Software implementation of Koblitz curves over quadratic fields

Thomaz Oliveira ${ }^{1 \star}$, Julio López ${ }^{2 \star \star}$, and Francisco Rodríguez-Henríquez ${ }^{1 \star}$
${ }^{1}$ Computer Science Department, CINVESTAV-IPN
${ }^{2}$ Institute of Computing, University of Campinas

Abstract

In this work, we retake an old idea that Koblitz presented in his landmark paper [21], where he suggested the possibility of defining anomalous elliptic curves over the base field \mathbb{F}_{4}. We present a careful implementation of the base and quadratic field arithmetic required for computing the scalar multiplication operation in such curves. In order to achieve a fast reduction procedure, we adopted a redundant trinomial strategy that embeds elements of the field $\mathbb{F}_{4^{m}}$, with m a prime number, into a ring of higher order defined by an almost irreducible trinomial. We also present a number of techniques that allow us to take full advantage of the native vector instructions of high-end microprocessors. Our software library achieves the fastest timings reported for the computation of the timing-protected scalar multiplication on Koblitz curves, and competitive timings with respect to the speed records established recently in the computation of the scalar multiplication over prime fields.

1 Introduction

Anomalous binary curves, generally referred to as Koblitz curves, are binary elliptic curves satisfying the Weierstrass equation, $E_{a}: y^{2}+x y=x^{3}+a x^{2}+1$, with $a \in\{0,1\}$. Since their introduction in 1991 by Koblitz [21], these curves have been extensively studied for their additional structure that allows, in principle, a performance speedup in the computation of the elliptic curve point multiplication operation.

Koblitz curves defined over \mathbb{F}_{4} were also proposed in [21]. Nevertheless, until now the research works dealing with standardized Koblitz curves in commercial use, such as the binary curves standardized by NIST [23] or the suite of elliptic curves supported by the TLS protocol [9, 4], have exclusively analyzed the security and performance of curves defined over binary extension fields $\mathbb{F}_{2^{m}}$, with m a prime number (for recent examples see $[1,5,32,36]$).

We find interesting to explore the cryptographic usage of Koblitz curves defined over \mathbb{F}_{4} due to their inherent usage of quadratic field arithmetic. Indeed, it

[^0]has been recently shown $[3,25]$ that quadratic field arithmetic is extraordinarily efficient when implemented in software. This is because one can take full advantage of the Single Instruction Multiple Data (SIMD) paradigm, where a vector instruction performs simultaneously the same operation on a set of input data items.

Quadratic extensions of a binary finite field $\mathbb{F}_{q^{2}}$ can be defined by means of a monic polynomial of degree two $h(u) \in \mathbb{F}_{2}[u]$ irreducible over \mathbb{F}_{q}. The field $\mathbb{F}_{q^{2}}$ is isomorphic to $\mathbb{F}_{q}[u] /(h(u))$ and its elements can be represented as $a_{0}+a_{1} u$, with $a_{0}, a_{1} \in \mathbb{F}_{q}$. The addition of two elements $a, b \in \mathbb{F}_{q^{2}}$, can be performed as $c=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) u$. Using $h(u)=u^{2}+u+1$, the multiplication of a, b can be computed as, $d=a_{0} b_{0}+a_{1} b_{1}+\left(\left(a_{0}+a_{1}\right) \cdot\left(b_{0}+b_{1}\right)+a_{0} b_{0}\right) u$. By carefully organizing the code associated to these arithmetic operations, one can greatly exploit the pipelines and their inherent instruction-level parallelism, which are available in contemporary high-end processors.

Our contributions In this work we designed for the first time, a 128-bit secure and timing attack resistant scalar multiplication on a Koblitz curve defined over \mathbb{F}_{4}, as they were proposed by Koblitz in his 1991 seminal paper [21]. We developed all the required algorithms for performing such a computation. This took us to reconsider the strategy of using redundant trinomials (also known as almost irreducible trinomials), which were proposed more than ten years ago in $[6,10]$. We also report what is perhaps the most comprehensive analysis yet reported of how to efficiently implement arithmetic operations in binary finite fields and their quadratic extensions using the vectorized instructions available in high-end microprocessors. For example, to the best of our knowledge, we report for the first time a 128 -bit AVX implementation of the linear pass technique, which is useful against side-channel attacks.

The remaining of this paper is organized as follows. In $\S 2$ we formally introduce the family of Koblitz elliptic curves defined over \mathbb{F}_{4}. In $\S 3$ and $\S 4$ a detailed description of the efficient implementation of the base and quadratic field arithmetic using vectorized instructions is given. We present in $\S 5$ the scalar multiplication algorithms used in this work, and we present in $\S 6$ the analysis and discussion of the results obtained by our software library. Finally, we draw our concluding remarks and future work in $\S 7$.

2 Koblitz curves over \mathbb{F}_{4}

Koblitz curves over \mathbb{F}_{4} are defined by the following equation

$$
\begin{equation*}
E_{a}: y^{2}+x y=x^{3}+a \gamma x^{2}+\gamma \tag{1}
\end{equation*}
$$

where $\gamma \in \mathbb{F}_{2^{2}}$ satisfies $\gamma^{2}=\gamma+1$ and $a \in\{0,1\}$. Note that the number of points in the curves $E_{0}\left(\mathbb{F}_{4}\right)$ and $E_{1}\left(\mathbb{F}_{4}\right)$ are, $\# E_{0}\left(\mathbb{F}_{4}\right)=4$ and $\# E_{1}\left(\mathbb{F}_{4}\right)=6$, respectively. For cryptographic purposes, one uses Eq. (1) operating over binary extension fields of the form \mathbb{F}_{q}, with $q=4^{m}$, and m a prime number. The set
of affine points $P=(x, y) \in \mathbb{F}_{q} \times \mathbb{F}_{q}$ that satisfy Eq. (1) together with a point at infinity represented as \mathcal{O}, forms an abelian group denoted by $E_{a}\left(\mathbb{F}_{4^{m}}\right)$, where its group law is defined by the point addition operation.

Since for each proper divisor l of $k, E\left(\mathbb{F}_{4^{l}}\right)$ is a subgroup of $E\left(\mathbb{F}_{4^{k}}\right)$, one has that $\# E\left(\mathbb{F}_{4^{l}}\right)$ divides $\# E\left(\mathbb{F}_{4^{k}}\right)$. Furthermore, by choosing prime extensions m, it is possible to find $E_{a}\left(\mathbb{F}_{4^{m}}\right)$ with almost-prime order, for instance, $E_{0}\left(\mathbb{F}_{2^{2 \cdot 163}}\right)$ and $E_{1}\left(\mathbb{F}_{2^{2 \cdot 167}}\right)$. In Table 1 , we present the group orders $\# E_{a}\left(\mathbb{F}_{4^{m}}\right)$ of Koblitz curves defined over \mathbb{F}_{4} for prime degrees $m \in[127,191]$.

In the rest of this paper, we will show that the aforementioned range can be used for the efficient implementation of a 128-bit secure scalar multiplication on software architectures counting with 64-bit carry-less native multipliers, such as the ones available in contemporary personal desktops.

The Frobenius map $\tau: E_{a}\left(\mathbb{F}_{q}\right) \rightarrow E_{a}\left(\mathbb{F}_{q}\right)$ defined by $\tau(\mathcal{O})=\mathcal{O}, \tau(x, y)=$ $\left(x^{4}, y^{4}\right)$, is a curve automorphism satisfying $\left(\tau^{2}+4\right) P=\mu \tau(P)$ for $\mu=(-1)^{a}$ and all $P \in E_{a}\left(\mathbb{F}_{q}\right)$. By solving the equation $\tau^{2}+4=\mu \tau$, the Frobenius map can be seen as the complex number $\tau=(\mu \pm \sqrt{-15}) / 2$.

2.1 The τ-adic representation

Given a Koblitz curve $E_{a} / \mathbb{F}_{2^{2 m}}$ with group order $\# E_{a}\left(\mathbb{F}_{2^{2 m}}\right)=h \cdot p \cdot r$, where h is the order $\# E_{a}\left(\mathbb{F}_{4}\right), r$ is the order of our subgroup of interest and p is the order of a group of no cryptographic interest ${ }^{3}$. We can express a scalar $k \in \mathbb{Z}_{r}$ as an element in $\mathbb{Z}[\tau]$ using the now classical partial reduction introduced by Solinas [31], with a few modifications. The modified version is based on the fact that $\tau^{2}=\mu \tau-4$ and is presented in Algorithm 1. The Round function is the $\mathbb{Z}[\tau]$ rounding-off method described in [31, Routine 60$]$.

```
Algorithm 1 Partial reduction modulo \(\left(\tau^{m}-1\right) /(\tau-1)\)
Input: The scalar \(k \in[1, r-1], s_{0}=d_{0}+\mu d_{1}, s_{1}=-d_{1}\), where
    \(\left(\tau^{m}-1\right) /(\tau-1)=d_{0}+d_{1} \tau\)
Output: \(\rho=\left(r_{0}+r_{1} \tau\right)=k\) partmod \(\left(\tau^{m}-1\right) /(\tau-1)\)
    \(t \leftarrow s_{0}+\mu \cdot s_{1}\)
    \(\lambda_{0} \leftarrow s_{0} \cdot k /(p \cdot r)\)
    \(\lambda_{1} \leftarrow s_{1} \cdot k /(p \cdot r)\)
    \(q_{0}, q_{1} \leftarrow \operatorname{Round}\left(\lambda_{0}, \lambda_{1}\right)\)
    \(r_{0} \leftarrow k-t \cdot q_{0}-4 \cdot s_{1} \cdot q_{1}\)
    \(r_{1} \leftarrow s_{1} \cdot q_{0}-s_{0} \cdot q_{1}\)
    return \(\left(r_{0}, r_{1}\right)\).
```

[^1]Table 1. Group orders $\# E_{a}\left(\mathbb{F}_{2^{2 m}}\right)$ with prime $m \in[127,191]$. Prime factors are underlined. The size (in bits) of the largest prime factor is presented in parenthesis

m	a	Factorization of $\# E_{a}\left(\mathbb{F}_{2}{ }^{2 m}\right)$
127	0	$\begin{aligned} & 0 x 4 \cdot \underline{0 x 1268 F 1298760419} . \\ & 0 x D E 7 D 169 B E D 4130151 C D 618 C F 5713077271 F F 51 A 4 B 1 C F B 75 B F \end{aligned}$
127	1	$0 x 6 \cdot 0 x 41603 E A F 071$. 0x29C4C778B6D2CD0FA36B3CA951A32DAC100C9C63576EEF7BF1F21 (209)
131	0	$0 x 4 \cdot 0 x 14 E 3 B E E 4283 C 895368536 F D 0 F C F 0049 D 152 D 78 B$ $\underline{0 x C 41400 B 084478 F 241 C 495042459 ~(108) ~}$
131	1	$0 x 6 \cdot 0 x 4267 F 1026 F 4 F$. $\underline{0 x 2806 B B 97 F B 5 F 7 C 2 F 9 E 1 E D E 20 B F 59 A C 390 D A B B A 7621 D 9 A 0 F 26 A A 1}$ (205)
137	0	$0 x 4 \cdot 0 x 763 D B 379950 B 73 D 200 B 971 F 1 D$. 0x22A41FB03F2428B44188DD9FFEA796DC6D197A91BA21 (173)
137	1	$0 x 6 \cdot 0 x 4337925$ B3141 B99447C1273. 0x289FE5979AC03A2E5C FCE8E6024FEF0863C633AE96A0DF (182)
149	0	$0 x 4 \cdot 0 x 29 B 66 B 578 C 9 F A E B$. $\underline{0 x 62322066993 B 57 A 8857 E 552587 C 80 A 567018483 F 2 E 493 D B B 7750 A B 7 D B 623}$ (239)
149	1	$\begin{aligned} & 0 x 6 \cdot \underline{0 x 1 B 73 C 442 E 8 D} \cdot \\ & \frac{0 x 637845 F 7 F 8 B F A B 325 B 85412 F B 54061 F 148 B 7 F 6 E 79 A E 11 C C 843 A D E 1470 F 7 E 4 E 29}{(255)} \end{aligned}$
151	0	$0 x 4 \cdot 0 x 1 C 4 A E B 2 D 8 E 194 A 47 D 0382 E B 3617226 E 64298205 F 16 F$. 0x90C5C79B46EC78B84E022CB2715ED8281 (131)
151	1	$0 x 6 \cdot 0 x 1 B F F B 49 B B 65 D F 97968 C 6 F 644 A F 7 D 0 F 4 D B 6 F 5163$ $0 x F 9 A B D 46 E 3960 E 5060364 D 59 E B A C A 8 C 8326 B$ (140)
157	0	$0 x 4 \cdot 0 x 499 D 09449 B 55 C 7 D 71 F C 18 A 2 B 0265785 F$. $0 x 37 A 45 B D 5 E 114 A 84 F C B 8900 B A E A 9 E 731 E 0 C 4 B 3 E D E C 15 F 327$ (186)
157	1	0x6 - 0xEECA8C4698A0916800B4E7. OxB6F74A858FF10701D113E39259417F04CF038B297F3C6573F6E14F33 (224)
163	0	$0 x 4 \cdot 0 x F \backslash$ EA48D724AAB2045E5CFE286F8372017024DFF7BB3 (324)
163	1	$0 x 6 \cdot 0 x 71977 B B 40 C F 524 B C A 9 A 8 D F B 19 B D 9 B 251 D 5$. $0 x 180 A 101 E 65451 B 46 A 75 A C 029 C$ F $08711513 C 17 F D E 760 B 92 E 5$ (189)
167	0	$0 x 4 \cdot 0 x 6 B 30 E 725707929 F A 94 F E F A A 012 F 999$. $\underline{0 x 26364 F B 489 C 8 B 628 D 0 E 48 E 36 B 3 B B 4 F 3 C 70 B 651945484571 B 06 B A 77}$ (213)
167	1	$\begin{aligned} & 0 x 6 \cdot \underline{0 x A} \\ & D 45 C 6 A 4 A 8565763007 E 9 F E F A 42 E 0 E A 9 B 9 E 8 B 7 F 3541(331) \end{aligned}$
173	0	$0 x 4 \cdot 0 x 163 D 79633 A E 74 D 69 B 1 F 95475535 F B 6 B 057 D 397$. 0xB82BEB20E4D8E6D2BFFC1AB84B6BC625C94C6002336E2573F (196)
173	1	$0 x 6 \cdot 0 x B A 3 D E F 139$. $\underline{0 x E A 9746 E E F 14 E 1638 A 503 F A 6 F B 739 A 623894 A 590811 B 6939 A 30 D 7 A 016 E 8 A 77815} \backslash$ $0084 D 9 C 4 D 6 E 0 D ~(308)$

Table 1. Continued from previous page

m	a	Factorization of $\# E_{a}\left(\mathbb{F}_{2^{2 m}}\right)$
179	0	$0 x 4 \cdot 0 x 10 C 01861 F 3 F 8 F 0 A C 2767 C D$. $\underline{0 x F 4882969 C 296 A 9493 F E A A 3 C 9 F 58 D A 166 B 76 D 3236 B F 15 C 2 F 10 E 2 B 0421 F 3 F 7 E 50 D C C 6 F}$ (272)
179	1	$0 x 6 \cdot 0 x 9 D 1 C 1699 F 1 F 6977990 F 2 F F D F 75540051322 D 7023$. $\underline{0 x 116171487 A D 893 A 0 E 28972203861592 D D 2828 E F 2 D 71 B 9 D 5 B 03 ~(196) ~}$
181	0	$\begin{aligned} & 0 x 4 \cdot 0 x C B B \cdot \\ & \underline{0 x 141 B F 6 E 35420 F D E 10 C F 60620853943 A 20 D 5 A 91 F 2 F 5 D D E 75 B 04126 F 3100 B 191 A F 1} \backslash \\ & \underline{E 338 F 81 F B 8 E D 77 C 1 C 57 B E F 3}(348) \end{aligned}$
181	1	$0 x 6 \cdot 0 x 1 C 0 B 0 F 8135 C 51501 A D 7 D C 439 F 84 C F 88 F A 90 C 9907 A 08 A A E 56 D 243 E 127 C F$. $0 x 615 F A 176 A 8 D 559 A 3 F F D B 2 E C D A C A F 97 A 9 B$ (130)
191	0	$0 x 4 \cdot 0 x 65 E 935 E 0087 F 8 C B E 7343 A 713158023856 D F D 17 A 25 E E 004 B 0837 F$. $\underline{0 x 2831230707 A 836 B C 4 B 2 B 625 A 55960 A 5506 F 5 C C D 1 B 719 ~(174) ~}$
191	1	$\begin{aligned} & 0 x 6 \cdot 0 x 23 D 01 \text {. } \\ & \text { Ox4C3F9B376D369D04F03499007A43FE6460A012C86B2C575858EE9FC7F67A566813} \backslash \\ & \underline{B 39 D A 28 D C 9 D 58285 B C 07 F 8811}(362) \end{aligned}$

Given that the norm of τ is $N(\tau)=4, N(\tau-1)=h, N\left(\tau^{m}-1\right)=h \cdot p \cdot r$ and $N\left(\left(\tau^{m}-1\right) /(\tau-1)\right)=p \cdot r$, the subscalars r_{0} and r_{1} resulted from the partial modulo function will be both of size approximately $\sqrt{p \cdot r}$. As a consequence, the corresponding scalar multiplication will need more iterations than expected, since it will consider the order p of a subgroup which is not of cryptographic interest.

For that reason, we took the design decision of considering that the input scalar of our point multiplication algorithm is already given in the $\mathbb{Z}[\tau]$ domain. As a result, a partial reduction of the scalar k is no longer required, and the number of iterations in the point multiplication will be consistent with the scalar k size. If one needs to retrieve the equivalent value of the scalar k in the ring \mathbb{Z}_{r}, this can be easily computed with one multiplication and one addition in \mathbb{Z}_{r}. This strategy is in line with the degree-2 scalar decomposition method within the GLS curves context as suggested in [12].

2.2 The width- $w \tau$ NAF form

Assuming that the scalar k is specified in the $\mathbb{Z}[\tau]$ domain, one can represent the scalar in the regular width- $w \tau$ NAF form as shown in Algorithm 2. The length of the representation width- $w \tau$ NAF of an element $k \in \mathbb{Z}[\tau]$ is discussed in [30].

Given a width w, after running Algorithm 2, we have $2^{2(w-1)-1}$ different digits ${ }^{4}$. As a result, it is necessary to be more conservative when choosing the width w, when compared to the Koblitz curves defined over \mathbb{F}_{2}. For widths

[^2]```
Algorithm 2 Regular width- \(w \tau\)-recoding for \(m\)-bit scalar
Input: \(w, t_{w}, \alpha_{v}=\beta_{v}+\gamma_{v} \tau\) for \(v=\left\{ \pm 1, \pm 3, \pm 5, \ldots, \pm 4^{w-1}-1\right\}, \rho=r_{0}+r_{1} \tau \in \mathbb{Z}[\tau]\)
 with odd \(r_{0}, r_{1}\)
Output: \(\rho=\sum_{i=0}^{\left\lceil\frac{m+2}{w-1}\right\rceil} v_{i} \tau^{i(w-1)}\)
 for \(i \leftarrow 0\) to \(\left\lceil\frac{m+2}{w-1}\right\rceil-1\) do
 if \(w=2\) then
 \(v_{i} \leftarrow\left(\left(r_{0}-4 \cdot r_{1}\right) \bmod 8\right)-4\)
 \(r_{0} \leftarrow r_{0}-v_{i}\)
 else
 \(u \leftarrow\left(r_{0}+r_{1} t_{w} \bmod 2^{2 w-1}\right)-2^{2(w-1)}\)
 if \(v>0\) then \(s \leftarrow 1\) else \(s \leftarrow-1\)
 \(r_{0} \leftarrow r_{0}-s \beta_{v}, r_{1} \leftarrow r_{1}-s \gamma_{v}, v_{i} \leftarrow s \alpha_{v}\)
 end if
 for \(j \leftarrow 0\) to \((w-2)\) do
 \(t \leftarrow r_{0}, r_{0} \leftarrow r_{1}+\left(\mu \cdot r_{0}\right) / 4, r_{1} \leftarrow-t / 4\)
 end for
 end for
```

$w=2,3,4,5$ we have to pre- or post-compute $2,8,32$ and 128 points, respectively. For the 128 -bit point multiplication, we estimated that the value of the width $w$ must be at most four, otherwise, the costs of the point pre/post-processing are greater than the addition savings obtained in the main iteration.

In addition, we must find efficient expressions of $\alpha_{v}=v \bmod \tau^{w}$. The method for searching the best expressions in Koblitz curves over $\mathbb{F}_{2}[33]$ cannot be directly applied in the $\mathbb{F}_{4}$ case. As a result, we manually provided $\alpha_{v}$ representations for $w \in\{2,3,4\}$ and $a=1$, which are our implementation parameters. The rationale for our chosen representations was to minimize the number of field arithmetic operations. In practice, we must reduce the number of full point additions on behalf of point doublings and mixed additions. In Table 3 we present the $\alpha_{v}$ representatives along with the operations required to generate the multiples of the base point ${ }^{5}$.

Therefore, one point doubling and full addition are required to generate the points $\alpha_{v} \cdot P$ for $w=2$, one point doubling, four full additions, three mixed additions and four applications of the Frobenius map for the $w=3$ case and one point doubling, twenty full additions, eleven mixed additions and five applications of the Frobenius map for the $w=4$ case.

[^3]Table 3. Representations of $\alpha_{v}=v \bmod \tau^{w}$, for $w \in\{2,3,4\}$ and $a=1$ and the required operations for computing $\alpha_{v}$. Here we denote by $D, F A, M A, T$ the point doubling, full addition, mixed addition and the Frobenius map, respectively. In addition, we consider that the point $\alpha_{1} P$ is represented in affine coordinates. The order for computing the points is given in roman numbers

| $w$ | $v$ | $v \bmod \tau^{w}$ | $\alpha_{v}$ | Operations | Order |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1 | 1 | 1 | n/a | I |
|  | 3 | 3 | 3 | $t_{0} \leftarrow 2 \alpha_{1}, \alpha_{3} \leftarrow t_{0}+\alpha_{1}(D+F A)$ | II |
| 3 | 1 | 1 | 1 | n/a | I |
|  | 3 | 3 | 3 | $t_{0} \leftarrow 2 \alpha_{1}, \alpha_{3} \leftarrow t_{0}+\alpha_{1}(D+F A)$ | II |
|  | 5 | 5 | $-\tau-\alpha_{15}$ | $\alpha_{5} \leftarrow-t_{1}-\alpha_{15}(M A)$ | VIII |
|  | 7 | $3 \tau+3$ | $\tau^{2} \alpha_{3}+\alpha_{3}$ | $\alpha_{7} \leftarrow \tau^{2} \alpha_{3}+\alpha_{3}(F A+2 T)$ | III |
|  | 9 | $3 \tau+5$ | $\alpha_{7}+2$ | $\alpha_{9} \leftarrow \alpha_{7}+t_{0}(F A)$ | IV |
|  | 11 | $3 \tau+7$ | $\alpha_{9}+2$ | $\alpha_{11} \leftarrow \alpha_{9}+t_{0}(F A)$ | V |
|  | 13 | $-\tau-7$ | $\tau^{2}-\alpha_{3}$ | $\alpha_{13} \leftarrow t_{2}-\alpha_{3}(M A)$ | VII |
|  | 15 | $-\tau-5$ | $\tau^{2}-1$ | $\begin{aligned} & t_{1} \leftarrow \tau \alpha_{1}, t_{2} \leftarrow \tau t_{1}, \alpha_{15} \leftarrow t_{2}-\alpha_{1} \\ & (M A+2 T) \end{aligned}$ | VI |
| 4 | 1 | 1 | 1 | n/a | I |
|  | 3 | 3 | $-\tau^{3}-\alpha_{61}$ | $\alpha_{3} \leftarrow-t_{4}-\alpha_{61}(M A)$ | XXVI |
|  | 5 | 5 | $-\tau^{3}-\alpha_{59}$ | $\alpha_{5} \leftarrow-t_{4}-\alpha_{59}(M A)$ | XXVII |
|  | 7 | 7 | $-\tau^{3}-\alpha_{57}$ | $\alpha_{7} \leftarrow-t_{4}-\alpha_{57}(M A)$ | XXVIII |
|  | 9 | 9 | $-\tau^{3}-\alpha_{55}$ | $\alpha_{9} \leftarrow-t_{4}-\alpha_{55}(M A)$ | XXIX |
|  | 11 | 11 | $-2 \tau^{2}+\alpha_{43}$ | $\alpha_{11} \leftarrow-t_{2}+\alpha_{43}(F A)$ | XXX |
|  | 13 | 13 | $-2 \tau^{2}+\alpha_{45}$ | $\alpha_{13} \leftarrow-t_{2}+\alpha_{45}(F A)$ | XXXI |
|  | 15 | 15 | $-2 \tau^{2}+\alpha_{47}$ | $\alpha_{15} \leftarrow-t_{2}+\alpha_{47}(F A)$ | XXXII |
|  | 17 | $5 \tau-11$ | $-\tau^{3}-\alpha_{47}$ | $t_{4} \leftarrow \tau^{2} t_{3}, \alpha_{17} \leftarrow-t_{4}-\alpha_{47}(M A+2 T)$ | XIX |
|  | 19 | $5 \tau-9$ | $-\tau^{3}-\alpha_{45}$ | $\alpha_{17} \leftarrow-t_{4}-\alpha_{47}(M A)$ | XX |
|  | 21 | $5 \tau-7$ | $-\tau^{3}-\alpha_{43}$ | $\alpha_{17} \leftarrow-t_{4}-\alpha_{45}(M A)$ | XXI |
|  | 23 | $5 \tau-5$ | $-\tau^{3}-\alpha_{41}$ | $\alpha_{17} \leftarrow-t_{4}-\alpha_{43}(M A)$ | XXII |
|  | 25 | $5 \tau-3$ | $-\tau^{3}-\alpha_{39}$ | $\alpha_{17} \leftarrow-t_{4}-\alpha_{41}(M A)$ | XXIII |
|  | 27 | $5 \tau-1$ | $-\tau^{3}-\alpha_{37}$ | $\alpha_{17} \leftarrow-t_{4}-\alpha_{39}(M A)$ | XXIV |
|  | 29 | $5 \tau+1$ | $-\tau^{3}-\alpha_{35}$ | $\alpha_{17} \leftarrow-t_{4}-\alpha_{37}(M A)$ | XXV |
|  | 31 | $-2 \tau-9$ | $2 \tau^{2}-1$ | $t_{2} \leftarrow \tau t_{1}, \alpha_{31} \leftarrow t_{2}-\alpha_{1}(M A+T)$ | XII |
|  | 33 | $-2 \tau-7$ | $2 \tau^{2}+1$ | $\alpha_{33} \leftarrow t_{2}+\alpha_{1}(M A)$ | XIII |
|  | 35 | $-2 \tau-5$ | $-2 \tau-5$ | $\alpha_{35} \leftarrow \alpha_{37}-t_{0}(F A)$ | VI |
|  | 37 | $-2 \tau-3$ | $-2 \tau-3$ | $\alpha_{37} \leftarrow \alpha_{39}-t_{0}(F A)$ | IV |
|  | 39 | $-2 \tau-1$ | $-2 \tau-1$ | $\begin{aligned} & t_{0} \leftarrow 2 \alpha_{1}, t_{1} \leftarrow \tau t_{0}, \alpha_{39} \leftarrow-t_{1}-\alpha_{1} \\ & (D+M A+T) \end{aligned}$ | II |
|  | 41 | $-2 \tau+1$ | $-2 \tau+1$ | $\alpha_{41} \leftarrow-t_{1}+\alpha_{1}(M A)$ | III |
|  | 43 | $-2 \tau+3$ | $-2 \tau+3$ | $\alpha_{43} \leftarrow \alpha_{41}+t_{0}(F A)$ | V |
|  | 45 | $-2 \tau+5$ | $-2 \tau+5$ | $\alpha_{45} \leftarrow \alpha_{43}+t_{0}(F A)$ | VII |
|  | 47 | $-2 \tau+7$ | $-2 \tau+7$ | $\alpha_{47} \leftarrow \alpha_{45}+t_{0}(F A)$ | VIII |
|  | 49 | $-2 \tau+9$ | $-2 \tau+9$ | $\alpha_{49} \leftarrow \alpha_{47}+t_{0}(F A)$ | IX |
|  | 51 | $-2 \tau+11$ | $-2 \tau+11$ | $\alpha_{51} \leftarrow \alpha_{49}+t_{0}(F A)$ | X |
|  | 53 | $-2 \tau+13$ | $-2 \tau+13$ | $\alpha_{53} \leftarrow \alpha_{51}+t_{0}(F A)$ | XI |
|  | 55 | $3 \tau-13$ | $3 \tau-13$ | $t_{3} \leftarrow \tau \alpha_{1}, \alpha_{55} \leftarrow t_{3}-\alpha_{53}(M A+T)$ | XIV |
|  | 57 | $3 \tau-11$ | $3 \tau-11$ | $\alpha_{57} \leftarrow t_{3}-\alpha_{51}(M A)$ | XV |
|  | 59 | $3 \tau-9$ | $3 \tau-9$ | $\alpha_{59} \leftarrow t_{3}-\alpha_{49}(M A)$ | XVI |
|  | 61 | $3 \tau-7$ | $3 \tau-7$ | $\alpha_{61} \leftarrow t_{3}-\alpha_{47}(M A)$ | XVII |
|  | 63 | $3 \tau-5$ | $3 \tau-5$ | $\alpha_{63} \leftarrow t_{3}-\alpha_{45}(M A)$ | XVIII |

### 2.3 Security of the Koblitz curves defined over $\mathbb{F}_{4}$

Since the Koblitz curves defined over $E_{a}\left(\mathbb{F}_{4^{m}}\right)$ operate over quadratic extensions fields, it is conceivable that Weil descent attacks $[13,16]$ could possibly be efficiently applied on these curves. However, Menezes and Qu showed in [22] that the GHS attack cannot be implemented efficiently for elliptic curves defined over binary extension fields $\mathbb{F}_{q}$, with $q=2^{m}$, and $m$ a prime number in $[160, \ldots, 600]$. Further, a specialized analysis for binary curves defined over fields of the form $\mathbb{F}_{4}{ }^{m}$ reported in [14], proved that the only vulnerable prime extension in the range $[80, \ldots, 256]$, is $m=127$. Therefore, the prime extension used in this work, namely, $m=149$, is considered safe with respect to the state-of-the-art knowledge of the Weil descent attack classes.

For a comprehensive survey of recent progress in the computation of the elliptic curve discrete problem in characteristic two, the reader is referred to the paper by Galbraith and Gaudry [11].

## 3 Base field arithmetic

In this section, we present the techniques used in our work in order to implement the binary field arithmetic. We selected a Koblitz curve with the parameter $a=1$ defined over $\mathbb{F}_{4^{m}}$ with $m=149$. This curve was chosen because the order of its subgroup of interest is of size $2^{254}$, which yields a security-level equivalent to a 128 -bit secure scalar multiplication.

### 3.1 Modular reduction

One can construct a binary extension field $\mathbb{F}_{2^{m}}$ by taking a polynomial $f(x) \in$ $\mathbb{F}_{2}[x]$ of degree $m$ which is irreducible over $\mathbb{F}_{2}$. It is very important that the form of the polynomial $f(x)$, admits an efficient modular reduction. The criteria for selecting $f(x)$ depends on the architecture to be implemented as it was extensively discussed in [29].

For our field extension choice, we do not have degree-149 trinomials which are irreducible over $\mathbb{F}_{2}$. An alternative solution is to construct the field through irreducible pentanomials. Given an irreducible pentanomial $f(x)=x^{m}+x^{a}+$ $x^{b}+x^{c}+1$, the efficiency of the shift-and-add reduction method depends mostly on the fact that the term-degree differences $m-a, m-b$ and $m-c$, are all equal to 0 modulo $W$, where $W$ is the architecture word size in bits.

Using the terminology of [29], lucky irreducible pentanomials are the ones where the three previously mentioned differences are equal to 0 modulo $W$. Fortunate irreducible pentanomials are the ones where two out of the three above differences are equal to 0 modulo $W$. The remaining cases are called ordinary irreducible pentanomials. Performing an extensive search with $W=8$, we found no lucky pentanomials, 189 fortunate pentanomials and 9491 ordinary pentanomials for the extension $m=149$.

The problem is that fortunate pentanomials make the modular reduction too costly if we compare it with the field multiplication computed with carry-less instructions. This is because we need to perform four shift-and-add operations per reduction step. Besides, two of those operations require costly shift instructions, since they are shifts not divisible by 8 .

### 3.2 Redundant trinomials

As a consequence of the above analysis, we resorted to the redundant trinomials strategy introduced in $[6,10]$, also known as almost irreducible trinomials. Given a non-irreducible trinomial $g(x)$ of degree $n$ that factorizes into an irreducible polynomial $f(x)$ of degree $m<n$, the idea is to perform the field reduction modulo $g(x)$ throughout the scalar multiplication and, at the end of the algorithm, reduce the polynomials so obtained modulo $f(x)$. In a nutshell, throughout the algorithm we represent the base field elements as polynomials in the ring $\mathbb{F}_{2}[x]$ reduced modulo $g(x)$. At the end of the algorithm, the elements are reduced modulo $f(x)$ in order to bring them back to the target field $\mathbb{F}_{2^{149}}$. For the sake of simplicity, throughout this paper, we will refer to those elements as field elements.

Since our target software platform counts with a native 64-bit carry-less multiplier, an efficient representation of the field elements must have at most 192 bits, i.e, three 64 -bit words. For that reason, we searched for redundant trinomials of degree at most 192. In Table 4, we present the redundant trinomials that are available in the binary polynomial ring universe for this selected range.

We selected the trinomial $g(x)=x^{192}+x^{19}+1$ for two reasons. First, the difference $(m-a)>128$, allows us to perform the shift-and-add reduction in just two steps, since our architecture contains 128 -bit vectorized registers. Second, the property $m \bmod 64=0$, which allows us to perform efficiently the first part of the shift-and-add reduction. The steps to perform the modular reduction are described in Algorithm $3{ }^{6}$. The reduction using 128-bit registers is presented in $\S 4$, where we discuss the arithmetic in the quadratic field extension.

```
Algorithm 3 Modular reduction by the trinomial \(g(x)=x^{192}+x^{19}+1\)
Input: A 384-bit polynomial \(r(x)=F \cdot x^{320}+E \cdot x^{256}+D \cdot x^{192}+C \cdot x^{128}+B \cdot x^{64}+A\)
 in \(\mathbb{F}_{2}[x]\) stored into six 64 -bit registers (\(\mathrm{A}-\mathrm{F}\)).
Output: A 192-bit polynomial \(s(x)=r(x) \bmod g(x)=I \cdot x^{128}+H \cdot x^{64}+G\) stored
 into three 64 -bit registers (G-I).
 1: \(G \leftarrow A \oplus D \oplus(F \gg 45) \oplus((D \oplus(F \gg 45)) \ll 19)\)
 2: \(H \leftarrow B \oplus E \oplus(E \ll 19) \oplus(D \gg 45)\)
 3: \(I \leftarrow C \oplus F \oplus(F \ll 19) \oplus(E \gg 45)\)
```

[^4]Table 4. Redundant trinomials $g(x)=x^{m}+x^{a}+1$ of degree $\leq 192$ which factorizes into an irreducible polynomial of degree 149

| Trinomial | $m-a$ | $m$ mod 64 | $(m-a) \bmod 64$ |
| :--- | :---: | :---: | :---: |
| $x^{151}+x^{2}+1$ | 149 | 23 | 21 |
| $x^{151}+x^{149}+1$ | 2 | 23 | 2 |
| $x^{156}+x^{73}+1$ | 83 | 28 | 19 |
| $x^{156}+x^{83}+1$ | 73 | 28 | 9 |
| $x^{163}+x^{61}+1$ | 102 | 35 | 38 |
| $x^{163}+x^{80}+1$ | 83 | 35 | 19 |
| $x^{163}+x^{83}+1$ | 80 | 35 | 16 |
| $x^{163}+x^{102}+1$ | 61 | 35 | 61 |
| $x^{166}+x^{43}+1$ | 123 | 38 | 59 |
| $x^{166}+x^{123}+1$ | 43 | 38 | 43 |
| $x^{169}+x^{53}+1$ | 116 | 41 | 52 |
| $x^{169}+x^{116}+1$ | 53 | 41 | 53 |
| $x^{173}+x^{36}+1$ | 137 | 45 | 9 |
| $x^{173}+x^{137}+1$ | 36 | 45 | 36 |
| $x^{179}+x^{78}+1$ | 101 | 51 | 37 |
| $x^{179}+x^{101}+1$ | 78 | 51 | 14 |
| $x^{187}+x^{15}+1$ | 172 | 59 | 44 |
| $x^{187}+x^{172}+1$ | 15 | 59 | 15 |
| $x^{191}+x^{74}+1$ | 117 | 63 | 53 |
| $x^{191}+x^{117}+1$ | 74 | 63 | 10 |
| $x^{192}+x^{19}+1$ | 173 | 0 | 45 |
| $x^{192}+x^{173}+1$ | 19 | 0 | 19 |

The overall cost of the modular reduction is ten xors and five bitwise shifts. At the end of the scalar multiplication, we have to reduce the 192-bit polynomial to an element of the field $\mathbb{F}_{2^{149}}$. Note that the trinomial $g(x)=x^{192}+x^{19}+1$ factorizes into a 69-term irreducible polynomial $f(x)$ of degree 149 given as,

$$
\begin{aligned}
f(x)= & x^{149}+x^{146}+x^{143}+x^{141}+x^{140}+x^{139}+x^{138}+x^{137}+x^{129}+x^{123}+x^{122}+ \\
& x^{121}+x^{119}+x^{117}+x^{114}+x^{113}+x^{111}+x^{108}+x^{107}+x^{106}+x^{105}+x^{99}+ \\
& x^{94}+x^{92}+x^{91}+x^{90}+x^{86}+x^{85}+x^{83}+x^{81}+x^{80}+x^{78}+x^{77}+x^{75}+ \\
& x^{71}+x^{70}+x^{68}+x^{67}+x^{65}+x^{64}+x^{63}+x^{54}+x^{53}+x^{51}+x^{49}+x^{48}+ \\
& x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{35}+x^{28}+x^{26}+x^{23}+x^{18}+ \\
& x^{17}+x^{16}+x^{15}+x^{12}+x^{11}+x^{10}+x^{9}+x^{3}+x^{2}+x+1 .
\end{aligned}
$$

The final reduction is performed via the mul-and-add reduction ${ }^{7}$ which, experimentally, performed more efficiently than the shift-and-add reduction. Concisely, the mul-and-add technique consists in a series of steps which includes

[^5]shifts (in order to align the bits in the registers), carry-less multiplications and xors for eliminating the extra bits.

The basic mul-and-add step is described in Algorithm 4. Here, besides the usual notation, we represent the 64 -bit carry-less multiplication by the symbol $\times_{i j}$, where $i, j=\{L, H\}$, with $L$ and $H$ representing the lowest and highest 64 -bit word packed in a 128-bit register, respectively. For example, if one wants to multiply the 128 -bit register $A$ lowest 64 -bit word by the 128 -bit register $B$ highest 64 -bit word, we would express this operation as $T \leftarrow A \times_{L H} B$.

```
Algorithm 4 Basic step of the mul-and-add reduction modulo the 69 -term
irreducible polynomial \(f(x)\)
Input: A \(j\)-bit polynomial \(r(x)=B \cdot x^{128}+A\) stored into two 128-bit registers (A,
 B), for \(j \in[191,148]\), the irreducible polynomial \(f(x)=F \cdot x^{128}+E\) stored into
 two 128-bit registers (E, F).
Output: A \((j-3)\)-bit polynomial \(s(x)=D \cdot x^{128}+C\) stored into two 128 -bit registers
 (C, D).
 \(T_{0} \leftarrow B \gg 21\) (64-bit alignment)
 \(T_{1} \leftarrow E \times_{L L} T_{0} \quad\) 6: \(T_{0} \leftarrow T_{0} \oplus\left(T_{2} \gg 64\right)\)
 \(T_{2} \leftarrow E \times_{H L} T_{0} \quad 7: C \leftarrow A \oplus T_{1}\)
 \(T_{0} \leftarrow F \times_{L L} T_{0}\)
 8: \(D \leftarrow B \oplus T_{0}\)
```

Algorithm 4 requires four xors, three bitwise shifts and three carry-less multiplications. In our particular case, the difference between the degrees of the two most significant monomials of $f(x)$ is three. Also, note that we need to reduce 43 bits (191-148). As a result, it is required $\left\lceil\frac{43}{3}\right\rceil=15$ applications of the Algorithm 4 in order to conclude the reduction.

## 4 Quadratic field arithmetic

In this Section, the basic arithmetic operations in the quadratic field are presented. As usual, the quadratic field $\mathbb{F}_{2^{2.149}}$ was constructed by the degree two monic polynomial $h(u)=u^{2}+u+1$, and its elements are represented as $a_{0}+a_{1} u$, with $a_{0}, a_{1} \in \mathbb{F}_{2^{149}}$.

### 4.1 Register allocation

The first aspect to be considered is the element allocation into the architecture's available registers. In our case, we have to store two polynomials of 192 bits into 128 -bit registers in such way that it allows an efficient modular reduction and, at the same time, generates a minimum overhead in the two main arithmetic operations, namely, the multiplication and squaring.

Let us consider an element $a=\left(a_{0}+a_{1} u\right) \in \mathbb{F}_{2^{2 \cdot 149}}$, where $a_{0}=C \cdot x^{128}+$ $B \cdot x^{64}+A$ and $a_{1}=F \cdot x^{128}+E \cdot x^{64}+D$ are 192-bit polynomials, each one of them stored into three 64 -bit words (A-C, D-F). Also, let us have three 128 -bit
registers $R_{i}$, with $i \in\{0,1,2\}$, which can store two 64 -bit words each. In this section, we adopted the following notation, given a 128 -bit register $R$, its most and least significant packed 64-bit words, denoted respectively by $S$ and $T$, are represented as $R=S \mid T$. The first option is to rearrange the 384-bit element $a=\left(a_{0}+a_{1} u\right)$ as,

$$
R_{0}=A\left|B, \quad R_{1}=C\right| D, \quad R_{2}=E \mid F
$$

The problem with this representation is that a significant overhead is generated in the multiplication function, more specifically, in the pre-computation phase of the Karatsuba procedure (cf. $\S 4.2$ with the computation of $V_{0,1}, V_{0,2}$ and $\left.V_{1,2}\right)$. Besides, in order to efficiently perform the subsequent reduction phase, we must temporarily store the polynomial terms into four 128 -bit vectors, which can cause a register overflow. A better method for storing the element $a$ is to use the following arrangement,

$$
R_{0}=D\left|A, \quad R_{1}=E\right| B, \quad R_{2}=F \mid C
$$

Using this setting, there still exists some overhead in the multiplication and squaring arithmetic operations, even though the penalty on the latter operation is almost negligible. In the positive side, the terms of the elements $a_{0}, a_{1}$ do not need to be rearranged and the modular reduction of these two base field elements can be performed in parallel, as discussed next.

### 4.2 Multiplication

Given two $\mathbb{F}_{2^{2 \cdot 149}}$ elements $a=\left(a_{0}+a_{1} u\right)$ and $b=\left(b_{0}+b_{1} u\right)$, with $a_{0}, a_{1}, b_{0}, b_{1}$ in $\mathbb{F}_{2^{149}}$, we perform the multiplication $c=a \cdot b$ as,

$$
\begin{aligned}
c=a \cdot b & =\left(a_{0}+a_{1} u\right) \cdot\left(b_{0}+b_{1} u\right) \\
& =\left(a_{0} b_{0} \oplus a_{1} b_{1}\right)+\left(a_{0} b_{0} \oplus\left(a_{0} \oplus a_{1}\right) \cdot\left(b_{0} \oplus b_{1}\right)\right) u,
\end{aligned}
$$

where each element $a_{i}, b_{i} \in \mathbb{F}_{2^{149}}$ is composed by three 64 -bit words. The analysis of the Karatsuba algorithm cost for different word sizes was presented in [35]. There, it was shown that the most efficient way to multiply three 64 -bit word polynomials $s(x)=s_{2} x^{2}+s_{1} x+s_{0}$ and $t(x)=t_{2} x^{2}+t_{1} x+t_{0}$ as $v(x)=s(x) \cdot t(x)$ is through the one-level Karatsuba method,

$$
\begin{gathered}
V_{0}=s_{0} \cdot t_{0}, \quad V_{1}=s_{1} \cdot t_{1}, \quad V_{2}=s_{2} \cdot t_{2}, \\
V_{0,1}=\left(s_{0} \oplus s_{1}\right) \cdot\left(t_{0} \oplus t_{1}\right), \quad V_{0,2}=\left(s_{0} \oplus s_{2}\right) \cdot\left(t_{0} \oplus t_{2}\right) \quad V_{1,2}=\left(s_{1} \oplus s_{2}\right) \cdot\left(t_{1} \oplus t_{2}\right), \\
v(x)=V_{2} \cdot x^{4}+\left(V_{1,2} \oplus V_{1} \oplus V_{2}\right) \cdot x^{3}+\left(V_{0,2} \oplus V_{0} \oplus V_{1} \oplus V_{2}\right) \cdot x^{2}+\left(V_{0,1} \oplus V_{0} \oplus V_{1}\right) \cdot x+V_{0},
\end{gathered}
$$

which costs six multiplications and twelve additions. The Karatsuba algorithm as used in this work is presented in Algorithm $5{ }^{8}$.

[^6]```
Algorithm 5 Karatsuba algorithm for multiplying three 64-bit word polynomi-
als \(s(x)\) and \(t(x)\)
Input: Six 128 -bit registers \(R_{i}\), with \(i \in\{0 \ldots 5\}\), containing the elements
    \(R_{0}=t_{0}\left|s_{0}, R_{1}=t_{1}\right| s_{1}, R_{2}=t_{2}\left|s_{2}, R_{3}=\left(t_{0} \oplus t_{1}\right)\right|\left(s_{0} \oplus s_{1}\right), R_{4}=\left(t_{0} \oplus t_{2}\right) \mid\left(s_{0} \oplus s_{2}\right)\),
    \(R_{5}=\left(t_{1} \oplus t_{2}\right) \mid\left(s_{1} \oplus s_{2}\right)\).
Output: Three 128 -bit registers \(R_{i}\), with \(i \in\{6 \ldots 8\}\), which store the value
    \(v(x)=s(x) \cdot t(x)=v_{5} \cdot x^{320}+v_{4} \cdot x^{256}+v_{3} \cdot x^{192}+v_{2} \cdot x^{128}+v_{1} \cdot x^{64}+v_{0}\) as
    \(R_{6}=v_{1}\left|v_{0}, R_{7}=v_{3}\right| v_{2}, R_{8}=v_{5} \mid v_{4}\).
    \(t m p_{0} \leftarrow R_{0} \times_{H L} R_{0} \quad 9: t m p_{1} \leftarrow t m p_{1} \oplus t m p_{0}\)
    \(t m p_{1} \leftarrow R_{1} \times_{H L} R_{1} \quad 10: t m p_{4} \leftarrow t m p_{4} \oplus t m p_{1}\)
    \(t m p_{2} \leftarrow R_{2} \times_{H L} R_{2} \quad 11: t m p_{4} \leftarrow t m p_{4} \oplus t m p_{2}\)
    \(t m p_{3} \leftarrow R_{3} \times_{H L} R_{3} \quad 12: t m p_{3} \leftarrow t m p_{3} \oplus t m p_{1}\)
    \(t m p_{4} \leftarrow R_{4} \times_{H L} R_{4} \quad 13: R_{6} \leftarrow\left(t m p_{3} \ll 64\right)\)
    \(t m p_{5} \leftarrow R_{5} \times_{H L} R_{5} \quad 14: R_{8} \leftarrow\left(t m p_{5} \gg 64\right)\)
    \(t m p_{5} \leftarrow t m p_{5} \oplus t m p_{1} \quad 15: R_{7} \leftarrow\left(\left(t m p_{5}, t m p_{3}\right) \triangleright 64\right)\)
    \(t m p_{5} \leftarrow t m p_{5} \oplus t m p_{2}\)
```

The algorithm requires six carry-less instructions, six vectorized xors and three bitwise shift instructions. In order to calculate the total multiplication cost, it is necessary to include the Karatsuba pre-computation operations at the base field level (twelve vectorized xors and six byte interleaving instructions) and at the quadratic field level (six vectorized xors). Also, we must consider the reorganization of the registers in order to proceed with the modular reduction (six vectorized xors).

4.3 Modular reduction

The modular reduction of an element $a=\left(a_{0}+a_{1} u\right)$, where a_{0} and a_{1} are 384-bit polynomials, takes nine vectorized xors and six bitwise shifts. The computational savings of the previously discussed register configuration can be seen when we compare the reduction of quadratic field elements, presented in Algorithm 6 with the modular reduction of the base field elements (see Algorithm $3)$. The cost of reducing an element in $\mathbb{F}_{2^{149}}$ in 64 -bit registers is about the same as the cost of the reduction of an element in $\mathbb{F}_{2^{2 \cdot 149}}$ stored into 128-bit registers. Thus, we achieved a valuable speedup of 100%.

4.4 Squaring

Squaring is a very important function in the Koblitz curve point multiplication algorithm, since it is the building block for computing the τ endomorphism. In our implementation, we computed the squaring operation through carry-less multiplication instructions which, experimentally, was an approach less expensive than the bit interleaving method (see [15, Section 2.3.4]). The pre-processing phase is straightforward, we just need to rearrange the 32-bit packed words of the 128 -bit registers in order to prepare them for the subsequent modular reduction.

```
Algorithm 6 Modular reduction of the terms \(a_{0}, a_{1}\) of an element \(a=\left(a_{0}+a_{1} u\right)\)
modulo \(g(x)=x^{192}+x^{19}+1\)
Input: An element \(a=a_{0}+a_{1} u=\left(F \cdot x^{320}+E \cdot x^{256}+D \cdot x^{192}+C \cdot x^{128}+B \cdot x^{64}+\right.\)
    \(A)+\left(L \cdot x^{320}+K \cdot x^{256}+J \cdot x^{192}+I \cdot x^{128}+H \cdot x^{64}+G\right) u\), with the 64 -bit words (A-L)
    arranged in six 128-bit registers as \(R_{0}=G\left|A, R_{1}=H\right| B, R_{2}=I\left|C, R_{3}=J\right| D, R_{4}=\)
    \(K\left|E, R_{5}=L\right| F\)
Output: Elements \(\left(a_{0}, a_{1}\right) \bmod g(x)=M \cdot x^{128}+N \cdot x^{64}+O, P \cdot x^{128}+Q \cdot x^{64}+R\),
    with the 64 -bit words (M-R) organized in three 128 -bit registers as
    \(R_{6}=R\left|O, R_{7}=Q\right| N, R_{8}=P \mid M\)
    \(R_{8} \leftarrow R_{2} \oplus R_{5} \quad 6: R_{7} \leftarrow R_{7} \oplus\left(R_{3} \ll 45\right)\)
    \(R_{7} \leftarrow R_{1} \oplus R_{4}\)
    7: \(R_{6} \leftarrow R_{3} \oplus\left(R_{5} \gg 45\right)\)
    \(R_{8} \leftarrow R_{8} \oplus\left(R_{5} \ll 19\right) \quad 8: R_{6} \leftarrow R_{6} \oplus\left(R_{6} \ll 19\right)\)
    4: \(R_{7} \leftarrow R_{7} \oplus\left(R_{4} \ll 19\right) \quad 9: R_{6} \leftarrow R_{6} \oplus R_{0}\)
    \(5: R_{8} \leftarrow R_{8} \oplus\left(R_{4} \gg 45\right)\)
```

The pre- and post-processing phases require three shuffle instructions, three vectorized xors and three bitwise shifts. The complete function is described in Algorithm 7. Given 128 -bit registers R_{i}, we depict the SSE 32 -bit shuffle operation as $R_{0} \leftarrow R_{1} \oint x x x x$. For instance, if we compute $R_{0} \leftarrow R_{1} \oint 3210$, it just maintains the 32 -bit word order of the register R_{1}, in other words, it just copies R_{1} to R_{0}. The operation $R_{0} \leftarrow R_{1} \oint 2103$ rotates the register R_{1} to the left by 32 -bits. See [18, 17] for more details.

```
Algorithm 7 Squaring of an element \(a=\left(a_{0}+a_{1} u\right) \in \mathbb{F}_{2^{2 \cdot 149}}\)
Input: Element \(a=a_{0}+a_{1} u=\left(C \cdot x^{128}+B \cdot x^{64}+A\right)+\left(F \cdot x^{128}+E \cdot x^{64}+\right.\)
    \(D) u \in \mathbb{F}_{2^{2.149}}\), with the 64 -bit words (A-F) arranged in three 128 -bit registers as
    \(R_{0}=D\left|A, R_{1}=E\right| B, R_{2}=F \mid C\)
Output: Element \(a^{2}=c=c_{0}+c_{1} u=\left(I \cdot x^{128}+H \cdot x^{64}+G\right)+\)
    \(\left(L \cdot x^{128}+K \cdot x^{64}+J\right) u \in \mathbb{F}_{2^{2 \cdot 149}}\), where both elements \(\left(c_{0}, c_{1}\right) \in \mathbb{F}_{2}[x]\) are reduced
    modulo \(x^{192}+x^{19}+1\). The 64 -bit words (G-L) are arranged in three 128 -bit registers
    as \(R_{3}=J\left|G, R_{4}=H\right| K, R_{5}=I \mid L\).
    \(t m p_{0} \leftarrow R_{0}\) ¢ \(3120 \quad\) 9: aux \(x_{5} \leftarrow t m p_{2} \times_{H H} t m p_{2}\)
    \(t m p_{1} \leftarrow R_{1} \oint 3120 \quad 10: R_{3}, R_{4}, R_{5} \leftarrow\) ModularReduction \(\left(\right.\) aux \(\left.x_{0} \ldots 5\right)\)
    \(t m p_{2} \leftarrow R_{2}\) ¢ \(3120 \quad 11: t m p_{0} \leftarrow R_{3} \gg 64\)
    \(a u x_{0} \leftarrow t m p_{0} \times_{L L} t m p_{0} \quad 12: t m p_{1} \leftarrow R_{4} \gg 64\)
    aux \(_{1} \leftarrow t m p_{0} \times_{H H} t m p_{0} \quad 13: t m p_{2} \leftarrow R_{5} \gg 64\)
    \(: a u x_{2} \leftarrow t m p_{1} \times \times_{L L} t m p_{1} \quad 14: R_{3} \leftarrow R_{3} \oplus t m p_{0}\)
    aux \({ }_{3} \leftarrow t m p_{1} \times_{H H} t m p_{1} \quad 15: R_{4} \leftarrow R_{4} \oplus t m p_{1}\)
    8: aux \(_{4} \leftarrow t m p_{2} \times_{L L} t m p_{2} \quad 16: R_{5} \leftarrow R_{5} \oplus t m p_{2}\)
```


4.5 Inversion

The inversion operation is computed via the Itoh-Tsujii method [19]. Given an element $c \in \mathbb{F}_{2^{m}}$, we compute $c^{-1}=c^{\left(2^{m-1}-1\right) \cdot 2}$ through an addition chain,
which in each step computes the term $\left(c^{2^{i}-1}\right)^{2^{j}} \cdot c^{2^{j}-1}$ with $0 \leq j \leq i \leq m-1$. For the case $m=149$, the following chain is used,

$$
1 \rightarrow 2 \rightarrow 4 \rightarrow 8 \rightarrow 16 \rightarrow 32 \rightarrow 33 \rightarrow 66 \rightarrow 74 \rightarrow 148
$$

This addition chain is optimal and was found through the procedure described in $[7]$. Note that although we compute the inversion operation over polynomials in $\mathbb{F}_{2}[x]$ (reduced modulo $g(x)=x^{192}+x^{19}+1$), we still have to perform the addition chain with $m=149$, since we are in fact interested in the embedded $\mathbb{F}_{2^{149}}$ field element.

As previously discussed, in each step of the addition chain, we must calculate an exponentiation $c^{2^{j}}$ followed by a multiplication, where the value j represents the integers that form the addition chain. Experimentally, we found that when $j \geq 4$, it is cheaper to compute the exponentiation through table look-ups instead of performing consecutive squarings. Our pre-computed tables process four bits per iteration, therefore, it is required $\left\lceil\frac{192}{4}\right\rceil=48$ table queries in order to complete the multisquaring function.

$5 \quad \tau$-and-add scalar multiplication

In this Section we discuss the single-core algorithms that compute a timingresistant scalar multiplication through the τ-and-add method over Koblitz curves defined over \mathbb{F}_{4}. There are two basic approaches, the right-to-left and the left-to-right algorithms.

5.1 Left-to-right τ-and-add

This algorithm is similar to the traditional left-to-right double-and-add method. Here, the point doubling operation is replaced by the computationally cheaper τ endomorphism. In addition, we need to compute the width $w-\tau$ NAF representation of the scalar k and perform linear passes (cf. §5.3) in the accumulators in order to avoid cache attacks [34, 26]. The method is shown in Algorithm 8.

The main advantage of this method is that the sensitive data is indirectly placed in the points $P_{v_{i}}$. However, those points are only read and then added to the unique accumulator Q. As a consequence, only one linear pass per iteration is required before reading $P_{v_{i}}$. On the other hand, the operation $\tau^{w-1}(Q)$ must be performed by successive squarings, since computing it through look-up tables could leak information about the scalar k.

5.2 Right-to-left τ-and-add

This other method processes the scalar k from the least to the most significant digit. Taking advantage of the τ endomorphism, the GLV method is brought to its full extent. This approach is presented in Algorithm 9.

```
Algorithm 8 Left-to-right regular \(w\)-TNAF \(\tau\)-and-add on Koblitz curves de-
fined over \(\mathbb{F}_{4}\)
Input: A Koblitz curve \(E_{a} / \mathbb{F}_{2^{2 m}}\), a point \(P \in E_{a}\left(\mathbb{F}_{2^{2 m}}\right)\) of order \(r, k \in \mathbb{Z}_{r}\)
Output: \(Q=k P\)
    Compute \(\rho=r_{0}+r_{1} \tau=k\) partmod \(\left(\frac{\tau^{m}-1}{\tau-1}\right)\)
    Ensure that \(r_{0}\) and \(r_{1}\) are odd.
    Compute the width- \(w\) regular \(\tau\)-NAF of \(r_{0}+r_{1} \tau\) as \(\sum_{i=0}^{\left\lceil\frac{m+2}{w-1}+1\right\rceil} v_{i} \tau^{i(w-1)}\)
    for \(v \in\left\{1,3, \ldots 4^{w-1}-1\right\}\) do Compute \(P_{v}=\alpha_{v} \cdot P\) end for
    \(Q \leftarrow \mathcal{O}\)
    for \(i=\frac{m+2}{w-1}+1\) to 0 do
        \(Q \leftarrow \tau^{w-1}(Q)\)
        Perform a linear pass to recover \(P_{v_{i}}\)
        \(Q \leftarrow Q \pm P_{v_{i}}\)
    end for
    Subtract \(P, \tau(P)\) from \(Q\) if necessary
    return \(Q=k P\)
```

Here, we have to perform a post-computation in the accumulators instead of precomputing the points P_{i} as in the previous approach. Also, the τ endomorphism is applied to the point P, which is usually public. For that reason, we can compute τ with table look-ups instead of performing squarings multiple times.

The downside of this algorithm is that the accumulators carry sensitive information about the digits of the scalar. Also, the accumulators are read and written. As a result, it is necessary to apply the linear pass algorithm to the accumulators Q_{i} twice per iteration.

5.3 Linear pass

The linear pass is a method designed to protect sensitive information against side-channel attacks associated with the CPU cache access patterns. Let us consider an array A of size l. Before reading a value $A[i]$, with $i \in[0, l-1]$, the linear pass technique reads the entire array A but only stores, usually into an output register, the requested data $A[i]$. In that way, the attacker does not know which array index was accessed just by analyzing the location of the cache-miss in his own artificially injected data. Writing in $A[i]$ occurs in a similar vein. Assuming that the data to be written is stored in a register, we proceed by "deceitfully updating" all values of A, except for $A[i]$, which receives the real data. Note that this method causes a considerable overhead, that depends on the size of the array.

In this work, we implemented the linear pass method using 128-bit SSE vectorized instructions and registers. At first, we create an array D of 128 -bit SSE values containing values from 0 to $2^{2(w-1)-1}$, which corresponds to the number of different digits after applying the width- $w \tau N A F$ regular recoding on k. Next, on each iteration of the main loop we create a array of masks M by comparing the actual digit k_{i} with the values of the array D using the SSE

```
Algorithm 9 Right-to-left regular \(w\)-TNAF \(\tau\)-and-add on Koblitz curves de-
fined over \(\mathbb{F}_{4}\)
Input: A Koblitz curve \(E_{a} / \mathbb{F}_{2^{2 m}}\), a point \(P \in E_{a}\left(\mathbb{F}_{2^{2 m}}\right)\) of order \(r, k \in \mathbb{Z}_{r}\)
Output: \(Q=k P\)
    Compute \(\rho=r_{0}+r_{1} \tau=k\) partmod \(\left(\bmod \frac{\tau^{m}-1}{\tau-1}\right)\)
    Ensure that \(r_{0}\) and \(r_{1}\) are odd.
    Compute the width-w regular \(\tau\)-NAF of \(r_{0}+r_{1} \tau\) as \(\sum_{i=0}^{\left\lceil\frac{m+2}{w-1}+1\right\rceil} v_{i} \tau^{i(w-1)}\)
    for \(i \in\left\{1,3, \ldots 4^{w-1}-1\right\}\) do \(Q_{i}=\mathcal{O}\)
    for \(i=0\) to \(\frac{m+2}{w-1}+1\) do
        Perform a linear pass to recover \(Q_{i}\)
        \(Q_{i} \leftarrow Q_{i} \pm P\)
        Perform a linear pass to store \(Q_{i}\)
        \(P \leftarrow \tau^{w-1}(P)\)
    \(Q \leftarrow \mathcal{O}\)
    for \(u \in\left\{1,3, \ldots 4^{w-1}-1\right\}\) do \(Q=Q+\alpha_{v} \cdot Q_{i}\)
    Subtract \(P, \tau(P)\) from \(Q\) if necessary
    return \(Q=k P\)
```

instruction pcmpeqq, that compares the values of two 128 -bit registers A and B and sets the resulting register C with bits one, if A and B are equal, and bits zero otherwise. As a result, we have a array of masks where all values are set to bits 0 , except for one, which has only bits 1 .

Then, by performing logical operations between M and each of the values of A, we can read and write safely into A. The techniques for reading and writing are presented in Algorithms 10 and 11, respectively. Experimental results shows that the implementation of the linear pass technique with SSE registers is more efficient than using 64 -bit conditional move instructions [25] by a factor of 2.125 .

```
Algorithm 10 Reading linear pass using 128-bit AVX vectorized instructions
Input: An array \(A\) and a mask array \(M\), both of size \(l\), a requested index \(d\), SSE
    128-bit registers tmp, dst.
Output: The register \(d s t\) containing \(A[d]\).
    \(d s t \leftarrow 0\)
    for \(i \in\{0, \ldots, l-1\}\) do
            \(t m p \leftarrow M[i] \wedge A[i]\)
            \(d s t \leftarrow d s t \oplus t m p\)
    end for
```


6 Results and discussion

Our software library can be executed in any Intel platform, which comes with the SSE 4.1 vector instructions and the 64 -bit carry-less multiplier instruction

```
Algorithm 11 Writing linear pass using 128-bit AVX vectorized instructions
Input: An array \(A\) and a mask array \(M\), both of size \(l\), a requested index \(d\), SSE
    128-bit registers tmp, src.
Output: The value \(A[d]\) containing src.
    for \(i \in\{0, \ldots, l-1\}\) do
        \(t m p \leftarrow(M[i] \wedge s r c) \oplus(M[i] \wedge A[i])\)
        \(A[i] \leftarrow t m p\)
    end for
```

pclmulqdq. The benchmarking was executed in an Intel Core i7 4770k 3.50 GHz machine (Haswell architecture) with the TurboBoost and HyperThreading features disabled. Also, the library was coded in the GNU11 C and Assembly languages.

Regarding the compilers, we performed an experimental analysis on the performance of our code compiled with different systems: GCC (Gnu Compiler Collection) versions 5.3, 6.1; and the clang frontend for the LLVM compiler infrastructure versions 3.5 and 3.8. All compilations were done with the flags -03 -march=haswell -fomit-frame-pointer. For the sake of comparison, we reported our timings for all of the previously mentioned compilers. However, when comparing our code with the state-of-the-art works, we opted for the clang/llvm 3.8 , since it gave us the best performance.

6.1 Parameters

Given $q=2^{m}$, with $m=149$, we constructed our base binary field $\mathbb{F}_{q} \cong$ $\mathbb{F}_{2}[x] /(f(x))$ with the 69-term irreducible polynomial $f(x)$ described in Section 4. The quadratic extension $\mathbb{F}_{q^{2}} \cong \mathbb{F}_{q}[u] /(h(u))$ was built through the irreducible quadratic $h(u)=u^{2}+u+1$. However, our base field arithmetic was computed modulo the redundant trinomial $g(x)=x^{192}+x^{19}+1$, which has among its irreducible factors, the polynomial $f(x)$.

Our Koblitz curve was defined over $\mathbb{F}_{q^{2}}$ as $E_{1} / \mathbb{F}_{q^{2}}: y^{2}+x y=x^{3}+u x^{2}+u$, and the group $E_{1}\left(\mathbb{F}_{q^{2}}\right)$ contains a subgroup of interest of order

$$
r=0 \times 637845 \mathrm{~F} 7 \mathrm{~F} 8 \mathrm{BFAB} 325 \mathrm{~B} 85412 \mathrm{FB} 54061 \mathrm{~F} 148 \mathrm{~B} 7 \mathrm{~F} 6 \mathrm{E} 79 \mathrm{AE} 11 \mathrm{CC} 843 \mathrm{ADE} 1470 \mathrm{~F} 7 \mathrm{E} 4 \mathrm{E} 29
$$

which corresponds to approximately 255 bits. In addition, throughout our scalar multiplication, we represented the points in λ-affine [20, 28] and λ-projective [25] coordinates. We selected an order- r base point P at random represented in λ affine coordinates as,

$$
\begin{aligned}
x_{P} & =0 \mathrm{x} 1 \mathrm{~B} 0 \mathrm{CB} 55 \mathrm{BC} 0 \mathrm{~B} 41 \mathrm{C} 3 \mathrm{EC} 1820 \mathrm{E} 4 \mathrm{E} 24 \mathrm{EBC} 310451476 \\
& +0 \mathrm{x} 4649 \mathrm{~A} 2 \mathrm{FF} 1 \mathrm{~A} 1 \mathrm{~B} 8 \mathrm{BA} 00 \mathrm{AA} 8 \mathrm{~A} 706 \mathrm{C} 04 \mathrm{D} 6 \mathrm{D} 97 \mathrm{DF} 60 \mathrm{C} \cdot u \\
\lambda_{P} & =0 \mathrm{x} 6 \mathrm{~B} 64 \mathrm{DFA} 496 \mathrm{D} 1 \mathrm{DEEA} 880545 \mathrm{~B} 44 \mathrm{AC} 9 \mathrm{CC} 4950 \mathrm{C} 1 \mathrm{C} \\
& +0 \mathrm{x} 1 \mathrm{ADB} 1 \mathrm{DA} 167 \mathrm{DBDF} 597 \mathrm{~F} 03 \mathrm{D} 9 A 0889 \mathrm{FF} 76 \mathrm{FB} 0 \mathrm{~B} 2 \mathrm{~A} 1 \cdot u
\end{aligned}
$$

Table 5. Timings (in clock cycles) for the finite field operations in $\mathbb{F}_{2^{2.149}}$ using different compiler families

Compilers	Multiplication	Squaring	Multi- squaring	Inversion	Reduction modulo $f(x)$
GCC 5.3	52	20	100	2,392	452
GCC 6.1	52	20	104	2,216	452
clang 3.5	64	24	100	1,920	452
clang 3.8	60	20	96	1,894	452

Table 6. The ratio between the arithmetic and multiplication in $\mathbb{F}_{2^{149}}$. The timings were taken from the code compiled with the clang 3.8 compiler

Operations	Squaring	Multisquaring	Inversion	Reduction modulo $f(x)$
operation / multiplication	0.33	1.60	31.56	7.53

6.2 Field and elliptic curve arithmetic timings

In Table 5, we present the timings for the base and the quadratic field arithmetic. The multisquaring operation is used to support the Itoh-Tsujii addition chain, therefore, it is implemented only in the field $\mathbb{F}_{2^{149}}$ (actually, in a 192-bit polynomial in $\mathbb{F}_{2}[x]$). In addition, we gave timings to reduce a 192-bit polynomial element in $\mathbb{F}_{2}[x]$ modulo $f(x)$. Finally, all timings of operations in the quadratic field include the subsequent modular reduction

Applying the techniques presented in [27], we saw that our machine has a margin of error of four cycles. This range is not of significance when considering the timings of the point arithmetic or the scalar multiplication. Nevertheless, for inexpensive functions such as multiplication and squaring, it is recommended to consider it when comparing the timings between different compilers.

In the following, we compare in Table 6 the base arithmetic operation timings with the multiplication operation, which is the main operation of our library. The ratio squaring/multiplication is relatively expensive. This is because the polynomial $g(x)=x^{192}+x^{19}+1$, does not admit a reduction specially designed for the squaring operation. Furthermore, the multisquaring and the inversion operations are also relatively costly. A possible explanation is that here, we are measuring timings in a Haswell architecture, which has a computationally cheaper carry-less multiplication when compared with the Sandy Bridge platform [18].

In Table 7 we give the timings of the point arithmetic functions. There, we presented the costs of applying the τ endomorphism to an affine point (two coordinates) and a λ-projective point (three coordinates). The reason is that, depending on the scalar multiplication algorithm, one can apply the Frobenius map on the accumulator (projective) or the base point (affine). In addition, we report in Table 7, the mixed point doubling operation, which is defined as
follows. Given a point $P=\left(x_{P}, y_{P}\right)$, the mixed-doubling function computes, $R=\left(X_{R}, L_{R}, Z_{R}\right)=2 P$. In other words, it performs a point doubling on an affine point and returns the resulting point in projective representation. Such primitive is useful in the computation of the τ NAF representations $\alpha_{v}=v \bmod$ τ^{w} (see §2.2).

Table 7. Timings (in clock cycles) for point addition over a Koblitz curve E_{1} / q^{2} using different compiler families

Compilers	Full	Mixed	Full	Mixed	τ endomorphism	
	Addition	Addition	Doubling	Doubling	2 coord.	3 coord.
GCC 5.3	792	592	372	148	80	120
GCC 6.1	796	588	368	148	80	120
clang 3.5	768	580	404	164	84	124
clang 3.8	752	564	384	160	84	120

Table 7 also shows the superior performance of the clang compiler in the point arithmetic timings, since the only operations where it has a clear disadvantage are the full and mixed point doubling. However, those functions are rarely used throughout a Koblitz curve scalar multiplication. In fact, they are used only in the precomputing phase. Next, in Table 8, we show the relation of the point arithmetic timings with the field multiplication.

Table 8. The ratio between the timings of point addition and the field multiplication. The timings were taken from the code compiled with the clang 3.8 compiler

Operations	Full	Mixed	Full	Mixed	τ endomorphism	
	Addition	Addition	Doubling	Doubling	2 coord.	3 coord.
operation / multiplication	12.53	9.39	6.40	2.66	1.40	2.00

6.3 Scalar multiplication timings

Here the timings for the left-to-right and right-to-left regular w - τ NAF τ-andadd scalar multiplication, with $w=2,3,4$ are reported. The setting $w=2$ is presented in order to analyze how the balance between the pre-computation and the main iteration costs works in practice. Our main result lies in the setting $w=3$. First, in Table 9, we present the costs for the regular recoding and the linear pass functions.

Regarding the regular recoding function, we saw an increase of about 46% in the $3-\tau$ NAF timings when comparing with the $w=2$ case. The reason is that, for the $w=3$ case, we must compute a more complicated arithmetic. Also,

Table 9. A comparison of the support functions timings (in clock cycles) between different compiler families

Compilers	Regular recoding			Linear pass		
	$\mathbf{w = 2}$	$\mathbf{w = 3}$	$\mathbf{w = 4}$	$\mathbf{w = 2}$	$\mathbf{w = 3}$	$\mathbf{w = 4}$
GCC 5.3	1,656	2,740	2,516	8	40	240
GCC 6.1	1,792	2,688	2,480	8	44	240
clang 3.5	1,804	2,680	2,396	8	44	272
clang 3.8	1,808	2,704	2,376	8	40	264

when selecting the digits, we must perform a linear pass in the array that stores them. Otherwise, an attacker could learn about the scalar k by performing a timing-attack based on the CPU cache.

The linear pass function also becomes more expensive in the $w=3$ case, since we have more points in the array. However, in the $m=149$ case, we have to process 64 more iterations with the width $w=2$, when compared with the $3-\tau$ NAF point multiplication (since the number of iterations depends on m and $\left.w: \frac{m+2}{w-1}+2\right)$. As a result, the linear pass function overhead is mitigated by the savings in mixed additions and applications of τ endomorphisms in the main loop. Finally, our scalar multiplication measurements consider that the point $Q=k P$ is returned in the λ-projective coordinate representation. If the affine representation is required, it is necessary to add about 2,000 cycles to the total scalar multiplication timings. The results are presented in Table 10.

Table 10. A comparison of the scalar multiplication timings (in clock cycles) between different compiler families

Compilers	Right-to-Left			Left-to-Right		
	$\mathbf{w}=\mathbf{2}$	$\mathbf{w}=\mathbf{3}$	$\mathbf{w}=\mathbf{4}$	$\mathbf{w}=\mathbf{2}$	$\mathbf{w}=\mathbf{3}$	$\mathbf{w}=\mathbf{4}$
GCC 5.3	98,332	78,248	134,420	100,480	72,556	90,020
GCC 6.1	97,356	79,044	134,152	99,456	71,728	89,740
clang 3.5	93,260	75,812	140,992	96,812	69,696	86,632
clang 3.8	93,392	77,188	126,032	95,196	68,980	85,244

Except for the $w=2$ algorithms, whose regular $\tau N A F$ recoding generates only two different digits for the scalar k, in the other two cases, the left-toright outperforms the right-to-left method. For $w=3$, the latter is 12% slower and for the $w=4$ case, it is 48% slower (when comparing the clang 3.8 code). The reason for that, besides the extra linear pass application for writing into the array, is that the post-computation points are in projective form, which requires full point additions to be processed. On the other hand, in the left-toright approach, we can apply optimization techniques to maximize the number of mixed point additions (see Table 3).

6.4 Comparisons

In Table 11, we compare our left-to-right algorithm implementations with the state-of-the-art works. Our $3-\tau$ NAF left-to-right τ-and-add point multiplication outperformed by 29.64% the work in [24], which is considered the fastest protected 128-bit secure Koblitz implementation. When compared with prime curves, our work is surpassed by 15.29% and 13.06% by the works in [8] and [2], respectively.

Table 11. Scalar multiplication timings (in clock cycles) on 128-bit secure ellitpic curves

Curve/Method	Architecture	Timings
Koblitz over $\mathbb{F}_{2^{283}}(\tau$-and-add, 5- τ NAF $[24])$	Haswell	99,000
GLS over $\mathbb{F}_{2^{2 \cdot 127}}$ (double-and-add, 4-NAF $\left.[25]\right)$	Haswell	61,712
Twisted Edwards over $\mathbb{F}_{\left(^{127}-1\right)^{2}}($ double-and-add $[8])$	Haswell	59,000
Kummer genus-2 over $\mathbb{F}_{2^{127}-1}($ Kummer ladder $[2])$	Haswell	60,556
Koblitz over $\mathbb{F}_{4^{149}}(\tau$-and-add, 2- τ NAF $($ this work $))$	Haswell	96,822
Koblitz over $\mathbb{F}_{4^{149}}(\tau$-and-add, 3- τ NAF $($ this work $)$	Haswell	69,656
Koblitz over $\mathbb{F}_{4^{149}}(\tau$-and-add, 4- τ NAF $($ this work $))$	Haswell	85,244

Skylake architecture In addition, we present timings for our scalar multiplication algorithms, also compiled with clang 3.8, in the Skylake architecture (Intel Core i7 6700 K 4.00 GHz). The results (in clock cycles) for the cases $w=2,3,4$ are, respectively, $71,138,51,788$ and 66,286 .

7 Conclusion

We have presented a comprehensive study of how to implement efficiently Koblitz elliptic curves defined over quaternary fields $\mathbb{F}_{4}{ }^{m}$, using vectorized instructions on the Intel micro-architectures codename Haswell and Skylake.

As a future work, we plan to investigate the use of 256 -bit AVX2 registers to improve the performance of our code. In addition, we intend to implement the scalar multiplication algorithms in other architectures such as the ARMv8. Finally, we would like to design a version of our point multiplication in the multi-core and known point scenarios.

References

1. D. F. Aranha, A. Faz-Hernández, J. López, and F. Rodríguez-Henríquez. Faster Implementation of Scalar Multiplication on Koblitz Curves. In A. Hevia and G. Neven, editors, Progress in Cryptology - LATINCRYPT 2012, volume 7533 of $L N C S$, pages 177-193. Springer, 2012.
2. D. J. Bernstein, C. Chuengsatiansup, T. Lange, and P. Schwabe. Kummer strikes back: New DH speed records. In P. Sarkar and T. Iwata, editors, Advances in Cryptology - ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 317-337. Springer, 2014.
3. P. Birkner, P. Longa, and F. Sica. Four-Dimensional Gallant-Lambert-Vanstone Scalar Multiplication. Cryptology ePrint Archive, Report 2011/608, 2011. http: //eprint.iacr.org/.
4. S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B. Moeller. Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS). RFC 4492. Internet Engineering Task Force (IETF), 2006. https://tools.ietf.org/html/ rfc4492.
5. M. Bluhm and S. Gueron. Fast software implementation of binary elliptic curve cryptography. J. Cryptographic Engineering, 5(3):215-226, 2015.
6. R. P. Brent and P. Zimmermann. Algorithms for Finding Almost Irreducible and Almost Primitive Trinomials. In in Primes and Misdemeanours: Lectures in Honour of the Sixtieth Birthday of Hugh Cowie Williams, Fields Institute, page 212, 2003.
7. N. M. Clift. Calculating optimal addition chains. Computing, 91(3):265-284, 2011.
8. C. Costello and P. Longa. Four(\mathbb{Q}): Four-Dimensional Decompositions on a (\mathbb{Q})curve over the Mersenne Prime. In T. Iwata and J. H. Cheon, editors, Advances in Cryptology - ASIACRYPT 2015-Part I, volume 9452 of LNCS, pages 214-235. Springer, 2015.
9. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246. Internet Engineering Task Force (IETF), 2008. https://tools. ietf. org/html/rfc5246.
10. C. Doche. Redundant Trinomials for Finite Fields of Characteristic 2. In C. Boyd and J. M. G. Nieto, editors, Information Security and Privacy, 10th Australasian Conference, ACISP 2005, volume 3574 of LNCS, pages 122-133. Springer, 2005.
11. S. D. Galbraith and P. Gaudry. Recent progress on the elliptic curve discrete logarithm problem. Des. Codes Cryptography, 78(1):51-72, 2016.
12. S. D. Galbraith, X. Lin, and M. Scott. Endomorphisms for Faster Elliptic Curve Cryptography on a Large Class of Curves. In A. Joux, editor, Advances in Cryptology - EUROCRYPT 2009, 28th Annual International, volume 5479 of LNCS, pages 518-535. Springer, 2009.
13. P. Gaudry, F. Hess, and N. P. Smart. Constructive and destructive facets of Weil descent on elliptic curves. Journal of Cryptology, 15:19-46, March 2002.
14. D. Hankerson, K. Karabina, and A. Menezes. Analyzing the Galbraith-Lin-Scott Point Multiplication Method for Elliptic Curves over Binary Fields. Computers, IEEE Transactions on, 58(10):1411-1420, October 2009.
15. D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography. Springer-Verlag, Secaucus, NJ, USA, 2003.
16. F. Hess. Generalising the GHS Attack on the Elliptic Curve Discrete Logarithm Problem. LMS Journal of Computation and Mathematics, 7:167-192, June 2004.
17. Intel Corporation. Intel Intrinsics Guide. https://software.intel.com/sites/ landingpage/IntrinsicsGuide/, accessed 18 Feb 2016.
18. Intel Corporation. Intel 64 and IA- 32 Architectures Software Developers Manual 325462-056US., 2015.
19. T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inverses in $\operatorname{GF}\left(2^{m}\right)$ using normal bases. Inf. Comput., 78(3):171-177, 1988.
20. E. Knudsen. Elliptic Scalar Multiplication Using Point Halving. In Advances in Cryptology - ASIACRYPT 99, volume 1716 of LNCS, pages 135-149. Springer Berlin Heidelberg, 1999.
21. N. Koblitz. CM-Curves with Good Cryptographic Properties. In 11th Annual International Cryptology Conference (CRYPTO 1991), volume 576 of LNCS, pages 279-287. Springer, 1991.
22. A. Menezes and M. Qu. Analysis of the Weil Descent Attack of Gaudry, Hess and Smart. In D. Naccache, editor, Topics in Cryptology - CT-RSA 2001, The Cryptographer's Track at RSA Conference 2001, volume 2020 of LNCS, pages 308318. Springer, 2001.
23. National Institute of Standards and Technology. Recommended Elliptic Curves for Federal Government Use. NIST Special Publication, 1999. http://csrc.nist. gov/csrc/fedstandards.html.
24. T. Oliveira, D. F. Aranha, J. L. Hernandez, and F. Rodríguez-Henríquez. Fast Point Multiplication Algorithms for Binary Elliptic Curves with and without Precomputation. In A. Joux and A. M. Youssef, editors, Selected Areas in Cryptography - SAC 2014, volume 8781 of LNCS, pages 324-344. Springer, 2014.
25. T. Oliveira, J. López, D. F. Aranha, and F. Rodríguez-Henríquez. Two is the fastest prime: lambda coordinates for binary elliptic curves. J. Cryptographic Engineering, 4(1):3-17, 2014.
26. D. Page. Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel. Cryptology ePrint Archive, Report 2002/169, 2002. http://eprint.iacr.org/.
27. G. Paoloni. How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures. Technical report, Intel Corporation, 2010.
28. R. Schroeppel. Cryptographic elliptic curve apparatus and method, 2000. US patent 2002/6490352 B1.
29. M. Scott. Optimal Irreducible Polynomials for $G F\left(2^{m}\right)$ Arithmetic. Cryptology ePrint Archive, Report 2007/192, 2007. http://eprint.iacr.org/.
30. J. A. Solinas. An improved algorithm for arithmetic on a family of elliptic curves. In Advances in Cryptology - CRYPTO 97, volume 1294 of LNCS, pages 357-371. Springer Berlin Heidelberg, 1997.
31. J. A. Solinas. Efficient Arithmetic on Koblitz Curves. Designs, Codes and Cryptography, 19(2-3):195-249, 2000.
32. J. Taverne, A. Faz-Hernández, D. F. Aranha, F. Rodríguez-Henríquez, D. Hankerson, and J. López. Software Implementation of Binary Elliptic Curves: Impact of the Carry-less Multiplier on Scalar Multiplication. In B. Preneel and T. Takagi, editors, 13th International Workshop on Cryptographic Hardware and Embedded Systems (CHES 2011), volume 6917 of LNCS, pages 108-123. Springer, 2011.
33. W. R. Trost and G. Xu. On the Optimal Pre-Computation of Window τ-NAF for Koblitz Curves. Cryptology ePrint Archive, Report 2014/664, 2014. http: //eprint.iacr.org/.
34. Y. Tsunoo, E. Tsujihara, K. Minematsu, and H. Miyauchi. Cryptanalysis of Block Ciphers Implemented on Computers with Cache. In International Symposium on Information Theory and Its Applications, pages 803-806. IEEE Information Theory Society, 2002.
35. A. Weimerskirch and C. Paar. Generalizations of the Karatsuba Algorithm for Efficient Implementations. Cryptology ePrint Archive, Report 2006/224, 2006. http://eprint.iacr.org/.
36. E. Wenger and P. Wolfger. Solving the Discrete Logarithm of a 113-Bit Koblitz Curve with an FPGA Cluster. In A. Joux and A. M. Youssef, editors, Selected Areas in Cryptography - SAC 2014, volume 8781 of LNCS, pages 363-379. Springer, 2014.

[^0]: * The authors would like to thank CONACyT (project number 180421) for their funding of this research.
 ** The author was supported in part by the Intel Labs University Research Office and by a research productivity scholarship from CNPq Brazil.

[^1]: ${ }^{3}$ Usually the order p is composite. Also, every prime factor of p is smaller than r (see Table 1).

[^2]: ${ }^{4}$ We are considering only positive digits, since the cost of computing the negative points in binary elliptic curves is negligible.

[^3]: ${ }^{5}$ Notice that the multiples $\alpha_{v} \cdot P$ as shown in Table 3, must be computed out of order. The order for computing the multiples is shown in roman numbers.

[^4]: ${ }^{6}$ The symbols \ll, \gg stand for bitwise shift of packed 64 -bit integers.

[^5]: ${ }^{7}$ For a more detailed explanation of the shift-and-add and the mul-and-add reduction methods to binary fields, see [5].

[^6]: ${ }^{8}$ As before, the symbols \ll, > stand for bitwise shift of packed 64 -bit integers. The symbol \triangleright stands for bytewise multi-precision shift.

