zero-correlation
linear hulls and the integral/balance property, they are able to prove that for an AES
permutation and for ∆ = k0,0⊕k1,3 the sum of the plaintexts of the corresponding set Ṽ∆
is equal to zero, that is the balance property holds15. Instead, for a random permutation,
the probability that there exists one ∆ with the previous property is only 2−120. This
distinguisher works only in the decryption direction (i.e. using chosen ciphertexts) and
only if the final MixColumns operation is not omitted. Moreover, there is no evidence
that this distinguisher can work with less than the entire input-output space16. We refer
to [40] for more details. To summarize, this distinguisher requires the full codebook (i.e.
2128 texts), and the verification cost is well approximated by 2128 XOR operations.

15 In [40], authors presented also a similar distinguisher always based on balance property. In this case,
the idea is to divide the entire input-output space in 232 subsets W̃∆ defined as W̃∆ = {(p, c) | c0,0 ⊕
c1,3 = δ0, c0,1⊕c3,2 = δ1, c1,2⊕c2,1 = δ2, c2,0⊕c3,3 = δ3}, where ∆ = (δ0, . . . , δ3). Also in this case, for
an AES permutation there exists one ∆ for which the balance property holds among the plaintexts,
while for a random permutation this happens only with probability 2−96

16 It may be possibile to use the recently proposed statistical integral distinguisher [46] to modify
the distinguisher presented in [40] into a statistical integral one, with the goal to reduce the data
complexity at the cost of success probability.



For comparison, our distinguisher requires only 298.2 different (plaintexts, cipher-
texts), works in the encryption direction (i.e. using chosen plaintexts) independently by
the presence of the final MixColumns operation. Thus, as we said in the introduction,
this provides a counter-example to the claims made in [40]. That is, as we have already
discussed in details in the introduction, this distinguisher provides a counter-example to
the conjecture made by these authors that the security margin for round-reduced AES
under the chosen plaintext attack is different from that under the chosen-ciphertexts
attack.

Only for completeness, we prove that if our distinguisher uses all the input-output
space, the probability of success is 1−2−2

25.5
. If all the texts are used, then for each δ there

are 2112 different sets Vδ. Thus, it is possible to construct approximately 215 ·2112 = 2127

different pairs. The probability that for a (wrong) δ no one of these pairs satisfy the
required property is approximately 1 − (1 − 2−94)2

127 ' 1 − e−233 ' 1 − 2−2
33.5

. Thus,
the probability of success is approximately (1− 2−2

33.5
)2

8 ' 1− 2−2
25.5

if all the input-
output space is used, which is much higher than for the integral distinguisher (which
is approximately 1 − 2−120). We stress that our distinguisher works even using a less
data complexity that the entire input-output space, and that 2110.5 different (plaintexts,
ciphertexts) (or equivalently 294.5 different sets Vδ for each δ) are sufficient to have ap-
proximately the same probability of success of [40].

Turn the CRYPTO Distinguisher into a Key-Recovery Attack. As we have
turned our key recovery attack into a distinguisher, it is also possible to turn the distin-
guisher of [40] into an attack, as also the authors observed in their paper. The idea is to
repeat the distinguisher three times (using the version presented in Corollary 5 of [40]
and reported in the footnote, it is possible to recover four bytes of the key), in order to
recover the secret key up to 232 variants. Note that also in this case as for our attacks,
it is not possible to eliminate more variants of the key without using any information
about the secret S-Box. This attack requires the entire input-output space, and it has a
cost of 3 · 2128 = 2129.6 XOR operations.

Final Observations. Finally, it is very easy to generalize our distinguisher and the
one proposed in [40] to any SPN encryption scheme with the following properties (1) the
encryption scheme adopts identical S-Boxes and (2) at least one row of the MixColumns
matrix MMC (or its inverse) contains (at least) two identical elements. If one of these two
assumptions is missing, the above distinguishers don’t work. As a consequence, note that
the distinguisher described in this section can not work in the decryption mode (that is,
with chosen ciphertexts instead of chosen plaintexts), since no one of the columns of the
inverse MixColumns MC−1 has two equal elements. Actually, the first requirement can
be relaxed. Indeed, it is sufficient that only the two S-Boxes that are in the positions in
which the MixColumns matrix has identical elements are equal.

Note that these assumptions are similar but not equal to the ones required for a
key recovery attacks. Indeed, for our key recovery attacks on a SPN scheme with secret
S-Box, all the S-Boxes must be identical and each row of the MixColumns matrix MMC

must contain (at least) two identical elements in different positions.

We emphasize that these assumptions are quite common for the construction of
AES-like ciphers (or more in general, for SPNs ciphers). Indeed, symmetric encryption
schemes are usually a trade-off between the security and computational efficiency. Thus,
to enhance the performance of an encryption scheme (especially for lightweight cryptog-



raphy), designers usually use identical S-Box and a diffusion layer which maximize the
number of 1’s (or elements with relatively low hamming weights).

8.2 Critical Discussion of the Distinguisher Model and Open Problems

In this section, we have shown how to interpret the 5-round secret S-Box attack from the
section before as a distinguisher for 5-round AES which corresponds to the model used
in [40], with our main point being to give a counter-example to the conjecture motivated
by the results therein. By doing that we also significantly improved the complexity of
such a distinguisher.

Since any key recovery attack can be used as a distinguisher, the natural question that
arises is if such a distinguisher is actually meaningful. Both ours and the distinguisher
from [40] have two properties that set them apart from “any” key recovery-attack. The
first one (1) is that for both distinguishers it is sufficient to find only part of the key (e.g.
one byte) to distinguish an AES permutation with a secret S-Box from a random one.
That is, it is not necessary finding the entire secret key but only part of it. The second
one (2) is that both distinguishers don’t need any information about the the S-Box (that
is, they don’t find or/and exploit any information of the secret S-Box) in order to find
part of the key.

Even if there are key-recovery attacks on up to 7 rounds for AES-128 [38] with known
S-Box, and up to 6 rounds for AES-128 with a secret S-Box [42], it seems for example
not possible to find a distinguisher with properties (1) and (2) for even 6 rounds. We
leave this as an open problem for future investigation.

9 Conclusion

We have generalized invariant subspace cryptanalysis to subspace trails and have seen
that it includes truncated differential-, impossible differential- and integral attacks. For
concrete applications we focused on AES-128, and this led to a method that can use
all the aforementioned techniques to recovery the secret key for up to 5 rounds without
needing to know the S-box apart from assuming it being a permutation. When the S-Box
is known we described new truncated-differential attacks with very low data complexity
that are competitive with the best known attacks. It is conceivable that such attacks
are also found without the subspace trail approach (truncated differential + ad-hoc
optimizations of the key-recovery method that go beyond looking at the differences
only), but the combination of properties of individual texts and sums of text follows
more naturally from the subspace trail approach.

As one of the major results, we have proposed a new strategy to attack SPNs cipher
with a single secret S-Box, if some very generic assumptions on the MixColumns matrix
are satisfied. In particular, we showed how several techniques like truncated differential,
impossible differential and integral attack can exploit it to recover directly (i.e. without
discovering anything of the secret S-Box) the secret key for 1- up to 5- rounds of AES

We also used this approach to give a counter-example to the conjecture of Sun et al.
[40] related to 5-round distiguishers. By doing that we also significantly improved the
complexity of a distinguisher in their model, arguing however that the quest for a real
5-round distinguisher (that is, a 5-rounds secret key distinguisher for an AES permuta-
tion which is not derived from a key recovery attack but exploits a property which is
independent of the secret key) is still open. Future work includes trying to exploit the
subspace properties in other ways to get more efficient or longer distinguishers, perhaps



by considering also S-Box properties, to use this approach to devise more key-recovery
attacks and to apply the approach to other schemes.
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A Intersecting AES Subspaces

In this section, we give all the proofs of the Lemmas presented in Sect. 3.3, that is:
diagonal spaces and column spaces have non-trivial intersection, column spaces and
mixed spaces have non-trivial intersection, but diagonal spaces and mixed spaces have
only trivial intersection.

Lemma 6. Di ∩ Cj = 〈ei+j,j〉 and IDi ∩ Cj = 〈ei−j,j〉.

Proof. Di space corresponds to a symbolic matrix with variables along the i-th diagonal,
while Cj has variables in the j-th column. Any diagonal and column meets in exactly
one byte, precisely in row j+ i and column j. The proof is equivalent for the intersection
IDi ∩ Cj . ut

It follows that DI ∩ CJ = 〈ej+i,j | i ∈ I, j ∈ J〉 and IDI ∩ CJ = 〈ei−j,j | i ∈ I, j ∈ J〉
where j+ i and i−j are taken modulo 4, where the intersections have dimension |I| · |J |.

Lemma 7. Ci ∩Mj = 〈MC(ej+i,i)〉.

Proof. We have that MC ◦ SR(Di) = Ci and by definition 5, Mi = MC(IDi) = MC ◦
SR(Ci). By Lemma 3, Di ∩ Cj = 〈ej+i,j〉. Thus it follows that 〈MC(ej+i,j)〉 = MC ◦
SR(Di) ∩MC ◦ SR(Cj) = Di ∩ Mj . Finally, since SR(er,c) = er,c−r, we obtain that
〈MC ◦ SR(ej+i,j)〉 = 〈MC(ej+i,i)〉. ut

Thus, for two subspaces CI and MJ for non-empty subsets I and J of {0, 1, 2, 3},
it follows that CI ∩MJ = 〈MC(ej+i,i) | i ∈ I, j ∈ J〉 (where i + j is taken modulo 4)
which has dimension |I| · |J |. While the spaces DI and CJ , IDI and CJ , and CI andMJ

intersect non-trivially, the spaces DI and MJ and the spaces IDI and MJ intersect
trivially. In particular:

Lemma 8. Di ∩Mj = IDi ∩Mj = {0} for all i and j.
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Proof. A basis for Mj is given by:

Mj = 〈MC(e0,j),MC(e1,j−1),MC(e2,j−2),MC(e3,j−3)〉,

while a basis for Di is given by Di = 〈〈e0,i, e1,i+1, e2,i+2, e3,i+3〉, where in both cases the
indexes are taken modulo 4.

Suppose by contradiction that Di and Mj has a nonzero intersection. This implies
that there exist xk and yk for k = 0, ..., 3 such that

3⊕
k=0

xk · ek,i+k ⊕
3⊕

k=0

yk ·MC(ek,j−k) =

3⊕
k=0

[
xk−i · ek−i,k ⊕ yk+j ·MC(ek+j,k)

]
= 0.

has a nontrivial solution (where at least one xk or/and yk is different from zero). The
only possible solution of the previous equivalence is given by

xk−i · ek−i,k ⊕ yk+j ·MC(ek+j,k) = 0

for each k (note that e·,n and e·,m lie on different columns for n 6= m - similar for
MC(e·,n) and MC(e·,m)). This is clearly impossible since ek−i,k and MC(ek+j,k) are
linearly independent for each k = 0, ..., 3. Thus, Di and Mj intersect only in zero.

The proof is equivalent for the intersection IDi ∩Mj . ut

As long as |I| + |J | ≤ 4, we have that any combinations of subspaces DI (or IDI)
andMJ only intersect in the zero vector. Indeed, consider the sum over k defined in eq.
(A). If |I|+ |J | ≤ 4, then for each k (i.e. for each column) there are at most four terms.
Among them, there is at least one term of the form 〈e·,k〉 and at least one of the form
〈MC(e·,k)〉. Thus, equation (A) has only trivial solutions. Instead, note that this is not
true if |I|+ |J | > 4. Indeed, in this case for each k (i.e. for each column), the equation
(A) has at least 5 terms. Since there are only 4 rows, it is always possible to find non
trivial solutions17.

Lemma 9. DI ∩MJ = IDI ∩MJ = {0} for all I and J such that |I|+ |J | ≤ 4.

Finally, we prove the following proposition of Sect. 4.2.

Proposition 4. For anyMI and CJ , we have that Pr(x ∈ CJ |x ∈MI) = (28)−4|I|+|I|·|J |.

Proof. Let Z = MI ∩ CJ . In Sect. 3.3, we have seen that dim(Z) = dim(MI ∩ CJ) =
|I| · |J |. Let Y the subspace of dimension 4 · |I| − |I| · |J | such that MI = Y ⊕ Z, and
let πY and πZ the projection of MI on Y and Z respectively:

πY :MI → Y, πY(x) = xy,

πZ :MI → Z, πZ(x) = xz.

That is, ∀x ∈MI , there exists unique xy ∈ Y and xz ∈ Z such that x = xz ⊕ xy.
It follows that Pr(x ∈ CJ |x ∈ MI) = Pr(πY(x) = 0 |x ∈ MI). Since Y has

dimension 4 · |I| − |I| · |J |, we obtain:

Pr(x ∈ CJ |x ∈MI) = Pr(πY(x) = 0 |x ∈MI) = (28)−4·|I|+|I|·|J |.

ut
17 For example, the first column (i.e. k = 0) of the intersection D0,1,2 ∩M0,1 is equal to:

(D0,1,2 ∩M0,1)col(0) ≡MC

(
x

(α+ 1) · x
0
0

)≡


(α2 + α+ 1) · x
(α2 + α+ 1) · x

α · x
0

 ∀x ∈ F28 .



B Another Explanation of the Truncated Differential Distinguisher
on 3-Rounds of AES

A possible explanation of the truncated differential distinguisher on 3-rounds of AES is
given in Sect. 4.2. Here we show that it is possible to obtain the same result considering
the intersection of CI and DJ after one round, instead of the intersection of MI and CJ
after two rounds.

Fig. 11. Truncated differential characteristic over 3-round AES. White box denotes a byte with a zero
difference, while black box denotes a byte with a non-zero difference.

Consider a coset of DI as starting point. As we have seen in Lemma 1, a coset of
DI is mapped into a coset of CI with probability 1 after one round. Thus, if we consider
two elements that belong to the same cosets of DI , after one round they belong in the
same coset of CI for sure. However, at the same time and with a certain probability, it is
possible that these two elements belong to the same coset of DJ ∩CI ⊆ DJ for a certain
J . In particular, the following proposition holds:

Proposition 5. For any CI and DJ , we have that Pr(x ∈ DJ |x ∈ CI) = (28)−4|I|+|I|·|J |.

Proof. Let Z = CI ∩DJ . In Sect. 3.3, it is shown that dim(Z) = dim(CI ∩DJ) = |I| · |J |.
Let Y the subspace of dimension 4 · |I| − |I| · |J | such that CI = Y ⊕ Z, and let πY and
πZ the projection of CI on Y and Z respectively:

πY : CI → Y, πY(x) = xy,

πZ : CI → Z, πZ(x) = xz.

That is, ∀x ∈ CI , there exists unique xy ∈ Y and xz ∈ Z such that x = xz ⊕ xy.
It follows that Pr(x ∈ DJ |x ∈ CI) = Pr(πY(x) = 0 |x ∈ CI). Since Y has dimension

4 · |I| − |I| · |J |, we obtain:

Pr(x ∈ DJ |x ∈ CI) = Pr(πY(x) = 0 |x ∈ CI) = (28)−4·|I|+|I|·|J |.

ut

That is, if two elements belong to the same coset of CI , then they belong to the same
coset of DJ with probability (28)−4|I|+|I|·|J |. More precisely, given two texts in the same
coset of DI , after one round they belong to the same coset of CI ∩ DJ with probability
(28)−4|I|+|I|·|J | (where CI ∩ DJ ⊆ DJ). As we have just seen, a coset of DJ is mapped
into a coset of MJ after two rounds. It follows that if two elements belong to the same
coset of DI , the probability that they belong to the same coset ofMJ after three rounds
is equal to (28)−4|I|+|I|·|J |. The case |I| = 1 and |J | = 3 is depicted in Fig. 11.

For a more detailed explanation using subspace trail, consider the following argu-
ment. Given a coset of CI , it can be seen as a union of coset of DJ , that is:

CI ⊕ a =
⋃

x∈CI⊕a\DJ

DJ ⊕ x,



R

DI ⊕ a CI ⊕ b

An ⊆ DJ ⊕ an

A1 ⊆ DJ ⊕ a1

R

Bn ⊆ CJ ⊕ bn

R

B1 ⊆ CJ ⊕ b1

R

R

Cn ⊆MJ ⊕ cn

C1 ⊆MJ ⊕ c1

Fig. 12. 3-round distinguishers for AES (the index n is defined as n := (28)4·|I|−|I|·|J|).

as depicted in Fig. B. In particular, note that the number of x ∈ CI ⊕ a \ DJ is exactly
(28)4·|I|−|I|·|J |. If we take two elements in the same coset of DI , then after one round
they belong to the same coset of CI . Since a coset of CI can be seen as the union of
(28)4·|I|−|I|·|J | cosets of DJ , the probability that these two elements belong to the same
coset of DJ after one round is exactly (28)−4·|I|+|I|·|J |. In this way, it is possible to obtain
the previous result.

C Relationship between 4-round Subspace Trail and Impossible
Differential Attacks

In this section, we highlight the relationship between the 4-round subspace trails found
in Sect. 4.3 and impossible differential cryptanalysis. As we have seen, if 0 < dim(DI) +
dim(MJ) ≤ 16 then Pr(R(4)(x) ⊕ R(4)(y) ∈ MJ |x ⊕ y ∈ DI) = 0. We define this
subspace trail as a “0-Probability Subspace Trail” or “Impossible subspace trail”. In
the following, we’d like to show the relationship between (5) and Impossible Differen-
tial Analysis [6], [5], which is a generalization of Differential Analysis [7]. Differential
cryptanalysis traditionally considers characteristics or differentials with relatively high
probabilities and uses them to distinguish the correct unknown keys from the wrong
keys. The idea is that the difference predicted by the differential appears frequently
only when the correct key is used to decrypt the last few rounds of many pairs of ci-
phertexts. Impossible differential analysis exploits instead the differences which should
not occur (i.e., that have probability exactly zero). In this case, a key that decrypts a
pair of ciphertexts to that difference is certainly wrong.

Using arguments similar to Sect. 4.3, if |I| + |J | ≤ 4 and if the final MixColumns
operation is omitted, then Pr(Rf ◦R(3)(x)⊕Rf ◦R(3)(y) ∈ IDJ |x⊕y ∈ DI) = 0. Thus,
consider 5 rounds of AES:

ph
R(·)−−→ sh

Rf◦R(3)(·)
−−−−−−→ ch

for h = 1, 2. If there exists a pair of ciphertexts c1 and c2 that belong to the same
coset of IDJ (that is c1 ⊕ c2 ∈ IDJ), then all the keys of the first round such that
s1 ⊕ s2 = R(p1)⊕R(p2) ∈ DI for 0 < dim(DI) + dim(IDJ) ≤ 16 are certainly wrong.

To exploit this fact in order to discover the key, the idea is to choose plaintexts with a
particular shape. For simplicity, let I = {0} fixed. Suppose to considers pair of plaintexts
p1, p2 such that p1i,j = p2i,j for each i, j = 0, ...3 with (i, j) 6= {(0, 0), (1, 3), (2, 2), (3, 1)}
(that is SR−1(p1)col(i) = SR−1(p2)col(i) for i = 1, 2, 3). This choice implies that for each



key K:
R(p1)col(i) = R(p2)col(i) ∀i = 1, 2, 3,

that is the second, the third and the fourth columns of the two texts are equal after
one round18. Given c1 and c2 such that c1 ⊕ c2 ∈ IDJ (with dim(YJ) ≥ 12), in order to
guarantee that R(p1) ⊕ R(p2) ∈ DI , the attacker has to work only on the first column
of R(p1) and R(p2), that is only on the first column of SR−1(k) (for the other columns,
all the values are fine). Thus, all the keys such that R(p1) ⊕ R(p2) ∈ DI are certainly
wrong.

There are three possibilities that can be exploited for an impossible differential at-
tack, which are dim(DI) = 4 and dim(IDJ) = 12, dim(DI) = 12 and dim(IDJ) = 4,
and finally dim(DI) = dim(IDJ) = 8. For each of these combinations, using the defini-
tions of DI and IDJ it is possible to obtain and to list all the impossible input/output
combinations of difference that can be exploited to set up the attack. In particular, the
first combination is exploited for example in [37] and in [4], while the second one is
exploited in [38]. Interestingly, in literature there isn’t any attack that exploits the last
(impossible) input/output combination of differences. A possible reason of this fact is
that using this combination it is not possible to attack 7 rounds of AES-128 as for the
other combinations. Moreover, even if it is possible to attack 7 rounds of AES-192 and
8 rounds of AES-256 using it, our results (omitted due to page limit) show that in this
case the data and the computational complexity is not better than the other attacks al-
ready present in literature that exploit the first and the second impossible combinations.

D Proofs and Details of Sect. 5 - Attack on 3 Rounds of AES

D.1 Proofs of Theorem of Sect. 5

Theorem 3. Let p1 and p2 be two plaintexts of the same coset of DI , and let c1 and c2

the respective ciphertexts. Let k be the secret round-key of the final round. If there exists
a pair of ciphertexts (c1, c2) such that k doesn’t satisfy (8), then k is certainly wrong.

Proof. Suppose by contradiction that k is the right key.
If there exists a pair (c1, c2) such that k doesn’t satisfy (8), then R−1f (c1)⊕R−1f (c2) /∈

MI (i.e. R−1f (c1) and R−1f (c2) belong to two different cosets of MI), that is

Pr(R−1f (c1)⊕R−1f (c2) ∈MI | p1 ⊕ p2 ∈ DI) 6= 1.

Since k is the right key, then

Pr(R−1f (c1)⊕R−1f (c2) ∈MI | p1 ⊕ p2 ∈ DI) = 1,

(see (1)) which is a contradiction. ut
18 For completeness, to show this fact we compute the i-th column of SR−1(p1) and SR−1(p2) after one

round for i = 1, 2, 3. By simple computation, we have that for each j = 1, 2:

R(SR−1(pj)col(i) = [k1 ⊕MC ◦ S-Box(pj ⊕ k0)]col(i),

where we use the fact that she ShiftRows, the SubBytes and the AddRoundKey operations can be
switched positions. Thus, since the MixColumns operation works on each column independently by
the others and since SR◦SR−1(p1)col(i) = p1col(i) = p2col(i) = SR◦SR−1(p1)col(i) for each i = 1, 2, 3, it
follows that the second, the third and the fourth columns of the two texts are equal after one round.



Theorem 4. Let a, b ∈ M⊥I , and let s1 ∈ MI ⊕ a and s2 ∈ MI ⊕ b. Denote s as the
sum of s1 and s2, i.e. s = s1 ⊕ s2.

Then, a = b if and only if all the following equivalences are satisfied:

s0,0 = αs1,0, s2,0 = s1,0, s3,0 = (α+ 1)s1,0;

s0,1 = s1,1, s2,1 = (α+ 1)s1,1, s3,1 = αs1,1;

s1,2 = (α+ 1)s0,2, s2,2 = αs0,2, s3,2 = s0,2;

s0,3 = (α+ 1)s2,3, s1,3 = αs2,3, s3,3 = s2,3.

Proof. If a = b, it is straightforward to prove that all the previous equivalences are
satisfied. Suppose instead that all the previous equivalences are satisfied. Then, working
on the first column (analogous for the others), it follows that:

a0,0 ⊕ b0,0 = α[a1,0 ⊕ b1,0]; a2,0 ⊕ b2,0 = a1,0 ⊕ b1,0; a3,0 ⊕ b3,0 = (α+ 1)[a1,0 ⊕ b1,0].

That is, there exist x1 and y1 such that:

s10,0 = αx1 ⊕ a0,0, s20,0 = αy1 ⊕ a0,0 ⊕ α[a1,0 ⊕ b1,0];
s11,0 = x1 ⊕ a1,0, s21,0 = y1 ⊕ b1,0;
s12,0 = x1 ⊕ a2,0, s22,0 = y1 ⊕ a2,0 ⊕ a1,0 ⊕ b1,0;
s13,0 = (α+ 1)x1 ⊕ a3,0, s23,0 = (α+ 1)y1 ⊕ a3,0 ⊕ (α+ 1)[a1,0 ⊕ b1,0].

Let y′1 = y1⊕ a1,0⊕ b1,0 and observe that b1,0 = b1,0⊕ a1,0⊕ a1,0. Rewriting s2·,0 using y′1
instead of y1 and working in a similar way on all the other columns, it is easy to prove
that s1 and s2 belong to the same coset of MI , that is a = b. ut

D.2 Details of Attack on 3-rounds of AES using 2 Chosen Plaintexts

In Sect. 5.1, we have presented an attack on 3-rounds of AES using the truncated
differential technique. In particular, we have showed that using only 2 chosen plaintexts
that belong to the same coset of D0, the total cost of the attack is approximately
232 executions of the three-round cipher, 232 memory access and the memory cost is
approximately 256× 4 (byte)×4 (columns) = 212 byte.

This result can be a little improved if the plaintexts belong to the same coset of
D0 ∩ C0 (where D0 ∩ C0 has dimension 4 since D0 ∩ C0 = 〈e0,0〉 - Lemma 5). In this
section, we give all the details.

By definition, D0 ∩ C0 and C0 ∩M0 correspond to symbolic matrix:

D0 ∩ C0 ≡


x 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 C0 ∩M0 ≡


a1(x) 0 0 0
a2(x) 0 0 0
a2(x) 0 0 0
a3(x) 0 0 0

 ,
where ai(·) are defined as in (7). Using similar arguments as before, for each a ∈ (D0 ∩
C0)⊥ there exist unique b ∈ (C0 ∩M0)

⊥ and unique c ∈M⊥0 such that:

R((D0 ∩ C0)⊕ a) = (C0 ∩M0)⊕ b and R(2)((D0 ∩ C0)⊕ a) ⊆M0 ⊕ c.

Thus, suppose that the attacker has found 28 possible combinations for each column
of the secret key. Instead to attack by brute force all the 232 possible keys, the idea is



the following. Given c1 and c2 and a (possible) key k3 of the final round, the idea is to
compute s1 = R−1(c1) and s2 = R−1(c2), that is to decrypt one round c1 and c2, with
a cost of 16 × 2 = 32 S-Box look-ups. Then, the attacker can easily compute k2 using
the inverse key schedule (cost of 4 S-Box look-ups). Finally, she checks if R−1(s1) and
R−1(s2) belong to the same coset of C0 ∩M0, that is if the first columns of R−1(s1)
and R−1(s2) satisfied conditions similar to (9). The cost of this last operation is 8 S-Box
look-ups. Since these conditions are verified with probability 2−24, only 28 possible keys
of k3 satisfy these conditions. The cost of this step is 232 × (32 + 4 + 8) = 237.46 S-Box
look-ups, that is 231.55 executions of the three-round cipher. Using a brute force attack,
the attacker can find the right key among the last 28 candidates.

For this attack, the attacker needs about 2 chosen plaintexts in the same coset of
D0 ∩ C0, the total computational cost is about 210.7 (first step) +231.55 (check) +28

(brute force) = 231.55 executions of the three-round cipher and 232 memory access, and
a memory cost of about 212 bytes of memory (to store the combinations of the columns
of the key found in the first step). In a 32-bit implementation, each round of AES can be
implemented by 20 memory accesses, that is 16 look-ups table for S-Box +SR+MC and
4 look-ups table for the key schedule. Thus, one can declare that the total complexity of
the attack is approximately (20 ·3)−1×232+231.55 = 231.58 executions of the three-round
encryption.

D.3 3 Rounds Attacks - Final Round with MixColumns Operation

For sake of completeness, the attacks on 3 rounds described in Sect. 5.1 work exactly
in the same way in the case in which the MixColumns operation is not omitted in the
last round. In this case, the idea (very common in the literature) is simply to change
the position of the final MixColumns operation with the final AddRoundKey operation
(remember that these operations are linear). In this case, the major difference is that
the attacker has to work with k̃ defined as:

k̃ := MC−1(k), (18)

instead of k (the secret key of the final round). Moreover, in this case sh = R−1(ch) (for
h = 1, 2) are defined as shi,j = S-Box−1(c̃hi,j+i ⊕ k̃i,j+i) where i, j = 0, ..., 3 (and i + j is

taken modulo 4) and where c̃h := MC−1(ch). Note that when all bytes of k̃ have been
determined, the secret key k can be recovered by k = MC(k̃).

D.4 The Attack on 1 and 2 Rounds of AES

Finally, note that the same attack can be used to attack 1 and 2 rounds of AES. In the
case of 2 rounds of AES, consider the following situation:

p
R(·)−−→ s

Rf (·)−−−→ c,

where p ∈ CI ⊕ a (for a fixed a ∈ C⊥I ) and MixColumns operation is omitted in the final
round (for simplicity). The attack is completely equivalent to the previous one using the
following probability19:

Pr(R(x)⊕R(y) ∈MI |x⊕ y ∈ CI) = 1.

19 Note that it is not possible to use the probability Pr(R(x) ⊕ R(y) ∈ CI |x ⊕ y ∈ DI) = 1, since
Pr(Rf (x)⊕Rf (y) ∈ IDI |x⊕ y ∈ CI) = 1 for each possible candidate of the secret key.



Table 4. Comparison table of low-data attacks on round-reduced AES. Data complexity is measured in
number of required known/chosen plaintexts (KP/CP). Time complexity is measured in round-reduced
AES encryption equivalents (E) and in memory accesses (M). Memory complexity is measured in plain-
texts (16 bytes). The case in which the MixColumns operation is omitted in the last round is denoted
by “r.5 rounds”, that is r full rounds and the final round. The attacks of this paper are in bold. We
recall that the G&D tool exploits (mainly) the Meet-in-the-Middle (MitM) attack.

Attack Rounds Data Computation (E) Memory Reference

G&D 1.5 1 KP 256 1 [15]

G&D-MitM 2 1 KP 264 248 [15]

G&D-MitM 1.5 2 KP 224 216 [15]

G&D-MitM 2 2 KP 232 224 [15]

G&D-MitM 2 2 CP 28 28 [15]

D 1.5 - 2 2 KP 248 1 [14]

TrD 1.5 - 2 2 CP 232 M +231.55 E ≈ 231.6 1 Sect. D.4

D 1.5 - 2 2 CP 228 1 [14]

TrD 1.5 - 2 3 CP 211.8 1 Sect. D.4

TrD 1.5 - 2 3 CP 210 M +26.3 E ≈ 26.6 212 Sect. D.4

D 1.5 - 2 3 KP 232 1 [14]

G&D: Guess & Det., TrD: Truncated Differential, D: Diff.

In this case, our attack needs 3 chosen plaintexts (in the same coset of CI) and the
total computational cost is approximately at 217.08 S-Box look-ups, that is about 211.8

executions of the two-round cipher. As before, it is possible to perform the attack using
memory access instead of S-Box look-ups. By simple computation and with the approx-
imation of 1 round of AES with 20 memory accesses, the complexity of the attack is
approximately (20 · 2)−1× 210 + 26.32 = 26.6 executions of the two-round encryption, the
cost of the precomputation is about 210.7 executions of two-round AES, and a memory
cost of 216 bytes. As for the attack on 3-rounds, it is also possible to set up an attack
using only 2 chosen plaintexts. The complexity of the attack in this case is well approx-
imated by 231.6 executions of two-round AES, choosing the two plaintexts in the same
coset of Di∩Cj for |i| = |j| = 1. A comparison between our attack and the other present
in literature is provided in Table 4.

The attack on 1 round (where MixColumns operation is not omitted) is completely
equivalent to the previous one. In this case, the idea is to simply choose plaintexts that
belong to the same coset of MI .

E Key-recovery Attack on 4 Rounds of AES - Extending the 3
Rounds Attack at the Beginning

In Sect. 5.3, we have seen how to extend at the end the attack on 3 rounds presented in
Sect. 5. In this section, we show how to attack 4 rounds extending at the beginning the
attack on 3 rounds. As we’ll show, both from the computational point of view and from
the data complexity point of view, this attack on 4 rounds is better if dim(DI) = 12
than dim(DI) = 4. Since the attack on 3 rounds given in Sect. 5 works the same when
dim(DI) = 12, we present it in details in the end of this section. We limit ourselves to
report the data and the computational complexity of this attack. In the case in which
dim(DI) = 12, the attack on 3 rounds needs 4 pairs of plaintexts, that is 5 chosen
plaintexts, and the total computational cost is approximately at 231.09 S-Box look-ups,
that is about 225.18 executions of the three-round cipher (the memory consumption is



negligible), or 224.6 memory access and 224.18 S-Box look-ups (with a memory cost of
approximately 216 bytes).

In order to attack 4 rounds of AES, the idea is to extend the attack on 3 rounds
(described in App. E.2) adding an initial round. Consider two plaintexts p1 and p2:

ph
R(·)−−→ R(ph)

R(2)(·)−−−−→ sh
Rf (·)−−−→ ch.

where h = 1, 2. If the attacker is able to guarantee that after one round they belong
to the same coset of DI , then she can repeat the attack on 3 rounds, using R(ph)
instead of ph. Observe that if p1 ⊕ p2 ∈ CJ , then R(p1) ⊕ R(p2) ∈ MJ and (Lemma
5) R(p1) ⊕ R(p2) /∈ DI , for each I and J such that dim(MJ)+dim(DI) ≤ 16. Thus, p1

and p2 have to be chosen such that p1 ⊕ p2 doesn’t belong to CJ for each J such that
|J |+ |I| ≤ 4, in order to guarantee that R(p1)⊕R(p2) ∈ DI .

We present our attack in the case in which dim(DI) = 12, and only for simplicity, we
suppose that MixColumns operation is omitted in the last round (however, our attack
works in the same way in the case in which it is not omitted).

Given pairs of plaintexts p1 and p2, our main goal is to minimize the number of bytes
of k0 that the attacker has to guess in order to guarantee the condition

R(p1)⊕R(p2) ∈ DI (19)

for a certain I with |I| = 3. For the following, it is important to note that we don’t fix a
particular I. A possible choice for the pair of plaintexts p1 and p2 can be the following:

p1i,j = p2i,j for all (i, j) 6= {(0, 3), (2, 1)}. (20)

As we show in the following, this choice allows the attacker to guess only 2 bytes of k0.
Due to the previous choice of p1 and p2, it follows that

R(p1)i,j = R(p2)i,j ∀i,∀j 6= 3.

independent of the secret key. Thus, to guarantee that R(p1)⊕R(p2) ∈ DI for a certain I
with |I| = 3, it is sufficient for the attacker to guess only two bytes of the secret key (that
is, k00,3 and k02,1), since it is sufficient that one byte of the first column of R(p1)⊕R(p2) is
equal to zero to guarantee (19). For example, for the case I = {0, 1, 2} (studied in App.
E.2), the condition R(p1)⊕R(p2) ∈ DI is satisfied if and only if R(p1)3,0⊕R(p2)3,0 = 0,
that is if the following equivalence is satisfied

α · [S-Box(p10,3 ⊕ k00,3)⊕ S-Box(p20,3 ⊕ k00,3)] = S-Box(p12,1 ⊕ k02,1)⊕ S-Box(p22,1 ⊕ k02,1).

Thus, for each bytes k00,3 and k02,1 of the secret key, the attacker has to find pairs of

plaintexts p1 and p2 that satisfy Eq.(20) and such that R(p1)⊕R(p2) ∈ DI for that key
and for a certain I with |I| = 3, in order to repeat the attack on 3 rounds.

On average, for a fixed I (with |I| = 3), there exist 224 combinations (p10,3, p
1
2,1, p

2
0,3, p

2
2,1)

that satisfy Eq. (19) and Eq. (20). On the other hand, given a particular combination
(p10,3, p

1
2,1, p

2
0,3, p

2
2,1) and for a fixed I, on average there are 28 different pair of key bytes

that satisfy (20). Since there are four possible I with |I| = 3, for each combination
(p10,3, p

1
2,1, p

2
0,3, p

2
2,1) on average there are 28 × 22 = 210 different pair of key bytes such

that R(p1)⊕R(p2) ∈ DI for a certain I with |I| = 3.
Note that since the attacker can not impose any restriction on the secret key, she

has to repeat this (and the next steps) for all the possible pairs (k00,3, k
0
2,1).



Proposition 6. Let (k0,3, k2,1) and (p10,3, p
1
2,1, p

2
0,3, p

2
2,1) be a pair of key bytes and a

combination of plaintexts bytes that satisfy (20). If (k̂0,3, k̂2,1) denote another pair of
key bytes, then the combination (q10,3, q

1
2,1, q

2
0,3, q

2
2,1) of plaintext bytes defined as qhi,j :=

phi,j ⊕ k̂i,j ⊕ ki,j where h = 1, 2 and (i, j) ∈ {(0, 3), (2, 1)} satisfies (19) for that key.

Finally, observe that if dim(DI) = 4, the condition such that R(p1) ⊕ R(p2) ∈ DI
becomes more complicated, since the attacker has to guess 4 bytes of the initial key
instead of 2. This justifies the initial choice of dim(DI) = 12.

Suppose that for each pair of key bytes (k00,3, k
0
2,1) the attacker knows a combination

(p10,3, p
1
2,1, p

2
0,3, p

2
2,1) such that R(p1)⊕ R(p2) ∈ DI for that key and for a certain I with

|I| = 3. The general idea of the attack is simply to repeat the previous attack on 3
rounds described in Appendix E.2, that is to use 4 pairs of plaintexts (that satisfy (19)
and (20)) in order to discover the key k4 such that R−1f (c1) ⊕ R−1f (c2) ∈ MI . As for

the attack on 4 rounds with the extension at the end, when the attacker has found k4,
she has to check if it is compatible with k0 (i.e. that they satisfy the key schedule), in
order to verify that it is the right key. If they are compatible, then she has discovered
the secret key, otherwise she has to repeat this procedure for another pair of key bytes
(k00,3, k

0
2,1).

In order to check if k4 is compatible with k0, we recall the following useful theorem
(see [14] for more details):

Theorem 5. For each round r and for each i = 0, ..., 3:

kri,1 = kr+2
i,1 ⊕ v

r+1
i , kri,2 = kr+2

i,3 ⊕ k
r+2
i,0 ,

kri,3 = kr+2
i,3 ⊕ k

r+2
i,1 = kr+4

i,3 ⊕ v
r+3
i ,

where vri = S-Box (kr(i+1) mod 4,3)⊕RCON [r + 1].

By simple computation:

k00,3 = k40,3 ⊕ S-Box(k41,2 ⊕ k41,3)⊕ 0x08,

k02,1 = k42,1 ⊕ S-Box(k43,0 ⊕ k43,1 ⊕ k43,2 ⊕ k43,3)⊕ S-Box(k43,2 ⊕ k43,3).

Thus, only 3 S-Box look-ups are sufficient to check if k4 is compatible with k0 (the
choice of (20) is also due to the simplicity of this check operation). Note that since the
probability that the key schedule is satisfied is 2−16 and since there are only 216 possible
combinations of (k00,3, k

0
2,1), on average only one key satisfied the key schedule (which is

the right one), that is the attacker certainly finds the right key.
In the following, we show in details how to implement the attack in order to minimize

the data complexity (together with the pseudo-code). As a result, this attack needs
24 ' 24.55 chosen plaintexts and has a total computational cost of 240.7 executions
of the four-round cipher, or of 235.08 executions of the four-round encryption using a
precomputation phase.

E.1 Details of the Attack - Minimal Data Complexity.

As we have seen, the attacker needs on average 4 pairs of plaintexts (that satisfy Eq.(20))
for each pair of key bytes (k0,3, k2,1).

Observe that given n plaintexts pi for i = 0, ..., n − 1 that satisfy condition (20),
then it is possible to construct n · (n− 1)/2 pairs of plaintexts that satisfy the condition



Data: 24 ciphertexts such that for each keys bytes (k00,3, k
0
2,1) there exist 4 different pairs of

chosen plaintexts that satisfy (20) and such that there exists I with |I| = 3 such that
R(p1)⊕R(p2) ∈ DI .

Result: Secret key k4.
for all 216 values of two bytes (k00,3, k

0
2,1) do

for the guessed key, pick up the 4 different pairs of chosen plaintexts stored in memory (and
corresponding I)

3-Rounds Attack (see App. E.2): identify candidates for k4 // on average only 1

candidate

check key schedule conditions given in (E)
if key schedule satisfied then // probability equal to 2−16

return k4.
end

end

Algorithm 7: Attack on 4 rounds (EB) of AES-128 - Pseudo Code. For simplicity,
we assume that the attacker has already found 24 texts defined as in the text.

(20). On average for each of these pairs of plaintexts (p1, p2), there are 210 pairs of key
bytes that satisfy R(p1)⊕R(p2) ∈ DI for |I| = 3. Since the number of pair of keys bytes
(k00,3, k

0
2,1) is 216, then the attacker needs on average 216× 4× 2−10 = 28 pairs of chosen

plaintexts for the attack. That is20, she needs about 24.55 ' 24 chosen plaintexts.

These chosen plaintexts can be precomputed in advance. For each of the 216 keys
bytes (k00,3, k

0
2,1), the idea is to store the four pairs of chosen plaintexts and for each

pair (p1, p2) the corresponding I such that R(p1)⊕ R(p2) ∈ DI (in order to implement
the attack), using a predetermined order21. By simple computation, the attacker needs
4 (pairs of CP) ×2× 4 (bytes to store) ×216 (number of keys) = 221 bytes to store the
plaintexts and 2 (bits of I) × 216 = 217 bits = 214 bytes to store the corresponding
I, that is approximately 221 + 214 = 221.01 bytes of memory. Thus, our attack needs
24 ' 24.55 chosen plaintexts and the total computational cost is approximately at (28)2

(2 guessed bytes of k0) ×231.09 (cost of the attack on 3 rounds) +3 × 216 (check the
key schedule) = 247.09 S-Box look-ups, that is about 240.7 executions of the four-round
cipher and 216 (sequential) memory access.

In the same way as before, it is also possible to perform this attack using memory
access. In this case, the total computational cost is approximately at 216 × 224.6 (cost
of the attack on 3 rounds)= 240.6 memory access and 216 × 224.18 (cost of the attack
on 3 rounds)+3 × 216 (check the key schedule) = 240.18 S-Box look-ups, that is 233.86

executions of the four-round AES. With the approximation of 1 round of AES with 20
memory accesses, one can declare that the total complexity of the attack is approxi-
mately (20 · 4)−1 × 240.6 + 233.86 = 235.08 executions of the four-round encryption.

20 Given 2n elements, the number of different pairs are 2n−1 · (2n − 1). Viceversa, in order to have 2n

different pairs, we need 2m elements, where

m = log2

(
(2n+3 + 1)

1
2 + 1

)
− 1 ' (n+ 1)/2. (21)

21 For example, let f : Z28 ×Z28 → Z216 the (bijective) function defined as f(x1, x2) = 4 · (x1 + 256 ·x2).
The combination of plaintexts for the key (k1, k2) are in positions f(k1, k2), f(k1, k2)+1, f(k1, k2)+2
and f(k1, k2) + 3.



E.2 Key-Recovery Attacks on 3 Rounds of AES - dim(DI) = 12

In this section, we present the attack on 3 rounds of AES in the case in which dim(DI) =
12. The computational cost of the attack on 3 rounds for this case is higher than for the
case in which dim(DI) = 4. However, the 4-round attack presented in Sect. E is obtained
extending the attack on 3 rounds of this section at the beginning. Indeed, it is possible
to prove that the situation is completely different (in particular, it is the opposite) when
we consider the extension to 4 rounds, adding an initial round.

For simplicity, we consider only the case I = {0, 1, 2}. By definition, DI is the
subspace with zero-elements on the fourth diagonal. For all a ∈ D⊥I there exists unique
b ∈M⊥I such that R(2)(DI ⊕ a) =MI ⊕ b, where

MI ≡


a1(x1, x6, x11) a2(x4, x5, x10) a3(x3, x8, x9) a4(x2, x7, x12)
a2(x1, x6, x11) a3(x4, x5, x10) a4(x3, x8, x9) a1(x2, x7, x12)
a3(x1, x6, x11) a4(x4, x5, x10) a1(x3, x8, x9) a2(x2, x7, x12)
a4(x1, x6, x11) a1(x4, x5, x10) a2(x3, x8, x9) a3(x2, x7, x12)

 ,
and where ai(·, ·, ·) are defined in the following way (∀i = 1, 2, 3, 4):

a1(x, y, z) = αx⊕ (α+ 1)y ⊕ z, a2(x, y, z) = x⊕ αy ⊕ (α+ 1)z,

a3(x, y, z) = x⊕ y ⊕ αz, a4(x, y, z) = (α+ 1)x⊕ y ⊕ z.

As before, given two ciphertexts c1 and c2, the idea is to find all the keys of the final
round such that R−1f (c1)⊕ R−1f (c2) ∈ MI . As we’ve seen, the right key is the only one

that satisfies this previous condition for each pair p1 and p2 such that p1⊕p2 ∈ DI . The
idea is to work again independently on each column, but in this case the attacker has
to guess 3 bytes for each column. Thus, the number of possible keys found at each step
is higher than before: this explains why the total computational cost and the number of
requested chosen plaintexts is higher.

Since the attack is equivalent to the previous one, we only show which conditions
the key bytes have to satisfy in order to guarantee that R−1f (c1)⊕R−1f (c2) ∈MI for the
first column. Suppose the attacker guesses (for example) the bytes k0,0, k1,3 and k2,2. By
simple computation, R−1f (c1)⊕R−1f (c2) ∈MI if k3,1 satisfies the following equivalence:

S-Box(−1)(c13,1⊕k3,1)⊕ S-Box(−1)(c23,1 ⊕ k3,1) =

= (α6 + α4 + α3 + α2 + 1) · [S-Box(−1)(c10,0 ⊕ k0,0)⊕ S-Box(−1)(c20,0 ⊕ k0,0)]⊕

⊕(α5 + α4 + α2 + 1) · [S-Box(−1)(c11,3 ⊕ k1,3)⊕ S-Box(−1)(c21,3 ⊕ k1,3)]⊕

⊕(α7 + α3 + α2) · [S-Box(−1)(c12,2 ⊕ k2,2)⊕ S-Box(−1)(c22,2 ⊕ k2,2)].

(22)

If ciphertexts satisfy conditions similar to (11), the attacker is able to reduce the number
of possible keys to 2128 × (28)−4 = 296, with a total computational cost of about 231

S-Box look-ups.
As before, the idea is to eliminate some of the keys found in the previous step using

other pairs of ciphertexts, and the attacker can take advantage of the independence
of the columns to perform this step with a low computational cost. In particular, the
probability that each column of the key found previously satisfies (22) for another pair
of ciphertexts is on average 2−8. Thus, using a second pair of plaintexts, the attacker
reduces the keys to 296× (28)−4 = 264 with a computational cost of 227 S-Box look-ups.
Thus, the attacker needs other two pairs of plaintexts to discover the secret key (with a



total computational cost of about 219 + 211 S-Box look-ups). Performing these steps at
the same time, that is checking the combinations found with the first pair of plaintexts
immediately with the other ones, allows to save memory.

Note that using 5 chosen plaintexts the attacker can construct 10 different pairs,
but only 4 of them are useful for the attack. For example, suppose that the attacker
uses a (first) pair formed by the first and the by second ciphertext, and a (second) that
formed by the first and by the third ciphertext. Then the keys that satisfy (22) for these
two pairs, automatically satisfy (22) for the pair formed by the second and by the third
ciphertext. However, using four pairs of plaintexts with one plaintext in common (that
is, 5 different chosen plaintexts), the probability of success is greater than 99.9%.

In conclusion, this attack needs 4 pairs of plaintexts, that is 5 chosen plaintexts,
the total computational cost is approximately at 231.09 S-Box look-ups, that is about
225.18 executions of the three-round cipher (the memory cost is negligible). Performing
the attack using memory access, the total computational cost is approximately at 224.6

memory access, 224.18 S-Box look-ups (that is about 218.27 executions of the three-round
cipher) and the memory cost is approximately 216 bytes, and the cost of the precompu-
tation is about 210.1 executions of three-round AES.

F Re-Order Algorithm - Details

Both for the truncated differential attack on 4 rounds of AES with a secret S-Box of
App. G.3 and for the impossible differential attack/distinguisher on 5 rounds of AES of
Sect. 7 - 8, one has to count the number of “collisions” (that is, the number of texts
that belong to the same coset of MI for |I| = 3) in order to find the secret key or to
distinguish a random permutation from an AES one.

As first possibility, one can construct all the possible pairs of texts and to count
the number of collisions. First of all, we compute the cost to check that a given pair of
texts belong to the same coset of MI . Without loss of generality (w.l.o.g) we consider
I = {1, 2, 3} (it is analogous to the other cases). Only for example, given a pair (c1, c2)
this operation can be simple reduced to check if MC−1(c1 ⊕ c2)i,i = MC−1(c1)i,i ⊕
MC−1(c2)i,i = 0 for each i = 0, ..., 3 (note that c1 ⊕ c2 ∈MI if and only if MC−1(c1 ⊕
c2) ∈ MC−1(MI) = IDI). Thus, for each possible pair, this operation can be reduced
to a XOR and to an inverse MixColumns operation.

As we show in the following, this cost is negligible compared to the cost regarding
the construction of all the possible pairs. Given n texts, it is possible to construct(

n

2

)
=
n · (n− 1)

2
' n2

2

different pairs. Thus, the simplest way to construct them requires approximately n2/2
table look-ups.

In order to reduce this cost of table look-ups (which is the most expensive step) to
n · log n table look-ups for each coset, the basic idea is to re-order the ciphertexts. Our
goal is to check if two texts belong to the same coset of MI for |I| = 3. The idea is
to re-order the texts using a particular numerical order which depends by I, and then
to work only on consecutive ordered elements in order to compute the total number of
collisions. To do this, we define the following partial order22 ≤:

22 Suppose that P is an order set with respect to the relation ≤. Then, the following relationship hold:
(1) reflexivity ∀a ∈ P then a ≤ a; (2) antisymmetry ∀a, b ∈ P such that a ≤ b and b ≤ a, then a = b;
(3) transitivity ∀a, b ∈ P such that a ≤ b and b ≤ c, then a ≤ c.



Definition 8. Let I ⊂ {0, 1, 2, 3} with |I| = 3 and let l ∈ {0, 1, 2, 3}\I. Let t1, t2 ∈ F4×4
28

with t1 6= t2. The text t1 is less or equal than the text t2 (i.e. t1 ≤ t2) if and only if one
of the two following conditions is satisfied:

– there exists j ∈ {0, 1, 2, 3} such that for all i < j:

MC−1(t1)i,l−i = MC−1(t2)i,l−i and MC−1(t1)j,l−j < MC−1(t2)j,l−j

– for all i = 0, ...., 3:
MC−1(t1)i,l−i = MC−1(t2)i,l−i

where the indexes are taken modulo 4.

Note that this order relationship satisfies all the antisymmetry properties. Indeed, given
t1 and t2 such that MC−1(t1)i+l,i = MC−1(t2)i+l,i for each i = 0, ..., 3, then we have
t1 ≤ t2 and t2 ≤ t1 using the previous relationship, that is t1 “=” t2 in the sense that t1

and t2 belong to the same coset ofMI (that is, t1⊕ t2 ∈MI). Thus, if MC−1(t1)i+l,i =
MC−1(t2)i+l,i for each i = 0, ..., 3, for our purpose it is completely equivalent to consider
t1 ≤ t2 or t2 ≤ t1 (i.e. the user can choose in an arbitrary way).

Given the partial order ≤, as first thing, one has to re-order the elements using
the order relationship given before. Given a set of ordered ciphertexts {ci}i=1,...,n, we
show now how to compute the total number of collisions working only on consecutive
elements. For the following, w.l.o.g. we assume I = {0, 1, 2} and l = {3} (it is analogous
for the other cases).

In order to count the number of pairs of texts that belong to the same coset ofMI ,
the verifier can work only on two consecutive elements. That is, suppose to consider
three consecutive elements ci−1, ci, ci+1. The idea is to work as follows. First, one checks
if ci−1, ci belong to the same coset ofMI (equivalently, if MC−1(ci−1),MC−1(ci) belong
to the same coset of MC−1(MI) = SR(CI)), and repeats this operation also for ci, ci+1.
Then one can use the following observation: if ci−1 ⊕ ci ∈ MI and ci ⊕ ci+1 ∈ MI

for the same I, then also ci−1 ⊕ ci+1 ∈ MI (remember that MI is a subspace). The
same argumentation can be generalized for any number of consecutive order elements.
In particular, given r ≥ 2 consecutive elements that belong to the same coset of MI ,
note that it is possible to construct

(
r
2

)
= r ·(r−1)/2 different pairs23, that is the counter

has to be increase of r · (r − 1)/2.
Note that given a set of n order elements, the computational cost to count the number

of pairs that belong to the same coset of MI can be approximated in O(n) look-ups
table. To order the set, one possibility is to use a merge sort algorithm (e.g. see [17]
for details), which has a complexity cost of O(n log n) memory access. Thus, the total
computational cost for the verifier is approximately of

4 · n · (1 + log n)

table look-ups, that is n · (1 + log n) for each possible I with |I| = 3.

G Attack on 3- and 4-Rounds of AES with Secret S-Box

In Sect. 6, we have presented a (generic) strategy that can be used to attack an AES-like
cipher with a single secret S-Box, if some very common assumptions on the MixColumns

23 For example, for two consecutive elements a and b it is possible to construct only one pair (a, b). For
three consecutive elements a, b, c, it is possible to construct only three different pairs (a, b), (a, c), (b, c),
and so on.



Fig. 13. 3-rounds Truncated Differential Attack on AES with secret S-Box. The choice of the plaintexts
(i.e. p0,0 ⊕ p1,1 = k0,0 ⊕ k1,1) guarantees that after one round there are only three bytes with non-zero
difference instead of four, that is the plaintexts belong to the same coset of C0∩D0,1,3. White box denotes
denotes a byte with a zero-difference, while a black box denotes a byte with non-zero difference.

matrix are satisfied. We refer to that section for all the details. In the same section, we
also showed how truncated differential cryptanalysis can exploit the previous strategy
in order to set up attacks on 3- and 4-rounds of AES with a single secret S-Box. Here
we give all the details of these attacks, and we also present a square attack on 3-rounds
of AES with a single secret S-Box

G.1 Truncated Differential Attack on 3 Rounds of AES with Secret S-Box

In this section, we present an attack on 3 rounds of AES with a secret S-Box. The
attack works as follows. Consider a pair of plaintexts p1 and p2 with the condition
p1i,j = p2i,j for each (i, j) 6= {(0, 0), (1, 1)} and p10,0 ⊕ p11,1 = p20,0 ⊕ p21,1. As we have seen,

if p10,0 ⊕ p11,1 = p20,0 ⊕ p21,1 = k0,0 ⊕ k1,1, then p1 and p2 belong to the same coset of
D0,1,3 after one round with probability 1. Consequently, after three rounds they belong
to the same coset of M0,1,3 with probability 1 (or of ID0,1,3 if the final MixColumns
is omitted), since a coset of D0,1,3 is mapped into a coset of M0,1,3 with probability 1.
Instead, if p10,0⊕p11,1 = p20,0⊕p21,1 6= k0,0⊕k1,1, then p1 and p2 belong to the same coset of

D0,1,3 after one round only with probability 2−8 (that is, only if R(p1)2,0⊕R(p2)2,0 = 0).
Thus, after three rounds they belong to the same coset ofM0,1,3 only with probability24

2−8. Our attack exploits these different probability in order to find k0,0 ⊕ k1,1.
The idea is to consider n different pairs of plaintexts (with one plaintext in common)

for each possible value of δ, that is n ·28 pairs of plaintexts p1 and p2 such that p1i,j = p2i,j
for each (i, j) 6= {(0, 0), (1, 1)} and p10,0 ⊕ p11,1 = p20,0 ⊕ p21,1 = δ. Given a δ, the attacker

24 Given two random texts x and y, they belong to the same coset of M0,1,3 with probability 2−32.
However, in this case we are not considering random texts, but the encryption of two texts that
belong to the same coset of D0,1,3 with probability 2−8. Since two texts belong to the same coset of
M0,1,3 if and only if they belong to the same coset of D0,1,3 two rounds before, we obtain that the
probability for the studied case is 2−8 and not 2−32. Moreover, we have seen that if two texts belong
to the same coset of D0, then the probability that they belong to the same coset of MJ for |J | = 3
is 2−24 (by Theorem 1). However, since our text belong to the same coset of D0 ∩ C0,1 ⊆ D0, the
previous argumentation gives the result.



Data: 210 plaintexts as described in the texts (i.e. 4 for each possible value of
p10,0 ⊕ p11,1 = p20,0 ⊕ p21,1 = δ)

Result: k0,0 ⊕ k1,1
for δ from 0 to 28 − 1 do

flag ← 0;
let (pi, ci) for i = 0, ..., 3 the 4 (plaintexts, ciphertexts) such that pil,k = pjl,k for each

(l, k) 6= {(0, 0), (1, 1)} and pi0,0 ⊕ pi1,1 = δ for each i;
for i from 1 to 3 do

x←MC−1(c0 ⊕ ci);
if ((x0,1 6= 0) OR (x1,0 6= 0) OR (x2,3 6= 0) OR (x3,2 6= 0)) then

flag ← 1;
break;

end
if flag = 0 then

identify δ as candidate of k0,0 ⊕ k1,1;
end

end

end
return Candidates for k0,0 ⊕ k1,1.

Algorithm 8: Attack on 3-rounds of AES with secret S-Box - Pseudo Code. The same
attack can be use to find the remaining part of the key.

checks if the corresponding n pairs of ciphertexts belong or not to the same coset of
M0,1,3. If not, then the key is wrong due to previous considerations.

What is the probability that all the false key candidates are discarded (i.e. they don’t
pass the test) using n pairs for each δ? This probability is given by:

1− (1− 2−8)2
8·n ' 1− e−n.

If n = 3 (that is, 4 chosen plaintexts - one plaintext is in common), then this probability
is higher than 95%. Thus, in order to find 1 byte of the key, 4·28 = 210 chosen plaintexts.
The cost of the attack can be approximated to 3 ·28 = 29.6 XOR operations (for 4 chosen
plaintexts, the attacker computes only 3 XOR operations, since she considers only 3
different pairs).

In order to find the secret key, for each of the four diagonals, the attacker has
to repeat the same attack for three consecutive-diagonal bytes differences of the same
diagonal, as for example k0,0⊕ k1,1, k1,1⊕ k2,2 and k2,2⊕ k3,3 for the first diagonal (note
that the difference k0,0⊕ k3,3 and all the other differences of these four bytes of the first
diagonal are given by the sum of the previous ones). As result, the attacker is able to find
the whitening key up to (28)4 = 232 variants, if she doesn’t use any information about
the secret S-Box. Thus, the total cost of the attack is 12 · 210 = 213.6 chosen plaintexts
and 12 · 29.6 = 213.2 XOR operations.

Note that the same strategy can be used to attack 1- and 2-rounds of AES, using
the subspace C instead ofM in this second case (a coset of D is mapped into a coset of
C after one round).

Use Information of the Secret S-Box to Reduce the 232 Variants of the
Whitening Key to 28 Variants Without discovering any information about the
secret S-Box, the attacker is able to find the secret key up to 232 variants. However, it
is possible to reduce this number to 28 if one discovers and exploits an equivalent class
of the secret S-Box.



Using the previous strategy, the attacker is able to discover k0,0 ⊕ k1,1, k1,1 ⊕ k2,2
and k2,2 ⊕ k3,3 (analogous for the other diagonals). Consider a pair of ciphertexts that
belong to the same coset of Mj for |j| = 1. W.l.o.g we assume j = {0} (the other cases
are analogous). As we have seen, these two ciphertexts belong to the same coset of Dj
two rounds before. This means that the whitening key and the plaintexts have to satisfy
certain relationships in order to guarantee it, as for example:

0x09 · [S-Box(p10,0 ⊕ k0,0)⊕ S-Box(p20,0 ⊕ k0,0)] =

=0x0e · [S-Box(p11,1 ⊕ k1,1)⊕ S-Box−1(p21,1 ⊕ k1,1)].
(23)

Since the difference k0,0 ⊕ k1,1 is known, one can rewrite this equation in the unknown
function S-Box(·⊕k0,0). The same can be done for the other two relationships of the first
diagonal of k. Collecting enough equations and working exactly as in [42], it is possible
to recover (an equivalent representation of) this function.

Assume that this function is found (we refer to [42] for more details), and note
that similar relationships hold among the bytes of the other diagonals. The idea is to
rewrite these relationships of the other diagonals using the found function S-Box(·⊕k0,0).
For example, the relationship of the second diagonal can be rewritten in the unknown
function S-Box(·⊕k0,1) = S-Box((·⊕k0,1⊕k0,0)⊕k0,0). Since an equivalent representation
of S-Box(· ⊕ k0,0) is known, one can find k0,1 ⊕ k0,0 using the same strategy presented
in [42]. Working in the same way for all the diagonals, this allows to reduce the possible
variants of the whitening key to 28.

Finally, note that for this step we are forced to use chosen ciphertexts instead of
chosen plaintexts. Indeed, working with plaintexts one finds relationships that involves
S-Box−1(· ⊕ k3) (e.g. 9), where k3 is the key of the final round. Since the key schedule
involves some S-Box operations, it is not possible to use it to find k3 given variants of
the whitening key. Thus, a possible way to overcome the problem is to consider chosen
ciphertexts, in order to find relationships that involves S-Box(· ⊕ k).

Variant of the Attack As last thing, we consider the case in which only one row of
the MixColumns matrix has two identical elements. In this case, it is not possible to
recover all the key bytes using the previous procedure, but at most four byte-differences
(one per diagonal). However, it is still possible to find the key if one works also on the
secret S-Box. The procedure is similar to the previous one, used to reduce the number
of possible variants of the secret key.

Suppose for simplicity that only the third row of the MixColumns matrix has two
identical element. Using the same strategy of the previous algorithm, one is able to find
k0,0 ⊕ k1,1, for a cost of 210 chosen plaintexts.

The idea now is to consider ciphertexts that belong to the same coset of Mj for
|j| = 1 (or IDj for |j| = 1 if the final MixColumns operation is omitted). W.l.o.g. we
assume j = {0}. As we have seen, the corresponding plaintexts have to belong to the
same coset of D0 after one round. Using the same strategy of the low-data truncated
differential attack, we can find the relationships that the bytes the secret key and of the
plaintexts have to satisfy. In particular, if c1 ⊕ c2 ∈ M0, then the key bytes k0,0 and
k1,1 have to satisfy the relationship (23) in order to guarantee that R(p1)⊕R(p2) ∈ D0.
Rewriting this equation in the unknown function S-Box(·⊕k0,0) (the difference k0,0⊕k1,1
is known) and collecting enough equations, it is possible to recover this function. When
this function is discovered, the idea is to work exactly as in [42] to find the whitening
key up to 28 variants.



Practical Verification. As final thing, we report here the practical results. Suppose
that an attacker is looking for a byte difference, e.g. δ ≡ k0,0⊕k1,1 (similarly for the other
cases). As we have seen, in order to have a probability of success higher than 95%, she
has to use 3 pairs of texts (with one text in common), and the computational cost can
be approximated by 3 · 28 = 768 XOR operations (in the worse case). However, consider
the case of a wrong guessed value of δ. In this case, when the attacker finds the first pair
of ciphertexts that doesn’t belong to the same coset ofM0, she can immediately deduce
that the guessed value δ is certainly wrong, without considering the other remaining
pairs. For this reason, we can expect that the practical computational cost is lower
than the theoretical one (which is computed analyzing the worse case). In effect, our
practical results show that the average computational cost of the attacker is of 261 XOR
operations, that is 1/3 of the theoretical one.

G.2 Square Attack on 3 Rounds of AES with Secret S-Box

In the previous section, we have presented a truncated differential attack on 3 rounds
of AES with secret S-Box. In this section, we show how to use a similar technique for
the case of the square attack. We recall that with respect to other attacks present in
literature (as for example [42]), for our attack it is not necessary to find any other
information about the secret S-Box. However, the consequence is that our attack has a
higher data complexity.

As we have seen in details in Sect. G.1, given two plaintexts p1 and p2 such that
p1i,j = p2i,j for each (i, j) 6= {(0, 0), (1, 1)} and p10,0 ⊕ p11,1 = p20,0 ⊕ p21,1 = δ, then they
belong to the same coset of C0 ∩M0,1,3 after one round if δ = k0,0 ⊕ k1,1.

The idea of the attack is the following. Consider the set Vδ defined as in (17):

Vδ ={(pi, ci) for i = 0, ..., 28 − 1 | pi0,0 ⊕ pi1,1 = δ ∀i and

and pik,l = pjk,l ∀(k, l) 6= {(0, 0), (1, 1)} and i 6= j},

If δ = k0,0 ⊕ k1,1, one round encryption of Vδ corresponds to
x c0,1 c0,2 c0,3
c1,0 x⊕ δ c1,2 c1,3
c2,0 c2,1 c2,2 c2,3
c3,0 c3,1 c3,2 c3,3

→


y ⊕ c̃0,0 c̃0,1 c̃0,2 c̃0,3
0x03 · y ⊕ c̃1,0 c̃1,1 c̃1,2 c̃1,3

c̃2,0 c̃2,1 c̃2,2 c̃2,3
0x02 · y ⊕ c̃3,0 c̃3,1 c̃3,2 c̃3,3


for each x ∈ F28 , where y = S-Box(x ⊕ k0,0). That is, if δ = k0,0 ⊕ k1,1, then the set Vδ
is mapped into D0,1,3 ∩ C0 ∩M3, which implies that the bytes in positions (0, 0), (1, 0)
and (3, 0) can take each possible values in F28 . Instead, if δ 6= k0,0 ⊕ k1,1, no claims
can be made about the bytes of the first column (the others are obviously constant).
Equivalently, these two cases correspond to:

A C C C
A C C C
C C C C
A C C C

 ,


? C C C
? C C C
? C C C
? C C C

 ,
respectively for δ = k0,0⊕k1,1 and δ 6= k0,0⊕k1,1, where A,B,C and ? denote byte with
the following properties:

– Active (A): Every value in F28 appears the same number of times in X;



Data: 28 set Vδ as defined in (17) (i.e. one for each possible value of p10,0 ⊕ p11,1 = p20,0 ⊕ p21,1 = δ)
Result: k0,0 ⊕ k1,1
for δ from 0 to 28 − 1 do

x← 0;
let Vδ = {pi, ci} for each i = 0, ..., 28 − 1;
for i from 0 to 28 − 1 do

x← x⊕ ci;
end
for i from 0 to 16 do

a← i mod 4;
b← (i− r)/4;

if (xa,b 6= 0) then
flag ← 1;

break;
end
if flag = 0 then

identify δ as candidate of k0,0 ⊕ k1,1;
end

end

end
return Candidates for k0,0 ⊕ k1,1.

Algorithm 9: Square Attack on 3-rounds of AES with secret S-Box. The same attack
can be use to find the remaining part of the key.

– Balance (B): The XOR of all values in X is 0;

– Constant (C): The value is fixed to a constant for all texts in X;

– Unknown (?): ? is indistinguishable from random sets.

Since 
A C C C
A C C C
C C C C
A C C C

→

B B B B
B B B B
B B B B
B B B B


after 2 rounds, it follows that the 3-rounds encryption of Vδ has the balance property if
δ = k0,0 ⊕ k1,1. Instead, if δ 6= k0,0 ⊕ k1,1, the probability that Vδ satisfies the balance
property after 3-rounds if δ 6= k0,0 ⊕ k1,1 is (2−8)−16 = 2−128, since it is not in general
possible to guarantee any property of the one round of encryption of Vδ.

Thus, the idea is to consider 28 different sets Vδ, one for each possible values of δ,
and to check if the balance property on the ciphertexts is satisfied or not. If the balance
property is not satisfied, then the value δ as candidate for k0,0⊕ k1,1 is certainly wrong.
What is the probability that all the false candidates don’t satisfy this test? By simply
computation is (1− 2−128)2

8−1 ' 1− 2−120. As a result, in order to find one byte of the
secret key, the data complexity is 28 · 28 = 216, while the computational complexity can
be approximated to 216 XOR operations.

As for the attack of Sect. G.1, the idea is to repeat the attack for three different
consecutive-diagonal bytes, and for all the four diagonals. In this way, the attacker is
able to find 232 variants of the whitening key without working on the secret S-Box. The
total data complexity for the attack can be approximated to 12 · 216 = 219.6 chosen
plaintexts, and a cost of 219.6 XOR operations.

For completeness, using the same strategy of Sect. G.1, one can reduce this number
of variants to 28 working also on the secret S-Box.



As last thing, we report that for this attack the practical computational cost is
approximately the same of the theoretical one, and that the given data complexity
allows to have an high probability of success, as indicated above.

G.3 Truncated Differential Attack on 4 Rounds of AES with Secret S-Box

As for the case of 3-rounds of AES, we present an attack on 4-rounds of AES with
secret S-Box which exploits the truncated differential attack and the subspace trail. The
previous truncated differential attack on 3-rounds of AES with secret S-Box exploits a
subspace trail with probability 1. In this section, we present a truncated differential to
attack 4-rounds of AES with secret S-Box that exploits the subspace trail described in
Sect. 4.2, which has probability strictly less than 1 (but greater than 0).

The idea of the attack is to exploit the fact that two elements that belong to the
same coset of DI belong to the same coset of MJ after three rounds with probability
higher than two random elements, as we have showed in Sect. 4.2. To set up the attack,
we exploit this fact together with the possibility to map a subset of a coset of Di (which
depends on the secret key) into a subset of a coset of DI after one round.

Consider two plaintexts p1 and p2 such that p1i,j = p2i,j for each (i, j) 6= {(0, 0), (1, 1)}
and p10,0 ⊕ p11,1 = p20,0 ⊕ p21,1 = δ. As we have seen, if δ = k0,0 ⊕ k1,1, then the two
plaintexts belong to the same coset of D0,1,3 after one round. First of all, the previous
choice of plaintexts can be generalized.

Proposition 7. Let p1 and p2 be two texts such that

p1i,j = p2i,j ∀(i, j) 6= {0, 0), (0, 3), (1, 1), (1, 2), (2, 0), (2, 3), (3, 1), (3, 2)}

and

p10,0 ⊕ p11,1 = p20,0 ⊕ p21,1 = δ0, p11,2 ⊕ p12,3 = p21,2 ⊕ p22,3 = δ1,

p10,3 ⊕ p13,2 = p20,3 ⊕ p23,2 = δ2, p12,0 ⊕ p13,1 = p22,0 ⊕ p23,1 = δ3.

Then, if δ0 = k0,0 ⊕ k1,1, δ1 = k1,2 ⊕ k2,3, δ2 = k0,3 ⊕ k3,2 and δ3 = k2,0 ⊕ k3,1 (where k
is the secret key of the first round), then after one round they belong to the same coset
of C0 ∩ D0,1,3 ⊆ D0,1,3, that is R(p1)⊕R(p2) ∈ C0 ∩ D0,1,3.

The proof is similar to that of Prop. 7.

For the following, we consider pairs of plaintexts such that p1i,j = p2i,j for each (i, j) 6=
{(0, 0), (1, 1), (1, 2), (2, 3)} and p10,0⊕p11,1 = p20,0⊕p21,1 = δ0, p

1
1,2⊕p12,3 = p21,2⊕p22,3 = δ1. If

δ0 = k0,0⊕k1,1 and δ1 = k1,2⊕k2,3, these two plaintexts belong to the same coset of D0,1,3

with probability 1, that is they belong to the same coset of M0,1,3 after three rounds
with probability 1. Using Prop. 1, this means that if δ0 = k0,0⊕k1,1 and δ1 = k1,2⊕k2,3,
the two plaintexts belong to the same coset of CJ with probability (28)−12+4·|J | after
three rounds. That is, if |J | = 3, δ0 = k0,0 ⊕ k1,1 and δ1 = k1,2 ⊕ k2,3, then after three
rounds these two plaintexts belong to the same coset of CJ with probability 2−24 for a
fixed J with |J | = 3, or with probability 4 · 2−24 = 2−22 for a free J with |J | = 3. Since
a coset of CJ is mapped into a coset of MJ with probability 1, we can conclude that if
δ0 = k0,0 ⊕ k1,1 and δ1 = k1,2 ⊕ k2,3, the two plaintexts belong to the same coset of MJ

for a certain J with |J | = 3 with probability 2−22.

Consider now the case δ0 6= k0,0 ⊕ k1,1 or/and δ1 6= k1,2 ⊕ k2,3. In this case, we can
consider the corresponding ciphertexts as randomly distributed, that is they belong to



the same coset ofMJ for a certain J with |J | = 3 after four rounds only with probability
4 · 2−32 = 2−30.

The idea of the attack is to exploit these different probabilities in order to recover
the key. In particular, consider n ≤ 216 plaintexts defined as before for each possible
values of δ0 and δ1. If δ0 = k0,0⊕k1,1 and δ1 = k1,2⊕k2,3, then we expect approximately
n · (n− 1) · 2−23 different pairs of ciphertexts that belong to the same coset ofMJ for a
certain J with |J | = 3 (i.e. collisions), while n · (n− 1) · 2−31 collisions if δ0 6= k0,0⊕ k1,1
or/and δ1 6= k1,2⊕k2,3. For example, if n = 216, we expect on average 28 = 256 collisions
for the first case and 2 in the other one. By our experiments, we check that n = 213 is
(largely) sufficient to find the right value of k0,0 ⊕ k1,1 and k1,2 ⊕ k2,3.

Assume that k0,0 ⊕ k1,1 and k1,2 ⊕ k2,3 have been found. The idea is to proceed in
the same way to find the 232 variants of the whitening secret key. To improve the total
cost of the attack, suppose that for each diagonal the attacker one difference of two
consecutive-diagonal bytes is known. A good strategy is to use it to find the others. As
an example, a good strategy could be to use the knowledge of δ0 = k0,0 ⊕ k1,1 and to
look for δ2 = k0,3 ⊕ k3,2 (similar for δ0 and δ3 = k2,0 ⊕ k3,1), instead to work on δ2 and
δ3. Note that both the method allows to find the secret key, but in the first case the
attacker does 2 · 28 = 29 tests, while in the second one 216. Thus, the data complexity
cost can be approximated by 8 · 28 · 28 + 2 · (28)2 · 213 = 230 chosen plaintexts.

To give a good approximation of the computational cost, observe that the first step
of the attack (i.e. to find δ0 and δ1) is the most expensive one. Thus, the total cost can be
approximated by this step (which is repeated two times - on the first and on the second
diagonals, and then on the third and on the fourth diagonal). Moreover, note that the
attacker must construct all the possible pairs of ciphertexts and check if they belong or
not to the same coset of MJ for a certain J with |J | = 3. Note that the cost to check
if two texts belong to the same coset of MJ for a certain J with |J | = 3 requires only
1 XOR operations. Thus, the computational cost can be approximated by the cost to
construct all the pairs. Since for each δ0 and δ1 the attack needs 213 chosen plaintexts,
the operation to construct all the pairs requires 213 · (213 − 1)/2 = 225 table look-ups,
for a total of 2 · (28)2 · 225 = 242 table look-ups.

A way to improve this step is to re-order all the texts using a merge-sort algorithm, as
we described in details in App. F. Indeed, when the elements are ordered with respect
to a particular relationship ≤, one can work only on two consecutive texts t1 and t2

such that t1 ≤ t2 instead to consider all the possible pairs in order to count all the
collisions (see App. F for details). For each δ0 and δ1 and for each J with |J | = 3,
the computational cost to re-order all the elements and to count the collision can be
approximated to 213 ·(log 213+1) ' 217 table look-ups, for a total of 4 ·2 ·(28)2 ·217 = 236

table look-ups, that is 229.7 four-rounds encryption assuming the approximation that one
round of AES corresponds to 20 table look-ups. The memory cost is 230 to store all the
texts. In this way, the attacker is able to find 232 variants of the whitening key, without
working (or finding) any information about the secret S-Box. However, as shown in App.
G.1, it is possible to reduce this number to 28 if one works also on the secret S-Box.

Finally, we explain why it is not possible to work on a single δ (that is, on separately δ
as on the previous attack on 3 rounds of App. G.1). Suppose to consider two plaintexts p1

and p2 such that p1i,j = p2i,j for each (i, j) 6= {(0, 0), (1, 1)} and p10,0⊕ p11,1 = p20,0⊕ p21,1 =
δ. By definition, these two plaintexts belong to the same coset of D0 ∩ C0,1 ⊆ D0,
independently by δ. Thus, as shown in Sect. 4.3, the probability that they belong to the
same coset ofMJ for |J | = 3 is Pr(R(4)(u)⊕R(4)(v) ∈MJ |u⊕ v ∈ DI) = 0 (see Prob.
5), independently by δ.



Data: 221 plaintexts as described in the texts (i.e. 213 for each possible value of pi0,0 ⊕ pi1,1 = δ0
and pi1,2 ⊕ pi2,3 = δ1)

Result: k0,0 ⊕ k1,1 and k1,2 ⊕ k2,3
for δ0 from 0 to 28 − 1 do

for δ1 from 0 to 28 − 1 do
maxCollision← −1;
numberCollision← 0;
let (pi, ci) for i = 0, ..., 213 − 1 the 213 (plaintexts, ciphertexts) such that pil,k = pjl,k for

each (l, k) 6= {(0, 0), (1, 1), (1, 2), (2, 3)} and pi0,0 ⊕ pi1,1 = δ0 and pi1,2 ⊕ pi2,3 = δ1 for
each i;

re-order this set of elements as described in App. F;
i← 0;
while i < 213 do

n← 0;
j ← i;
while cj ⊕ cj+1 ∈MJ for a certain with |J | = 3 do // e.g. see Algorithm 3
n← n+ 1;
j ← j + 1;

end
i← j + 1;
numberCollision← numberCollision+ n · (n+ 1)/2;

end
if numberCollision > maxCollision then

maxCollision← numberCollision;
identify δ0 as candidate of k0,0 ⊕ k1,1 and δ1 as candidate of k1,2 ⊕ k2,3;

end

end

end
return Candidates for k0,0 ⊕ k1,1 and of k1,2 ⊕ k2,3.

Algorithm 10: Attack on 4-rounds of AES with secret S-Box - Pseudo-Code. The
same attack can be use to find the remaining part of the key.

Practical Verification. We provide different implementations of this attack. For all
the implementations, we limit to look for two differences of the bytes, that is k0,0 ⊕ k1,1
and k1,2 ⊕ k2,3. However, using the same attack as described in the text, it is possible
to find the entire key.

About the implementations. First, one can choose if looking for both k0,0⊕ k1,1 and
k1,2 ⊕ k2,3, or only one of them (in this case, the attacker guesses only one byte of the
key instead of two, where the other one is fixed and equal to the one of the secret key).
As second possibility, one can choose if re-order the texts before to count the number
of collisions (working only on consecutive ordered elements), or to construct directly all
the possible pairs. This second setting allows to understand better the importance of
the re-ordering algorithm in terms of performance/computational cost.

Finally, we report the practical computational cost for the two cases, when 213 dif-
ferent chosen plaintexts are used to find 2 bytes of the secret key. For the second setting
(that is the one in which all the possible pairs are constructed - no use of the re-ordering
algorithm), the expected theoretical computational cost in order to find 2 bytes of the
secret key is of (28)2 · 212 · (213 − 1) = 241 − 228 ' 241 memory accesses, and it is ap-
proximately the same of the practical computational one. Instead, for the first setting
(that is the one the re-order the text before to counts the number of collisions) the
expected theoretical computational cost in order to find 2 bytes of the secret key is of
4 · (28)2 ·213 · (log 213 +1) ' 232.8 memory accesses. The average practical computational



cost is approximately of 232.65 memory accesses, which is very close to the theoretical
one. As last thing, 213 chosen plaintexts are (largely) sufficient to find the right value of
k0,0 ⊕ k1,1 and k1,2 ⊕ k2,3, as already said above.

H Improved distinguishers for 5 Rounds of AES with Secret
Round-Keys

In Sect. 8, we have presented a 5-rounds distinguisher in the same setting of the one
proposed in [40], which exploits the impossible differential trail instead of the balance
property.

In this section, we propose a variant of our distinguisher, for the case in which all
the details of the S-Box are known. This distinguisher works exactly in the same way
in the chosen plaintexts and in the chosen ciphertexts setting, and it has a lower data
complexity (and computational cost) than the one presented in Sect. 8. Moreover, this
distinguisher is related to the existence of the secret key, and so it can also be used as
a key recovery attack in a very natural way. However, in this section we limit ourselves
to consider it as a distinguisher.

In order to construct this distinguisher, our idea is basically to extend the impossible
subspace trail distinguisher on 4-rounds presented in Sect. 4.3 at the beginning, using a
similar technique presented to extend the 3-rounds attack key-recovery attack on AES
at the beginning in App. E. First of all, we assume that four bytes of the secret key are
known, and using this assumption we set up the basis for our distinguisher. Then, we
show how to extend this model to the case where no information of the secret key is
given. As a result, this 5-rounds secret key distinguisher for AES has a data complexity
of only 259.7 chosen plaintexts, independent of the presence of the final MixColumns. We
will also discuss a practical verification. Finally, we will also how that the distinguishers
works independent of the last MixColumn operations, and also in decryption direction,
all with the same complexity.

Before to set up this distinguisher, we present briefly another variant of the impos-
sible differential attack on 5-rounds AES with secret S-Box presented in Sect. 8.

H.1 Impossible Differential Attack on 5-rounds AES with Secret S-Box -
Variant

In order to construct the impossible differential attack on 5-rounds of AES with secret S-
Box of Sect. 8, we have focused only on the difference of two sub-key bytes that belong
to the same column after the first ShiftRows operation. As done for the truncated
differential attack on 4 rounds - App. G.3, one possible variant consists of exploiting
more than a single difference at the same time. As we show in the following, this variant
of the attack has an higher data and computational complexity cost.

In particular, let the set of plaintext-ciphertext W∆ defined as follows

W∆ ={(pi, ci) for i = 0, ..., 232 − 1 | pi0,0 ⊕ pi1,1 = δ0, p
i
1,2 ⊕ pi2,3 = δ1,

pi2,0 ⊕ pi3,1 = δ2, p
i
0,3 ⊕ pi3,2 = δ3 ∀i and pik,l = pjk,l otherwise},

where ∆ ≡ (δ0, δ1, δ2, δ3), δ0 = k0,0 ⊕ k1,1, δ1 = k1,2 ⊕ k2,3, δ2 = k2,0 ⊕ k3,1 and δ3 =
k0,3 ⊕ k3,2. Note that |W∆| = 232, thus it is possible to construct 231 · (232 − 1) = 263

different pairs.



Proposition 8. Let W∆ defined as before and let I = {0, 1, 3}. There exists a ∈ D⊥I
such that R(W∆) ⊆ D0,1,3 ⊕ a.

As a consequence, given two elements p and q in W∆, then R(p)⊕R(q) ∈ D0,1,3, and so
as before R(5)(p)⊕R(5)(q) /∈MJ with probability 1 for each J with |J | = 1.

The strategy of the attack is the same as before. The idea is to construct 232 collec-
tions (one for each possible combination of values of ∆), each one with a certain number
of sets W∆. To compute this number, our goal is to guarantee that in the random case,
there is at least one collision for each possible combination of values of δi for i = 0, ..., 3
with probability 95%. Using the same computation as before, for each one of the 232

collections (i.e. for each combination of values of δi for i = 0, ..., 3), we need at least one
collision with probability higher than 0.951/2

32 ' 1−2−36.4. Moreover, the attacker has to
repeat this step 4 times, which implies a probability of (1−2−36.4)1/4 ' 1−2−38.4. Thus,
to have at least one collision with this probability for each one of the 232 collections,
each collection has to be composed of 298.74 pairs (instead of 295.6 pairs). Equivalently,
this means that for each one of the 232 collections one needs about 298.74 · 2−63 = 235.74

different sets W∆. Since each one of these sets contains 232 texts (equivalently 263 pairs),
since there are 232 possible ∆ and since we have to repeat this attack 4 times, the total
number of texts for the attack is 4 ·232 ·235.74 ·232 = 2101.75, which is higher than before.

Finally, using the same argumentation of Sect. 8, we can approximate the compu-
tational cost to 4 · 2101.75 · (log 2101.75 + 1) = 2110.4 table look-ups, which is higher than
before.

H.2 A 5-Round Distinguisher Assuming that Four Bytes of the Secret
Key are Known

Assume to know four bytes of the secret key, that is ki,i for each i = 0, ..., 3. As we’ve
already said, the idea is to extend the Impossible Subspace Trail on 4-Rounds described
in Sect. 4.3, using a similar technique presented in App. E. To do this, the idea is to
choose plaintexts that belong to the same coset of Di for a certain |i| = 3 after one
round.

Consider a set of plaintext-ciphertext W∆ defined as follows

W∆ =

{
(pi, ci) for i = 0, ..., 28 − 1

∣∣∣∣

pi0,0
pi1,1
pi2,2
pi3,3

 :=


δ0
δ1
δ2
δ3

⊕ S-Box−1 ◦MC−1 ·


x
0
0
0


for x ∈ F28 and pik,l = pjk,l ∀i 6= j and ∀k, l s.t. k 6= l

}
.

, (24)

where ∆ ≡ (δ0, δ1, δ2, δ3) can assume 232 different values. Note that W∆ contains 28

different pairs (p, c) (that is, approximately 215 different pairs) and that the 256 vectors

defined as S-Box−1◦M−1 ·
[
x, 0, 0, 0

]T
can be simply precomputed in advance and stored

in a table (computational cost of 210 S-Box look-ups and memory cost of 210 bytes).
For completeness, note that the above definition of W∆ can be a little generalized, by
replacing [x, 0, 0, 0]T by [0, x, 0, 0]T , [0, 0, x, 0]T or [0, 0, 0, x]T .

The choice of these plaintexts is similar to the one done in App. E. In particular,
using similar argumentation given in the previous section, the choice of the plaintexts
guarantees that they belong to the same coset of D0 (in particular of D0 ∩ C0) after one
round if δi = ki for i = 0, ..., 3.



Proposition 9. Let W∆ defined as before. If δi = ki,i for each i = 0, ..., 3, then there
exists (unique) a ∈ (D0 ∩ C0)⊥ such that R(W∆) ⊆ (D0 ∩ C0)⊕ a.

The proof follows immediately by the definition of W∆. In particular, note that since
pik,l = pjk,l for each i 6= j and for each k 6= l, it follows that R(pi)col(k) = R(pj)col(k) for
each k = 1, 2, 3, exactly in the same way as in App. E.

Thus, suppose initially to know all the sub-key bytes ki,i for each i = 0, ..., 3, and
suppose that δi = ki,i for each i = 0, ..., 3. In this case, if two different plaintexts p1 and
p2 belong to W∆, then after one round they belong to the same coset of D0 ∩ C0 ⊆ D0,
that is R(p1) ⊕ R(p2) ∈ D0. Thus, after five rounds they belong to different cosets of
MI for each |I| = 3 with probability 1, that is R(4) ◦ R(p1) ⊕ R(4) ◦ R(p2) /∈ MI with
|I| = 3, due to the impossible subspace trail described in details in Sect. 4.3). That is,
if δi = ki,i for each i = 0, ..., 3, then for each (p1, c1) 6= (p2, c2):

Pr(R(5)(p1)⊕R(5)(p2) ∈MJ | (p1, c1), (p2, c2) ∈W∆) = 0,

for each J with |J | = 3.
Instead, in the case of a random permutation, given two plaintexts in W∆ the proba-

bility that two ciphertexts belong to the same coset ofMI for a certain I with |I| = 3 is
2−30. Thus, for a random permutation, the probability that there is at least one collision
among the ciphertext in same coset of MI for a certain I with |I| = 3 given n pairs of
texts is p = 1− e−n/230 . If n is approximately 231.6, then p is greater than 95%.

As a consequence, if ki,i are known for each i = 0, ..., 3 and if δi = ki,i for each
i = 0, ..., 3, to distinguish a random permutation from an AES one, we can proceeded
as follows. For an AES permutation, the number of collision in MI for |I| = 3 among
the ciphertexts of the corresponding plaintexts that belong to the same set of Wδ is
always zero. That is, given two plaintexts in W∆, the probability that the corresponding
ciphertexts belong to the same coset ofMI is zero. Instead, for a random permutation,
it is possible to have a collision among the ciphertexts which plaintexts belong to the
same W∆. Thus, the idea is to consider a sufficient number of different sets W∆ in order
to guarantee that in the random case there is at least one set W∆ for which there is
at least one collision among the ciphertexts with probability 95%. In this way, we can
distinguish the two cases.

Given a single set W∆, it is possible to construct 27 · (28 − 1) ' 215 different pairs.
Thus, for the distinguisher we need approximately 231.6 · 2−15 = 216.6 different sets W∆.
Since each of these sets contains 28 texts, the data complexity of the distinguisher (in
the case in which the four bytes ki,i are known) is 216.6 · 28 = 224.6 texts.

H.3 The 5-Round Secret Key Distinguisher with 259.7 queries

Starting from the previous “distinguisher”, we show how to extend it in the case in
which all the sub-key bytes ki,i are unknown for each i.

Since we assume to not know ∆, the idea is basically to construct 232 collections
(each one with a certain number of sets W∆), each one for each possible combination
of the 232 values of ∆ = (δ0, δ1, δ2, δ3). For the AES permutation, we expect that there
is one ∆ such that for each corresponding set W∆ the number of collisions among the
ciphertexts is zero. Note that this value ∆ = (δ0, δ1, δ2, δ3) corresponds to the values of
the four-bytes of the secret key, that is δi = ki,i. For the other values of ∆, we expect
a behavior similar to the one of a random permutation. In order to distinguish between
the random permutation and the AES one, our goal is to choose the number of sets



Fig. 14. 5-Rounds Secret Key Distinguisher with data complexity 259.7 based on the Impossible Subspace
Trail on 4-Rounds (from Sect. 4.3). The choice of the plaintexts (defined by the set W ′∆ in (25) )
guarantees that if δi = ki,i for each i = 0, ..., 3 after one round only one byte is active (i.e. the difference
between the two texts on that byte is non-zero) instead of four. That is, after one round, the plaintexts
belong to the same coset of C0 ∩ D0. The probability that two ciphertexts belong to the same coset of
MJ for |J | = 3 is zero. White box denotes denotes a byte with a zero-difference, while a black box
denotes a byte with non-zero difference.

W∆ such that for each possible combination of values of ∆ = (δ0, δ1, δ2, δ3) there is at
least one set W∆ in which there is at least one collision among the ciphertexts. Thus,
it follows that the AES permutation is the one in which there is one ∆ for which the
corresponding number of collision among the ciphertexts is zero, while for the random
permutation we expect that for each one of the 232 collections there is at least one set
W∆ in which there is at least one collision among the ciphertexts.

To compute the number of W∆, our goal is to guarantee that in the random case,
for each possible value of ∆ there is at least one set W∆ for which there is at least one
collision among the ciphertexts with total probability greater than 95%. If we use the
same number of sets of before (that is 216.6), since the 232 collections are independent,
the total probability that there is at least one set W∆ with one collision for each one of
the 232 collections is 0.952

32 ' 0. Thus, for each one of the 232 collections (i.e. for each
combination of values of (δ0, δ1, δ2, δ3)), we need at least one collision with probability
higher than 0.951/2

32 ' 1−1.1 ·10−11. To have at least one collision with this probability
and using the same computation as before, each one of the 232 collections has to be
composed of 234.7 pairs of texts (instead of 231.6 pairs). Equivalently, this means that



each one of the 232 collections has to be composed of about 234.7 · 2−15 = 219.7 different
sets W∆. Since each one of these sets contains 28 texts (equivalently 215 pairs) and since
there are 232 possible ∆, the total number of texts is 232 (values of δ0, ..., δ3) ×219.7

(number of sets W∆) ×28 (texts for each set) = 259.7.

To summarize, suppose to have 232 collections (one for each ∆), each one with 219.7

different sets W∆, where each of these sets contains 28 texts, for a total of 259.7 texts.
In the random case and with probability 95%, we expect that in each one of these 232

collections there is at least one set W∆ with one collision. Note that the average number
of collisions for each collection (i.e. for each ∆) is about 2−30 · 234.7 = 24.7 ' 26. For the
AES permutation, we expect that there exists one combination of ∆ for which there is
no collision with probability 1 in the corresponding collection of sets. For all the other
collections (i.e. for each other values of ∆), the behavior is similar to the random case,
that is we expect to have at least one collision with probability 95%. Thus, we are able
to distinguish a random permutation from an AES one.

How to Divide 259.7 Texts into 232 Collections? We have seen that 259.7 chosen
plaintexts are sufficient to set up the distinguisher for 5-rounds of AES. However, a
problem arises. In order to distinguish the two cases, as first thing one has to be able
to divide the 259.7 texts in 232 collection (one for each combination of values of ∆ =
(δ0, ..., δ3)), and for each one of these collections one has to divide the texts in the
respective 219.7 sets W∆. In particular, given two plaintexts p and q, it is very easy
to check if pi,j = qi,j for each i 6= j. However, given p and q with pi,j = qi,j for each
i 6= j, it is not possible to determine if they belong to the same set of W∆ (that is,
if the combination of δ0, ..., δ3 of the set W∆1 in which the first plaintext belongs is
equal to the ones of the set W∆2 in which the second plaintext belongs). Indeed, note

that for each x ∈ F28 there exists ∆ such that
[
δ0, δ1, δ2, δ3

]T
=
[
p0,0, p1,1, p2,2, p3,3

]T ⊕
S-Box−1 ◦M−1 ·

[
x, 0, 0, 0

]T
, and similar for q.

Thus, we present a possible (simple) way to overcome this problem. First of all,
observe that there are 232 different values of δ0, ..., δ3. By definition, given two plaintexts
p and q in W∆, note that their bytes that don’t lie on the first diagonal have to satisfy the
condition pi,j = qi,j for i 6= j, but nothing more. Our idea is to impose a further condition
on these bytes. Note that for each combination of δ0, ..., δ3, there are (28)12 = 296 different
sets W∆

25. Let n ≥ 1 an integer, and let f : (F28)n → Z+ defined as follows:

f(x0, x1, ..., xn−1) :=
n−1∑
i=0

28i × xi,

where 0 ≤ xi < 256 for each xi. We use this function f to (slightly) modify the definition
of W∆. In particular, we introduce the set of plaintexts-ciphertexts W ′∆ defined as W∆

but with a further condition on the plaintexts:

W ′∆ =
{

(pi, ci) for i = 0, ..., 28 − 1
∣∣ for each i : (pi, ci) ∈W∆ and

264 · δ ≤ f(pi1,0, p
i
2,0, p

i
3,0, p

i
0,1, p

i
2,1, ..., p

i
2,3) < 264 · (1 + δ)

}
,

(25)

25 Note that each set W∆ contains 28 elements, for a total of 296 ·28 = 2104 plaintexts instead of 2128. This
is due to the definition of W∆. To fix this problem, in the definition of W∆ (H.4), one can substitute[
x, 0, 0, 0

]T
with

[
x, ĉ1, ĉ2, ĉ3

]T
where ĉi are constants in F28 to have all the 2128 plaintexts. However,

this is not necessary for our scope. Thus, we consider for simplicity ĉ1 = ĉ2 = ĉ3 = 0.



Data: 232 collections (one for each possible value of ∆. Each collection contains 219.7 different
sets W ′∆ defined as in (25).

Result: ∆ if the permutation is an AES permutation (where δi = ki,i for i = 0, ..., 3); −1 if the
permutation is a Random one.

for ∆ from 0 to 232 − 1 do
flag ← 0;
for each one of the 219.7 different sets W ′∆ do

for each pair (ci, cj) ∈W ′∆ do // about 215 different pairs

if ci ⊕ cj ∈MJ for |J | = 3 then // e.g. see Algorithm 3
flag ← 1;
next collection (i.e. next ∆);

end

end

end
if flag = 0 then // AES permutation

return ∆ = (δ0, δ1, δ2, δ3);
end

end
return −1. // Random permutation

Algorithm 11: Distinguisher for 5-rounds of AES with data-complexity of 259.7 -
Pseudo-code. The 259.7 input texts are already divided in 232 collections (one for each
∆), and for each collection the texts are already divided in the sets W ′∆. Given a pair
(ci, cj), use for example Algorithm 3 to check if ci ⊕ cj belongs (or not) in MJ for
|J | = 3.

where W∆ is defined as in (H.4), the input of the function f are all the bytes of pi that
don’t lie on the first diagonal (that is pij,k for j 6= k) and where δ is defined as follows:

δ := f(δ0, δ1, δ2, δ3). (26)

Thus, the distinguisher is set up using W ′∆ instead of W∆. Note that for each collection
(that is, for each combination of values of ∆ = (δ0, ..., δ3)), we need about 219.7 different
sets W ′∆. If the previous restriction (25) on the plaintext holds, then there are 264

different sets W ′∆ for each combination of values of δ0, ..., δ3. Since we need only 219.7

of them, everything works. Moreover, it is simply to observe that using the previous
restriction and given two plaintexts p and q with pi,j = qi,j for each i 6= j, it is very
easy to establish if the values of δ0, ..., δ3 for the first plaintext are the same of those
of the second one. In particular, it is sufficient to compute the corresponding values of
f(p1,0, ..., p2,3) and f(q1,0, ..., q2,3) and to check if they belong to the same interval defined
as (264 ·δ, 264 ·(δ+1)). If they belong to the same interval, then the two plaintexts belong
to the same set W ′∆ (that is, the values of δ0, ..., δ3 are equal), otherwise they belong to
different sets W ′∆1 and W ′∆2 .

Thus, 259.7 chosen plaintexts (that is 232 collections - one for each possible combi-
nation of values of ∆ - each one of 219.7 different sets W ′∆) are sufficient to set up the
distinguisher. The cost to construct them is 259.7 encryptions or oracle queries and the
verification cost is well-approximated by 232 ·219.7 ·27 ·(28−1) = 266.7 table look-ups (the
cost to divide the texts in the corresponding collection and sets W ′∆ is well-approximated
by 259.7 table look-ups). Thus, this distinguisher on 5-rounds AES with secret key is
(much) better than the previous one which exploits a different 0-probability subspace
trail.



Practical Verification. Since the complexity of the 5 rounds distinguisher is very
high, we practical verified it on a small scale variant of AES presented in [16]. In the
actual AES, each word of AES is composed of 8 bits. In our variant, each word of AES
is composed of 4 bits. We refer to the above mentioned paper for a complete description
of this small-scale AES, and we limit ourselves to describe the theoretical result of our
5-rounds distinguisher in this case.

First of all, since the words are composed of 4 bits instead of 8, the probability p that
two texts belong to the same coset ofWI for |I| = 3 is p = 4× (24)−4 = 2−14. Moreover,
each set W ′∆ contains 24 different texts (that is, approximately 23 ·(24−1) = 27 different
pairs), and finally there are (24)4 = 216 different combinations of ∆ instead of 232.

As before, we have to guarantee that in the random case and for each one of the 216

collections (one for each combinations of ∆), there is at least one collision with a total
probability of 95%. Using similar computations as before, we need approximately 218.7

pairs for each ∆, and in the random case we expect for each∆ on average 218.7·(4·2−16) =
24.7 = 26 collisions. Since each set W ′∆ contains 27 different pairs, 218.7 · 2−7 = 211.7

different sets W ′∆ are sufficient. Thus, the total number of different texts required for
this distinguisher on the 5-rounds small-scale AES is 216 · 211.7 · 24 = 231.7, and the
computational cost of the verification can be approximated at 234.7 table look-ups (which
is the cost to construct all the pairs).

The above computational cost just given is actually only an upper bound. Indeed,
observe that for our goal it is sufficient to find one collision, that is when the first collision
is found then it is not necessary to look for others. Thus, for each ∆ the upper bound
for table look-ups is 218.7, but in our experiments the average number of table look-
ups in order to find the first collision is 213.5. Note that this number is consistent with
the average number of collisions that we expect for each ∆ (indeed, since we expect 26
collisions, on average 218.7/26 ' 214 pairs of texts are sufficient to find the first collision).
Thus, in our experiments, the average number of table look-ups is much lower that 234.7

and is well approximated by 230.
The practical results are consistent with our theory. In particular, given an AES

permutation, our distinguisher is always able to identify it (i.e. with probability 1, there
is one value of ∆ for which there is no collision and which corresponds to the four byte
of the secret key). Instead, given a random permutation, the practical probability that
for each ∆ = (δ0, ..., δ3) there is at least one collision is close to 100% (in 993 out of 1000
of experiments).

H.4 Some Variants

We show that this distinguisher works in the same way also in the case in which the final
MixColumns is omitted, and also in the decryption mode (i.e. with chosen ciphertexts
instead of chosen plaintexts) independent of the presence of the final MixColumns oper-
ation. For both cases, the distinguisher works as before, with the same data complexity.
Thus, we limit ourselves to highlight the major differences.

A Distinguisher on 4.5-Rounds of AES with Data Complexity of 259.7 Chosen-
Plaintexts. If the final MixColumns operations is omitted, then the distinguisher works
in the same way as before. The only difference is that one has to consider the space IDJ
instead of final space MJ for |J | = 3. That is:

Pr(R(5)(x)⊕R(5)(y) ∈ IDJ |x⊕ y ∈W ′∆) = 0,



if ∆ = (δ0, δ1, δ2, δ3) with δi = ki,i for each i, |J | ≤ 3 and W ′∆ defined as in (25).

A Distinguisher on 4.5-Rounds of AES with Data Complexity of 259.7 Chosen-
Ciphertext. For the decryption case, the idea is to define a set of plaintexts-ciphertexts
Z ′∆ (analogous of W ′∆) such that the ciphertexts belong to the same coset of Mi one
rounds before for |i| = 1. Due to the impossible subspace trail, the probability that a
pair of corresponding plaintexts belong to the same coset of DJ for |J | = 3 is 0. Thus, the
distinguisher works exactly as before and it has the same complexity of the one just de-
scribed. For this reason, we limit ourselves only to define the set of plaintext-ciphertext
Z∆ (analogous of W∆).

The definition of Z∆ (analogous of W∆) is easy if the final MixColumns operation is
omitted. In particular, in the case in which the final MixColumns operation is omitted,
the set Z∆ is defined as:

Z∆ =

{
(pi, ci) for i = 0, ..., 28 − 1

∣∣∣∣

ci0,0
ci1,3
ci2,2
ci3,1

 :=


δ0
δ1
δ2
δ3

⊕


S-Box(α · x)
S-Box(x)
S-Box(x)

S-Box((α+ 1) · x)


for x ∈ F28 and cik,l = cjk,l ∀k, l s.t. k + l 6= 0 (mod 4) and ∀i 6= j

}
,

,

where ∆ = (δ0, δ1, δ2, δ3) can assume 232 different values, Z∆ contains 28 different
pairs (p, c) (that is, approximately 215 different pairs) and the 256 vectors defined as[
S-Box(α · x), S-Box(x), S-Box(x), S-Box((α+ 1) · x)

]T
can be simply precomputed in

advance and stored in a table.

Proposition 10. Let Z∆ defined as before. If δ0 = k50,0, δ1 = k51,3, δ2 = k52,2 and

δ3 = k53,1 (where k5 denote the key of the final round), then there exists (unique) a ∈
(M0 ∩ C0)⊥ such that R−1f (Z∆) ⊆ (M0 ∩ C0)⊕ a.

The proof follows immediately by the definition of Z∆. Given Z∆, Z ′∆ is defined as:

Z ′∆ =
{

(pi, ci) for i = 0, ..., 28 − 1
∣∣ for each i : (pi, ci) ∈ Z∆ and

264 · δ ≤ f(ci1,0, c
i
2,0, c

i
3,0, p

i
0,1, c

i
1,1, c

i
3,1, ..., c

i
3,3) < 264 · (1 + δ)

}
,

(27)

where Z∆ is defined as before, the input of the function f are all the bytes of pi that
don’t lie on the first inverse diagonal (that is cij,k for j + k 6= 0 (mod 4)) and where δ is
equal to δ := f(δ0, δ1, δ2, δ3).

A Distinguisher on 5-Rounds of AES with Data Complexity of 259.7 Chosen-
Ciphertext. We consider now the case in which the final MixColumns operation is
not omitted. The distinguisher works exactly as before, but the definition of the Z∆ is
a little more complicated. The idea is to swamp the position of the final MixColumns
operations and of the final AddRoundKeys operation. Thus, in order to define the set
Z∆ in the case in which in the final MixColumns is not omitted, the idea is to apply the
MixColumns operation to the set Z∆ found in the previous subsection. Moreover, also
the values of δi for which there are no collisions with probability 1 in the corresponding
sets are defined in a different way.



First of all, we define some matrices which are useful for the following definition of
Z∆. For each x ∈ F28 , let Γ (x) defined as:

Γ (x) := MC ·


S-Box(α · x) 0 0 0

0 0 0 S-Box(x)
0 0 S-Box(x) 0
0 S-Box((α+ 1) · x) 0 0


where MC is the MixColumns operation. Note that these 256 matrices can be simply
precomputed in advance and stored in a table. Moreover, let Ψ ∈ F4×4

28
defined as:

Ψ := MC ·


0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 0
a2,0 a2,1 0 a2,3
a3,0 0 y3,2 a3,3


or equivalently:

Ψ ≡


ψ(a1,0, a2,0, a3,0) a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 ψ(a2,3, a3,3, a0,3)
a2,0 a2,1 ψ(a1,2, a3,2, a0,2) a2,3
a3,0 ψ(a0,1, a1,1, a2,1) a3,2 a3,3


where ai,j are in F28 and where the function ψ(·, ·, ·) is defined as:

ψ(x, y, z) = (α6 + α4 + α3 + α2 + 1) · x⊕ (α5 + α3 + α2 + α+ 1) · y ⊕ (α7 + α3 + α2) · z.

Given Γ (x) and Ψ as before, in the case in which the final MixColumns operation is not
omitted and for a fixed Ψ , the set Z∆ is defined as

Z∆ =

{
(pi, ci) for i = 0, ..., 28 − 1

∣∣∣∣ ci = Γ (x)⊕MC ·


δ0 0 0 0
0 0 0 δ1
0 0 δ2 0
0 δ3 0 0

⊕ Ψ
for x ∈ F28 and for a fixed Ψ

}
,

where ∆ = (δ0, δ1, δ2, δ3) can assume 232 different values and Z∆ contains 28 different
pairs (p, c) (that is, approximately 215 different pairs). Note that the condition that Ψ
if fixed for a given set Z∆ is equivalent to the condition cik,l = cjk,l for k + l 6= 0 (mod
4) given in the previous definition of Z∆ where the final MixColumns operation is not
omitted.

Proposition 11. Let Z∆ defined as before. If

δ0 = 0x0e · k50,0 ⊕ 0x0b · k51,0 ⊕ 0x0d · k52,0 ⊕ 0x09 · k53,0,
δ1 = 0x09 · k50,3 ⊕ 0x0e · k51,3 ⊕ 0x0b · k52,3 ⊕ 0x0d · k53,3,
δ2 = 0x0d · k50,2 ⊕ 0x09 · k51,2 ⊕ 0x0e · k52,2 ⊕ 0x0b · k53,2,
δ3 = 0x0b · k50,1 ⊕ 0x0d · k51,1 ⊕ 0x09 · k52,1 ⊕ 0x0e · k53,1,

where k5 is the secret of the final round, then there exists (unique) a ∈ (M0 ∩C0)⊥ such
that R−1(Z∆) ⊆ (M0 ∩ C0)⊕ a.



For completeness, 0x09 ≡ α3 + 1, 0x0b ≡ α3 + α + 1, 0x0d ≡ α3 + α2 + 1 and 0x0e ≡
α3 + α2 + α. The proof follows immediately by the definition of Z∆.

Proof. To prove the proposition, we simply compute R−1(Z∆). By simple computation,
after the AddRoundkey and the inverse MixColumns operations, the first column is
equal to:

S-Box(α · x)⊕ δ0 ⊕ 0x0e · k50,0 ⊕ 0x0b · k51,0 ⊕ 0x0d · k52,0 ⊕ 0x09 · k53,0
a1,0 ⊕ 0x09 · k50,0 ⊕ 0x0e · k51,0 ⊕ 0x0b · k52,0 ⊕ 0x0d · k53,0
a2,0 ⊕ 0x0d · k50,0 ⊕ 0x09 · k51,0 ⊕ 0x0e · k52,0 ⊕ 0x0b · k53,0
a3,0 ⊕ 0x0b · k50,0 ⊕ 0x0d · k51,0 ⊕ 0x09 · k52,0 ⊕ 0x0e · k53,0


for x, ai,0 ∈ F28 . Note that ai,0 for i = 1, 2, 3 are equal for each texts in Z∆. Since
δ0 = 0x0e · k50,0 ⊕ 0x0b · k51,0 ⊕ 0x0d · k52,0 ⊕ 0x09 · k53,0, then the first element of the first
row is equal to S-Box(α · x). The other three columns are analogous.

After the inverse ShiftRows operation, the second, the third and the fourth columns
are constant and equal for each texts in Z∆ (only for completeness, note that they are
unknown). Finally, after the inverse SubBytes operation, the first column is given by:[

α · x, x, x, (α+ 1) · x
]T
,

that is the thesis. ut

Finally, the definition of Z ′∆ is equal to the previous one (27).
As for the encryption case, we expect that there is a combination of values of

(δ0, ..., δ3) for which for each set Z ′∆ there is no collision among the plaintexts in the
same coset of DI for |I| = 3 with probability 1. For the random permutation, we expect
to have at least one collision among the plaintexts in at least one set Z ′∆ for each one
of the 232 values of ∆. Thus, given 259.7 texts (that is, 232 collections - one for each ∆,
each one with 219.7 different sets Z ′∆), it is possible to distinguish the two cases.

H.5 Comparison with 5-Rounds Distinguisher proposed by Sun, Liu, Guo,
Qu and Rijmen, with Our Distinguisher of Sect. 7 and Possible
Generalizations

At CRYPTO 2016, the first 5-rounds secret key distinguishers of AES-128 have been
presented [40]. The procedure that we have used to set up the distinguisher of this section
is similar to the one used in [40] or to the strategy used to set up our distinguisher
of Sect. 8. In particular, in our cases we have extended the impossible subspace trail
distinguisher on 4-rounds presented in Sect. 4.3 at the beginning (i.e. an impossible
differential distinguisher), instead of a zero-sum distinguisher.

The first major difference between the distinguisher of this section and the one
presented in [40] is that this distinguisher works both in the encryption mode (i.e.
chosen plaintexts) and in the decryption mode (i.e. chosen ciphertexts), independent
of the presence of the final MixColumns operation and with the same data complexity.
Instead, the distinguisher presented in [40] works only in the decryption mode and only
if the final MixColumns operation is not omitted. Similar considerations can be done
with respect to our distinguisher of Sect. 8.

The second major difference between our distinguisher and the one presented in [40]
(and similar for our distinguisher of Sect. 8) is the data complexity and the verification
cost. For this distinguisher, the cost to construct all the plaintext-ciphertext pairs is



259.7 encryptions or oracle queries. Using similar arguments as the one used in Sect. 8,
the cost to check that the presence of at least one collision is about 4 · 232 (number of
∆) ·219.7 (number of sets)·28 · (log 28−1) (number of pairs) ' 256.7 table look-ups, using
the ordering algorithm.

Finally, note that the distinguisher presented in this section doesn’t require any
assumption on the S-Box or on the MixColumns matrix. Indeed, the sets W ′∆ and Z ′∆
can be constructed in a similar way even in the case the used S-Boxes are not identical
and for each possible kind of invertible MixColumns matrix MMC .
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