
Obfuscation from Low Noise Multilinear Maps

Abstract. Multilinear maps enable homomorphic computation on en-
coded values and a public procedure to check if the computation on the
encoded values results in a zero. Encodings in known candidate con-
structions of multilinear maps have a (growing) noise component, which
is crucial for security. For example, noise in GGH13 multilinear maps
grows with the number of levels that need to be supported and must
remain below the maximal noise supported by the multilinear map for
correctness. A smaller maximal noise, which must be supported, is de-
sirable both for reasons of security and efficiency.
In this work, we put forward new candidate constructions of obfuscation
for which the maximal supported noise is polynomial (in the security pa-
rameter). Our constructions are obtained by instantiating a modification
of the Lin’s [EUROCRYPT 2016] obfuscation construction with compos-
ite order variants of the GGH13 multilinear maps. For these schemes, we
show that the maximal supported noise only needs to grow polynomially
in the security parameter. We prove the security of these constructions in
the weak multilinear map model that captures all known vulnerabilities
of GGH13 maps. Finally, we investigate the security of the considered
composite order variants of GGH13 multilinear maps from a cryptana-
lytic standpoint.

1 Introduction

Program obfuscation aims to make computer programs “unintelligible” while
keeping their functionalities intact. The known obfuscation constructions [GGH+13b,
BR14, BGK+14, PST14, AGIS14, Zim15, AB15, GLSW15, BMSZ16, Lin16,
BD16, GMM+16] are all based on new candidate constructions [GGH13a, CLT13,
CLT15, GGH15] of multilinear maps [BS02], security of which is poorly under-
stood [GGH13a, CHL+15, CGH+15, HJ16, CLLT16, MSZ16].

Briefly, multilinear maps (a.k.a. graded encodings) allow “leveled” homomor-
phic computations of an a-priori bounded degree (say κ) arbitrary polynomials
on “encoded” values. Furthermore, they provide a mechanism to publicly check
if the result of a polynomial computation is a zero or not. At a high level, known
obfuscation methods map the program to a sequence of encodings. These encod-
ings are such that the output of the program on a specific input is zero if and
only if the output of a corresponding input dependent polynomial (of degree κ)
on the encoded values yields a zero.

Noise in GGH-based Obfuscations. Encodings in the known candidate mul-
tilinear map1 constructions are generated to have a noise component (referred

1 Throughout this paper, we use multilinear maps to refer to private encoding mul-
tilinear maps. In other words, no public low-level encodings of zero are provided in
our constructions.



to as “fresh” encoding/noise2) that is necessary for security. Homomorphic com-
putations on these fresh encodings yield encodings with increased noise due to
accumulation of the fresh noise (hence called “accumulated” noise). In the candi-
date construction by Garg, Gentry and Halevi [GGH13a] (a.k.a. GGH), the noise
level in the fresh level-1 encodings can be set to be as low as a polynomial in the
security parameter, without hurting the security. However, the noise level in the
fresh level-i encodings needs to grows exponentially in i.3 Furthermore, the accu-
mulated noise also grows with the number of homomorphic multiplications. The
GGH construction is parameterized by a modulus q that needs to be greater than
the maximum supported noise (referred to as “noise bound”) of any encoding
in the system in order to preserve functionality. Most obfuscation constructions
involve homomorphic multiplication of polynomially many “fresh” encodings.
Therefore, these constructions need to support an exponentially large noise. The
only exception to this is the recent beautiful construction of Lin [Lin16] that only
needs a constant number of multiplications on composite-order multilinear maps.
However, this construction still needs to give out “fresh” encodings at polyno-
mially high levels. Thus it would still need exponential noise if one was to use a
composite order variant of GGH multilinear maps (e.g. the one eluded to in the
first EPRINT draft of GGH [GGH12] or the one from [GLW14b, Appendix B.3]).
Another alternative is to use a composite order variant of the [CLT13, CLT15]
multilinear maps, e.g. the one by Gentry et al. [GLW14b, Appendix B.3 and
B.4]. Note that in the CLT based constructions the number of primes needed is
always polynomial in the security parameter. This is the case even if the con-
struction itself uses a constant number of slots, as is the case in Lin’s scheme.
This use of polynomially many primes is essential for security — specifically, in
order to avoid lattice attacks. Consequently, the noise growth in this case is also
exponential (as elaborated on in [GLW14b, Appendix B.5]).

In the context of GGH multilinear maps, the use of an exponential “noise
bound,” and hence the modulus q, is not desirable in light of the recent NTRU
attacks4 [ABD16, KF16]. It is desirable to have a much smaller value of q (say
poly(λ)). Furthermore, having a smaller modulus offers asymptotic efficiency
improvements.

Weak Multilinear Map Model for GGH. Typically, candidate obfuscation
schemes (including the above constructions) are proven secure in so-called ideal
graded encoding model, that does not capture all the known vulnerabilities of the
GGH multilinear maps [GGH13a, HJ16, MSZ16]. In particular, Miles, Sahai and

2 By “fresh” encodings we mean that it is generated via the encoding procedure using
the secret parameters and not produced as a result of homomorphic computations.

3 The reported noise is for the recommended version of the GGH multilinear
maps [GGH12, Section 6.4]. This recommendation was made in [GGH13a] with the
goal of avoiding averaging attacks [GS02, NR06, DN12]. Similar, recommendation is
made in [ABD16, Section 4.2].

4 Specifically, the subfield lattice attack is sub-exponential as soon as q is super-
polynomial. Furthermore, using attack of [KF16] becomes polynomial for power-

of-two cyclotomic fields when q = 2Ω(
√
n log logn).
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Zhandry [MSZ16] exploit these vulnerabilities of GGH to show attacks against
obfuscation constructions. In light of these attacks, [MSZ16] proposed the weak
multilinear map model that better captures the known vulnerabilities GGH mul-
tilinear maps. Subsequently, Garg et al. [GMM+16] gave an obfuscation scheme
provable secure in this model.

In this work, we ask the following question.

Can we construct an obfuscation scheme using low noise multilinear maps and
prove its security in the weak multilinear map model?

1.1 Our Result

In this work, we resolve the above question affirmatively providing new candi-
date indistinguishability obfuscation constructions such that: (i) they requires
a modulus q which grows polynomially in the security parameter, and (ii) they
are provably secure in the weak multilinear map model.

Our construction is instantiated using composite order GGH multilinear
maps5 that are same as the composite order proposal of [GGH12] except that
we use a specific choice of the Lagrange Coefficients used in Chinese Remain-
dering in our construction.6 This specific choice of Lagrange Coefficients is done
in order to strengthen security — specifically, in order to obtain a proof of se-
curity in the weak multilinear map model. We evaluate the security of the GGH
composite order multilinear maps (with our choice of Lagrange Coefficients) in
light of known attack strategies (see Section 6.3).

Next, in order to enable constructions with low noise, we suggest two ways
to modify the GGH sampling procedure [GGH12, Section 6.4] such that: (i) The
first more conservative variation is simple and its security can be reduced to the
security of the original GGH sampling procedure. (ii) Our second more aggressive
variant departs from the GGH sampling procedure more but obtains better
efficiency in terms of the dimension of the lattice necessary. From a cryptanalytic
standpoint (see Section 6.3), we do not know of any attacks against this more
aggressive variation.

5 In the first draft of [GGH12], authors suggested a composite order variant of mul-
tilinear maps. However, in later versions they restricted their claims to the prime
order construction. This was in light of the weak-discrete log attacks they found
against their construction. However, these attacks worked only when public encod-
ings of zero are provided and rendered assumptions such as subgroup hiding easy.
In particular, all known attacks against composite order GGH maps use low level
encodings of zero [GGH13a] or some specific high-level encodings of zero [CGH+15].
In light of the Miles et al. attacks [MSZ16] we envision more (potential) attacks but
they are all captured by the weak multilinear map model.

6 We do not provide public encodings of zero in our constructions. Therefore, they
are insufficient to instantiate the assumptions made by Gentry et al. [GLW14a,
GLSW15].
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Additional Contribution. As mentioned earlier, recent work by Garg et al. [GMM+16]
provides the first construction of obfuscation in the weak multilinear map model.
However, this construction works by converting a circuit into a branching pro-
gram. Our work also provides a direct construction (obtained by slightly mod-
ifying our main construction) for circuits, for which security can be argued in
the weak multilinear map model. Previous works [AB15, Zim15] in this direction
proved security in only in the ideal graded encoding model.

Independent Work. In a concurrent and independent work, Lin and Vaikun-
tanathan [LV16] obtain a construction which when instantiated with GGH mul-
tilinear maps would yield a construction that supports low noise. However, a
bonus of our scheme is that it is proved secure in the weak multilinear map
model. Furthermore, the techniques introduced in this work are orthogonal to
the work of Lin and Vaikuntanathan [LV16] and are of independent interest.

1.2 Technical Overview

We start from a brief overview of Lin’s construction [Lin16].

Overview of Lin’s construction: iO from constant-degree multilinear map. It
has two main steps.

Step-1: Stronger bootstrapping. All existing candidates of indistinguisha-
bility obfuscation (iO for short) for all circuits (i.e., P/Poly) rely on “boot-
strapping” iO for weaker class of circuits. Known techniques [GGH+13b,
CLTV15] require iO for NC1 to start with: the idea is to first construct a
scheme only for NC1 circuits and then use cryptographic primitives (e.g.,
fully homomorphic encryption) to “bootstrap” this into a construction for
P/Poly. In contrast, [Lin16] uses a much stronger bootstrapping technique
that only requires iO (with some necessary efficiency requirements) for spe-
cific constant-degree circuits (as opposed to general NC1 circuits in the
earlier constructions). To realize that, only multilinear map supporting con-
stant number of multiplications suffice. Such specific circuit class is referred
to as the “seed class” and denoted by Cseed in the following.

Step-2: Special purpose iO for Cseed. In the second step, [Lin16] gives a
candidate iO-construction for this seed class. The construction builds on the
techniques from [AB15, Zim15] for obfuscating NC1 circuits directly while
ensuring constant-degree computation. Lin then proves that her construction
is secure in the ideal graded encoding model.

Our techniques: main steps. To achive our result, we build on the boot-
straping result of [Lin16] and focus on building the iO-candidate (Step-2) for
Cseed such that it only requires a polynomial sized modulus and is secure in weak
multilinear map model. Our main steps of construction are as follows:

1. Composite-order GGH multilinear map. We propose a composite-order
extension of GGH multilinear map candidate. Our candidate is the same as
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the first proposal of GGH maps (as in the first EPRINT version of [GGH12])
except that we use specific Lagrange Coefficients used in Chinese Remain-
dering in the construction. This choice allows us to argue security is the weak
multilinear map model.

2. Security in the weak multilinear map model. We strengthen the se-
curity of basic iO construction of [Lin16] via so-called self-fortification tech-
nique similar to [GMM+16]. As a result we are able to prove that our con-
struction is secure in the (GGH-based) weak multilinear map model (see
Appendix C for details on the model).

3. GGH with low-noise. We propose two modification of composite-order
GGH multilinear maps such that all “fresh” encodings that need to pro-
vided in our construction can be provided with noise of size poly(λ). More-
over, any κ degree computation would result into final encodings with noise
of size O(exp(κ)poly(λ)). Using the fact that Cseed has constant degree (i.e.,
κ is constant), we obtain polynomial sized modulus q. For the first variant,
we argue that an attacker against our modified construction can be trans-
lated to an attack against the original construction. On the other hand, our
second more aggressive variant of the sampling procedure works with better
efficiency while still not being vulnerable to known attacks.

Overview of composite-order GGH multilinear map. An instance of the
GGH scheme is parameterized by the security parameter λ and the required
multilinearity level κ ≤poly(λ). Based on these parameters, consider the 2nth
cyclotomic ring R = Z[X]/(Xn + 1) where n is a power of 2 (n is set large
enough to ensure security), and a modulus q that defines Rq = R/qR (with q
large enough to support functionality). The secret encoding procedure encodes
elements of a quotient ring R/I, where I is a principal ideal I = 〈g〉 ⊂ R,
generated by g. In the composite order setting, g is equal to a product of several
(say t) “short” ring elements g1, g2, . . . , gt. These ring elements are chosen such
that the norms N(gi) = |R/〈gi〉| are equal to “large” (exponential in λ) primes
pi for each gi. By the Chinese Remainder Theorem (CRT for short) one can
observe that the following isomorphism R/I ∼= R/I1× . . .×R/It for ideals Ii =
〈gi〉 holds. Hence each element e ∈ R/I has an equivalent CRT representation
in R/I1 × . . . × R/It that is denoted by (eJ1K, . . . , eJtK). Recall that, in this
representation it holds that e ≡ eJiKmod Ii and eJiK is called the value of e in
the i-th slot ; moreover, any arithmetic operation over R/I can be done “slot-
wise.” The short generator g (and all gi) is kept secret, and no “good” description
of I (or of Ii) is made public.

Let U denote the universe such that U = [`].7 To enforce the restricted
multilinear structure (a.k.a. straddling sets) secrets z1, . . . ,z` are sampled ran-
domly from Rq (and hence, they are “not short”). The sets v ⊆ U are called
the levels. An encoding of an element a ∈ R/I at a level v is given by e =
[c/
∏
i∈v zi]q ∈ Rq where c is a “short element” in a+ I sampled via a specific

7 In the actual construction the structure of the elements of U are much involved. But
for simplicity here we just assume U = [`] that suffices to convey the main idea.
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procedure.8 The quantity ‖c‖ is called the noise of the encoding e and is denoted
by noise(e). Rigorous calculation from the sampling procedure (c.f. Sec 2) shows
that noise(e) = O(exp(t, |v|)). Note that in Lin’s construction [Lin16] as well as
our construction, t will be a constant, but |v| is not.

The arithmetic computations are restricted by the levels of the encodings:
addition is allowed between encodings in the same level whereas multiplication
is allowed at levels v and v′ when v∩v′ = ∅.9 Furthermore, GGH map provides
a public zero-testing mechanism to check if any given encoding at level U is an
encoding of an element that is equal to 0mod g (equivalently 0mod gi in the
i-th slot for all i ∈ [t]). Notice that since the map allows κ-degree computations,
the noise in the top-level encoding resulting after such a computation can be at
most O(exp(κ, t, `)).

Reducing noise in GGH. We first elaborate on the GGH sampling proce-
dure [GGH12, Section 6.4] as follows: To encode at level v ⊆ U, the encod-
ing procedure samples a ring element from the fractional ideal 〈g/zv〉, where
zv =

∏
i∈v zi.

10 Hence, the amount of noise generated by the encoding proce-
dure depends on the size of the generator g/zv, which is in turn dominated by
the size of 1/zv. Generally, following [GGH13a], one can sample atoms zi such
that their inverse 1/zi is short in K, say n2/q (where K is the quotient field of
R). Now, expressing zv as zv =

∏
i∈v zi we obtain ‖1/zv‖ = O(exp(|v|)/q|v|).

We show in Section 2 that the noise of the fresh encoding is dominated by
‖zv‖ · ‖1/zv‖ which grows exponentially with |v|, i.e., the cardinality of v. As
mentioned earlier, in Lin’s construction, some elements are encoded at levels v
of cardinality polynomial in λ resulting in fresh encodings of noise O(exp(λ)).

To handle the noise in encodings more carefully, we provide two possible
techniques specific to our construction. The first more conservative technique
is fairly simply and works by choosing the degree n of the ring R sufficiently
large (larger than the size of the circuit we obfuscate). With this parameter
choice we can guarantee with probability close to 1 that for all levels at which
we encode and the zero-testing level that ‖zv‖ · ‖1/zv‖ = poly(n). This comes
at the expense of making the degree n of the ring R grow with the size of the
circuit (which is still polynomial in the security parameter). This change doesn’t
affect the security of the scheme in any way.

The second more aggressive technique follows a different strategy and avoids
the dependence of n on the size of the circuit. We first observe that, in our
obfuscation construction many combinations of

∏
i zi (i.e. many subsets of [`])

terms actually never arise. We illustrate our main idea with a toy example.
Assume that we only need to encode in levels v̂i = [`] \ {i} and vi = {i} for all

8 We use the notation [·]q to denote operations in Rq.
9 Note that in the actual construction we use different restriction for multiplication

due to difference in the structure of the straddling levels and the universe.
10 Notice that g/zv is in K. We generally use a/b ∈ K to denote “division” in the

quotient field K of R for a, b ∈ R. This is not to be confused with the notation
a · [b−1]q ∈ R which is a multiplication operation in R where the inverse [b−1]q is in
Rq.
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i ∈ [`−1] (and not at the level {`}). Now, if we follow above sampling procedure
then clearly we will end up with ‖zv̂i‖ · ‖1/zv̂i‖ = O(exp(` − 1)). Instead, we
follow a different strategy, namely we sample all the zi for i ∈ [`− 1] except the
last z` term “as usual”, i.e. such that 1/zi is “short” in K. However for the one
remaining term (i.e. z`) we instead sample another value z?, such that 1/z? is
“short” in K and then set

z` :=

[
z?

(
∏
i∈[`−1] zi)

]
q

.

Furthermore, we require that for i ∈ [`− 1], 1/[z−1
i ]q is also short in K. We can

now compute a value zv̂i := z? · [z−1
i ]q.

11 Observe that it holds that [zv̂i ]q =
[
∏
i∈[`]\{i} zi]q as desired. Moreover, 1/zv̂i is now short in K:

‖1/zv̂i‖ = ‖1/(z? · [z−1
i ]q)‖ ≤

√
n · ‖1/z?‖ · ‖1/[z−1

i ]q‖,

which is “short”. The cost incurred by this modification is that 1/z` may not
be “short” in K. However, this will not pose a problem as z` is not used to
sample encodings anyway (recall that we do not require to sample at level {`}).
We show that such modification brings down the noise bound of fresh encodings
to O(poly(`)exp(t)) and maximum noise bound (in any encoding produced in
our construction) to O(poly(`)exp(κ, t)). In our scheme, both κ and t will be
constants.

Our security model: weak multilinear map model. Typically, obfuscation
candidates12 were proven secure in the so-called ideal graded encoding model.
In contrast, we prove security of our construction in the weak multilinear map
model [MSZ16], a model that captures all currently known vulnerabilities of
multilinear maps. This model is similar to ideal multilinear map model (a.k.a.,
the ideal graded encoding model). However, it additionally allows for computa-
tion on ring elements resulting from zero-test performed on encodings of 0. The
security definition requires that the adversary can not come up with a polyno-
mial which evaluates to 0 over these post-zero ring elements. In the composite
order setting we require that the adversary can not come up with a polynomial
which evaluates to 0 in any of the slots. Unlike the ideal model, this model is
not entirely agnostic about the underlying multilinear map instantiation. In par-
ticular, our weak multilinear map model is based on the composite-order GGH
multilinear maps and captures all all our attack direction investigated in our
cryptanalysis.

Self-fortification from constant-degree multilinear maps. To prove secu-
ity of our obfuscation candidate in the weak multilinear map model, we make an-
other modification to Lin’s obfuscation scheme for Cseed using the self-fortification
technique similar to [GMM+16].

11 Notice that, the inverse is in Rq but the product is in R
12 There are some works e.g. [BMSZ16, BD16] that prove security of their constructions

in slightly stronger models than the ideal graded encoding model which captures
some attacks on multilinear maps.
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Recall that multilinear maps allow for testing of zero-encoding at the universe
set (a.k.a. the top level). All known attacks against multilinear map candidates
exploit the “sensitive information” leaked upon a successful zero-test. To pro-
tect against these attacks, the idea of [GMM+16] is to render this “sensitive
leakage” useless by “masking” with a PRF output. Similarly, we achieve this by
augmenting the given circuit C with a parallel PRF computation, the output of
which would be used to mask the leakage from real computation. More care is
required so that the PRF computation does not affect the actual computation
of C and “comes alive” only after a successful zero-test.

Before we describe our transformation, let us first describe the techniques of
obfuscating circuits directly of [AB15, Zim15] and that is also used in [Lin16].
At a high level, consider a universal circuit U that takes as input the circuit (to
obfuscate) C and the input x to C and outputs C(x). The obfuscation consists
of a collection of values in R/I encoded at carefully chosen levels (i.e., strad-
dling sets). Multiple slots are used where w.l.o.g. the first slot is used for actual
computation and a bunch of other slots are added with random values. These
random values along with the choice of straddling sets ensure that the random
values are nullified only with a correct (and consistent) evaluation correspond-
ing to some input x. More precisely, a correct evaluation leads to an encoding
of (U(C, x)mod g1, 0mod g2, . . . , 0mod gt) at the highest level U; zero-testing of
which would reveal the output. On the other hand, any incorrect computation
would not cancel out all random values, and hence would result in a non-zero
value in mod g with all but negligible probability.

Our idea is to add an extra slot (say the second slot) for PRF computation
such that a correct computation would produce an encoding of (U(C, x)mod g1, g2·
U(CPRFψ , x), 0mod g3, . . . , 0mod gt+1)13 at the top level.14 Notice that due to a
g2 multiplier in the second slot, the computation is not affected by the PRF out-
put as the value in the second slot is still 0mod g2. Nonetheless, we show that
a successful zero-test returns a ring element (say f) in R/I that has a blinding
(additive) factor α · CPRFψ (x) for some α ∈ R/I. Furthermore, we are able to
show that as long as α is invertible in (the composite order quotient ring) R/I
the CRT representation of f given by (fJ1K, . . . ,fJtK) is “somewhat random” in
each slot (formally, fJiK has high min-entropy).

Cryptanalysis. In Section 6.2, we discuss our change to composite order gener-
ators g from a cryptanalytic perspective. In a nutshell, existing lattice attacks,
such as attacks against overstretched NTRU assumptions [ABD16, KF16], do
not exploit the specific distribution of instances, but rather geometric properties
(i.e. noise terms being short). Thus, our construction resists currently known
lattice attacks and there is no reason to believe choosing composite generators
g =

∏
i gi leads to less secure schemes than choosing primes ones. However, we

do know that top-level encodings of zero, with correlated randomness, can be

13 CPRFψ is a circuit for computing PRF with the key ψ.
14 In the construction this is implemented by canceling out the PRF value by multi-

plying with an appropriate encoding that encodes a value which is 0mod g2 in the
second slot.
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dangerous. This is especially the case if they can be used to obtain an element
in the ideal 〈g〉. In the composite order setting, we expect potential attacks if an
element in the ideal 〈gi〉 for any i can be computed. However, all these potential
attacks are captured by the weak multilinear map model that we consider. At
a high level, our proof in the weak multilinear map model guarantees that no
element in the ideal 〈gi〉 for any i can be computed.

In Section 6.3, we discuss reasons for the believed security of our more ag-
gressive variation of the GGH sampling procedure.

1.3 Roadmap

The rest of the paper is organized as follows. In Sec. 2 we provide a composite-
order GGH multilinear map candidate. In Sec. 3 we briefly mention Lin’s boot-
strapping theorem and a few related definitions. Our main iO-construction is
provided in Sec. 4. In Sec. 5 we provide our modifications on the composite-
order GGH multilinear map to achieve low noise. We conclude the main body of
the paper in Sec. 6 with a cryptanalytic discussion of our modifications to the
asymmetric GGH multilinear maps. The formal description of weak multilinear
map model is provided in Appendix C and the preliminaries can be found in
Appendix A and Appendix B.

2 Composite-Order GGH Graded Encodings

In this section we describe a version of the GGH graded encoding scheme
[GGH13a] that supports operations over composite-order groups. Composite or-
der instantiations are known over the integers [CLT13, CLT15], but no composite-
order instantiations of the GGH graded encoding scheme were explicitly de-
scribed so far. Below we describe a composite-order instantiation of GGH graded
encoding scheme that also has a few extra properties, which allow us to use it
to instantiate the self fortification paradigm of Garg et al. [GMM+16]. Our new
scheme differs from the GGH scheme only with respect to the instance genera-
tion and encoding procedures. In a nutshell, the ideal generator g is sampled as
a product of pairwise coprime factors gi, each of which has (large) prime norm.

We use the cyclotomic fieldK = Q[X]/(Xn+1) and the ringR = Z[X]/(Xn+
1). Somewhat more subtle changes will be necessary in the encoding procedure.
Given elements (a1, . . . ,a`) ∈ R/〈g1〉× · · ·×R/〈g`〉 for the slots, we will recon-
struct an element a ∈ R using the Chinese Remainder Theorem. The Chinese
Remainder Theorem basis has to be chosen carefully such that reconstructed
elements a ∈ R have small size. We will use a Chinese Remainder Theorem
basis of the form (γi ·

∏
j 6=i gj)i. One technical requirement for arguing secu-

rity of our obfuscator in the weak multilinear maps model is that the γi are
units in R/〈g〉. This condition can be met by reconstructing the γi ∈ R from
(1, . . . , (

∏
j 6=i gj)

−1, . . . , 1) and not reducing the basis elements γi ·
∏
j 6=i gj mod-

ulo 〈g〉.
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2.1 Our Scheme

We will now describe our instantiation of composite-order GGH scheme more
formally. Let n be a power of 2. Just like the GGH construction, we use the
cyclotomic field K = Q[X]/(Xn + 1) and the rings R = Z[X]/(Xn + 1) and
Rq = R/qR. Let vzt be a k1×k2 matrix of non-negative integers; we call vzt the
(straddling) universe. We refer to k1 × k2 matrices15 v of non-negative integers
as levels and define their weight as |v| =

∑
i,j vij .

Instance generation: (params, sparams,pzt)← InstGen(1λ, 1`,vzt).

– Choose invertible zij ← R×q for (i, j) ∈ [k1] × [k2] uniformly at random
repeatedly until for all i, j, ‖1/zij‖ < n2/q in K (Lemma 8, Appendix B)
16.

– For all i ∈ [`] sample gi ← DZn,σ with σ = λ
√
n repeatedly until the fol-

lowing conditions are met: (i) ‖gi‖ ≤ σ
√
n and gi is invertible in Rq, (ii)

‖1/gi‖ ≤ nc (in K)17 for an appropriate constant c, (iii) N(gi) ≥ 2Ω(n) is a
prime and (iv) for all distinct i, j the ideals 〈gi〉 and 〈gj〉 are co-prime. As ar-
gued in GGH such (g1, . . . , g`) can be obtained after an expected polynomial
number of trials under mild number-theoretic assumptions.

Denote the product
∏`
i=1 gi by g. Define the ideals Ii = 〈gi〉 and I = 〈g〉.

Note that by the Chinese Remainder Theorem (CRT for short) we have R/I ∼=
R/I1 × · · · × R/I` as the ideals Ii are pairwise coprime. Any element a in
the modular ring R/I can be represented via the CRT isomorphism as a tuple
(a1, . . . ,a`) in R/I1 × · · · ×R/I` and vice versa. We will use a particular CRT
basis with additional properties. Specifically, let γ1, . . . , γ` ∈ R be elements such
that γi

∏
j 6=i gj ≡ 1mod gi and γi ≡ 1mod 〈gj〉 for j 6= i. Such γi ∈ R can be

found by standard Lagrange interpolation. We further assume that the γi have
been reduced with Babai’s roundoff algorithm (c.f. Appendix A.2) with respect
to I = 〈g〉, i.e. it holds that for all i we have ‖γi‖ ≤ n

2 · ‖g‖. We will perform
CRT reconstruction with respect to the basis {γi ·

∏
j 6=i gj}i∈[`], i.e. an element

(a1, . . . ,a`) ∈ R/I1 × · · · ×R/I` is embedded into R via

ΦB(a1, . . . ,a`) =
∑
i

ai · γi ·
∏
j 6=i

gj

We assume that each ai is represented in R and has been reduced with respect
to Ii = 〈gi〉 with Babai’s roundoff algorithms, i.e. ‖ai‖ ≤ n

2 ‖gi‖. The instance
generation procedure ensures that ‖gi‖ ≤ λ · n, thus we also get that ‖g‖ ≤
n
`
2

∏
i ‖gi‖ ≤ λ`n

3
2 `. Using this, we can bound the size of ΦB(a1, . . . ,an) by

‖ΦB(a1, . . . ,a`)‖ ≤ n(`+1)/2
∑
i

‖ai‖ · ‖γi‖ ·
∏
j 6=i

‖gj‖ ≤
`

4
λ2`nO(`) (2.1)

15 Here, we are using matrices to denote levels instead of sets in order to be consistent
with our construction later.

16 This condition is necessary to ensure correctness of the encoding procedure.
17 This technical condition is needed for the zero-test to work.
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Looking ahead, we have this particular choice of the γi as we will later need
these terms to be invertible in R/〈g〉 in one of our security proof. In this context,
notice that the ouput of ΦB is not reduced modulo I, as this would destroy this
particular structure of the γi.

Next, we sample the zero testing parameter pzt. Let zvzt ∈ R be computed by

zvzt =
∏
i,j z

vzt(i,j)
ij as a product in R, i.e. we have that ‖zvzt‖ ≤ nO(|vzt|) ·q|vzt|

and ‖1/zvzt‖ ≤ n
5
2 |vzt|/q|vzt|. We sample an element h? from a discrete gaussian

with parameter
√
q · ‖zvzt/g‖ ≤

√
q ·
√
n · ‖zvzt‖ · ‖1/g‖ over the fractional ideal

〈zvzt/g〉. The choice of this gaussian parameter ensures that we can efficiently
sample from this distribution via the GPV sampler (Theorem 2). We compute
h = h? · g/zvzt ∈ K and note that h ∈ R. If for any i ∈ {1, . . . , `} it holds
that h ∈ 〈gi〉 we reject h and resample it until h /∈ 〈gi〉 for all i. We then set
pzt = [h · zvzt · g−1]q. Notice that by Lemma 4 the size of h? is bounded by
O(
√
q · n · ‖zvzt‖ · ‖1/g‖). We can therefore bound the size of h in K by

‖h‖ ≤ n · ‖h?‖ · ‖g‖ · ‖1/zvzt‖
≤ O(

√
q · n · ‖g‖ · ‖1/g‖ · ‖zvzt‖ · ‖1/zvzt‖)

≤ O(
√
q · nO(1) · ‖zvzt‖ · ‖1/zvzt‖),

i.e. the length of h is dominated by the product ‖zvzt‖ · ‖1/zvzt‖. For the above
choice of zvzt we get ‖zvzt‖ · ‖1/zvzt‖ = nO(|vzt|) and therefore ‖h‖ = O(

√
q ·

nO(|vzt|)), which means that the length of h depends exponentially on |vzt|.
The instance-generation procedure outputs the public parameters params =
(n, q), the public zero-test parameters pzt and the secret parameters sparams =
(g, {zij}, B).

Encoding of (a1, . . . ,a`) at level v: u← enc(sparams,v, (a1, . . . ,a`)).
First embed (a1, . . . ,a`) into R by computing a = ΦB(a1, . . . ,a`). Next,

set zv =
∏
i,j z

vij
ij and notice that it holds ‖zv‖ ≤ nO(|v|) · q|v| and ‖1/zv‖ =

nO(|v|)/q|v|. Sample an element d? from a discrete gaussian with parameter
λ · ‖g/zv‖ ≤ λ ·

√
n · ‖g‖ · ‖1/zv‖ over the fractional ideal 〈g/zv〉 and set

d = d? · zv/g ∈ R. The choice of this gaussian parameter ensures that we
can efficiently sample from this distribution via the GPV sampler (Theorem 2).

Output the encoding
[
a+d·g
zv

]
q
∈ Rq.

Notice that the noise level of the encoding is bounded by

‖a+ d · g‖ ≤ ‖a‖+
√
n · ‖d‖ · ‖g‖.

We can bound ‖a‖ by nO(`) via Equation (2.1). We can bound the size of d? by
O(λ · n · ‖g‖ · ‖1/zv‖) via Lemma 4 (Appendix A.2) and therefore get a bound
on ‖d‖ by

‖d‖ ≤ n · ‖d?‖ · ‖zv‖ · ‖1/g‖
≤ O(n · λ · n · ‖g‖ · ‖1/zv‖ · ‖zv‖ · ‖1/g‖)
≤ O(nO(1) · ‖zv‖ · ‖1/zv‖),
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i.e. the size of d is dominated by ‖zv‖ · ‖1/zv‖. By the choice of zv we have
‖zv‖ · ‖1/zv‖ ≤ nO(|v|), which is exponential in |v|. Overall, we get that the
noise level is bounded by ‖a+ d · g‖ ≤ O(nO(`) + nO(|v|)).

Adding and multiplying encodings. It is easy to see that the encoding as
above is additively homomorphic over R/I ∼= R/I1 × · · · ×R/I` for a bounded
number of additions, in the sense that adding encodings at the same level yields
an encoding of the sum at the same level v. By the triangle inequality, the size
of the numerator of the sum can be bounded by the sum of the sizes of the
numerators of the summands. More precisely, let zv =

∏
i,j z

vij
ij . It holds that

∑
i

[
ai + dig

zv

]
q

=

[∑
i ai + (

∑
i di)g

zv

]
q

,

and it holds that ‖
∑
i ai + (

∑
i di)g‖ ≤

∑
i ‖ai + dig‖.

Moreover, since I is an ideal in R, multiplying two encodings at levels v1 and
v2 yields an encoding of the product at level v1 + v2, where the size of the nu-
merator grows as the product of the sizes of the numerators of the multiplicands.
Specifically[

a1 + d1g

zv1

]
q

·
[
a2 + d2g

zv2

]
q

=

[
a1 · a2 + (a1d2 + a2d1 + d1d2g)g

zv1+v2

]
q

,

and it holds that ‖a1 ·a2+(a1d2+a2d1+d1d2g)g‖ ≤
√
n·‖a1+d1g‖·‖a2+d2g‖.

Finally, notice that via the Chinese Remainder Theorem additions and mul-
tiplications in R/I correspond to component wise additions and multiplications
in the slots R/Ii.

Zero testing: isZero(params,pzt,u)
?
= 0/1. Recall that we are testing if an en-

coding u is 0 (mod I), which which is exactly the case if u is identically 0
in all slots. To test if a level vzt encoding u = [c/zvzt ]q is an encoding of 0
(mod I), we just multiply it in Rq by pzt and check whether the resulting ele-
ment w = [pzt · u]q is short (e.g., shorter than q3/4). Namely, we use the test

isZero(params,pzt,u) =

{
1 if ‖[pztu]q‖∞ < q3/4

0 otherwise
(2.2)

We will now argue correctness of our zero-testing procedure. This is analogous
to the GGH construction but needs a reproof as we are now working with a
polynomial size q (GGH used a super-polynomial sized q). Let u = [c/zvzt ] be
a correctly computed encoding at level vzt and assume that q is large enough
such that the noise level ‖c‖ of u is bounded by q1/8. First assume that u is an
encoding of zero at level vzt. Then it holds that c = r · g for an r ∈ R. We can
bound the size of r by

‖r‖ = ‖c · g−1‖ ≤
√
n · ‖c‖ · ‖g−1‖ ≤ q1/8 · nO(1).
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Thus it holds that

[pzt · u]q =

[
h · zvzt
g

· r · g
zvzt

]
q

= [h · r]q.

We can bound the size of h · r by

‖h · r‖ ≤
√
n · ‖h‖ · ‖r‖ ≤ √q · q1/8 · nO(|vzt|) ≤ q5/8 · nO(|vzt|).

Thus, if we choose q sufficiently large such that the above is upper bounded by
q3/4, then encodings of zero will pass the zero test.

Now assume that c is not an encoding of zero, i.e. it holds that c /∈ 〈g〉. The
zero test computes a value

w = [pzt · u]q = [h · c/g]q.

Assume that the zero test fails on w, i.e. it holds that ‖w‖ ≤ q3/4. Then it holds
that

‖w · g‖ ≤
√
n · ‖w‖ · ‖g‖ ≤ q3/4nO(1) < q/2

and

‖h·c‖ ≤
√
n·‖h‖·‖c‖ ≤ ‖h‖·B ·nO(1) ≤ √q ·nO(|vzt|) ·q1/8 ≤ q5/8nO(|vzt|) < q/2

hold. But this means that w · g = h · c in R, as this equality holds modulo q as
both sides are smaller than q/2. Since R is a unique factorization domain and
none of the irreducible factors of g divides h (by construction of h), it must
holds that c ∈ 〈g〉, which is a contradiction.

Thus, if we choose q sufficiently large depending on the nO(1) and nO(|vzt|)

factors above, we can conclude that the zero test has perfect correctness.

2.2 Discussion on Noise

Notice that the size of the blinding term h in the zero testing parameter pzt and
the noise level ‖a + d · g‖ depend exponentially on the size of the straddling
set vzt for the zero testing parameter and encoding level v respectively. As
discussed in the description of the instance generation and encoding procedures,
the critical terms that are responsible for this exponential dependency are the
products ‖zv‖ · ‖1/zv‖ for v = vzt when we sample h and levels v at which we
encode. Looking ahead, in Section 5 we will remove this exponential dependency
by providing a new sampling procedure for the zij terms that is custom-made
for the straddling sets used in our construction in Section 4. This new sampling
procedure will ensure that ‖zv‖ · ‖1/zv‖ ≤ nO(1) for all levels v at which we
encode and v = vzt. This will ensure that all encodings have polynomial noise
level and h has length

√
q ·nO(1). Moreover, the size of the CRT encoded values

a = ΦB(a1, . . . ,a`) also depends exponentially on the number of slots `, but this
will not pose a problem as our construction in Section 4 uses a constant number
of slots.
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As in the discussion of the zero test, the scheme is correct if we can guar-
antee that the noise level (i.e. the size of the numerator) never exceeds (say)
q1/8. Thus, we will always choose the parameter q at last as a function of all re-
maining parameters, including the circuit we want to evaluate. This will become
important in Section 5, where we can actually choose q to be polynomial in n
and the size of a (universal) circuit.

3 Bootstrapping iO for Special Purpose Circuits

In this section, we state the main results from [Lin16] relevant to our work. The
main result of [Lin16] is as follows:

Theorem 1 (Bootstrapping iO for constant degree circuits, [Lin16],
Theorem 5). Assume sub-exponential hardness of LWE, and the existence of
a sub-exponentially secure constant-degree PRG. There exist a family of circuit
classes of constant degree, such that, iO for that family with universal efficiency
can be bootstrapped into iO for P/poly.

Universal efficiency means the following: iO for constant degree circuits has
universal efficiency if the run-time of the obfuscator is independent of the degree
of the computation. More precisely, there is a universal polynomial p such that for
every circuit C of degree d, obfuscating C takes time p(1λ, |C|), for a sufficiently
large λ.

Moreover, in Lin’s iO construction, it does not suffice that the circuits of
seed class of a constant degree. In fact, the degree of multilinearity required
from multilinear maps grows with the type degree and input types of the special
circuits used for bootstrapping in the above theorem.

One of the main contributions of [Lin16] is to prove that the seed class of
circuits indeed have constant number of input types as well as constant type
degree. For the purpose of being self-contained, we define the input types and
type degree first.

Definition 1 (Type Function, [Lin16], Definition 18). Let Σ be any alpha-
bet where every symbol in Σ is represented as a binary string of length ` ∈ N. Let
U(?, ?) be an arithmetic circuit over domain Σc × {0, 1}m with some m, c ∈ N.
We say that U has c input types and assign every wire w ∈ U with a type
tw ∈ Nc+1 through the following recursively defined function tw = type (U , w).

– Base Case: If w is the ith input wire,
• If i ∈ [(k − 1)`+ 1, k`] for some k ∈ [c] (meaning that w describes xk),

assign type tw = 1k (a vector with one at position k and zeros everywhere
else).

• If i ∈ [c`+ 1, c`+m] (meaning that w describes the circuit C), assign
type tw = 1c+1.

– Recursion: If w is the output wire of gate g with input wires u, v of types
tu = type (U , u) and tv = type (U , v) respectively.
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• If g is an addition/subtraction gate and tu = tv, then assign type tw = tu.
• Otherwise (i.e., g is a multiplication gate or tu 6= tv), then assign tw =

tu + tv.

Definition 2 (Type Degree). We define the type degree of the following ob-
jects:

– The type degree of a wire w of U is tdeg (U , w) = |type (U , w)|1.
– The type degree of U is tdeg (U) = maxw∈U (tdeg (U , w)).

The fact that the seed class of [Lin16] has constant input types and constant
type degree is summarized in the following lemma.

Lemma 1 (The Special-Purpose Circuits Have Constant Type-Degree,

[Lin16], Lemma 5). The class of special purpose circuits {PT,nλ } has univer-
sal arithmetic circuits {Uλ} of constant cT,n input-types, constant type degree
tdegT,n, and size u(1λ, n, log T ), for a universal polynomial u independent of
T, n.

Given the above lemma, [Lin16] gives an iO construction in ideal graded
encoding model, where the oracle has degree d = O(tdeg + c), i.e. a constant.
In our work, we give an iO construction that improves upon the construction of
[Lin16] in two ways. We show that our construction is secure against all known
attacks including annihilation attacks [MSZ16] and has only a polynomial noise
growth as mentioned in Section 1.

4 Construction of the Obfuscator

In this section, we give our iO construction for the seed class of circuits from [Lin16]
that is secure in our weak multilinear map model. We build on the construction
from [Lin16] in composite-order ideal graded encoding model, and use new ideas
to achieve security in the weak multilinear map model and constant noise growth.

[Lin16] gives a construction for obfuscation which obfuscates circuits with
multi-bit outputs directly. The reason stated in [Lin16] is the following: Direct
conversion from multi-bit output circuit C to single-bit output circuit C̄ by tak-
ing an additional input for index of output wire as C̄(x, i) = C(x)i might not
preserve constant type degree of C (crucial for the construction). This is be-
cause the multiplexer circuit that chooses the ith output depending on input i
might not have constant type degree. In this work, we observe that obfuscating
one-bit output circuits suffices if we give out a different obfuscation per-output
bit of the circuit. Let Ci = C(x)i denote the circuit that that outputs the ith

bit of the circuit. We can easily construct Ci by removing some gates of C that
do not contribute to ith output wire. This transformation cannot increase the
type-degree. Hence, for simplicity, we only focus on obfuscating Lin’s seed class
of circuits for one bit output.
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Construction Overview. Let C be a circuit with universal arithmetic circuit
U(x, C) that has a single bit output. Recall that x ∈ Σc and each input wire
takes in a symbol from Σ as input. At a high level, in Lin’s [Lin16] construction,
for every input wire for possible symbol, encodings are given per symbol bit.
Also, encodings are given per description bit of the circuit C. Then given an
input x, an evaluator can simply pick the encodings corresponding to x, C, and
homomorphically evaluate U on encodings of x and C to obtain an encoding
of U(x, C), which can then be zero-tested. This basic idea is not secure and
[AB15, Lin16] need a composite ring with many primes to make it secure. The
actual computation happens in one of the sub-rings and computation on random
elements happen in other sub-rings to protect against the input-mixing attacks
as well as low-level zeroes. Moreover, they also need a carefully chosen straddling
sets (to encode the elements) to ensure input consistency.

In our case, the goal is to prove security against post-zeroizing computations
as well. For this, as already mentioned in the introduction, the main idea is the
following: We add one more sub-ring where a PRF is computed.18 The key idea is
that though the PRF is being computed in only one of the sub-rings, after zero-
testing it would yield a random ring element in all the sub-rings, in particular,
a random element in Rmod I, where I = 〈g〉 (c.f. Section 2 for definitions of R
and I). So we start by computing one-bit PRF on input x in one of the sub-rings.

To argue security, intuitively, we would need that the PRF output has suf-
ficient min-entropy. But since PRF has one-bit output similar to U , it does not
have enough min-entropy. So the final idea is to compute multiple PRFs in par-
allel and combine them to get a ring element. In doing this, we need to use an
unbounded addition gate and need to take care that it does not blow up the
type-degree of the computation. For this, we ensure that all PRF outputs before
being added are at the same type-degree or straddling set and also have the same
El-Gamal randomness of the encodings. Recall that [AB15, Lin16] use El-Gamal
encodings to encode elements and to be able to add two encodings without in-
creasing the type-degree, it is important that they have the same randomness r
term.

Finally, the straddling sets are matrices of polynomial size and as already
pointed out in Section 2.2 if we pick a zij corresponding to each entry in the
matrix, the noise of encodings would be too high. We explain in Section 5, how
we change the GGH instantiation of Section 2 to control the noise growth.

4.1 Setting and Parameters

Consider an arbitrary circuit class {Cλ} with universal circuits {Uλ}. The uni-
versal circuit U = Uλ has the following parameters:

– alphabet Σ with |Σ| symbols, each of length `, both |Σ| and ` being poly(λ),
– domain Σc × {0, 1}m, that is, every circuit C ∈ Cλ has input x = x1, · · · , xc

where xk ∈ Σ for every k ∈ [c] and can be described by an m-bit string,

18 We note that such a PRF can be computed using constant input types and constant
type degree. See more details in Appendix D.2.
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– degree of the universal circuit d = deg (U),

– an output wire o, denote by t = type (U , o) ∈ Nc+1 the type of the output
wire (see Definition 1). Note that t[k] denotes the type degree of xk in the
output wire.

Recall the ring R = Z[X]/(Xn + 1) defined in the composite-order GGH
graded encoding scheme (see Section 2.1). In our construction, we will use PRF
circuits with 1 bit output. Our construction uses n independent PRFs, where
n is the dimension of R. Let CPRFt : Σc → {0, 1} be a PRF for all t ∈ [n]. As
already shown in [Lin16], these circuits also satisfy the constraints for constant
input types and constant type degree as the seed-class (c.f. Lemma 14). More

precisely, CPRFt(x) is a circuit computing 1 bit for every t ∈ [n], and each circuit
can be described by an m-bit string.

Encoding Levels: We specify the levels used in the iO construction in Figure 1.
All levels are represented as a (|Σ|+ 1)× (c+ 2) matrix over N.

Notation: In the following construction, we abuse the notations 0/1 to refer to
both bits 0/1 and ring elements 0/1.

∀k ∈ [c] , s ∈ Σ, ∀k ∈ [c] , s ∈ Σ,

vks =



(k)
0 · · · 0 · · · 0 0
...

. . .
...

. . .
...

...
(s) 0 · · · 1 · · · 0 0

...
. . .

...
. . .

...
...

0 · · · 0 · · · 0 0
0 · · · 0 · · · 0 0


v̂ks =



(k)
0 · · · t[k] · · · 0 0
...

. . .
...

. . .
...

...
(s) 0 · · · 0 · · · 0 0

...
. . .

...
. . .

...
...

0 · · · t[k] · · · 0 0
0 · · · 1 · · · 0 0



v∗ =


0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

0 · · · 0 1

 vc+1 =


0 · · · 0 1 0
...

. . .
...

...
...

0 · · · 0 1 0

0 · · · 0 0 0

 ṽ =


0 · · · 0 0 0
...

. . .
...

...
...

0 · · · 0 0 0

0 · · · 0 1 0

 v̄ =


0 · · · 0 1
...

. . .
...

...
0 · · · 0 1

0 · · · 0 0



vzt =


t[1] · · · t[c] t[c+ 1] + 1 1

...
. . .

...
...

...
t[1] · · · t[c] t[c+ 1] + 1 1

1 · · · 1 1 D

 where D = d+ c+ 2

Figure 1. Levels used in the obfuscation.
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4.2 Our Obfuscator

Input: Security parameter λ, program description C ∈ Cλ.
Output: Obfuscated program with the same functionality as C.
Algorithm: Our obfuscator is as follows:

1. Instantiate a (c+ 3)-composite graded encoding scheme (params, sparams,pzt)←
InstGen(1λ, 1c+3,vzt), and receive a ring R ∼= R1 × R2 × · · · × Rc+3. Note
that Ri ∼= Zpi for some prime pi for all i ∈ [c + 3]. Hence, given sparams it
is easy to sample a uniform element in any of the sub-rings.

2. Compute encoding Z∗ = [w∗]v∗ for w∗ = (1, 1, 1, ρ∗1, · · · , ρ∗c) where ρ∗k
$←−

Rk+3 for ∀k ∈ [c].

3. Encode the input symbol. For ∀k ∈ [c], encode the k-th input symbol:

– For every symbol s ∈ Σ, sample rks
$←− R and compute Rks =

[
rks
]
vks

.

– For ∀j ∈ [`], sample ykj
$←− R1.

– For every symbol s ∈ Σ, and every j-th bit sj , compute encoding
Zks,j =

[
rks · wks,j

]
vks+v∗

for wks,j =
(
ykj , sj , sj , ρ

k
s,j,1, · · · , ρks,j,c

)
where(

ρks,j,1, · · · , ρks,j,c
) $←− R4 × · · · × Rc+3.

4. Encode the circuit and PRFs. Compute encoding Rc+1 =
[
rc+1

]
vc+1

where rc+1 $←− R. For ∀t ∈ [n], generate the following encodings for program

description: We will encode the circuit C in R2 and circuit CPRFt in R3.
(a) For ∀j ∈ [m], compute encoding Zc+1

t,j =
[
rc+1 · wc+1

t,j

]
vc+1+v∗

for wc+1
t,j =(

yc+1
t,j , Cj , CPRF

t

j , ρc+1
t,j,1, · · · , ρ

c+1
t,j,c

)
where yc+1

t,j
$←− R1 and

(
ρc+1
t,j,1, · · · , ρ

c+1
t,j,c

)
$←− R4 × · · · × Rc+3.

(b) Compute encoding Zc+1
t,m+1 =

[
rc+1 · wc+1

t,m+1

]
vc+1+v∗

for wc+1
t,m+1 =

(
yc+1
t,m+1, 1, e

t, ρc+1
t,m+1,1, · · · , ρ

c+1
t,m+1,c

)
where et is an element

in the ring R of the composite order GGH graded encoding scheme (see

Section 2.1),19 yc+1
t,m+1

$←− R1 and
(
ρc+1
t,m+1,1, · · · , ρ

c+1
t,m+1,c

) $←− R4 × · · · ×
Rc+3. During computation, these encodings will be used to combine the
n one-bit PRF computations into a ring element.

5. Encode c elements for the purpose of canceling ρ in the last c slots: For

∀k ∈ [c] sample ŵk =
(
ŷk, β̂k, α̂k, ρ̂k1 , · · · , ρ̂kc

)
where ŷk, β̂k, α̂k, ρ̂k1 , · · · , ρkc

are all uniformly random except that ρ̂kk = 0 and generate the following
encodings:

For all s ∈ Σ, sample r̂ks
$←− R and compute encodings R̂ks =

[
r̂ks
]
v̂ks

and

Ẑks =
[
r̂ks · ŵk

]
v̂ks+v∗

.

19 The values of et will be specified later in the proof of Theorem 4 (Appendix D.5),
which is crucial for proving post zeroizing security, but does not affect the correctness
of the obfuscator.
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For the following: denote ŷ =
∏c
k=1 ŷ

k, β̂ =
∏c
k=1 β̂

k, α̂ =
∏c
k=1 α̂

k, ŵ =∏c
k=1 ŵ

k =
(
ŷ, β̂, α̂, 0, · · · , 0

)
.

6. Encode an element to cancel out the PRF computation in the 3rd slot:

Compute encodings R̃ = [r̃]ṽ and Z̃ = [r̃ · w̃]ṽ+v∗ for r̃
$←− R and w̃ =(

ỹ, β̃, 0, ρ̃1, · · · , ρ̃c
)

where ỹ, β̃, ρ̃1, · · · , ρ̃c are all uniformly random in re-

spective sub-rings.
7. Encode an element for the purpose of authentication of computation: Com-

pute encodings R̄ = [r̄]v̄ and Z̄ = [r̄ · w̄]v̄+Dv∗ , where D = d + c + 2, for

r̄
$←− R and w̄ = ŵ · w̃ · (ȳ, n, 0, 0, · · · , 0), where ȳ =

∑n
t=1

(
ȳt · yc+1

t,m+1

)
for

ȳt =

U
({
y1
j

}
j∈[`]

, · · · ,
{
ycj
}
j∈[`]

,
{
yc+1
t,j

}
j∈[m]

)
.

8. The obfuscation. The obfuscated program consists of the following:

– The evaluation parameters params,pzt.
– The encoding Z∗.
– For ∀k ∈ [c],∀s ∈ Σ, the encodings Rks , R̂

k
s , Ẑ

k
s , and for ∀j ∈ [`], Zks,j .

– Rc+1, and for ∀t ∈ [n],∀j ∈ [m+ 1], Zc+1
t,j .

– The encodings R̃, Z̃, R̄, Z̄.

Efficiency: It is easy to see that the number of encodings in the obfuscated
program is bounded by poly(1λ, S(λ)), where S(λ) is the size of Uλ. The size of
each encoding and `1-norm of vzt are also bounded by poly(1λ, S(λ)). It is easy
to check that all poly above are fixed universal polynomials. Therefore the size of
obfuscation is bounded by p(1λ, S(λ)) for a universal polynomial, which satisfies
the universal efficiency requirement in Section 3.

4.3 Evaluating an Obfuscated Program and Correctness

To evaluate the program on an input x = x1, . . . , xc ∈ Σc, we will use following
encodings: {(

Rkxk , Z
k
xk,j

)}
k∈[c],j∈[`]

,
{(
Rc+1, Zc+1

t,j

)}
t∈[n],j∈[m+1]

,{(
R̂kxk , Ẑ

k
xk

)}
k∈[c]

,
(
R̃, Z̃

)
,
(
R̄, Z̄

)
, Z∗.

We in-line the analysis of correctness in the description of the evaluation below.

1. For every t ∈ [n], do the following:

(a) Consider the encodings
(
Rkxk , Z

k
xk,j

)
for k ∈ [c], j ∈ [`], and

(
Rc+1, Zc+1

t,j

)
for j ∈ [m]. Apply the circuit U on these pairs of encodings. More specif-
ically, we recursively associate every wire α in U with a pair of encodings(
Rα = [rα]vα , Zα = [rα · wα]vα+dαv∗

)
in El-Gamal form as follows:
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Input: Two pairs of encodings
(
Rα = [rα]vα , Zα = [rα · wα]vα+dαv∗

)
,(

Rβ = [rβ ]vβ , Zβ = [rβ · wβ ]vβ+dβv∗
)

, encoding Z∗ = [w∗]v∗ , and an oper-

ator op,

Output: A pair of encodings
(
Rσ = [rσ]vσ , Zσ = [rσ · wσ]vσ+dσv∗

)
Algorithm:

i. Permute the operands to ensure that δ = dβ − dα ≥ 0.
ii. Consider the operator op:

– Multiplication: If op = ×, then Rσ = Rα ×Rβ and Zσ = Zα × Zβ .
(rσ = rα · rβ , vσ = vα + vβ , and dσ = dα + dβ .)

– Addition/Subtraction: If op = +/− and vα 6= vβ , then Rσ = Rα×Rβ
and Zσ = Zα ×Rβ × (Z∗)δ + /− Zβ ×Rα.
(rσ = rα · rβ , vσ = vα + vβ , and dσ = dβ .)

– Constrained Addition/Subtraction: If op = +/− and vα = vβ = v
(by induction it is guaranteed that rα = rβ = r), then Rσ = Rα and
Zσ = Zα × (Z∗)δ + /− Zβ .
(rσ = r, vσ = v, and dσ = dβ .)

Figure 2. Computation over El-Gamal encodings

– Base Case: For every k ∈ [c] and every j ∈ [`], the jth input wire

of xk is associated with pair
(
Rkxk , Z

k
xk,j

)
. For every j ∈ [m], the jth

program bit is associated with
(
Rc+1, Zc+1

t,j

)
.

– Recursion: For every gate g ∈ U with input wires α, β and output
wire σ, apply the computation as described in Figure 2, over the
encodings Z∗, (Rα, Zα) , (Rβ , Zβ) and the operator of g.

A pair of encodings for the output wire o is obtained:(
RU = [rU ]vU , Zt,U = [rU · wt,U ]vU+dv∗

)
,

where (let 1 denote an all-one vector, 0 an all-zero vector, and let 1i
denote a vector with one at position i and zeros everywhere else)

vU =

[
t[1] · 1x1 · · · t[c] · 1xc t[c+ 1] · 1 0

0 · · · 0 0 0

]
,

wt,U =
(
U
({
y1
j

}
j∈[`]

, · · · ,
{
ycj
}
j∈[`]

,
{
yc+1
t,j

}
j∈[m]

)
,U (x, C) ,U

(
x, CPRF

t
)
,

?, · · · , ?)

=
(
ȳt, C(x), CPRF

t

(x), ?, · · · , ?
)
.

In the above, the values denoted by ? do not matter for correctness, and
hence are not mentioned explicitly.
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(b) Take the product of (RU , Zt,U ) with
(
Rc+1, Zc+1

t,m+1

)
and obtain a pair of

encodings (computation done as in Figure 2):(
R̈U = [r̈U ]v̈U , Z̈t,U = [r̈U · ẅt,U ]v̈U+(d+1)v∗

)
, where

v̈U =

[
t[1] · 1x1 · · · t[c] · 1xc (t[c+ 1] + 1) · 1 0

0 · · · 0 0 0

]
,

ẅt,U = wt,U · wc+1
t,m+1 =

(
ȳt · yc+1

t,m+1, C(x), CPRF
t

(x) · et, ?, · · · , ?
)
.

Remark 1. Note that our construction ensures that
(
R̈U , Z̈t,U

)
has the same

level and same r̈U for every t ∈ [n]. This is crucial to do the next step
of addition of n terms using constrained addition. This ensures that the
addition does not grow the levels of multilinearity needed.

2. Take the sum of
{(
R̈U , Z̈t,U

)}
t∈[n]

and obtain a pair of encodings:

(
R̈U = [r̈U ]v̈U , Z̈U = [r̈U · ẅU ]v̈U+(d+1)v∗

)
, where

ẅU =

n∑
t=1

ẅt,U =
(
ȳ, n · C(x), CPRF(x), ?, · · · , ?

)
,

where CPRF(x) =
∑
t∈[n] e

tCPRFt(x).

3. Take the product of
(
R̈U , Z̈U

)
with the product of

{(
R̂kxk , Ẑ

k
xk

)}
k∈[c]

and

obtain a pair:(
R̂U = [r̂U ]v̂U , ẐU = [r̂U · ŵU ]v̂U+(d+1+c)v∗

)
, where

v̂U =

[
t[1] · 1 · · · t[c] · 1 (t[c+ 1] + 1) · 1 0

1 · · · 1 0 0

]
,

ŵU = ŵ · ẅU =
(
ŷȳ, β̂n · C(x), α̂ · CPRF(x), 0, · · · , 0

)
.

4. Take the product of
(
R̂U , ẐU

)
with

(
R̃, Z̃

)
and obtain a pair:

(
R̃U = [r̃U ]ṽU , Z̃U = [r̃U · w̃U ]ṽU+Dv∗

)
, where

ṽU =

[
t[1] · 1 · · · t[c] · 1 (t[c+ 1] + 1) · 1 0

1 · · · 1 1 0

]
,

w̃U = w̃ · ŵU =
(
ỹŷȳ, β̃β̂n · C(x), 0, 0, · · · , 0

)
.
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5. Subtract the pair
(
R̄, Z̄

)
from

(
R̃U , Z̃U

)
and obtain the pair:(

R̄U = [r̄U ]v̄U , Z̄U = [r̄U · w̄U ]v̄U+Dv∗

)
, where

v̄U =

[
t[1] · 1 · · · t[c] · 1 (t[c+ 1] + 1) · 1 1

1 · · · 1 1 0

]
,

w̄U =
(

0, β̃β̂n · (C(x)− 1) , 0, 0, · · · , 0
)
.

6. Finally, apply zero testing on Z̄U . If isZero(params,pzt, Z̄U ) = 1 then output
1, otherwise output 0.
As analyzed above, in an honest evaluation, Z̄U is an encoding of 0 under vzt
iff C(x) = 1 with high probability over choice of β̃, β̂. Hence the correctness
of the evaluation procedure follows.

Security. We prove security of our obfuscator in the weak multilinear map
model in Appendix D. We describe the weak multilinear map model formally in
Appendix C. For a detailed explanation of how this model captures all known
vulnerabilities of GGH multilinear maps, see [MSZ16].

In Section 5, we describe our modification of GGH instantiation for our ob-
fuscation scheme that achieves the desired noise growth and hence, a poly(λ)
modulus q.

5 Modifying GGH to Obtain Polynomial Modulus q

In this section, we will provide two possible modifications to the sampling proce-
dure of GGH scheme described in Section 2. We can then obtain obfuscation with
low noise by instantiating our scheme (in Section 4) with either of these modified
GGH multilinear maps. The modifications are specific to our obfuscation scheme
and may not work in general.

Obtaining polynomial sized modulus from polynomial noise. First, we
show that once we have ensured that it holds for all fresh encodings as well as
zero-testing parameter that the noise is at most nO(1), we can choose the mod-
ulus q as a fixed polynomial depending on all other parameters. Recall that the
multiplicative depth of the universal circuit that is used by the obfuscator in
Section 4 is a fixed constant and the number of additions is a fixed polynomial.
Thus, we can conclude that also the noise levels of encodings of intermediate
values is also at most nO(1). Finally, as the size of the term h in the zero-testing
parameter pzt = h · zvzt/g is bounded by O(

√
q · nO(1)), applying the zero-test

to top-level encodings of zero yields elements of size at most
√
q · nO(1). It is

therefore sufficient to choose q as a sufficiently large polynomial (depending on
all other parameters) to ensure correctness of the zero-test.

Reducing the noise of encodings. Before, we describe the above modifica-
tions in detail, we discuss what we want to achieve more formally. Recall that
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in sampling procedure described in Section 2, the noise term of the fresh en-
coding at level v is O(nO(1)‖zv‖ · ‖1/zv‖). To achieve a construction where
multilinear maps only need to support poly(λ) maximal noise, we need to ensure
that the noise in all fresh encodings as well zero-testing parameter is at most
poly(λ). That is, for a encoding level v, ‖zv‖ · ‖1/zv‖ = O(nO(1)). However, as
discussed in Section 2.2, in general the noise growth depends exponentially on
|v| =

∑
i,j vij . While there seems little hope to improve this in the general case,

the straddling sets used in the construction in Section 4 are of a very specific
form. In particular, there is only a small number of levels at which elements are
encoded, c.f. to Figure 1. Both of our approaches to obtain low noise would use
this fact crucially.

Next, discuss the two possible modifications separately that ensure that for
all levels v at which we encode and also for v = vzt that ‖zv‖ · ‖1/zv‖ ≤ nO(1).

The Conservative Option. Here, we observe that if all components zij are chosen
uniformly at random in R×q , then each zv ∈ R×q from the table in Figure 1 is also
distributed uniformly at random. To see this, not that in every level v in Figure
1, one of the entries vij of v is 1, including the zero-testing level vzt. This means
that zv is of the form zij · z?, where z? is independent of zij . Therefore zv is
uniform in R×q . We can conclude by Lemma 8 that ‖1/zv‖ ≤ n2/q, except with
probability 2/n. Also, it is easy to see that by uniformity condition ‖z‖ ≤

√
nq.

Next, we apply a union bound over all the levels at which fresh encodings are
generated in obfuscation scheme. The number of levels L at which we need to
encode is upper bounded by O(c · |Σ|), both c and Σ depend only on the circuit
we obfuscate, but not on the degree n of the ring R (or to put it differently, we
choose the ring R at last). Now a union bound yields that ‖zv‖ · ‖1/zv‖ ≤ nO(1)

holds for all levels v at which we encode, except with probability 2L/n. This
means that if we guarantee that n is bigger than (say) 4L, then the above holds
with probability at least 1/2. This probability can in fact be made a constant
arbitrarily close to 1. This means we need to reject our (entire) choices of the
zij in expectation 2 times until we found a suitable choice. From a security
standpoint, this means that the good choices of the zij are very dense in the space
of all possible choices, meaning that we do not weaken the multilinear maps. An
obvious drawback of this option is the rather large choice of n, which depends
on the size of the circuit being obfuscated, though it is still just polynomial in
the security parameter λ.

The Aggressive option. We will now discuss a more aggressive sampling proce-
dure that avoids the union bound above, thereby avoiding the dependence of n
on the number of levels L at which we encode.

In this approach, we partition the levels into independent and dependent
levels. In a nutshell, all levels vks , v? and ṽ (these are the matrices with only a
single 1 component) will be considered independent whereas the levels v̂ks , vc+1,
v̄ and vzt will be considered dependent. Sampling the zv for the independent
levels v is easy, because they only rely zij . Also, notice that for the dependent
levels vc+1, ṽ and v̄ we can sample the zvc+1 , zṽ and zv̄ directly, since their
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components are never used individually. Dealing with the dependent levels v̂ks
and vzt will require more work. First consider the a new dependent level v̂k

given by

v̂k =


(k)

0 · · · t[k] · · · 0 0
...

. . .
...

. . .
...

...
0 · · · t[k] · · · 0 0
0 · · · 1 · · · 0 0


i.e. the k-th column of v̂k is t[k] everywhere but in the last component. We can
express v̂ks as v̂ks = v̂k − t[k] · vks (again c.f. to Figure 1) and therefore

zv̂ks = zv̂k · ([z−1
vks

]q)
t[k],

where we compute the inversion in Rq but the product in R. If we ensure that
both 1/zv̂k and 1/[z−1

vks
]q are short in K, say at most n2/q then we can conclude

that 1/zv̂ks is also short in K as

‖1/zv̂ks ‖ ≤ n
t[k]+1

2 · ‖1/zv̂k‖ · ‖1/[z−1
vks

]q‖t[k] ≤ nO(1)/qt[k]+1

where we recall that t[k] is a constant. This yields that ‖zv̂ks ‖ · ‖1/zv̂ks ‖ ≤ n
O(1)

as desired.
Finally, notice that we can sample zv̂k directly without hurting consistency,

as the zs′k term corresponding to the last row of the k-th column is never used
individually. In other words, we can first sample zv̂k and then set

zs′k = zv̂k ·

(∏
s∈Σ

z
t[k]

vks

)−1

.

Notice that we don’t have any guarantee that 1/zs′k is short in K, but that does
not pose a problem as zs′k is never used individually by the encoding procedure.
Finally, notice that we can express zvzt as

zvzt = zv̂1 . . . zv̂c · zt[c+1]+1
vc+1 · zṽ · zv̄ · zDv? .

We can conclude that ‖1/zvzt‖ ≤ nO(c+t[c+1]+D)/qc+t[c+1]+D+3, and therefore
‖zvzt‖ · ‖1/zvzt‖ ≤ nO(1). This is because c, t[c+ 1], D are all constants.

Thus we modify our instance generation algorithm as follows. Instead of
sampling all zij individually, we sample the following denominators directly,
under the constraint that the size of their inverse in K is bounded by n2/q: zv̂k
for k ∈ [c], zvks for s ∈ Σ and k ∈ [c], zvc+1 , zṽ, zv̄ and zv? . We additionally

impose the constraint that 1/[z−1
vks

]q is small in K, where [z−1
vks

]q is the inverse of

zvks in Rq. Imposing the two constraints ‖1/zvks ‖ ≤ n
2/q and ‖1/[z−1

vks
]q‖ ≤ n2/q

does not change the rejection probability significantly: If z is uniform in the
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unit group R×q , then z−1 is also uniform in R×q . For a uniform z in R×q it holds
that ‖1/z‖ ≤ n2/q, except with probability 2/n (Lemma 8). Consequently, by
a union bound we have that both ‖1/z‖ ≤ n2/q and ‖1/[z−1]q‖ ≤ n2/q, except
with probability 4/n. Concluding, we have ensured that it holds for all levels v
at which we encode and also for v = vzt that ‖zv‖ · ‖1/zv‖ ≤ nO(1).

6 Discussion of Modifications and Cryptanalytical
Perspective

In this section, we discuss our modifications of the GGH multilinear maps from
a cryptanalytic standpoint. Specifically, we make the following two changes to
the GGH multilinear maps constructions:

1. We use generators g of composite structure rather than a prime. Further-
more, we choose specific Lagrange Coefficients.

2. We make a modification to the sampling procedure of the asymmetric mul-
tilinear maps (namely, the sampling of the denominators zij).

6.1 Already Known Attacks on GGH

We start by considering the already known attacks on GGH and how they are rel-
evant to our construction. In short, the basic cryptanalytic survey of [GGH13a]
still holds in our setting. Furthermore, our understanding of the attacks on
GGH is improved by the zeroizing attacks [GGH13a, CHL+15, CGH+15, HJ16,
CLLT16] and the annihilation attacks [MSZ16].

The most potent attacks that GGH found against their construction are the
averaging attacks [GS02, NR06, DN12]. To avoid these attacks, they suggested
special sampling procedures (inspired by the GPV sampling procedure). We use
the same sampling procedures in our construction. Therefore, we expect that
our construction will resist averaging attacks.

No obfuscation construction provides any encoding of zero below the highest
level. Therefore, zeroizing attacks do not apply to our constructions. Note that
all obfuscations constructions in the literature use this guideline.

Furthermore, our construction is hardened against annihilation attacks via
self-fortification. Therefore, it also resists the annihilation attacks analogous to
the obfuscation construction of Garg et al. [GMM+16].

Two very recent works [ABD16, KF16] showed that GGH multilinear maps
can be attacked for rather broad choices of cyclotomic rings if the modulus q
is super-polynomially larger than the length of the error term in the encodings.
Obfuscation constructions in the literature can be made to resist these attacks
by choosing the dimension of the lattice carefully. Our instantiation is resilient
against these attacks as we choose our modulus q to be only polynomially larger
than the error terms in the encodings. This is an added bonus of our construction.

25



6.2 Composite-Order GGH Multilinear Maps

Recall that we choose the ideal generator g as a composite (which is a product
of several large primes) instead of as a prime element in R to provide several
independent slots in the plaintext space, which are required for the [AB15] circuit
obfuscation technique. Note that in our construction the generator g itself (or,
even a small multiple of it) is never exposed, as it immediately compromise
security, even in the case of a prime g.

Further, choosing g as a composite merely constitutes a change of the dis-
tribution from which g is chosen. While [GGH13a] propose to choose g from a
discrete gaussian distribution, there is no supporting evidence such as a worst-
to-average case reduction that this choice is favorable over other distributions.
In fact, there are no known lattice attacks that can distinguish encodings with
plaintext space generated by composite generators from encodings with plaintext
space generated by prime generator, or attacks that utilize the specific distribu-
tion from which g is chosen. Generally, lattice attacks (e.g. [LLL82, SE93, GS02,
GNR10]) rely only on geometric properties rather than distributional properties
and solve worst case (rather than average case problems).20

Analogous to GGH, one new line of attacks that we investigate for our scheme
is when the attacker can obtain a rather small elements in 〈gi〉 for some i, where
g =

∏
i gi. This would break our scheme. However, we do not know any methods

for obtaining such small elements in our construction.

Next, we note that our scheme (like all other obfuscation schemes in the
literature) does not hide relatively large (specifically, of size

√
q) elements in

〈h〉. Such elements can be obtained by performing zero-testing operation at top
level encodings of zero. However, such large elements in 〈h〉, or elements of this
size in any 〈gi〉 are not useful for any of the attacks. In light of the above
discussion, the most potent new attacks could arise if an adversary can obtain
elements in one of the ideals 〈gi〉 depending on the circuit that is obfuscated.
Such an attack would be a generalization of the annihilation attacks by Miles et
al [MSZ16].

To avoid this line of attacks, we define our weak multilinear map model to
be a strengthening of the one considered by Miles et al. [MSZ16]. In our model,
we declare an attack successful if the attacker can obtain any (small or large)
element in any of the ideals 〈gi〉.

Recall that self-fortification in our composite order setting works by comput-
ing a PRF in a separate slot. Due to our specific choice of the Lagrange basis
(γi)i (see Section 2.1), we can show that computing a PRF in a single slot is
sufficient to randomize the output of the zero test with well spread entropy (see

20 To the best of our knowledge, the only attacks against lattice based schemes using
specific distributions are attacks against signature schemes [NR06, DN12], where the
shape of distribution of signatures is learned. However, in this case the distribution
is exposed to the adversary, whereas in our case (as well as in the case of all lattice
based encryption schemes) the adversary does not directly obtain samples from the
error distribution.
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Thm 4). However, the specific choice of Lagrange Coefficients affects only the el-
ements that are encoded and not the randomness chosen to encode them. Based
on this argument, we do not expect the choice of the Lagrange Coefficients to
affect the security of our construction.

To conclude, from our current understanding, any distributions which is both
short and has high entropy is a legitimate choice for the distribution of g. Fur-
thermore, there is currently no reason to believe that the composite structure
provides any handle in either breaking the underlying multilinear maps or dis-
tinguishing obfuscated circuits.

6.3 Modified Asymmetric Multilinear Maps

Recall that the safeguard of GGH against averaging attacks requires sampling
of noise terms from fractional ideals. Hence, to achieve low noise, it is necessary
that for every level v at which we encode and the zero-testing level that ‖zv‖ ·
‖1/zv‖ ≤ nO(1). In the previous section, we provided two techniques for sampling
for zij that ensured this condition.

The conservative option, choosing ring R with sufficiently large degree n,
ensures that this condition is met with probability close to 1 if the zij are chosen
uniformly at random. Thus, we do not have to change the sampling procedure of
the asymmetric GGH multilinear maps; the condition we need holds with high
probability.

The more aggressive option, choosing he degree of the ring R independent
of the size of the circuit we obfuscate, achieves better efficiency at the expense
of enforcing a correlation between the denominators zij . However, we note that
there is no known distinguishing attack that can exploit correlations among the
zij ’s directly. Finally, the distribution of the zij only depends on the straddling
set, not the circuit and it is the same for two functionally equivalent circuits.
The indirect attacks could exploit a variant of the NTRU scheme that uses
these correlated zij values. However, we do not know any attacks in this setting.
Note that GGH multilinear maps already use zij that are correlated (though
more weakly than our choice) and no attacks are known to benefit from those
correlations either.
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A Preliminaries

Notations. The natural security parameter throughout this paper is λ, and all
other quantities are implicitly assumed to be functions of λ. We use standard
big-O notation to classify the growth of functions, and say that f(λ) = Õ(g(λ))
if f(λ) = O(g(λ) · logc λ) for some fixed constant c. We let poly(λ) denote an
unspecified function f(λ) = O(λc) for some constant c. A negligible function,
denoted generically by negl(λ), is an f(λ) such that f(λ) = o(λ−c) for every
fixed constant c. We say that a function is overwhelming if it is 1− negl(λ).

The statistical distance between two distributions X and Y over a domain D
is defined to be 1

2

∑
d∈D |Pr[X = d]−Pr[Y = d]|. We say that two ensembles of

distributions {Xλ} and {Yλ} are statistically indistinguishable if for every λ the
statistical distance between Xλ and Yλ is negligible in λ.

Two ensembles of distributions {Xλ} and {Yλ} are computationally indis-
tinguishable if for every probabilistic poly-time non-uniform (in λ) machine A,
|Pr[A(1λ, Xλ) = 1] − Pr[A(1λ, Yλ) = 1]| is negligible in λ. The definition is
extended to non-uniform families of poly-sized circuits in the standard way.

Lemma 2 (Schwarz-Zippel Lemma). Let F be a finite field and let p ∈
F[x1, . . . , xn] be a multivariate polynomial of degree at most d. Further let X1, . . . , Xn

be independently distributed random variables on F such that H∞(Xi) ≥ k for
all i. Then it holds that

Pr[p(X1, . . . , Xn) = 0] ≤ d

2k
,

where the probability runs over the random choices of X1, . . . , Xn.

A.1 Lattices

We denote set of complex number by C, real numbers by R, the rationals by Q
and the integers by Z. For a positive integer n, [n] denotes the set {1, . . . , n}.
By convention, vectors are assumed to be in column form and are written using
bold lower-case letters, e.g. x. The ith component of x will be denoted by xi.
We will use xT to denotes the transpose of x. For a vector x in Rn or Cn and

p ∈ [1,∞], we define the `p norm as ‖x‖p =
(∑

i∈[n] |xi|p
)1/p

where p <∞, and

‖x‖∞ = maxi∈[n] |xi| where p =∞. Whenever p is not specified, ‖x‖ is assumed
to represent the `2 norm (also referred to as the Euclidean norm).

Matrices are written as bold capital letters, e.g.X, and the ith column vector
of a matrix X is denoted xi. Finally we will denote the transpose and the inverse
(if it exists) of a matrix X with XT and X−1 respectively.

A lattice Λ is an additive discrete sub-group of Rn, i.e., it is a subset Λ ⊂ Rn
satisfying the following properties:

(subgroup) Λ is closed under addition and subtraction,
(discrete) there is a real ε > 0 such that any two distinct lattice points x 6=

y ∈ Λ are at distance at least ‖x− y‖ ≥ ε.

31



Let B = {b1, . . . , bk} ⊂ Rn consist of k linearly independent vectors in Rn. The
lattice generated by the B is the set

L(B) = {Bz =

k∑
i=1

zibi : z ∈ Zk},

of all the integer linear combinations of the columns ofB. The matrixB is called
a basis for the lattice L(B). The integers n and k are called the dimension and
rank of the lattice. If n = k then L(B) is called a full-rank lattice. We will only
be concerned with full-rank lattices, hence unless otherwise mentioned we will
assume that the lattice considered is full-rank.

For lattices Λ′ ⊆ Λ, the quotient group Λ/Λ′ (also written as ΛmodΛ′) is
well-defined as the additive group of distinct cosets v + Λ′ for v ∈ Λ, with
addition of cosets defined in the usual way.

A.2 Gaussians on Lattices

Review of Gaussian measure over lattices presented here follows the development
by prior works [Reg04, AR05, MR04, GPV08, AGHS12]. For any real s > 0,
define the (spherical) Gaussian function ρs : Rn → (0, 1] with21 parameter s as:

∀x ∈ Rn, ρs(x) = exp(−π〈x,x〉/s2) = exp(−π‖x‖2/s2).

For any real s > 0, and n-dimensional lattice Λ, define the (spherical) discrete
Gaussian distribution over Λ as:

∀x ∈ Λ,DΛ,s(x) =
ρs(x)

ρs(Λ)
.

Gentry, Peikert and Vaikuntanathan provide an efficient algorithm to sample
from a discrete gaussian given a good basis.

Theorem 2 ([GPV08] Theorem 3.3). There exists an efficient algorithm
SampleD, which given a basis ‖B‖ of an n-dimensional lattice Λ and a parameter
s ≥ ‖B‖ ·ω(

√
log(n)) efficiently samples a distribution within negligible distance

of DΛ,s

Smoothing Parameter. Micciancio and Regev [MR04] introduced a lattice quan-
tity called the smoothing parameter, and related it other lattice parameters.

Definition 3 (Smoothing Parameter, [MR04, Definition 3.1]). For an n-
dimensional lattice Λ, and positive real ε > 0, we define its smoothing parameter
denoted ηε(Λ), to be the smallest s such that ρ1/s(Λ

∗ \ {0}) ≤ ε.

21 The Gaussian function can be defined more generally as being centered around a
specific vector c instead of 0 as done here. The simpler definition considered here
suffices for our purposes.
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Intuitively, for a small enough ε, the number ηε(Λ) is sufficiently larger than a
fundamental parallelepiped of Λ so that sampling from the corresponding Gaus-
sian “wipes out the internal structure” of Λ. The following Lemma 3 formally
provide this claim. Finally Lemma 4 provides bounds on the length of a vector
sampled from a Gaussian.

Lemma 3 ([GPV08, Corollary 2.8]). Let Λ,Λ′ be n-dimensional lattices,
with Λ′ ⊆ Λ. Then for any ε ∈ (0, 1

2 ), any s ≥ ηε(Λ
′), the distribution of

(DΛ,s (mod Λ′)) is within a statistical distance at most 2ε of uniform over (Λ
(mod Λ′)).

Lemma 4 ([MR04, Lemma 4.4] and [BF11, Proposition 4.7]). For any n-
dimensional lattice Λ, and s ≥ ηε(Λ) for some negligible ε, then for any constant
δ > 0 we have

Pr
x←DΛ,s

[
(1− δ)s

√
n

2π
≤ ‖x‖ ≤ (1 + δ)s

√
n

2π

]
≥ 1− negl(n).

Invertibility of ring elements. Let R denote the 2nth cyclotomic ring and let Rq
denote R/qR for a prime q. We note that Rq is also a ring and not all elements
in it are invertible. Let R×q denote the set of elements in Rq that are invertible.
We next provide a lemma of Stehlé and Steinfeld that points out that a (large
enough) random element is Rq is also in R×q with large probability.

Lemma 5 ([SS11, Lemma 4.1]). Let n ≥ 8 be a power of 2 such that Xn + 1
splits into n linear factors modulo q ≥ 5. Let σ ≥

√
n ln(2n(1 + 1/δ))/π · q1/n,

for an arbitrary δ ∈ (0, 1/2). Then

Pr
f←DZn,σ

[f (mod q) /∈ R×q ] ≤ n(1/q + 2δ).

We will use the following simple lemma to lower bound the length of the
shortest vector in an ideal lattice via its norm.

Lemma 6. Let I ⊂ R be an ideal lattice. Then it holds that λ1(I) ≥
√
n ·

N(I)1/n.

Babai’s Roundoff Algorithm We will need to compute short representatives of
residual classes xmod I ∈ R/I for ideals I = 〈g〉. A simple algorithm for this
task is Babai’s roundoff algorithm. Given an x ∈ R, we can find a small repre-
sentative x̂ of xmod I by computing

x̂ = x− bx · g−1e · g,

where the b·e operation round each component to the nearest integer. Clearly,
it holds that x̂ ≡ xmod I and

‖x̂‖ = ‖x− bx · g−1e · g‖ = ‖(x · g−1 − bx · g−1e) · g‖

≤
√
n · ‖x · g−1 − bx · g−1e‖ · ‖g‖ ≤ n

2
· ‖g‖,

as x · g−1−bx · g−1e ∈ K is a field element with coefficients of size at most 1/2.
Therefore, if g is short then so is x̂.
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B Preliminaries for our modified GGH construction

Most parts of this section are taken verbatim from [Gar15]. We keep this part
for completeness.

B.1 Number Fields, Ring of Integers and Ideal Lattices

A number field can be defined as field extension K = Q(ζ) obtained by adjoin-
ing an abstract element ζ to the field of rationals, where ζ satisfies the relation
f(ζ) = 0 for some irreducible polynomial f(X) ∈ Q[X], which is a monic (a poly-
nomial whose leading coefficient is 1) polynomial without loss of generality. The
polynomial f(X) is called the minimal polynomial of ζ, and the degree n of the
number field is the degree of f . Because f(ζ) = 0, the number field K can be seen
as an n-dimensional vector space over Q with basis {1, ζ, . . . , ζn−1}. Associating
ζ with indeterminate X yields an isomorphism between K and Q[X]/f(X).

The ring of integers OK , of a number field K of degree n, is a free Z-
module of rank n, i.e., the set of all Z-linear combinations of some integral basis
{b1, . . . , bn} ⊂ OK . Such a set is called an integral basis, and it is also a Q-basis
for K.

The case of Cyclotomic Number Fields. Let ζm = e2π
√
−1/m ∈ C denote a

primitive m-th root of unity. (Recall that an mth root of unity is said to be a
primitive root if it is not a kth root for some 0 < k < m.) The m-th cyclotomic
polynomial, denote by Φm(X), is defined as the product

Φm(X) =
∏
k∈Z∗m

(X − ζkm).

Observe that the values ζk run over all the primitive mth roots of unity in C,
thus Φm(X) has degree n = ϕ(m), where ϕ(m) denotes the Euler’s totient or
phi function. Recall that if m is a positive integer, then ϕ(m) is the number of
integers in the set {1, 2, . . . ,m} that are relatively prime to m.

The cyclotomic polynomial Φm(X) may be computed by (exactly) dividing
Xn − 1 by the cyclotomic polynomials of the proper divisors of n previously
computed recursively (setting, Φ1(X) = X − 1) by the same method:

Φm(X) =
Xm − 1∏
d|m
d<m

Φd(X)
.

We will be most interested in the case when m ≥ 2 is a power of 2 in which case
Φm(X) = Xm/2 + 1. The mth cyclotomic field Q(ζm) (with m > 2) is obtained
by adjoining ζm to Q. The ring of integers in Q(ζm) is Z(ζm). This ring Z(ζm)
is called the cyclotomic ring.
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Coefficient Embedding. There is also a coefficient embedding τ : K → Qn.
As mentioned earlier, since f(ζ) = 0, there is an isomorphism between Q[X]
(mod f(X)) and K given byX → ζ. So, K can be represented as a n-dimensional
vector space over Q using the power basis {1, ζ, . . . , ζn−1}, and τ maps an el-
ement of K to its associated coefficient vector. When identifying an element
a ∈ K as a coefficient vector, i.e., τ(a) we denote it as a boldface vector a. Note
that the addition of vectors is done component-wise, while the multiplication is
done as polynomials modulo f(X). We define the coefficient norm of a as the
norm of the vector a. Specifically, we define the `p coefficient norm of a, denoted

as ‖a‖p or ‖a‖p as
(∑

i∈[n] a
p
i

) 1
p

for p <∞, and as maxi∈[n] |ai| for p =∞. (As

always we assume the `2 norm when p is omitted.) We will use the following
lemma.

Lemma 7. Let K = Q[X]/(Xn + 1), for any positive integer n. ∀a, b ∈ K and
c = a · b we have that

‖c‖ ≤
√
n · ‖a‖ · ‖b‖.

Definition 4 (Ideal). An (integral) ideal I ⊆ OK is a nontrivial (i.e., nonempty
and nonzero22) additive subgroup that is closed under multiplication by OK – that
is, r · g ∈ I for any r ∈ OK and g ∈ I. A fractional ideal I ⊂ K is a set such
that d · I is an integral ideal for some d ∈ OK . The inverse I−1 of an ideal I is
the set {a ∈ K : a · I ⊆ OK}.

Definition 5. An ideal I is principal if I = 〈g〉 for g ∈ OK – that is, if one
generator suffices.

B.2 Technical Lemmata

Lemma 8. Let z ← Rq be chosen uniformly at random. Then it holds that
‖1/z‖ ≤ n2/q, except with probability at most 2

n .

Proof. In order to upper-bound the L2 norm of the coefficient embedding, we
will first upper-bound the L∞ norm of the canonical embedding.

Let σ : K → Cn be the canonical embedding of K into Cn. Let (z0, . . . ,zn−1)
be the coefficient representation of z ∈ R. Each component σj(z) of σ(z) is the
evaluation of z at an n-th root of unity ξj ∈ C, i.e.

σj(z) =

n−1∑
i=0

zi · ξij .

As σj : K → C is a field homomorphism, it holds that σj(1/z) = 1/σj(z). Thus,
it holds that ‖σ(1/z)‖∞ = maxj(|σj(1/z)|) = maxj(1/|σj(z)|). As we show
below, in order to establish an upper-bound on ‖1/z‖ it is sufficient to establish
a lower bound on the |σj(z)|.
22 Some texts also define the trivial set {0} as an ideal, but in this work it is more

convenient to exclude it.
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Note that each of z0, z1, . . . ,zn−1 are independently chosen. So we can fix
z1, . . . ,zn−1 to some worst case values and only consider the random choice of
z0. It holds that

Pr[|σj(z)| < q/n2] = Pr[|z0 +

n−1∑
i=1

zi · ξij | < q/n2] ≤ max
z?∈C

Pr[|z0 + z?| < q/n2].

However, since z0 is is a uniformly random integer between −q/2 and q/2 (along
the real line), it holds for any choice of z? ∈ C that

Pr[|z0 + z?| < q/n2] ≤ 2 · q/n2

q
=

2

n2
.

A union bound yields that

Pr[∃j : |σj(z)| < q/n2] ≤
n−1∑
i=0

Pr[|σj(z)| < q/n2] ≤ 2

n
.

This in turn implies

Pr[∀j : |σj(z)| ≥ q/n2] ≥ 1− 2

n
.

Note that if for some z we have that ∀j : |σj(1/z)| ≤ n2/q, then this implies
that ‖σ(1/z)‖∞ ≤ n2/q as ‖σ(x)‖∞ = maxj |σj(x)|. For cyclotomic fields of
order power-of-two it holds that ‖x‖2 = 1√

n
‖σ(x)‖2 by Parseval’s identity. Thus

it holds that ‖1/z‖2 ≤ 1√
n
‖σ(1/z)‖2 ≤ ‖σ(1/z)‖∞ ≤ n2

q , which concludes the

proof.

We will need a generalization of the Schwarz Zippel Lemma to the composite
modular rings used by our graded encoding scheme.

Lemma 9. Let R be a cyclotomic ring and let g = g1 · · · g` ∈ R be genera-
tor of an ideal as sampled by our instance generation (i.e. the N(gi) are large
primes). Let p ∈ R[x1, . . . , xm] be an m-variate polynomial of degree d on R and
let X1, . . . , Xm be independently distributed random variables on R such that
H∞(Ximod 〈gj〉) ≥ k for all i and j. Then it holds that

Pr[p(X1, . . . , Xn) /∈ (R/〈g〉)×] ≤ d`

2k
,

where the probability runs over the random choices of X1, . . . , Xn.

Proof. By Lemma 2 it hold that Pr[p(X1, . . . , Xn) ≡ 0mod gj ] ≤ d
2k

for all i, as
R/〈gj〉 is a prime field of size N(gi). A union bound yields

Pr[p(X1, . . . , Xn) /∈ R×] = Pr[∃j : p(X1, . . . , Xn) ≡ 0mod gj ] ≤ ` ·
d

2k
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Recall that, in our construction, a pseudorandom function is being computed
in a specific manner. For our proof, we need the output of this function to be
uniform over mod I. We prove that under appropriate choice of parameters this
is indeed true.

Lemma 10. Let g = g1 · · · g` be a generator sampled via our instance genera-
tion algorithm and let X be a random variable on R such that it holds for each
pair x1, x2 ∈ R in the support of X that ‖x1 − x2‖ ≤

√
n. Then it holds for all i

that H∞(X mod gi) = H∞(X).

Proof. The factors gi are sampled such that N(gi) = p for a prime p of size at
least 2Ω(n). By Lemma 6 it holds that

λ1(I) ≥
√
nN(I)

1/n
=
√
np1/n =

√
n2Ω(1) >

√
n.

Let S be the support of X. It holds for all all pairs x1, x2 ∈ S that ‖x1 − x2‖ ≤√
n < λ1(I). Thus, it holds that x1 − x2 /∈ I and therefore x1 6= x2 mod I, i.e.

the map x 7→ xmod I is collision free on S. We conclude that H∞(X mod I) =
H∞(X).

Observe that it holds for each pair of elements x1, x2 from the boolean hy-
percube {0, 1}n ⊆ R that ‖x1 − x2‖ ≤

√
n. Thus, any distribution X on {0, 1}n

fulfills the requirements of Lemma 10 and we can conclude the following.

Corollary 1. Let g = g1 · · · g` be a generator sampled via our instance gener-
ation algorithm and let X be any distribution on {0, 1}n ⊆ R. Then it holds for
all i that H∞(X mod gi) = H∞(X).

C The Weak Multilinear Map Model

In this section, we will describe the weak multilinear map model put forth by
Miles, Sahai and Zhandry [MSZ16]. Our model differs slightly from theirs as
it is based on composite-order GGH multilinear maps. In this model all par-
ties have access to an oracle M implementing the graded encoding scheme.
Informally, similar to [BGK+14], M will allow algebraic operations to be per-
formed on encodings through so-called “handles” on the encodings. However,
unlike [BGK+14], it will also allow arbitrary polynomial computation on the
ring elements produced via “successful zero-tests,” through a second type of
handles.23

Similar to [BGK+14] we start by defining the weak multilinear map system.

Definition 6 (Weak Multilinear Map System). Let R = Z[X]/Xn + 1 be
the 2n-th cyclotomic ring of integers and g1, g2, . . . gt ∈ R be “short” elements
in the ring such that |R/〈gi〉| is a prime of size ω(poly(λ)) for all i ∈ [t]. Denote

23 A reader familiar with [MSZ16] can note that this step is analogous to the type-2
query in that model.
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the ideal generated by each gi by Ii = 〈gi〉 and by the product g =
∏
i∈[t] gi by

I = 〈g〉. Let vzt be the zero testing level. Then an encoding e of an element
t ∈ R at the level v is denoted as e = LtMv. For any such encoding e = LtMv, the
corresponding ring element t is called its representation and the set v its level.
We define the following operations over the encodings.

Addition: Given two encodings e1 = Lt1Mv1 and e2 = Lt2Mv2 where v1 = v2,
e1 + e2 is defined to be the encoding given by Lt1 + t2Mv1 . Similarly, e1 − e2

is defined to be the encoding given by Lt1 − t2Mv1 .
Multiplication: Given two encodings e1 = Lt1Mv1 and e2 = Lt2Mv2 , e1 · e2 is

defined to be the element given by Lt1 · t2Mv1+v2 .
Ring Multiplication: Given a ring element a ∈ R and an encoding e = LtMv,

the ring multiplication a·e is defined to be the encoding given by e′ = La·tMv.24

Zero Testing: For any encoding e = LtMvzt , it returns 1 if and only if:

t (mod I) = 0

We now proceed to describe the weak multilinear map model. Similar to [BGK+14]
we consider a stateful oracleM mapping encodings to “generic” representations
called handles. There are two types of handles thatM generates: encoding han-
dles that are corresponding to encodings and ring handles that are corresponding
to the elements in the ring R (obtained after successful zero-tests). The handles
are denoted by HEnc (e) for an encoding e and HRng (a) for any ring element
a ∈ R. We do not specify how the handles are generated. However, we require
that the value of the handles, HEnc (e) ,HRng (a) are independent of the corre-
sponding encoding e and the corresponding ring element a respectively. The
oracle maintains two tables Lenc and Lrng where Lenc stores encoding-handle
pairs (e,HEnc (e)) and similarly Lrng stores pairs of the form (a,HRng (a)) where
HRng (a) is a ring handle corresponding to ring element a ∈ R. M provides the
user with the following interfaces.

– Initialization. The oracleM is initialized with the parameters of the weak
multilinear map system. Additionally, it is initialized with the encoding-
handle table Lenc of initial encodings-handles pair and the ring-handle table
Lrng with ∅. AfterM has been initialized, all subsequent calls to the initial-
ization interfaces fail.

– Algebraic operations. Depending on the type of query it executes the
following steps.

– Both are encoding handles: Given two encoding handles HEnc (e1) ,HEnc (e2)
and an operation ◦ ∈ {+,−, ·}, M first locates the relevant encodings
e1 = Lt1Mv1 , e2 = Lt2Mv2 in the handle table Lenc. If any of the input
handles does not appear in the table Lenc (that is, if the handle was not
previously generated byM) the call toM fails. If the expression e1 ◦ e2

is undefined (i.e., v1 6= v2 for ◦ ∈ {+,−} or v1 + v2 � vzt for ◦ = ·)
24 Note that we abuse the notation “·” to denote both ring multiplication and multi-

plication between encodings.
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the call fails. Otherwise, M generates a new encoding handle HEnc (e′)
for e′ = e1 ◦ e2. It appends the pair (e′,HEnc (e′)) into the table Lenc and
returns HEnc (e′).

– An encoding handle and a ring element: Given a ring element a ∈ R, an
encoding handle HEnc (e) and a multiplication operation · first it checks
if the encoding handle already exists in the corresponding table Lenc.

25

If it does not exist then this call fails. Otherwise, it computes the new
encoding e′ = a · e via ring multiplication and generates the new han-
dle HEnc (e′). It appends the entry (e′,HEnc (e′)) into the table Lenc and
outputs HEnc (e′).

– Zero testing. Given a encoding-handle HEnc (e) as input, M first locates
the corresponding encoding e = LtMv in Lenc. If it is not found then (that is, if
HEnc (e) was not previously generated byM) then call toM fails. Otherwise,
it performs zero-test on e. If the zero test fails, then this call fails. If it passes
(i.e. returns 1) then recall from Definition 6 that t = 0 mod g which, in turn
implies that t must be of the form t = a′g. So it computes the ring element
a′ = t/g, generates the corresponding ring handle HRng (a′), appends the
pair (a′,HRng (a′)) into the table Lrng and outputs HRng (a′).

– Post-zeroizing computation. Given a non-zero polynomial p of bounded
degree and a sequence of ring handles HRng (a1) , · · · ,HRng (av), M first lo-
cates the corresponding elements a1, · · · ,av in the table Lrng. If any of them
is not found in Lrng (that is not generated by the above zero-test query) then
call to M fails. Otherwise, M evaluates the polynomial â := p(a1, · · · ,av).
Then it checks if ∃ i ∈ [t], for which â = 0 (mod Ii).26 If the check fails, it
returns 0. Otherwise, it returns 1. Furthermore, in this case M reveals its
entire state including both lists Lenc and Lrng and the secrets g1, . . . , gt.

27

Note that the construction does not need access to the post-zeroing compu-
tation. Only the attacker gets access to these queries.

Remark 2. We note that one natural restriction that is implicitly placed on the
attacker is that the attacker is not allowed to use the ring elements stored in the
handle-table Lrng in multiplying with the encodings itself. This is a reasonable
restriction because all ring elements generated after zero-test (the ones with
corresponding handles in Lrng) are “large” and multiplying it with any encoding
makes the numerator in that encoding large enough such that no zero-test can
be performed on it.

25 Note that the only operation we allow is the multiplication. Moreover, for GGH
construction (and for its modification that we consider) addition of a ring element
to an encoding is not well-defined.

26 Note that here the model is slightly stronger than the model of [MSZ16] as an exactly
equivalent model here would have checked if the value is 0 in each slot, instead of
checking at least one slot.

27 Intuitively, if the adversary is able to query such a polynomial then it wins. Formally,
this is captured in the model by making the oracle to output the entire state of the
oracle.
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C.1 iO in the Weak Multilinear Map Model

We now define the indistinguishability obfuscation property in an idealized model
where all algorithms have access to an oracle M. Later we will prove that our
construction achieves this definition in the weak multilinear map model in which
M is an oracle as described above. As mentioned earlier, our construction doesn’t
need the post-zeroing computation and these queries are meant to provide the
attacker with additional power.

Definition 7 (iO in an M-idealized model [BGK+14]). For a (possibly
randomized) oracle M, and a circuit class {C`}`∈N, we say that a uniform PPT
oracle machine O is a Indistinguishability Obfuscator for {C`}`∈N in the M-
idealized model, if the following conditions are satisfied:

– Functionality: For every ` ∈ N, every C ∈ C`, every input x to C, and for
every possible coins for M:

Pr[(OM(C))(x) 6= C(x)] ≤ negl(|C|),

where the probability is over the coins of O.
– Polynomial Slowdown: there exist a polynomial poly such that for every ` ∈ N

and every C ∈ C`, we have that |OM(C)| ≤ poly(|C|).
– Unbounded Simulation for every PPT adversary A there exist a possibly un-

bounded simulator S, and a negligible function µ such that for all PPT dis-
tinguishers D, for every ` ∈ N and every C ∈ C`:

|Pr[D(AM(OM(C))) = 1]− Pr[D(SC(1|C|)) = 1]| ≤ µ(|C|) ,

where the probabilities are over the coins of D, A, S, O and M.

D Security Proof

Before we give a formal proof of security of our construction in the weak multi-
linear map model, we give some definitions and tools that would be useful in the
security proof. These properties are similar to the ones needed in [AB15, Lin16].
Parts of this section have been taken verbatim from [AB15, Lin16].

D.1 Useful Definitions for Security Proof

We use the same distributions on rings as in [AB15, Lin16] and we define it
below.

Definition 8. An ensemble of probability distributions {Nk} is k-admissible if
Nk samples a poly(k)-bit integer with the property that the min-entropy of every
prime factor of Nk is at least Ω(k). An ensemble of probability distributions
over rings {Rk} is k-admissible if Rk ∼= ZN and the random variable N is
k-admissible.
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It is not hard to see that every small fixed integer x is likely to be co-prime

to y
$←− Nk. Using this, [AB15] proved the following useful lemma.

Lemma 11 ([AB15], Corollary 5.7). Let L ∈ N and let L ⊆ Z \ {0} be a
list of L integers such that all x ∈ L, |x| ≤ 2poly(λ). Let R ∼= ZN be a ring
where N is chosen from some (logL + ω(log λ))-admissible distribution. Then,
the probability that there exists x ∈ L which is not a unit in R is negl(λ).

Level respecting adversaries. Here, we define the level function as well as
the level respecting adversaries. At a high level, a level-respecting adversary is
an algebraic adversary, that is, one who performs only legal operations.

Definition 9 (Partial order of vectors). For an integer τ ∈ N, we view
vectors in Nτ as multisets over the universe [τ ]. We define a partial ordering
on vectors Nτ as follows. We say that v ≤ w if for all i ∈ [τ ] it holds that
v[i] ≤ w[i]. If there exists a coordinate i for which the above does not hold, we
say that v 6≤ w.

Definition 10 (The level function). For an arithmetic circuit C and a se-
quence of vectors {v1, · · · , v`}, we define an assignment of levels to every wire
w in C via the following recursive process:

– If w is the ith input wire, label it with level vi.
– If w is the output wire of a multiplication gate in C with input wires u1 and
u2 with levels v1 6= ⊥ and v2 6= ⊥ separately, then label it with level v1 + v2.

– If w is the output wire of an addition/subtraction gate in C with input wires
u1 and u2 with levels v1 6= ⊥ and v2 6= ⊥ separately, then label it with level
v1 if v1 = v2; ⊥ otherwise.

Definition 11 (Level-respecting arithmetic circuits). We say that an arith-
metic circuit C is ((v1, · · · , v`) , vzt)-respecting if the output wire w of C has level
vw 6= ⊥ such that vw ≤ vzt. We simply write vzt-respecting when (v1, · · · , v`) is
clear from context.

Next we give a bound on the size of the coefficients of a polynomial computed
by an arithmetic circuit of bounded size and bounded degree.

Lemma 12. Let C be a arithmetic circuit of size s and degree d. Then the
polynomial PC has bounded norm |PC |1 ≤ 2sd (where the norm refers to the `1
norm of the coefficient vector of PC).

Proof. We prove by induction. If the output gate of C is a multiplication gate,
then consider the two circuits representing the input wires to this gate. These
circuits have size ≤ (s− 1) and degrees d1, d2 such that d1 + d2 ≤ d. By induc-
tive hypothesis |PC |1 ≤ 2(s−1)d1 · 2(s−1)d2 ≤ 2sd. If the output gate of C is an
addition/subtraction gate, then the input wires have size s − 1 and degrees at
most d, hence |PC |1 ≤ 2(s−1)d + 2(s−1)d ≤ 2sd.
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Definition 12. Let P (X1, · · · , Xn) be a polynomial. We say that P is Xi-free
if all monomials that contain Xi take zero coefficient. We extend this notion to

monomials and say that P is
(∏

Xdi
i

)
-free if all monomials that are divisible

by
(∏

Xdi
i

)
take zero coefficient. For a set of monomials {M1, · · · ,Mk} we say

that P is {M1, · · · ,Mk}-free if it is Mj-free for all j ∈ [k].

D.2 Other Useful Tools from [Lin16]

As mentioned in the iO construction (see Section 4), we would compute the
circuit as well a PRF on the same input jointly in order to argue security against
post-zeroizing attacks. Hence, we need to argue that we can compute a PRF on
polynomial sized domain (same as inputs for seed class circuits) using constant
input types and constant type degree. For this, we note that the seed class of
circuits in [Lin16] internally compute a puncturable PRF (PPRF) and hence,
it proves that given a suitable PRG, the class of PPRF required has constant
degree, constant input types and constant type degree. We state the claims from
[Lin16] below.

The special purpose circuits require a PPRF function with input domain
{0, . . . , T}, key domain {0, 1}λ, and range {0, 1}L(λ) for L(λ) long enough to
supply the random coins for one-bit output functional encryption scheme bFE
and randomized encodings RE; hence L(λ) = poly(λ, n, log T ). The following
lemma provides such a PPRF in constant degree.

Lemma 13 ([Lin16], Lemma 4). Assume the existence of a degree-d PRG
with λ1+ε-stretch for some constant d ∈ N and ε > 0. For every polynomial D
and L, there is a degree deg ′ PPRF scheme with input domain {0, . . . , D(λ)}, key
domain {0, 1}λ, and range {0, 1}L(λ), where deg ′ ∈ N is some constant depending
on d, ε, D and L. Furthermore, if the underlying PRG is subexponentially secure,
then so is the PPRF.

Lemma 14 ([Lin16], Claim 4). If PRG has degree d(λ), then all output bits
of PPRF in the special purpose circuits have type degree poly(d(λ)) over same
input types as special purpose circuits.

D.3 Unbounded Simulation Security

To prove security, we need to show that for any PPT adversary A, for any circuit
C, there exists an unbounded time simulator S that simulates the view of the
adversary. Since we are in the weak multilinear map model, the obfuscation that
is given to A consists of handles to various encodings depending on the circuit
C. Note that the levels (v1, . . . ,v`) at which these encodings are generated are
independent of the actual circuit being obfuscated. Hence, since the encodings
are just a collection of random handles, S emulates them by sampling a collection
of random handles {HEnc (ei)} on its own and records (?,vi,HEnc (ei)). It then
gives {HEnc (ei)} to A.
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Now, the simulator needs to simulate the zero-test queries as well as the post-
zeroizing computation as part of weak multilinear map model. We describe these
below. First note that since we are in the oracle model, it suffices to consider only
those polynomials for zero-testing that are level-respecting or algebraic. Before
we provide our simulator, we make some structural claims on the polynomials
being zero-tested.

Bounding the number of semi-monomials. Fix a circuit C and polynomial
P that is vzt-respecting. We can re-write P as a sum of terms in the form
of M(r) · Q(w), where M is a monomial and Q is a polynomial. Namely P =∑
iMi(r) ·Qi(w). Each term in the summation has distinct M(r) and is referred

to as a “semi-monomial”. There are at most L = 2poly(λ) terms in the summation,
for the following reason.

Lemma 15. There are at most L = 2poly(λ) distinct M(r) monomials.

Proof. Since P is vzt-respecting, it is easy to see that the degree of P is bounded
by |vzt|1, and so is the degree of any monomial M(r) in P . Therefore, the number
of distinct monomials is bounded by L = |r||vzt|1 where |r| is the number of r
variables. In the iO construction both |r| and |vzt|1 are bounded by poly(λ).
Therefore L = 2poly(λ).

In our construction R will be chosen randomly such that R ∼= ZN where N is
chosen from some (logL+ω(log λ))-admissible distribution (see Definition 8 for
admissible distributions). This setting is chosen so that by Lemmas 11, 12, 15,
the coefficient of the monomials are units in R. This would be used in proving
successful simulation of zero-test queries.

Structural Analysis on the Polynomials. For each semi-monomial M(r) ·
Q(w) we have the following lemma:

Lemma 16. There exists a constant a and w̄-free polynomial Q′(w) such that

Q(w) = a · w̄ −Q′(w).

Proof. First of all, we note that the structure of our sets prevents w̄ from being
multiplied by any of the other w variables for the following reason. w̄ is encoded
at level ≥ Dv∗, and the other w variables are encoded at level ≥ v∗. Any product
of w̄ and another w variable will be at level ≥ (D+ 1)v∗. Since (D+ 1)v∗ 6≤ vzt,
contradiction follows.

Lemma 17. For every k ∈ [c], the polynomial Q (and hence also the polynomial

Q′ from Lemma 16) is
(
ŵk
)2

-free.

Proof. ŵk is encoded at level v̂ks + v∗ for some s ∈ Σ, thus
(
ŵk
)2

is encoded

at level ≥ v̂ks1 + v̂ks2 for some s1, s2 ∈ Σ. Since v̂ks1 + v̂ks2 6≤ vzt, contradiction
follows.
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The three main cases. We distinguish between the following three exhaustive
cases of semi-monomials.

– Invalid I: It holds that ŵ - Q′(w).
– Invalid II: It holds that ŵ | Q′(w), namely (by Lemma 17) there exists
Q′′(w) which is {ŵ1, · · · , ŵc}-free such that Q′(w) = ŵ ·Q′′(w). However,

Q′′(w) 6= a·w̃·
n∑
t=1

(
wc+1
t,m+1 · U

({
w1
x1,j

}
j∈[`]

, · · · ,
{
wcxc,j

}
j∈[`]

,
{
wc+1
t,j

}
j∈[m]

))
for every possible input x ∈ Σc.

– Valid: There exists x ∈ Σc such that

Q(w) = a·

(
w̄ − ŵ · w̃ ·

n∑
t=1

(
wc+1
t,m+1 · U

({
w1
x1,j

}
j∈[`]

, · · · ,
{
wcxc,j

}
j∈[`]

,
{
wc+1
t,j

}
j∈[m]

)))
.

Our Simulator S for Zero-Testing and Post-Zeroizing Computation.
Fix a circuit C and polynomial P which is vzt-respecting,

– Simulating zero testing:
1. Decomposition: S first “decomposes” P as a sum of terms in the form
M(r) ·Q(w), where M is a monomial and Q is a polynomial. There are
at most L = 2poly(λ) of them by Lemma 15.

2. Zero-testing each monomial: For each term M(r) · Q(w), S distin-
guishes between the following cases:
• In cases Invalid I and Invalid II, S determines that Q is non-zero.
• In case Valid, S queries its oracle C on input x and obtains y. It

determines that Q is zero if and only if y = 1.
3. Summarizing: If for every term M(r) ·Q(w) the output of Q is deter-

mined to be zero, then S outputs 1 (meaning that the output of P is
zero) and gives a random handle HRng (rng) to A. Otherwise, S outputs
0.

– Simulating post-zeroizing computation: S always outputs 0 (meaning
that the post-zeroing computation fails).

The simulator will produce a list L = 2poly(λ) of L integers of absolute value
at most 2poly(λ). In particular, this list would be a subset of the coefficients of
the polynomial P computed by the adversary. Since P is computable by a purely
arithmetic circuit of size poly(λ) and degree at most ||vzt||1, the bounds follow
from Lemmas 12 and 15. We will show that as long as all the elements of L are
units in R, the simulation is successful. This happens with high probability by
Lemma 11.

Remark 3. Note that above we allow for zero-testing at levels lower than vzt
as well and prove what is referred to as the Strong Algebraic Security in
[Lin16]. In fact, we would prove that any polynomial at a level v < vzt is not
a zero with high probability over the randomness of encodings. This would be
crucial in proving security against post-zerozing computations in our scenario.
For security, we want that the adversary cannot come up with any polynomial
that results in a zero over encondings {HRng (rngi)}.
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D.4 Correctness of Simulating Zero Test

Theorem 3. The output of S in the zero test is correct with probability 1 −
negl(λ).

Proof. For each term M(r)Q(w), by lemmas 18, 20, 21 (will be proved in the
following), in any of the three cases the emulation of S is correct except with

probability negl(λ)
L . There are at most L terms, by union bound the output of S

in the zero test is correct except with probability negl(λ).
Conditioned on this happening, if all of Q evaluates to 0, simulation is correct.

In the other case, polynomial P can be seen as a polynomial over variables r’s
and the coefficient as Q(w). Since one of the Q(w) evaluates to non-zero, this
polynomial is not identically 0. Hence, by Lemma 9 when values r’s are randomly
chosen then the probability that the P evaluates to 0 is at most negl(λ). By union
bound over all the polynomials queried by the adversary, error probability is at
most negl(λ).

Next, we prove that the simulation of each of the semi-monomials is correct.
In this section, by aJkK we denote the component of a in subringRk for k ∈ [c+3].

Lemma 18 (Invalid I). If ŵ - Q′(w), then Pr[Q(w) = 0] = negl(λ)
L , where the

probability is taken over the randomness of R and w variables.

Proof. Recall that ŵ =
∏c
k=1 ŵ

k. Below we prove that if there is a k ∈ [c] such
that ŵk - Q′, then Q outputs zero with small probability.

Recall that Q(w) = a · w̄ − Q′(w). Consider the evaluation of Q over the
(k+3)rd sub-ring, Q(w)Jk+3K. Since w̄Jk+3K = 0, it holds that Q(w)Jk+3K =
Q′(w)Jk+3K. Recall that Q′(w)Jk+3K = Q′Jk+3K(wJk+3K) (i.e., the evaluation
of Q′Jk + 3K over wJk + 3K).

Since ŵk - Q′, there exists a polynomial Q′1(w) and a ŵk-free polynomial
Q′2(w) such that Q′2(w) is not identically zero and that Q′(w) = ŵkQ′1(w) +
Q′2(w). Since ŵkJk + 3K = 0, it holds that Q′(w)Jk + 3K = Q′2(w)Jk + 3K. Note
that Q′2(w) contains at least one non-zero monomial, with coefficient α. By
Lemma 12, α has bounded `1 norm. Therefore by Lemma 11, with overwhelming
probability α is a unit, and thus αJk+ 3K is non-zero. Hence Q′2Jk+ 3K (and also
Q′Jk + 3K) is not identically zero.

Recall that all w variables, except ŵk, contain random ρ elements (in partic-

ular,
{
ρk
′

s,j,k

}
s∈Σ,j∈[`],k′∈[c]

,
{
ρc+1
t,j,k

}
t∈[n],j∈[m+1]

,
{
ρ̂k
′

k

}
k′ 6=k

, ρ̃k) in the (k+3)rd

slot. By Lemma 9, the probability that Q′Jk+3K evaluates to zero over randomly

chosen ρ variables in the (k + 3)rd sub-ring Rk+3 is negl(λ)
L (by using the fact

that the degree of Q′ is polynomial and that R is (logL+ω(log λ))-admissible).

Lemma 19. If ŵ | Q′(w), then there exists an input x = x1, · · · , xc such that
Q′ is free of variables

{
wks,j

}
k∈[c],s6=xk,j∈[`]

.

Proof. Assume for the purpose of contradiction that there exists k ∈ [c], j1, j2 ∈
[`] and s1, s2 ∈ Σ such that s1 6= s2 and that Q′ is neither wks1,j1-free nor wks2,j2-

free. wks1,j1 and wks2,j2 are encoded at levels vks1 + v∗ and vks2 + v∗ respectively.
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Since ŵ | Q′(w) and ŵk | Q′(w), there exists s′ ∈ Σ such that Q′ is at level ≥ v̂ks′ .
Thus Q′(w) is encoded at level ≥ vks1 + vks2 + v̂ks′ . Since vks1 + vks2 + v̂ks′ 6≤ vzt,
contradiction follows.

Lemma 20 (Invalid II). If ŵ | Q′(w), namely there exists Q′′(w) which is
{ŵ1, · · · , ŵc}-free such that Q′(w) = ŵ ·Q′′(w). However,

Q′′(w) 6= a · w̃ ·
n∑
t=1

(
wc+1
t,m+1 · U

({
w1
x1,j

}
j∈[`]

, · · · ,
{
wcxc,j

}
j∈[`]

,
{
wc+1
t,j

}
j∈[m]

))
for every possible input x ∈ Σc, then Pr[Q(w) = 0] = negl(λ)

L .

Proof. Consider the x from Lemma 19,Q′′(w) is a polynomial over
{
wkxk,j

}
k∈[c],j∈[`]

,{
wc+1
t,j

}
t∈[n],j∈[m+1]

, w̃. Consider Q′′(w)J1K (= Q′′J1K(wJ1K)), since all these w

variables contain random y values (=
{
ykj
}
k∈[c],j∈[`]

,
{
yc+1
t,j

}
t∈[n],j∈[m+1]

, ỹ) in

the first slot, we have

Q′′J1K (wJ1K) 6= aJ1K·ỹ·
n∑
t=1

(
yc+1
t,m+1 · U

({
y1
j

}
j∈[`]

, · · · ,
{
ycj
}
j∈[`]

,
{
yc+1
t,j

}
j∈[m]

))
.

Consider the evaluation of Q in the first sub-ring:

Q(w)J1K =
∏
k∈[c]

ŷk·

(
aJ1K · ỹ ·

n∑
t=1

(
yc+1
t,m+1 · U

({
y1
j

}
j∈[`]

, · · · ,
{
ycj
}
j∈[`]

,
{
yc+1
t,j

}
j∈[m]

))
−Q′′J1K (wJ1K)

)
is not identically zero. By Lemma 9, the probability that QJ1K evaluates to zero

over randomly chosen y variables in the first sub-ring R1 is negl(λ)
L (by using

the fact that the degree of Q is polynomial and that R is (logL + ω(log λ))-
admissible).

Lemma 21 (Valid). If there exists x ∈ Σc such that

Q(w) = a·

(
w̄ − ŵ · w̃ ·

n∑
t=1

(
wc+1
t,m+1 · U

({
w1
x1,j

}
j∈[`]

, · · · ,
{
wcxc,j

}
j∈[`]

,
{
wc+1
t,j

}
j∈[m]

)))
,

then, if C(x) = 1 then Pr[Q = 0] = 1; if C(x) = 0 then Pr[Q = 0] = negl(λ)
L .

Proof. In this case, Q′(w) = ŵ ·Q′′(w). Consider the x from Lemma 19, it holds
that

Q′′(w) = a · w̃ ·
n∑
t=1

(
wc+1
t,m+1 · U

({
w1
x1,j

}
j∈[`]

, · · · ,
{
wcxc,j

}
j∈[`]

,
{
wc+1
t,j

}
j∈[m]

))
.
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First notice that a must be non-zero, or else Q is identically zero. Then by

Lemma 11, a is a unit in R except with probability negl(λ)
L .

By definition Q(w) evaluates to zero on all sub-rings except the second.
Therefore it suffices to test whether Q(w)J2K is zero or not.

Q(w)J2K = aJ2K · β̂β̃ ·

(
n−

n∑
t=1

U (x, C)

)
.

If U (x, C) = 1 (i.e., C(x) = 1), then Q(w)J2K equals zero with probability 1 and
so does Q(w). Otherwise, in the case C(x) = 0, Q(w)J2K is a non-zero polynomial

(with a non-zero coefficient aJ2K) over random β̃ and
{
β̂k
}
k∈[c]

. By Lemma 9,

QJ2K (and hence Q) is non-zero except with probability negl(λ)
L (by using the fact

that the degree of Q is polynomial and that R is (logL+ ω(log λ))-admissible).

D.5 Correctness of Simulating Post-Zeroizing Computation

We first prove the following claim about the encoding that results in a successful
zero-test.

Lemma 22. If S outputs 1 for the zero test on a polynomial P , then P =∑d
i=1Mi(r) ·Qi(w) and with probability 1−negl(λ) it holds that d is polynomial

in λ. In fact, d ≤ |Σ|c.

Proof. Recall that if S outputs 1 for the zero test, then with probability 1 −
negl(λ) every term Mi(r) · Qi(w) is in the valid case. For each Mi(r) · Qi(w)
term, by Lemmas 19 and 21 there is a unique x ∈ Σc such that

Qi(w) = a·

(
w̄ − ŵ · w̃ ·

n∑
t=1

(
wc+1
t,m+1 · U

({
w1
x1,j

}
j∈[`]

, · · · ,
{
wcxc,j

}
j∈[`]

,
{
wc+1
t,j

}
j∈[m]

)))
.

and thus

Mi(r) = a·

(
r̄ − r̂ · r̃ ·

n∑
t=1

(
rc+1
t,m+1 · U

({
r1
x1,j

}
j∈[`]

, · · · ,
{
rcxc,j

}
j∈[`]

,
{
rc+1
t,j

}
j∈[m]

)))
.

In other words, every Mi(r) is defined by a unique x ∈ Σc, and every x ∈ Σc

can define at most one Mi(r) term. Since the number of possible inputs is at
most |Σ|c, the lemma follows.

Theorem 4. If {et}t∈[n] in the construction are set as follows:

et = Xt ∈ R,

where R is the ring corresponding to the composite-order GGH defined in Sec-
tion 2 and if zero-test of [M(r) ·Q(w)]v returns 1 (v is the level of M(r)·Q(w)),
then with overwhelming probability the following statements are true:
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– v = vzt.

– There exists x ∈ Σc such that

Q(w) = a·

(
w̄ − ŵ · w̃ ·

n∑
t=1

(
wc+1
t,m+1 · U

({
w1
x1,j

}
j∈[`]

, · · · ,
{
wcxc,j

}
j∈[`]

,
{
wc+1
t,j

}
j∈[m]

)))
.

– C(x) = 1.

– The corresponding encoding LaMv := [M(r) ·Q(w)]v has the property that

a =
(
α · CPRF(x) + dx

)
· g = a′ · g,

where α is a unit in R, and dx ∈ R. Recall that CPRF(x) =
∑
t∈[n] e

tCPRFt(x) =∑
t∈[n]X

tCPRFt(x).

Proof. The first three statements follow from Lemmas 18, 20, 21 and guarantee
the evaluation is done correctly. Recall that for ∀i ∈ [c + 3], let γi ∈ R be such
that γi ·

∏
j 6=i gj = 1(mod Ii). These correspond to CRT reconstruction. Since

ŵU =ŵ ·
n∑
t=1

(
wc+1
t,m+1 · U

({
w1
x1,j

}
j∈[`]

, · · · ,
{
wcxc,j

}
j∈[`]

,
{
wc+1
t,j

}
j∈[m]

))
=
(
ŷȳ, β̂n, α̂ · CPRF(x), 0, · · · , 0

)
=ŷȳ · γ1 ·

∏
j 6=1

gj + β̂n · γ2 ·
∏
j 6=2

gj + α̂ · CPRF(x) · γ3 ·
∏
j 6=3

gj ,

w̃ =
(
ỹ, β̃, 0, ρ̃1, · · · , ρ̃c

)
=ỹ · γ1 ·

∏
j 6=1

gj + β̃ · γ2 ·
∏
j 6=2

gj +
∑
k∈[c]

ρ̃k · γk+3 ·
∏

j 6=k+3

gj

 ,

w̄ =
(
ỹŷȳ, β̃β̂n, 0, 0, · · · , 0

)
=ỹŷȳ · γ1 ·

∏
j 6=1

gj + β̃β̂n · γ2 ·
∏
j 6=2

gj ,
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we have

LaMv =
(
R̄, Z̄

)
−
(
R̃U , Z̃U

)
= Z̄ × R̃U − Z̃U × R̄, and

a =

r̄ ·
ỹŷȳ · γ1 ·

∏
j 6=1

gj + β̃β̂n · γ2 ·
∏
j 6=2

gj

+ d̄g

 · [r̂U · r̃ + d̃RUg
]

−

r̂U ·
ŷȳ · γ1 ·

∏
j 6=1

gj + β̂n · γ2 ·
∏
j 6=2

gj + α̂ · CPRF(x) · γ3 ·
∏
j 6=3

gj

+ d̂Ug


·

r̃ ·
ỹ · γ1 ·

∏
j 6=1

gj + β̃ · γ2 ·
∏
j 6=2

gj +
∑
k∈[c]

ρ̃k · γk+3 ·
∏

j 6=k+3

gj

+ d̃g

 · [r̄ + d̄Rg
]

=

dx − r̂U α̂γ3CPRF(x)

r̃r̄
ỹ · γ1 ·

∏
j 6=1,3

gj + β̃ · γ2 ·
∏
j 6=2,3

gj +
∑
k∈[c]

ρ̃k · γk+3 ·
∏

j 6=3,k+3

gj


+ d̃r̄

∏
j 6=3

gj

 g,
where all the d terms come from the encoding procedure, and dx depends on
the input x.

Now we need to prove that the multiplicative term with CPRF(x) denoted by
α in the theorem statement is a unit in R with high probability. We will prove
this by proving that α is a unit in all sub-rings w.h.p.

Let us consider the first sub-ring R1. First of all, γ3 is an inverse in R, and
r̂U α̂ is a unit in R except with negligible probability, and so are r̃r̄ and d̃r̄. Then
consider the polynomial

r̃r̄

ỹ · γ1 ·
∏
j 6=1,3

gj + β̃ · γ2 ·
∏
j 6=2,3

gj +
∑
k∈[c]

ρ̃k · γk+3 ·
∏

j 6=3,k+3

gj

+d̃r̄
∏
j 6=3

gj .

In the first sub-ring R1, it is r̃r̄ỹγ1 ·
∏
j 6=1,3 gj , which is a unit except with

negligible probability.

A similar argument works for all sub-rings except R3. Now we will argue
that αJ3K is a unit.

Notice that γ1

∏
j 6=1,3 gj , γ2

∏
j 6=2,3 gj , γk+3

∏
j 6=3,k+3 gj ,

∏
j 6=3 gj are all

units in the third sub-ring, and that ỹ, β̃, ρ̃k, d̃, r̃, r̄ are all uniformly random,
hence the entire polynomial is also a unit in the third sub-ring except with
negligible probability.

This concludes that α is a unit in R with all but negligible probability.

Theorem 5. The probability that the adversary succeeds in post-zeroizing queries
is negl(λ).

49



Proof. Let a′i be as defined in above theorem for the Mi(r) · Qi(w). Then, if
a polynomial P given by the adversary in encodings results in a zero, then the
adversary gets a handle to a ring element rng =

∑d
i=1 a

′
i, where d is polynomial

in λ by Lemma 22. Now, by the security of the PRF and using the fact that P
has a polynomial number of semi-monomials, we can replace the output of each
of the bit-PRFs with a uniform bit. Recall that above a′i = αi · CPRF(x) + dx,i,

where CPRF(x) =
∑
t∈[n]X

tCPRFt(x). That is, through a hybrid argument, we can

get a′i = αiY (x) + dx,i where Y (x) =
∑
t∈[n]X

t · bx,t where bx,t
$←− {0, 1}. Note

that H∞(Y (x)) ≥ n. Hence, by Corollary 1, H∞(Y (x)mod 〈gi〉) = H∞(Y (x)) =
H∞(a′i), where 〈gi〉 is used to define the ring Ri. In particular, Ri = Rmod 〈gi〉.

Since αi is a unit in R by Theorem 4 with all but negligible probability,

H∞(rngmod 〈gi〉) = H∞((

d∑
i=1

a′i)mod 〈gi〉) ≥ n.

Now, given handles to many ring elements rng1, . . . , rngk after successful zero-
tests, any bounded degree polynomial p provided by the adversary on these
ring elements will be non-zero in all sub-rings with overwhelming probability by
Lemma 9. Hence, post-zeroizing simulation is correct.
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