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Abstract. Distribution of cryptographic keys between devices commu-
nicating over a publicly accessible medium is an important component
of secure design for networked systems. In this paper, we consider the
problem of group key exchange between Electronic Control Units (ECUs)
connected to the Controller Area Network (CAN) within an automobile.
Typically, existing solutions map schemes defined for traditional network
systems to the CAN. Our contribution is to utilize physical properties of
the CAN bus to generate group keys. We demonstrate that pairwise in-

teraction between ECUs over the CAN bus can be used to efficiently
derive group keys in both authenticated and non-authenticated scenar-
ios. We illustrate the efficiency and security properties of the proposed
protocols. The scalability and security properties of our scheme are sim-
ilar to multi-party extensions of Diffie-Hellman protocol, without the
computational overhead of group operations.
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1 Introduction

Modern automobiles, in conjunction with mechanical components, utilize several
electronic components (ECUs) for sensing, actuation, user interface and control.
The ECUs communicate over a shared medium known as the CAN bus. Over
the past decade, several ECUs that connect to external networks, e.g. via a
Bluetooth, cellular or a wired interface, have been added to the CAN bus. Such
interfaces enable remote access to the components on the internal network of the
car. While these may be utilized to enable several useful functions for the users,
e.g. emergency messaging systems, remote ignition, they can easily be misused
by a malicious attacker. The ease of attack, and damage due to adversarial
behavior has been demonstrated by several researchers over the past few years
in [6, 19,22,24,28].

A common observation by the attackers in [6, 22], is the lack of security
mechanisms in the CAN architecture. Traditional automobiles were designed as
standalone systems, intended for autonomous operation. Thus, latency and reli-
ability were the dominant criterion for network design. However, with increased
connectivity, there is a need to secure the internal network from external attack-
ers. The current automobile manufacturers utilize traditional network security
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principles at the periphery (firewalls, access control), to secure the CAN access.
However, as demonstrated recently in [28], these techniques may not offer suffi-
cient protection. Further, such methods do not address the fundamental lack of
security in CAN messages.

Generally speaking, the attacks demonstrated thus far may be roughly di-
vided into two stages. First, the attackers compromise an ECU with a remote
interface and the ability to inject arbitrary messages on the CAN bus. Secondly,
the attackers communicate with a critical ECU over the CAN bus and influence
its behavior. The second stage is enabled by the broadcast nature of the internal
network and the lack of authentication. Typically, any operation in the second
stage requires knowledge of the internal bus protocol and message structure,
which has been simplified by the lack of encryption on the network.

It is clear that any security solution for CAN should include fundamental
protections such as source authentication and packet level encryption. Several
researchers, e.g. [8,14,26], have proposed methods to include these primitives in
the current CAN architecture. One of the fundamental requirements to enable
these primitives is the existence of cryptographic keys shared between the com-
municating ECUs. However, it is challenging to pre-install group keys during
production of the ECU or securely manage the keys over the long lifetime of a
vehicle. Thus, we require an efficient key generation and exchange protocol that
can be executed during the operation of the car to agree on secret keys.

To ensure minimal disturbance to critical operations on the CAN bus, the
key exchange protocol must be bandwidth efficient. Further, it must incur a low
computational overhead to accommodate a variety of ECU capabilities. Since
CAN messages are multicast, it is necessary for the protocol to support the
generation and update of group keys. In this paper, we propose such a protocol
by utilizing the physical properties of the CAN bus.

1.1 Our Contributions

We extend the two-party protocol proposed in [23] to the generalized group
scenario. Our contributions are as follows,

– We utilize the physical properties of the CAN bus to construct a group
key exchange protocol that is secure in the information-theoretic sense from
eavesdroppers.

– For the restricted scenario of computationally bounded adversaries, we pro-
pose a highly efficient tree based structure for our protocol that has loga-
rithmic complexity for node addition and deletion.

– We propose an efficient authenticated group key exchange protocols that
utilizes only the pre-established trust between the individual ECUs and the
gateway.

1.2 Related Work

CAN Security: In this work, we utilize the physical properties of the CAN bus
for exchange of keys. To the best of our knowledge, the first to utilize such prop-
erties for key agreement are Müller and Lothspeich in [23]. Their work forms the
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basis for our constructions and it will be reviewed in detail in Section 3. Security
for CAN networks, particularly authentication and integrity of messaging, has
been considered previously in [8,11,14,26,27]. However, this line of work assumes
that a shared key already exists.
(Group) Key Agreement: Distribution of group keys for both authenticated
and unauthenticated scenarios has been explored in literature for well over three
decades. Several schemes have been proposed based on varying assumptions of
adversarial behavior and initial setup. One of the earliest results in this direction,
Diffie-Hellman (DH) key exchange [7], uses the hardness of computing discrete-
log over prime order groups to generate keys between a pair of nodes. Steiner
et al. in [25] proposed an extension of DH to groups that uses a mixture of
point-to-point messages and broadcast messages. This was modified by authors
in [16–18, 25], who utilize a tree based structure to improve communication ef-
ficiency and support efficient addition/deletion of nodes. Authors in [29] reduce
communication and storage overhead by performing these group operations over
elliptic curves.

Several methods have also been proposed to generate authenticated group
keys, either by extension of the two-party protocols to groups or by using ideas
based on secret-sharing, e.g. [2, 4, 12, 15]. These schemes have several desirable
properties such as provable security, perfect forward secrecy (PFS) and key inde-
pendence. Most schemes, e.g. [2,4,15,25,29], involve expensive group operations
over prime fields, and thus are not suitable for computationally constrained de-
vices on the CAN bus. Other protocols, e.g. [12], fail to provide security against
an adversary that can compromise the pre-shared secrets. This property is desir-
able for automotive networks, where some nodes may be easily compromised due
to open accessibility or lack of protections. Our protocol provides these security
properties. Our main differentiation from these lies in utilization of the physical
properties of the CAN bus as a substitute for the expensive operations.

1.3 Organization

The remainder of the paper is organized as follows. In Section 2, we describe
the system assumptions and the adversarial model. We present the scheme from
[23] in Section 3. We propose two extensions of this scheme that are secure
against passive adversaries in Section 4. In Section 5, we propose two alternative
protocols that provide cryptographic guarantees against active adversaries. We
discuss the security and performance issues of our schemes in Section 6.

2 Preliminaries

2.1 Notation

We adhere to the following notation for the paper. We denote a random n bit
value value x sampled uniformly from the set {0, 1}n, consisting of all possible
binary strings of n bits, as x← {0, 1}n. We denote by x := y, the assignment of
the value y to x.

For a binary string x ∈ {0, 1}∗, |x| represents the length of string and x′

represent the complement of the string. For an index set L ⊆ {1, . . . , |x|}, x(L)
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refers to the substring with indices in L. If L consists of a single element, x(L)
simply refers to the Lth bit. Given two strings x, y ∈ {0, 1}∗, x || y denotes the
concatenation of the strings.

We denote by I(X ∧ Y ), the mutual information between random variables
X and Y . I(X ∧ Y ) = H(X)−H(X|Y ), where H(X) is the entropy of X.

2.2 System Model and Assumptions

We consider the typical automotive network, comprising of ECUs connected
via a shared wired bus that acts as a broadcast medium. During arbitration,
the CAN bus allows multiple nodes to write simultaneously to the bus and
observe the overlapped bus output. This feature, typically used for contention
resolution, is essential for our scheme. Note that the current ECU design allows
simultaneous read and write only during the arbitration phase, and not in the
data phase. We assume that the CAN controller is sufficiently modified to allow
this functionality for the entire packet. This can be achieved either via hardware
or software modifications.

The typical CAN bus has two logical states, the dominant ‘0’ state, where
the bus is driven by a voltage, and the recessive ‘1’ state, where the bus is
grounded. If two nodes transmit a bit simultaneously, the effective state of the
bus is dominant ‘0’ if any of the nodes transmits a dominant signal. Thus, the
bus acts as a logical AND gate between inputs from the nodes. This property,
identified by authors in [23] to share sequence of bits between a pair of nodes,
forms the basis of our scheme and hence a central assumption for our work. Note
that though this work is in context of automotive networks, the scheme can be
applied to any wired bus architecture that exhibits this property.

Fig. 1. Example of nodes connected by a shared medium

The typical CAN architecture, illustrated in Fig. 1, consists of one or more
powerful nodes that act as gateway nodes (GW). As described by the authors
in [22], current CAN architectures allow ECUs across different subnets to com-
municate transparently through the gateway. For our work, we assume each
node shares a trust relationship with the gateway in the form of a pre-shared
symmetric key. Thus nodeNi shares key Ki with the gateway (GW). Such a rela-
tionship can be established during the vehicle manufacturing process, or during
ECU installation by a mechanic.

For communication within a group, we assume a pre-existing communication
ordering between the nodes. In typical automotive scenarios, different ECUs have
well defined priority. Thus, the communication order may be pre-assigned based
on ECU identity/priority, or assigned by random arbitration over the shared
medium. Alternately, it can be defined in a common file, e.g. FIBEX file, and
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shared with the ECUs. We assume that for any group configuration, the member
ECUs can determine their communication order.

Our protocols are based on simultaneous transmission by two nodes. Thus,
all interactions in our system are between ECU pairs. We refer to the node that
is earlier in the communication order as the primary or initiator node and the
other node as the secondary or responding node. CAN messages are organized
in frames that consist of an identifier field followed by the data field. We as-
sume that the initiator uses the identifier to specify information about the key
exchange session (e.g. session identifier) and the responder uses this to initiate
simultaneous transmission of its message in the data field transmission phase.
This identifier allows the protocol to be resumed in case of interruption by a
ECU transmitting a ‘critical’ message for the automobile.

2.3 Adversarial Model

Several adversarial models have been proposed for key exchange protocols in
literature, e.g. CK model [5], or BR model [3]. It is typically assumed that the
adversary can record all messages transmitted on the bus, modify them, or insert
its own messages.

Here, we consider two adversarial scenarios. For the schemes in Section 4,
we restrict the adversarial behavior to passive observations. This model, though
unrealistic for typical networks, can be sufficient for all attacks on the CAN
bus. This is due to the inherent robustness that the CAN bus provides to active
adversaries. Detailed analysis for this is presented in Section 6.1.

For schemes in Section 5, we consider a powerful adversarial scenario, wherein
the adversary has complete control over the protocol execution. There, we argue
that our schemes provides cryptographic guarantees against such adversaries.
Due to the dependence of our scheme on physical properties of the bus, an ad-
versary with a high resolution oscilloscope may be able to obtain the keys by
probing the bus. Further, since our scheme does not have a practical imple-
mentation yet, it has not been analyzed for timing or power side-channels. We
consider such attacks outside the scope of this paper.

2.4 Cryptographic Assumptions

For our protocol, we assume the existence of an indexed family of pseudorandom
functions (PRF) [9], defined as,

Definition 1. For the security parameter n, the function g : {0, 1}n×{0, 1}n →
{0, 1}n is a family of pseudorandom functions, indexed by the first parameter that
satisfies the following conditions,

– For a randomly selected index k ← {0, 1}n, the function efficiently maps an
element from the domain {0, 1}n to the range {0, 1}n.

– (Security Condition) For an adversary that runs in polynomial (in se-
curity parameter) time, the output of the PRF, where the first parameter is
randomly selected, is indistinguishable from random.

In practice, PRFs can be realized either via a block cipher or by a well-designed
efficient hash function with a random seed (as the index) as a part of the input.
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Further, we utilize the definition of computational entropy of a random vari-
able X from [13], defined as HC(X) = k ⇐⇒ {X ∼C Y and H(Y ) ≥ k}, i.e.
For a PPT process, X is computationally indistinguishable from a random vari-
able Y with true entropy greater than k. Clearly the following Lemma follows
from Definition 1.

Lemma 1. For a randomly selected k ← {0, 1}n, let Xi = g(k, i). Then HC(Xi) =
n, ∀i ∈ {0, 1}n. Further, for I ⊂ {0, 1}n, where |I| = r, HC(XI) = rn, where
XI denotes the concatenation of all Xi, i ∈ I.

2.5 Security Definition

We define the security of a key exchange scheme Π using the information theo-
retic notion from [21] as follows,

Definition 2. A key agreement protocol {SA, SB} = ΠA,B(1k) between two par-
ties A and B results in secret key outputs SA, SB at the respective parties. If the
protocol terminates correctly, we have |SA| = k, otherwise SA = SB = ∅. The
protocol can be said to be secure if the following hold

P1: The keys derived at the end match, Pr (SA 6= SB) = 0.
P2: If the observations of the adversary is characterized as Z, we have I(SA ∧

Z) = 0.
P3: The key has entropy H(SA) = k.

Here, we make no assumptions about the computational capability of the ad-
versary. We argue a similar notion can be defined for computationally bounded
adversaries by replacing the quantities in Definition 2 with their computational
equivalent.

Definition 3. A key agreement protocol {SA, SB} = ΠA,B(1k) is ǫ-secure for
computationally bounded passive adversaries if the Definition 2 holds using the
notion of computational entropy, i.e. IC(SA ∧Z)

.
= HC(SA)−HC(SA | Z) ≤ ǫ,

and HC(SA) ≥ k − ǫ.

3 Two party Plug-and-Secure (PnS) protocol

The wired AND property of the CAN bus was first utilized by the authors in [23]
for key agreement between a pair of nodes. Since our protocols are based on their
scheme, we briefly describe it here. Our notation here differs from the original
work to maintain uniformity with the remainder of our protocols. For details
about implementation issues and synchronization, the reader is encouraged to
read [23].

Let PnS(1n, nodeA, nodeB, fA, fB) denote the Plug-and-Secure protocol
between nodeA and nodeB, where the security parameter 1n denotes the length,
n, of the shared secret key produced when the protocol terminates. We have
chosen to parameterize the random number generation (RNG) by the nodes
nodeA and nodeB, using the functions fA and fB respectively. This allows for
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Function: RetV al := fx(1
n), x ∈ {A,B}

r ← {0, 1}n

RetV al := r

Protocol: PnS(1n, nodeA, nodeB, fA, fB)

1. nodeA and nodeB initialize secret strings as null, i.e. sA, sB := ∅.
2. nodeA and nodeB obtain random values a := fA(1

n) and b := fB(1
n).

3. Both nodes simultaneously write a, b to the bus and observe the bus output y.
4. Next similarly they write a′, b′ to the bus and observe the bus output z.
5. Let G = {1 ≤ j ≤ n | y(j) = 0 AND z(j) = 0}. This represents the set of secret

bits.
6. It can be easily verified that a(G) = b(G)′. The primary node (nodeA here) sets

sA := sA || a(G). The secondary node (nodeB here) sets the complementary
bits, i.e. sB := sB || b(G)

′.
7. The string sA = sB is shared secret between nodeA and nodeB and is the result

of the subroutine.
When used as a subroutine, the protocol halts here.

8. If the length of the string is insufficient, i.e. |sA| = |sB | < n, the protocol repeats
from Step (2).

9. The final string sA = sB is shared secret between nodeA, nodeB of length n.

Protocol 1. Two party PnS protocol from [23]

a uniform presentation of the protocols, while providing the flexibility to alter
the instantiation of the RNG across them. This advantage will become more
evident in the group protocols. The random number generators are private for
each of the nodes and maintain an independent and persistent state through the
protocol. This state is typically expressed as a counter that is initialized during
the first execution and incremented upon successive executions. We illustrate
the sequence of operations of the protocol from [23] as Protocol 1.

In the description of Protocol 1, we assumed that nodeA was the initiator
(primary node) and nodeB was the secondary node. Each node discards bits that
are leaked to the adversary. It can be seen from Step 5 that the bit positions
where either y or z are 1, correspond to indices of strings a and b that can be
determined by any eavesdropper. Thus they are no longer secret.

y(i) = 1⇔ a(i) = 1 AND b(i) = 1,

z(i) = 1⇔ a(i) = 0 AND b(i) = 0.

The messages to initiate the protocol, and the parameter negotiation to deter-
mine the desired key length are omitted here. Similarly, we do not specify the
key verification approach at the end of the protocol. A number of existing ini-
tialization and verification techniques can be used with the protocols. Here, our
goal is to present the fundamental building block that is the basis for our group
key protocol.

It is clear from the description that Protocol 1 is very efficient and it does not
require any expensive cryptographic operations. Further, it inherits the proper-
ties of contributory protocols such as Diffie-Hellman. This makes it highly suit-
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able for the constrained ECU environments. Several properties of Protocol 1 will
be inherited by our group key protocols. We illustrate a few key properties here.

Security: We demonstrate that Protocol 1 is secure against computationally
unbounded passive adversaries.

Theorem 1. The protocol ΠA,B
Prot1(1

n) satisfies Definition 2, where Π
A,B
Prot1(1

n)
denotes Protocol 1 between nodeA and nodeB.

Proof. Denote by sA, the secret key at nodeA and by Y,Z, the complete ob-
servations of the adversary corresponding to Steps (3) and (4) respectively. The
Property (P2) can be simply verified by the correctness of the protocol upon
termination. Further, H(sA) = n, as the samples were uniformly selected. De-
note by L as the set of indices of the random values output on the channel that
contributed to the bits of the key. Then we show Property (P2) as follows,
I(sA ∧ {Y,Z}) = I(sA ∧ {Y (L), Z(L)}) (bits are iid)

= nI(sA(l1) ∧ {Y (l1), Z(l1)}), l1 ∈ L (key bits are iid)

= n(H(sA(l1))−H(sA(l1) | Y (l1), Z(l1))) = 0.
Key Independence: Successive invocation of fA and fB produce indepen-
dent random strings. Since each instance of key generation depends only on the
outputs of fA, fB , the current key reveals no information about the past keys or
future keys.

Function: RetV al := fx(1
n, s), x ∈ {A,B}

i: local persistent counter initialized to 0 during the first execution
RetV al := g(s, i)
i := i+ 1

Protocol: CompPnS(1n, nodeA, nodeB, fA, fB)
All steps of Protocol (1) remain the same except Step 2 which changes to the fol-
lowing
2(a). nodeA and nodeB compute local random values ta ← {0, 1}

n, tb ← {0, 1}
n.

2(b). The nodes obtain the random values for the protocol execution as
a := fA(1

n, ta) and b := fB(1
n, tb).

8 (new). The protocol repeats from 2(b) of the new protocol.

Protocol 2. Computational version of the two party PnS

Computational Definition: We define a computational version of Protocol
1 by using PRFs to generate the random values a and b. The changes required
are briefly summarized in Protocol 2. This protocol can be proved to be secure
against computationally bounded passive adversaries.

Theorem 2. The protocol ΠA,B
Prot2(1

n), satisfies Definition 3, where Π
A,B
Prot2(1

n)
denotes Protocol 2 between nodeA and nodeB.

Proof. The proof follows from the proof of Theorem 1, by applying the compu-
tational definition of to conditional entropy. It will be included in the extended
version of this paper.
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4 Group Key Agreement Schemes

In this section we introduce two new group key agreement protocols without
authentication. Though these can be viewed as a special case of the authenti-
cated protocol, they warrant separate treatment due to different complexity and
security properties.

The protocols presented here require a linear (in size of the group) number
of interactions for initial key establishment. Intuitively, the broadcast nature of
the CAN bus allows pairwise PnS interaction between successive nodes to be
sufficient for global key agreement. Once two nodes execute the PnS protocol,
they may be viewed as a single logical entity for any further transmissions by one
of these nodes, based the PnS output. Thus, each successive interaction increases
the size of the logical entity by one, until the whole group is created.

For the remainder of this paper, we assume that the group consists of M
nodes, {nodeN1, . . . , nodeNM}. For simplicity, we assume the communication se-
quence to be based on the lexicographic order, i.e. nodeN1-nodeN2-. . . -nodeNM .
We assume that the protocol initiation is triggered by the gateway node with
information about the group members and parameters. The ECUs can deter-
mine their communication priority in a distributed manner based on the group
configuration.

4.1 Simple Group Protocol

We first consider the simple extension of Protocol 1 to the M node scenario.
The flow of messages to agree on the group key is illustrated in Protocol 3. The
correctness of the protocol can be understood by examining Step (3) of Protocol
3. The first time this step is executed between nodeN2 and nodeN3, there exists
a shared secret tN2

between nodeN1 and nodeN2. Since tN2
is the only value used

by nodeN2 in the PnS execution, the view of nodeN1 is the same as nodeN2.
Thus the secret shared by PnS execution between nodeN2 and nodeN3 can be
computed by nodeN1 independently, based on the observed bus outputs. Also
note that the bits of tN3

obtained at the end of this step is a subset of the bits
of tN1

, i.e. ∃I ⊆ {1, . . . , |tN1
|}, s.t tN3

= tN1
(I).

For each repetition of this step between successive pairs of nodes, all nodes
prior to the active pair can derive the result of the protocol. Thus, once nodeNM

completes execution, all nodes share a common string. Though the implicit
backward-sharing of keys is a desirable property, the overall communication ef-
ficiency of the protocol is low. To see this, observe that at each each successive
execution of Step 3, additional bits are leaked to an eavesdropper. Consider the
ith bit of the string sampled by nodeN1, aN1

:= fN1
(1n, ∅) . The probability that

this bit does not leak by the end of the protocol is simply 2−(M−1). Thus we
obtain that the expected communication complexity to generate a n bit secret
is exponential in the number of group elements, i.e. O(n · 2(M−1)).

Node Arrival and Departure: At the end of the protocol, each node knows
all random bits selected during the protocol. Thus, the departure of any node
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Function: RetV al := fNi
(1n, s), 1 ≤ i ≤M

if s 6= ∅, RetV al := s

otherwise r ← {0, 1}n, RetV al := r

Protocol: SimpleGroup(1n, {nodeN1, . . . , nodeNM}, {fN1
, . . . , fNM

})

1. Each node initializes the secret key string sNi
= ∅, 1 ≤ i ≤M .

2. The first pair of nodes executes PnS subroutine with a target string length
l = n · 2(M−1), to obtain the shared secret as

tN1,2 := PnS(1l, nodeN1, nodeN2, fN1
(1l, ∅), fN2

(1l, ∅)).

Each node maintains the temporary value of the PnS as tN1
= tN2

:= tN1,2

respectively.
3. The next pair of nodes (nodeN2, nodeN3) executes PnS with the target length

l = |tN2
| to obtain the private results (or update the private results) as

tN2,3 := PnS(1l, nodeN2, nodeN3, fN2
(1l, tN2

), fN3
(1l, ∅)).

4. All nodes prior to the currently active nodes update their private strings as the
output of the PnS result. In this case, as nodeN1 is the only node preceding
(nodeN2, nodeN3), it updates its private string tN1

as the output of the PnS
protocol between nodeN2 and nodeN3. Thus tN1

= tN2
= tN3

.
5. Protocol is repeated from Step (3) for each successive pair of nodes (nodeN3,

nodeN4), . . . , (nodeNM−2, nodeNM−1), (nodeNM−1, nodeNM ).
6. All nodes update the shared keys as sNi

= sNi
|| tNi

, 1 ≤ i ≤M .
7. If |sNM

| < n, the protocol is repeated from Step (2) using l = (n−|sNM
|)·2(M−1).

Protocol 3. Simple group key protocol for M nodes

requires re-execution of the complete protocol. For node arrival, it may appear
that the new node can simply be appended to the end of the chain. However, the
execution of PnS with the new node would leak several bits (half on average).
Thus, the whole protocol needs to be re-executed to compensate for the lost bits.
Thus, both addition and deletion operations incur exponential communication
cost, i.e. O(n · 2(M−1)). However, the new key maintains the property of key
independence.

Note that an alternative, more efficient protocol using PnS with information
theoretic security guarantees could be envisaged if we do not require the protocol
to be contributory, i.e. each node contributes to the randomness of the key. A
selected leader can simply engage in pairwise PnS with all other nodes and use
the derived keys as one-time pads to distribute a secret value. It is easy to
see that the computational complexity for key generation, node departure and
arrival for such a scheme would be linear, i.e. O(n ·M). However all protocols
presented here are ‘contributory’ protocols.

Security: Since Protocol 3 simply extends Protocol 1, it has the advantage of
inheriting the security properties of Protocol 1. As each stage of the protocol is
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secure against passive adversaries, the information theoretic security extends to
the whole protocol. Similarly, it can be simply observed that the key indepen-
dence property extends from each stage to the eventual protocol result.

4.2 Tree Based Group Protocol

Fig. 2. Tree structure of PnS operations

The scheme presented in Section 4.1 provides ideal security guarantees at
the cost of efficiency. However, security against computationally bounded adver-
saries is sufficient for practical systems. This relaxation enables the utilization
of efficient topologies for key agreement.

For key generation, the nodes are organized in a binary tree structure, e.g. as
shown in Fig 2. The physical nodes (ECUs) are assigned to the leaf nodes of the
tree. The virtual nodes correspond to logical entities that can be emulated by
any physical leaf node in the subtree rooted at that node. For the algorithms in
this paper, we assume that the physical messages triggered by the virtual node
are sent by the leaf node in the subtree with the highest priority (leftmost node
of the tree in our model). The message flow for the key generation scheme is
detailed in Protocol 4.

The structure of the scheme is similar to the previous protocol. However,
using the function g(·, ·) isolates successive PnS stages. Since the output of g(·, ·)
is indistinguishable from random, it can be used in place of the random sampling
in the original protocol. Secondly, as the leakage of output bits of g(·, ·) leaks no
information about the inputs, bits leaked at any stage do not influence the prior
stages. As a result of these properties, this scheme incurs a linear communication
overhead for initial key generation, i.e. O(n · M). The tree structure further
optimizes node addition and deletion.

Node Departure: A node in the network has knowledge of all the random
values generated and exchanged along the path, denoted as Pdr, from the node
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Function: Retval := fNi
(1n, s), 1 ≤ i ≤M

i: local persistent counter initialized to 0 during the first execution
RetV al := g(s, i)
i := i+ 1

Protocol: TreeGroup(1n, {nodeN1, . . . , nodeNM}, {fN1
, . . . , fNM

})

1. Each leaf node initializes the private string tNi
← {0, 1}n, 1 ≤ i ≤M .

2. The process starts at the leaf nodes. Each pair of siblings execute the complete
PnS protocol with target string length n, and the result is assigned to the private
string of the parent as

tV 1
i,i+1

:= PnS(1n, nodeNi, nodeNi+1, fNi
(1n, tNi

), fNi+1
(1n, tNi+1

)),

where i = 1, 3, . . .. Note: Here, we execute the complete PnS protocol. Thus the
output is of length n, i.e. |tV 1

i,i+1
| = n.

3. Step (2) is repeated at the next level of hierarchy, i.e. first level of virtual nodes
here, V 1

i,i+1, to generate the private strings for their parents.
4. The process of Step (3) continues till the virtual root node is reached. The

private string of the root node troot is the shared secret key between all nodes.

Protocol 4. Tree based group key protocol for M nodes

to the root. Thus deletion of a node involves updating all the values known to
the node and re-execution of PnS with the updated values. For example in Fig
2, if nodeN4 departs the network, it is sufficient to update the random values at
nodeN3 and the virtual nodes V 1

3,4, V
2
1,2, root.

We assume that the departing node broadcasts its identity to the group.
Thus the nodes along Pdr and their siblings flag their values for updating. The
update progresses upwards from the affected leaf node. If a node lies directly
along Pdr, it uses the new PnS result from the child node for all future protocol
execution. All other nodes simply execute the PnS protocol with updated index
values (in f(·)).

At the end of the protocol, the value of the final PnS interaction is used as
the group secret shared by all nodes. The statistical independence of the output
of g(·, ·) for different inputs ensures that the new key is independent of the prior
shared sequence and unknown to the departing node. Further, it can be observed
that the computational complexity of this stage is simply O(n · logM).

Node Arrival: Similar to the node departure scenario, a node arrival requires
creation of a path to the root and executing the PnS protocol with siblings of
the nodes along the new path.

For simplicity, we assume that the new node is temporarily assigned the
priority equivalent to a recently departed node or the lowest priority among
existing nodes in the group. This minimizes the changes to the tree structure
and the re-computations required to add a node. In cases where this is not
possible, we may add a node in the ‘pre-assigned’ order and modify the tree
hierarchy accordingly.
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Consider the example in Fig 2, where nodeNM+1 joins the network. This re-
quires updating the random values at nodeNM and the virtual nodes V 1

M,M+1, V
2
3,4,

root. This may be performed in a manner identical to the departing scenario.
Thus, it can be observed that the new key will be independent of the old key
and the computational complexity is simply O(n · logM).

Security Discussion: The organization of the nodes in a tree structure does
not alter the role of the adversary. It simply modifies the order of participation
of the nodes. Intuitively, we argue that similar to Protocol 3, the security of
the series of PnS stages against a computationally bounded adversary can be
derived directly from Theorem 2.

5 Authenticated Group Key Agreement Schemes

We now consider the scenario where group members must be authenticated prior
to participation in the protocol. This requires some pre-established notion of
trust or identity that can be verified. As described in Section 2.2, we consider
the minimalistic scenario where each node shares a symmetric key with the
gateway.

In our schemes, the gateway simply acts as a passive verifier of the operations.
The broadcast channel allows the gateway to monitor the protocol execution. We
ensure that the messages are a function of the shared keys Ki’s. This allows the
gateway to verify whether the messages used for the PnS protocol are from the
expected parties. We present two implementations of this approach that provide
a tradeoff between security and efficiency.

5.1 Authenticated Tree Based Protocol

First we utilize the efficient tree structure of Protocol 4 and add an authenti-
cation mechanism to it. This can be achieved via a simple modification to the
method of selection of random values by the leaf nodes. In Protocol 4, the leaf
nodes choose arbitrary random values for the initial sequence of PnS operations.
Here, we assume that GW provides a random value and all nodes use a function
of this random value and their shared key to bootstrap the PnS procedure.

Since the GW is aware of the random value and the shared keys, it can re-
create and thus verify all random strings used in the PnS operations. Note that
after the initiation of the protocol by GW, it only participates passively. If an
error is detected, the GW halts the protocol by transmitting an error message.
The detailed flow of messages for this is presented in Protocol 5.

As the structure of the protocol is similar to Protocol 4, it inherits the low
complexity and security properties of the unauthenticated protocol. However,
authenticated key exchange protocols may have an additional security require-
ment of Perfect Forward Secrecy (PFS), wherein the group key remains secret
even in the event of compromise of trust credentials, i.e. Ki. Protocol 5 however
fails to meet this requirement. In the event that an adversary compromises the
shared secret, it can reconstruct the random values used for PnS (similar to
GW) and hence learn the secret key from the transcripts. In the next section,
we provide a solution to this problem.
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Function: RetV al := fNi
(1n, s), 1 ≤ i ≤M

i: local persistent counter initialized to 0 during the first execution
Output RetV al := g(s, i)
i := i+ 1

Protocol: AuthTreeGroup(1n, {nodeN1, . . . , nodeNM}, {fN1
, . . . , fNM

})

1. GW select a random sequence of n bits, i.e. tgw ← {0, 1}
n and broadcasts it to

all group members.
2. Each leaf node of the tree initializes the private string tNi

= g(Ki, tgw), 1 ≤ i ≤
M . Here, Ki is the key shared between nodeNi and the GW.

3. The process starts at the leaf nodes. Each pair of siblings execute the PnS
protocol with target string length n, and the result is assigned to the private
string of the parent as

tV 1
i,i+1

:= PnS(1n, nodeNi, nodeNi+1, fNi
(1n, tNi

), fNi+1
(1n, tNi+1

)),

where i = 1, 3, . . .. Note that we execute the complete PnS protocol here so that
the output is of length n, i.e. |tV 1

i,i+1
| = n.

4. Step (3) is repeated at the next level of hierarchy, i.e. first level of virtual nodes
here, V 1

i,i+1, to generate the private strings for the parents of the virtual nodes.
5. The process of Step (4) continues till the virtual root node is reached. The

private string of the root node troot is the shared secret key between all nodes.
6. The gateway monitors the broadcast messages and verifies the correctness. It

transmits an error message if the verification fails at any stage.

Protocol 5. Authenticated tree based group key protocol for M nodes

5.2 Authenticated Linear Group Protocol

In Protocol 5, all inputs used for computing the random values for PnS were
available to an adversary that compromises Ki. This was because one of the in-
puts was broadcast byGW to initiate the protocol. Here instead of the broadcast
message, the GW transfers the initial random value to nodeN1 through the PnS
protocol. This ensures that atleast one of the inputs is never leaked to the adver-
sary. However, as this requires the secret to be passed down the authentication
chain, it forces us to use a linear structure. The flow of the protocol is illustrated
as Protocol 6.

Whenever two nodes engage in the PnS protocol, the first node uses a function
of the random value from the previous stage, while the second node uses a fresh
random value concatenated with some authentication credentials. The value used
by the first node ensures that all nodes prior to it can re-create the PnS execution
and learn its outputs. The value of the second node will be authenticated by the
passively monitoring GW, before it is included in the chain.

To ensure security against compromise of Ki and still ensure verifiability, it is
required that the second node use some fresh randomness, unknown to everyone
else and the key Ki. It should be observed that successful authentication of the
messages of the second node requires the PnS protocol to be internally executed
atleast twice. In the first round, the fresh random value is extracted by GW
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Function: RetV al := fx(1
n,K, ctr, state), x ∈ {GW, nodeN1, . . . , nodeNM}

i: local persistent counter initialized to 0 during the first execution
l state: local persistent flag initialized to 0 during the first execution
if(l state 6= state)

if(state == 2) i := −1
if(state == 1) i := 0
l state := state

if(i == −1) RetV al := ctr

else RetV al := g(K, ctr + i)
i := i+ 1

Protocol: AuthLinearGroup(1n, {nodeN1, . . . , nodeNM}, {fN1
, . . . , fNM

})

1. The GW is begins the protocol by acting as the first link in the PnS chain. The
GW chooses tGW ← {0, 1}

n and nodeN1 chooses tN1
← {0, 1}n to execute the

PnS protocol as

tGW,N1
= PnS(1n,GW, nodeN1, fGW (1n, tGW , 0, 1), fN1

(1n,KN1
, tN1

, 2)).

2. Next, nodeN2 chooses a random value tN2
← {0, 1}n. nodeN1 performs PnS

with nodeN2 as

tN1,N2
= PnS(1n, nodeN1, nodeN2, fN1

(1n, tGW,N1
, 0, 1), fN2

(1n,KN2
, tN2

, 2)).

3. Step (2) is repeated between successive pairs of nodes till the final node is
reached. Denote by tNM−1,NM

, the result of the final PnS operation. This is the
group key shared by all nodes.

4. The gateway monitors the broadcast messages and verifies the correctness. It
transmits an error message if the verification fails at any stage.

Protocol 6. Authenticated linear group key protocol for M nodes

and in the second round it is authenticated. We argue that this will always be
the case as the probability that the PnS protocol is executed only once is 2−n,
i.e. when all bits of both the parties are complements of each other. Thus the
authentication process does not add communication overhead. Similar to the
previous schemes, the initial key generation has linear complexity, i.e. O(n ·M).

Node Arrival and Departure: The addition of a node in a linear structure is
simple. We assume that the added node is temporarily (for the group) assigned
a lower priority than all other elements and thus, is to be added at the end of the
chain. Thus the addition of a new member simply requires one PnS operation
between the last node and the new member, i.e. complexity of O(1).

A departing node knows the secrets associated with all nodes that follow it.
Thus a node departure requires all nodes following the departing node to update
their key parameters. This may be performed by simply re-executing the PnS
protocol with updated index values, without the need of sampling fresh random
strings. Thus this incurs linear communication cost, i.e. O(n ·M).
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6 Discussion

6.1 Security Properties

Though Section 5 describes schemes that are robust against an arbitrary active
adversaries, we argue that such a model is too restrictive for the automotive
schenarios. Operations in our protocol and the architecture of the CAN bus re-
strict the actions of the adversary in our system. We argue that an active adver-
sary cannot successfully perform any operation, except eavesdropping, without
detection. Consider the following

1. Modification of a packet - The properties of the CAN bus allow only
one type of modification to the messages transmitted by the nodes. An ad-
versary can flip a recessive bit ‘1’ to a dominant bit ‘0’ by transmitting a
voltage, however not vice-versa. It can be verified that this simply results in
a mismatched key at both parties. This can easily be detected by any key
verification method.

2. Inserting messages for active nodes - An active node, executing a pair-
wise session of the protocol, only accepts outputs on the bus that result
from superposition of its own signals with that of the partner. Thus consider
an adversary that attempts to compromise a session between nodeN1 and
nodeN2 by inserting a ‘specific’ message for nodeN2. However, this requires
that the adversary initiate a transmission from nodeN2. Assume that the
message transmitted by the adversary is madv, and that by nodeN2 is mN2

.
Thus the message recorded by nodeN2 is the logical AND of these messages,
i.e.madv∧mN2

. However, as the adversary has no control overmN2
, it cannot

insert a ‘specific’ packet. It can however choose and force bits to be 0.
3. Inserting messages for passive nodes - In the group protocols, nodes

that have engaged in one pairwise session may update their local parameters
based on the output of the future sessions. However, it can be demonstrated
that the probability of successfully ‘successfully’ inserting a n bit packet, i.e.
a packet that is accepted as a valid input by the passive node, is less than
(

3
4

)n
.

Theorem 3. Let the adversary activate the protocol of a passive node by
insert an arbitrary pair of strings b1, b2, where |b1| = |b2| = n, marked with
the session identifier of the currently active nodes. The passive nodes detect
the adversary with a probability greater than 1−

(

3
4

)n
.

Proof. Consider the scenario where nodeN2 and nodeN3 are actively engag-
ing in PnS and nodeN1 is the passive observer. Let tN1,2

be the string at
nodeN1 as a result of its interaction with nodeN2. As described in Proto-
col 1, nodeN2 uses that string for interaction with nodeN3. Thus nodeN1

can simply verify the bus output to and identify ‘unexpected’ behavior of
the adversary as follows. Consider the set of indices L where tN1,2

= 0,
L = {l ≤ |tN1,2

||tN1,2
(i) = 0}.

The output on the bus as a result of the first PnS operation, corresponding
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to indices in the set L, should be 0. This results simply from the AND op-
eration of the bus. Any deviation from this results in an error by nodeN1.
Thus for the message by adversary to be accepted, b1(L) should be 0, i.e.
the adversary should be able to estimate the position of all 0s in the string
tN1,2

. Thus we obtain

Pr ({b1, b2} accepted) =
∑

k

Pr (Adv covers all 0 positions | |L| = k) ·

Pr(|L| = k)

=

n
∑

k=0

(

1

2

)k

·

(

n

k

)(

1

2

)k (
1

2

)n−k

=

(

3

4

)n

4. Impersonation - Note that broadcast nature of the CAN bus ensures that
any transmitted message is delivered to all the nodes. Thus any spoofed or
replayed message by the adversary can be detected by the victim node and
an error flag can be raised. We assume that such detection can occur due to
the session IDs described earlier.

A cryptographic method to guarantee Property (4) is via the trust relation
established with the gateway. An alternate way is by including a mechanism
to identify spoofed messages in individual ECUs. For such cases, schemes that
are secure against a passive eavesdropper would also be secure against an active
adversary. Thus the efficient tree-based structure of Section 4 can be utilized to
provide security against active adversaries.

6.2 Performance

One of the main benefits of the our approach is its computational advantage over
the modular multiplications, as required for traditional group schemes based on
DH or ECDH. The variants of the our protocols allow a tradeoff between the
complexity and bandwidth efficiency. Further, our schemes are based on pseu-
dorandom functions, which can be practically implemented either via the SHA
family of hash functions or a block cipher such as AES. Both these primitives
are better suited for resource constrained devices, compared to modular multi-
plication.

To understand the performance comparison of our scheme, consider the sce-
nario where the M nodes wish to generate a n bit key. Clearly, Protocol 3
requires no cryptographic primitives, but has a high bandwidth overhead. Each
round of PnS using n bit inputs requires transmission of 2n bits on the bus
(normal and the complement). Further, scenarios that use the cryptographic
primitives use 2 invocations of the function for each round. We summarize the
overhead and some properties of the protocols in Table 1. Authors in [10] evalu-
ate the performance of various cryptographic primitives on various automotive
microcontrollers, namely the S12X, a low end 16-bit automotive microcontroller
from Freescale and the TriCore chip, a high end 32-bit microcontroller from the
AUDO family of Infineon. The S12X family operates at 40MHz while the Tri-
core chips can operate up to 180MHz. For generating a key of length n = 128,
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Table 1. Performance of the proposed schemes

Protocol
Property 3 4 5 6

Simple
Unauth

Tree-based
Unauth

Tree based
Auth

Linear Auth

Avg no. of bits Tx on bus 4n(2M−1 − 1) 4n(M − 1) 4n(M − 1) 4nM
Avg. of PRF invocations 0 4(M − 1) 5M − 4 4M − 2
Node addition O(n2M ) O(n logM) O(n logM) O(n)
Node deletion O(n2M ) O(n logM) O(n logM) O(nM)

we may utilize the SHA-256 hash function in place of the PRF. It can be seen
that performance of the PRFs adds very little overhead of 3.145ms and 0.045ms

respectively for each invocation for our target input lengths.

Due to the lack of implementation of state-of-the art key exchange schemes
based on ECDH, e.g. MQV [20], on comparable automotive microcontrollers,
we cannot present performance benchmarks for the group operations. However,
to the best of our knowledge, in all performance benchmarks in literature, the
group operations for ECDH with a comparable keysize (256 bits), implemented
in software without any dedicated hardware support, consume atleast one to
two orders higher time. Thus, we would assume that such a scaling would be
expected for the automotive microcontrollers as well, i.e. overhead of ≈ 100ms.
Thus the performance advantage of our scheme is clear.

A typical implementation of the CAN bus operates at a rate of 125kbits/s,
i.e. 1000 frames per second. Each frame of frame contains 8 bytes of data. Thus
on average, a PnS session between two nodes to generate a n = 128 bit key
would last over 8 frames, i.e. 8ms, which is similar to the overhead using ECDH.

With improvements in techniques to break cryptographic keys, it is expected
that the recommended length of parameters for ECDH will increase significantly
in the foreseeable future, [1]. The computational overhead of group operations
due to such changes has poor scaling in comparison to our group key protocols,
which would scale almost linearly with the key length.

6.3 Conclusion

We presented methods to efficiently generate group keys for the nodes connected
via a shared bus, using physical layer properties. The methods utilize the natural
wired AND operation provided by the bus architecture in place of expensive mod-
ular exponentiation operations typically required. The algorithmic complexity of
our scheme is equivalent to the most efficient key-generation algorithm available
today. One of the most promising applications for this schemes is in context of
ECU networks inside an automobile. However, our assumptions are sufficiently
generic to map to a variety of wired networks. Thus, these schemes can be uti-
lized in several different systems where low capability devices are present.
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