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Abstract. In this work, we retake an old idea that Koblitz presented in
his landmark paper [21], where he suggested the possibility of defining
anomalous elliptic curves over the base field F4. We present a careful
implementation of the base and quadratic field arithmetic required for
computing the scalar multiplication operation in such curves. In order
to achieve a fast reduction procedure, we adopted a redundant trinomial
strategy that embeds elements of the field F4m , with m a prime number,
into a ring of higher order defined by an almost irreducible trinomial. We
also present a number of techniques that allow us to take full advantage
of the native vector instructions of high-end microprocessors. Our soft-
ware library achieves the fastest timings reported for the computation of
the timing-protected scalar multiplication on Koblitz curves, and com-
petitive timings with respect to the speed records established recently in
the computation of the scalar multiplication over prime fields.

1 Introduction

Anomalous binary curves, generally referred to as Koblitz curves, are binary
elliptic curves satisfying the Weierstrass equation, Ea : y2 + xy = x3 + ax2 + 1,
with a ∈ {0, 1}. Since their introduction in 1991 by Koblitz [21], these curves have
been extensively studied for their additional structure that allows, in principle, a
performance speedup in the computation of the elliptic curve point multiplication
operation.

Koblitz curves defined over F4 were also proposed in [21]. Nevertheless, until
now the research works dealing with standardized Koblitz curves in commercial
use, such as the binary curves standardized by NIST [23] or the suite of elliptic
curves supported by the TLS protocol [9, 4], have exclusively analyzed the secu-
rity and performance of curves defined over binary extension fields F2m , with m
a prime number (for recent examples see [1, 5, 32, 36]).

We find interesting to explore the cryptographic usage of Koblitz curves de-
fined over F4 due to their inherent usage of quadratic field arithmetic. Indeed, it
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has been recently shown [3, 25] that quadratic field arithmetic is extraordinarily
efficient when implemented in software. This is because one can take full advan-
tage of the Single Instruction Multiple Data (SIMD) paradigm, where a vector
instruction performs simultaneously the same operation on a set of input data
items.

Quadratic extensions of a binary finite field Fq2 can be defined by means of
a monic polynomial of degree two h(u) ∈ F2[u] irreducible over Fq. The field Fq2

is isomorphic to Fq[u]/(h(u)) and its elements can be represented as a0 + a1u,
with a0, a1 ∈ Fq. The addition of two elements a, b ∈ Fq2 , can be performed as
c = (a0 + b0) + (a1 + b1)u. Using h(u) = u2 +u+ 1, the multiplication of a, b can
be computed as, d = a0b0 + a1b1 + ((a0 + a1) · (b0 + b1) + a0b0)u. By carefully
organizing the code associated to these arithmetic operations, one can greatly
exploit the pipelines and their inherent instruction-level parallelism, which are
available in contemporary high-end processors.

Our contributions In this work we designed for the first time, a 128-bit secure
and timing attack resistant scalar multiplication on a Koblitz curve defined over
F4, as they were proposed by Koblitz in his 1991 seminal paper [21]. We devel-
oped all the required algorithms for performing such a computation. This took us
to reconsider the strategy of using redundant trinomials (also known as almost
irreducible trinomials), which were proposed more than ten years ago in [6, 10].
We also report what is perhaps the most comprehensive analysis yet reported
of how to efficiently implement arithmetic operations in binary finite fields and
their quadratic extensions using the vectorized instructions available in high-end
microprocessors. For example, to the best of our knowledge, we report for the
first time a 128-bit AVX implementation of the linear pass technique, which is
useful against side-channel attacks.

The remaining of this paper is organized as follows. In §2 we formally in-
troduce the family of Koblitz elliptic curves defined over F4. In §3 and §4 a de-
tailed description of the efficient implementation of the base and quadratic field
arithmetic using vectorized instructions is given. We present in §5 the scalar
multiplication algorithms used in this work, and we present in §6 the analysis
and discussion of the results obtained by our software library. Finally, we draw
our concluding remarks and future work in §7.

2 Koblitz curves over F4

Koblitz curves over F4 are defined by the following equation

Ea : y2 + xy = x3 + aγx2 + γ, (1)

where γ ∈ F22 satisfies γ2 = γ + 1 and a ∈ {0, 1}. Note that the number of
points in the curves E0(F4) and E1(F4) are, #E0(F4) = 4 and #E1(F4) = 6,
respectively. For cryptographic purposes, one uses Eq. (1) operating over binary
extension fields of the form Fq, with q = 4m, and m a prime number. The set



of affine points P = (x, y) ∈ Fq × Fq that satisfy Eq. (1) together with a point
at infinity represented as O, forms an abelian group denoted by Ea(F4m), where
its group law is defined by the point addition operation.

Since for each proper divisor l of k, E(F4l) is a subgroup of E(F4k), one has
that #E(F4l) divides #E(F4k). Furthermore, by choosing prime extensions m,
it is possible to find Ea(F4m) with almost-prime order, for instance, E0(F22·163)
and E1(F22·167). In Table 1, we present the group orders #Ea(F4m) of Koblitz
curves defined over F4 for prime degrees m ∈ [127, 191].

In the rest of this paper, we will show that the aforementioned range can be
used for the efficient implementation of a 128-bit secure scalar multiplication on
software architectures counting with 64-bit carry-less native multipliers, such as
the ones available in contemporary personal desktops.

The Frobenius map τ : Ea(Fq) → Ea(Fq) defined by τ(O) = O, τ(x, y) =
(x4, y4), is a curve automorphism satisfying (τ2 + 4)P = µτ(P ) for µ = (−1)a

and all P ∈ Ea(Fq). By solving the equation τ2 + 4 = µτ , the Frobenius map
can be seen as the complex number τ = (µ±

√
−15)/2.

2.1 The τ -adic representation

Given a Koblitz curve Ea/F22m with group order #Ea(F22m) = h · p · r, where
h is the order #Ea(F4), r is the order of our subgroup of interest and p is the
order of a group of no cryptographic interest 3. We can express a scalar k ∈ Zr

as an element in Z[τ ] using the now classical partial reduction introduced by
Solinas [31], with a few modifications. The modified version is based on the fact
that τ2 = µτ − 4 and is presented in Algorithm 1. The Round function is the
Z[τ ] rounding-off method described in [31, Routine 60].

Algorithm 1 Partial reduction modulo (τm − 1)/(τ − 1)

Input: The scalar k ∈ [1, r − 1], s0 = d0 + µd1, s1 = −d1, where
(τm − 1)/(τ − 1) = d0 + d1τ

Output: ρ = (r0 + r1τ) = k partmod (τm − 1)/(τ − 1)
1: t← s0 + µ · s1
2: λ0 ← s0 · k/(p · r)
3: λ1 ← s1 · k/(p · r)
4: q0, q1 ← Round(λ0, λ1)
5: r0 ← k − t · q0 − 4 · s1 · q1
6: r1 ← s1 · q0 − s0 · q1
7: return (r0, r1).

3 Usually the order p is composite. Also, every prime factor of p is smaller than r (see
Table 1).



Table 1. Group orders #Ea(F22m) with prime m ∈ [127, 191]. Prime factors are un-
derlined. The size (in bits) of the largest prime factor is presented in parenthesis

m a Factorization of #Ea(F22m)

127 0
0x4 · 0x1268F1298760419 ·
0xDE7D169BED4130151CD618CF5713077271FF51A4B1CFB75BF (196)

127 1
0x6 · 0x41603EAF071 ·
0x29C4C778B6D2CD0FA36B3CA951A32DAC100C9C63576EEF7BF1F21 (209)

131 0
0x4 · 0x14E3BEE4283C895368536FD0FCF0049D152D78B ·
0xC41400B084478F241C495042459 (108)

131 1
0x6 · 0x4267F1026F4F ·
0x2806BB97FB5F7C2F9E1EDE20BF59AC390DABBA7621D9A0F26AA1 (205)

137 0
0x4 · 0x763DB379950B73D200B971F1D ·
0x22A41FB03F2428B44188DD9FFEA796DC6D197A91BA21 (173)

137 1
0x6 · 0x4337925B3141B99447C1273 ·
0x289FE5979AC03A2E5CFCE8E6024FEF0863C633AE96A0DF (182)

149 0
0x4 · 0x29B66B578C9FAEB ·
0x62322066993B57A8857E552587C80A567018483F2E493DBB7750AB7DB623 (239)

149 1
0x6 · 0x1B73C442E8D ·
0x637845F7F8BFAB325B85412FB54061F148B7F6E79AE11CC843ADE1470F7E4E29
(255)

151 0
0x4 · 0x1C4AEB2D8E194A47D0382EB3617226E64298205F16F ·
0x90C5C79B46EC78B84E022CB2715ED8281 (131)

151 1
0x6 · 0x1BFFB49BB65DF97968C6F644AF7D0F4DB6F5163 ·
0xF9ABD46E3960E5060364D59EBACA8C8326B (140)

157 0
0x4 · 0x499D09449B55C7D71FC18A2B0265785F ·
0x37A45BD5E114A84FCB8900BAEA9E731E0C4B3EDEC15F327 (186)

157 1
0x6 · 0xEECA8C4698A0916800B4E7 ·
0xB6F74A858FF10701D113E39259417F04CF038B297F3C6573F6E14F33 (224)

163 0
0x4 · 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF\
EA48D724AAB2045E5CFE286F8372017024DFF7BB3 (324)

163 1
0x6 · 0x71977BB40CF524BCA9A8DFB19BD9B251D5 ·
0x180A101E65451B46A75AC029CF08711513C17FDE760B92E5 (189)

167 0
0x4 · 0x6B30E725707929FA94FEFAA012F999 ·
0x26364FB489C8B628D0E48E36B3BB4F3C70B651945484571B06BA77 (213)

167 1
0x6 · 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\
D45C6A4A8565763007E9FEFA42E0EA9B9E8B7F3541 (331)

173 0
0x4 · 0x163D79633AE74D69B1F95475535FB6B057D397 ·
0xB82BEB20E4D8E6D2BFFC1AB84B6BC625C94C6002336E2573F (196)

173 1
0x6 · 0xBA3DEF139 ·
0xEA9746EEF14E1638A503FA6FB739A623894A590811B6939A30D7A016E8A77815\
0084D9C4D6E0D (308)



Table 1. Continued from previous page

m a Factorization of #Ea(F22m)

179 0
0x4 · 0x10C01861F3F8F0AC2767CD ·
0xF4882969C296A9493FEAA3C9F58DA166B76D3236BF15C2F10E2B0421F3F7E50DCC6F
(272)

179 1
0x6 · 0x9D1C1699F1F6977990F2FFDF75540051322D7023 ·
0x116171487AD893A0E28972203861592DD2828EF2D71B9D5B03 (196)

181 0
0x4 · 0xCBB ·
0x141BF6E35420FDE10CF60620853943A20D5A91F2F5DDE75B04126F3100B191AF1\
E338F81FB8ED77C1C57BEF3 (348)

181 1
0x6 · 0x1C0B0F8135C51501AD7DC439F84CF88FA90C9907A08AAE56D243E127CF ·
0x615FA176A8D559A3FFDB2ECDACAF97A9B (130)

191 0
0x4 · 0x65E935E0087F8CBE7343A713158023856DFD17A25EE004B0837F ·
0x2831230707A836BC4B2B625A55960A5506F5CCD1B719 (174)

191 1
0x6 · 0x23D01 ·
0x4C3F9B376D369D04F03499007A43FE6460A012C86B2C575858EE9FC7F67A566813\
B39DA28DC9D58285BC07F8811 (362)

Given that the norm of τ is N(τ) = 4, N(τ−1) = h, N(τm−1) = h ·p ·r and
N((τm − 1)/(τ − 1)) = p · r, the subscalars r0 and r1 resulted from the partial
modulo function will be both of size approximately

√
p · r. As a consequence,

the corresponding scalar multiplication will need more iterations than expected,
since it will consider the order p of a subgroup which is not of cryptographic
interest.

For that reason, we took the design decision of considering that the input
scalar of our point multiplication algorithm is already given in the Z[τ ] domain.
As a result, a partial reduction of the scalar k is no longer required, and the
number of iterations in the point multiplication will be consistent with the scalar
k size. If one needs to retrieve the equivalent value of the scalar k in the ring
Zr, this can be easily computed with one multiplication and one addition in Zr.
This strategy is in line with the degree-2 scalar decomposition method within
the GLS curves context as suggested in [12].

2.2 The width-w τNAF form

Assuming that the scalar k is specified in the Z[τ ] domain, one can represent the
scalar in the regular width-w τNAF form as shown in Algorithm 2. The length
of the representation width-w τNAF of an element k ∈ Z[τ ] is discussed in [30].

Given a width w, after running Algorithm 2, we have 22(w−1)−1 different
digits 4. As a result, it is necessary to be more conservative when choosing
the width w, when compared to the Koblitz curves defined over F2. For widths

4 We are considering only positive digits, since the cost of computing the negative
points in binary elliptic curves is negligible.



Algorithm 2 Regular width-w τ -recoding for m-bit scalar

Input: w, tw, αv = βv + γvτ for v = {±1,±3,±5, . . . ,±4w−1− 1}, ρ = r0 + r1τ ∈ Z[τ ]
with odd r0, r1

Output: ρ =

dm+2
w−1

e∑
i=0

viτ
i(w−1)

1: for i← 0 to dm+2
w−1
e - 1 do

2: if w = 2 then
3: vi ← ((r0 − 4 · r1) mod 8)− 4
4: r0 ← r0 − vi
5: else
6: u← (r0 + r1tw mod 22w−1)− 22(w−1)

7: if v > 0 then s← 1 else s← −1
8: r0 ← r0 − sβv, r1 ← r1 − sγv, vi ← sαv
9: end if

10: for j ← 0 to (w − 2) do
11: t← r0, r0 ← r1 + (µ · r0)/4, r1 ← −t/4
12: end for
13: end for

14: if r0 6= 0 and r1 6= 1 then
15: vi ← r0 + r1τ
16: else
17: if r1 6= 0 then
18: vi ← r1
19: else
20: vi ← r0
21: end if
22: end if

w = 2, 3, 4, 5 we have to pre- or post-compute 2, 8, 32 and 128 points, respectively.
For the 128-bit point multiplication, we estimated that the value of the width w
must be at most four, otherwise, the costs of the point pre/post-processing are
greater than the addition savings obtained in the main iteration.

In addition, we must find efficient expressions of αv = v mod τw. The method
for searching the best expressions in Koblitz curves over F2 [33] cannot be directly
applied in the F4 case. As a result, we manually provided αv representations for
w ∈ {2, 3, 4} and a = 1, which are our implementation parameters. The rationale
for our chosen representations was to minimize the number of field arithmetic
operations. In practice, we must reduce the number of full point additions on
behalf of point doublings and mixed additions. In Table 3 we present the αv

representatives along with the operations required to generate the multiples of
the base point 5.

Therefore, one point doubling and full addition are required to generate the
points αv · P for w = 2, one point doubling, four full additions, three mixed
additions and four applications of the Frobenius map for the w = 3 case and one
point doubling, twenty full additions, eleven mixed additions and five applica-
tions of the Frobenius map for the w = 4 case.

5 Notice that the multiples αv ·P as shown in Table 3, must be computed out of order.
The order for computing the multiples is shown in roman numbers.



Table 3. Representations of αv = v mod τw, for w ∈ {2, 3, 4} and a = 1 and the
required operations for computing αv. Here we denote by D,FA,MA, T the point
doubling, full addition, mixed addition and the Frobenius map, respectively. In addi-
tion, we consider that the point α1P is represented in affine coordinates. The order for
computing the points is given in roman numbers

w v v mod τw αv Operations Order

2 1 1 1 n/a I
3 3 3 t0 ← 2α1, α3 ← t0 + α1 (D + FA) II

3 1 1 1 n/a I
3 3 3 t0 ← 2α1, α3 ← t0 + α1 (D + FA) II
5 5 −τ − α15 α5 ← −t1 − α15 (MA) VIII
7 3τ + 3 τ2α3 + α3 α7 ← τ2α3 + α3 (FA+ 2T ) III
9 3τ + 5 α7 + 2 α9 ← α7 + t0 (FA) IV
11 3τ + 7 α9 + 2 α11 ← α9 + t0 (FA) V
13 −τ − 7 τ2 − α3 α13 ← t2 − α3 (MA) VII

15 −τ − 5 τ2 − 1
t1 ← τα1, t2 ← τt1, α15 ← t2 − α1

(MA+ 2T )
VI

4 1 1 1 n/a I
3 3 −τ3 − α61 α3 ← −t4 − α61 (MA) XXVI
5 5 −τ3 − α59 α5 ← −t4 − α59 (MA) XXVII
7 7 −τ3 − α57 α7 ← −t4 − α57 (MA) XXVIII
9 9 −τ3 − α55 α9 ← −t4 − α55 (MA) XXIX
11 11 −2τ2 +α43 α11 ← −t2 + α43 (FA) XXX
13 13 −2τ2 +α45 α13 ← −t2 + α45 (FA) XXXI
15 15 −2τ2 +α47 α15 ← −t2 + α47 (FA) XXXII
17 5τ − 11 −τ3 − α47 t4 ← τ2t3, α17 ← −t4 − α47 (MA+ 2T ) XIX
19 5τ − 9 −τ3 − α45 α17 ← −t4 − α47 (MA) XX
21 5τ − 7 −τ3 − α43 α17 ← −t4 − α45 (MA) XXI
23 5τ − 5 −τ3 − α41 α17 ← −t4 − α43 (MA) XXII
25 5τ − 3 −τ3 − α39 α17 ← −t4 − α41 (MA) XXIII
27 5τ − 1 −τ3 − α37 α17 ← −t4 − α39 (MA) XXIV
29 5τ + 1 −τ3 − α35 α17 ← −t4 − α37 (MA) XXV
31 −2τ − 9 2τ2 − 1 t2 ← τt1, α31 ← t2 − α1 (MA+ T ) XII
33 −2τ − 7 2τ2 + 1 α33 ← t2 + α1 (MA) XIII
35 −2τ − 5 −2τ − 5 α35 ← α37 − t0 (FA) VI
37 −2τ − 3 −2τ − 3 α37 ← α39 − t0 (FA) IV

39 −2τ − 1 −2τ − 1
t0 ← 2α1, t1 ← τt0, α39 ← −t1 − α1

(D +MA+ T )
II

41 −2τ + 1 −2τ + 1 α41 ← −t1 + α1 (MA) III
43 −2τ + 3 −2τ + 3 α43 ← α41 + t0 (FA) V
45 −2τ + 5 −2τ + 5 α45 ← α43 + t0 (FA) VII
47 −2τ + 7 −2τ + 7 α47 ← α45 + t0 (FA) VIII
49 −2τ + 9 −2τ + 9 α49 ← α47 + t0 (FA) IX
51 −2τ + 11 −2τ + 11 α51 ← α49 + t0 (FA) X
53 −2τ + 13 −2τ + 13 α53 ← α51 + t0 (FA) XI
55 3τ − 13 3τ − 13 t3 ← τα1, α55 ← t3 − α53 (MA+ T ) XIV
57 3τ − 11 3τ − 11 α57 ← t3 − α51 (MA) XV
59 3τ − 9 3τ − 9 α59 ← t3 − α49 (MA) XVI
61 3τ − 7 3τ − 7 α61 ← t3 − α47 (MA) XVII
63 3τ − 5 3τ − 5 α63 ← t3 − α45 (MA) XVIII



2.3 Security of the Koblitz curves defined over F4

Since the Koblitz curves defined over Ea(F4m) operate over quadratic extensions
fields, it is conceivable that Weil descent attacks [13, 16] could possibly be effi-
ciently applied on these curves. However, Menezes and Qu showed in [22] that
the GHS attack cannot be implemented efficiently for elliptic curves defined over
binary extension fields Fq, with q = 2m, and m a prime number in [160, . . . , 600].
Further, a specialized analysis for binary curves defined over fields of the form
F4m reported in [14], proved that the only vulnerable prime extension in the
range [80, . . . , 256], is m = 127. Therefore, the prime extension used in this
work, namely, m = 149, is considered safe with respect to the state-of-the-art
knowledge of the Weil descent attack classes.

For a comprehensive survey of recent progress in the computation of the
elliptic curve discrete problem in characteristic two, the reader is referred to the
paper by Galbraith and Gaudry [11].

3 Base field arithmetic

In this section, we present the techniques used in our work in order to implement
the binary field arithmetic. We selected a Koblitz curve with the parameter a = 1
defined over F4m with m = 149. This curve was chosen because the order of its
subgroup of interest is of size 2254, which yields a security-level equivalent to a
128-bit secure scalar multiplication.

3.1 Modular reduction

One can construct a binary extension field F2m by taking a polynomial f(x) ∈
F2[x] of degree m which is irreducible over F2. It is very important that the
form of the polynomial f(x), admits an efficient modular reduction. The crite-
ria for selecting f(x) depends on the architecture to be implemented as it was
extensively discussed in [29].

For our field extension choice, we do not have degree-149 trinomials which
are irreducible over F2. An alternative solution is to construct the field through
irreducible pentanomials. Given an irreducible pentanomial f(x) = xm + xa +
xb +xc + 1, the efficiency of the shift-and-add reduction method depends mostly
on the fact that the term-degree differences m−a, m−b and m−c, are all equal
to 0 modulo W , where W is the architecture word size in bits.

Using the terminology of [29], lucky irreducible pentanomials are the ones
where the three previously mentioned differences are equal to 0 modulo W .
Fortunate irreducible pentanomials are the ones where two out of the three
above differences are equal to 0 modulo W . The remaining cases are called
ordinary irreducible pentanomials. Performing an extensive search with W = 8,
we found no lucky pentanomials, 189 fortunate pentanomials and 9491 ordinary
pentanomials for the extension m = 149.



The problem is that fortunate pentanomials make the modular reduction too
costly if we compare it with the field multiplication computed with carry-less in-
structions. This is because we need to perform four shift-and-add operations per
reduction step. Besides, two of those operations require costly shift instructions,
since they are shifts not divisible by 8.

3.2 Redundant trinomials

As a consequence of the above analysis, we resorted to the redundant trinomi-
als strategy introduced in [6, 10], also known as almost irreducible trinomials.
Given a non-irreducible trinomial g(x) of degree n that factorizes into an ir-
reducible polynomial f(x) of degree m < n, the idea is to perform the field
reduction modulo g(x) throughout the scalar multiplication and, at the end of
the algorithm, reduce the polynomials so obtained modulo f(x). In a nutshell,
throughout the algorithm we represent the base field elements as polynomials in
the ring F2[x] reduced modulo g(x). At the end of the algorithm, the elements
are reduced modulo f(x) in order to bring them back to the target field F2149 .
For the sake of simplicity, throughout this paper, we will refer to those elements
as field elements.

Since our target software platform counts with a native 64-bit carry-less
multiplier, an efficient representation of the field elements must have at most
192 bits, i.e, three 64-bit words. For that reason, we searched for redundant
trinomials of degree at most 192. In Table 4, we present the redundant trinomials
that are available in the binary polynomial ring universe for this selected range.

We selected the trinomial g(x) = x192 + x19 + 1 for two reasons. First, the
difference (m−a) > 128, allows us to perform the shift-and-add reduction in just
two steps, since our architecture contains 128-bit vectorized registers. Second,
the property m mod 64 = 0, which allows us to perform efficiently the first part
of the shift-and-add reduction. The steps to perform the modular reduction are
described in Algorithm 3 6. The reduction using 128-bit registers is presented
in §4, where we discuss the arithmetic in the quadratic field extension.

Algorithm 3 Modular reduction by the trinomial g(x) = x192 + x19 + 1

Input: A 384-bit polynomial r(x) = F ·x320 +E ·x256 +D ·x192 +C ·x128 +B ·x64 +A
in F2[x] stored into six 64-bit registers (A - F).

Output: A 192-bit polynomial s(x) = r(x) mod g(x) = I · x128 + H · x64 + G stored
into three 64-bit registers (G - I).

1: G← A⊕D ⊕ (F � 45)⊕ ((D ⊕ (F � 45))� 19)
2: H ← B ⊕ E ⊕ (E � 19)⊕ (D � 45)
3: I ← C ⊕ F ⊕ (F � 19)⊕ (E � 45)

6 The symbols �,� stand for bitwise shift of packed 64-bit integers.



Table 4. Redundant trinomials g(x) = xm + xa + 1 of degree ≤ 192 which factorizes
into an irreducible polynomial of degree 149

Trinomial m− a m mod 64 (m− a) mod 64

x151 + x2 + 1 149 23 21
x151 + x149 + 1 2 23 2

x156 + x73 + 1 83 28 19
x156 + x83 + 1 73 28 9

x163 + x61 + 1 102 35 38
x163 + x80 + 1 83 35 19
x163 + x83 + 1 80 35 16
x163 + x102 + 1 61 35 61

x166 + x43 + 1 123 38 59
x166 + x123 + 1 43 38 43

x169 + x53 + 1 116 41 52
x169 + x116 + 1 53 41 53

x173 + x36 + 1 137 45 9
x173 + x137 + 1 36 45 36

x179 + x78 + 1 101 51 37
x179 + x101 + 1 78 51 14

x187 + x15 + 1 172 59 44
x187 + x172 + 1 15 59 15

x191 + x74 + 1 117 63 53
x191 + x117 + 1 74 63 10

x192 + x19 + 1 173 0 45
x192 + x173 + 1 19 0 19

The overall cost of the modular reduction is ten xors and five bitwise shifts.
At the end of the scalar multiplication, we have to reduce the 192-bit polynomial
to an element of the field F2149 . Note that the trinomial g(x) = x192 + x19 + 1
factorizes into a 69-term irreducible polynomial f(x) of degree 149 given as,

f(x) =x149 + x146 + x143 + x141 + x140 + x139 + x138 + x137 + x129 + x123 + x122+

x121 + x119 + x117 + x114 + x113 + x111 + x108 + x107 + x106 + x105 + x99+

x94 + x92 + x91 + x90 + x86 + x85 + x83 + x81 + x80 + x78 + x77 + x75+

x71 + x70 + x68 + x67 + x65 + x64 + x63 + x54 + x53 + x51 + x49 + x48+

x43 + x42 + x41 + x40 + x39 + x38 + x37 + x35 + x28 + x26 + x23 + x18+

x17 + x16 + x15 + x12 + x11 + x10 + x9 + x3 + x2 + x+ 1.

The final reduction is performed via the mul-and-add reduction 7 which, ex-
perimentally, performed more efficiently than the shift-and-add reduction. Con-
cisely, the mul-and-add technique consists in a series of steps which includes

7 For a more detailed explanation of the shift-and-add and the mul-and-add reduction
methods to binary fields, see [5].



shifts (in order to align the bits in the registers), carry-less multiplications and
xors for eliminating the extra bits.

The basic mul-and-add step is described in Algorithm 4. Here, besides the
usual notation, we represent the 64-bit carry-less multiplication by the symbol
×ij , where i, j = {L,H}, with L and H representing the lowest and highest
64-bit word packed in a 128-bit register, respectively. For example, if one wants
to multiply the 128-bit register A lowest 64-bit word by the 128-bit register B
highest 64-bit word, we would express this operation as T ← A×LH B.

Algorithm 4 Basic step of the mul-and-add reduction modulo the 69-term
irreducible polynomial f(x)

Input: A j-bit polynomial r(x) = B · x128 + A stored into two 128-bit registers (A,
B), for j ∈ [191, 148], the irreducible polynomial f(x) = F · x128 + E stored into
two 128-bit registers (E, F).

Output: A (j−3)-bit polynomial s(x) = D ·x128 +C stored into two 128-bit registers
(C, D).

1: T0 ← B � 21 (64-bit alignment)
2: T1 ← E ×LL T0

3: T2 ← E ×HL T0

4: T0 ← F ×LL T0

5: T1 ← T1 ⊕ (T2 � 64)
6: T0 ← T0 ⊕ (T2 � 64)
7: C ← A⊕ T1

8: D ← B ⊕ T0

Algorithm 4 requires four xors, three bitwise shifts and three carry-less mul-
tiplications. In our particular case, the difference between the degrees of the two
most significant monomials of f(x) is three. Also, note that we need to reduce 43
bits (191-148). As a result, it is required d 433 e = 15 applications of the Algorithm
4 in order to conclude the reduction.

4 Quadratic field arithmetic

In this Section, the basic arithmetic operations in the quadratic field are pre-
sented. As usual, the quadratic field F22·149 was constructed by the degree two
monic polynomial h(u) = u2+u+1, and its elements are represented as a0+a1u,
with a0, a1 ∈ F2149 .

4.1 Register allocation

The first aspect to be considered is the element allocation into the architecture’s
available registers. In our case, we have to store two polynomials of 192 bits into
128-bit registers in such way that it allows an efficient modular reduction and,
at the same time, generates a minimum overhead in the two main arithmetic
operations, namely, the multiplication and squaring.

Let us consider an element a = (a0 + a1u) ∈ F22·149 , where a0 = C · x128 +
B · x64 +A and a1 = F · x128 +E · x64 +D are 192-bit polynomials, each one of
them stored into three 64-bit words (A-C, D-F). Also, let us have three 128-bit



registers Ri, with i ∈ {0, 1, 2}, which can store two 64-bit words each. In this
section, we adopted the following notation, given a 128-bit register R, its most
and least significant packed 64-bit words, denoted respectively by S and T , are
represented as R = S|T . The first option is to rearrange the 384-bit element
a = (a0 + a1u) as,

R0 = A|B, R1 = C|D, R2 = E|F.

The problem with this representation is that a significant overhead is generated
in the multiplication function, more specifically, in the pre-computation phase
of the Karatsuba procedure (cf. §4.2 with the computation of V0,1, V0,2 and
V1,2). Besides, in order to efficiently perform the subsequent reduction phase,
we must temporarily store the polynomial terms into four 128-bit vectors, which
can cause a register overflow. A better method for storing the element a is to
use the following arrangement,

R0 = D|A, R1 = E|B, R2 = F |C.

Using this setting, there still exists some overhead in the multiplication and
squaring arithmetic operations, even though the penalty on the latter operation
is almost negligible. In the positive side, the terms of the elements a0, a1 do not
need to be rearranged and the modular reduction of these two base field elements
can be performed in parallel, as discussed next.

4.2 Multiplication

Given two F22·149 elements a = (a0 + a1u) and b = (b0 + b1u), with a0, a1, b0, b1
in F2149 , we perform the multiplication c = a · b as,

c = a · b = (a0 + a1u) · (b0 + b1u)

= (a0b0 ⊕ a1b1) + (a0b0 ⊕ (a0 ⊕ a1) · (b0 ⊕ b1))u,

where each element ai, bi ∈ F2149 is composed by three 64-bit words. The analysis
of the Karatsuba algorithm cost for different word sizes was presented in [35].
There, it was shown that the most efficient way to multiply three 64-bit word
polynomials s(x) = s2x

2+s1x+s0 and t(x) = t2x
2+t1x+t0 as v(x) = s(x) ·t(x)

is through the one-level Karatsuba method,

V0 = s0 · t0, V1 = s1 · t1, V2 = s2 · t2,

V0,1 = (s0⊕s1) · (t0⊕ t1), V0,2 = (s0⊕s2) · (t0⊕ t2) V1,2 = (s1⊕s2) · (t1⊕ t2),

v(x) = V2 ·x4+(V1,2⊕V1⊕V2)·x3+(V0,2⊕V0⊕V1⊕V2)·x2+(V0,1⊕V0⊕V1)·x+V0,

which costs six multiplications and twelve additions. The Karatsuba algorithm
as used in this work is presented in Algorithm 5 8.

8 As before, the symbols �,� stand for bitwise shift of packed 64-bit integers. The
symbol B stands for bytewise multi-precision shift.



Algorithm 5 Karatsuba algorithm for multiplying three 64-bit word polynomi-
als s(x) and t(x)

Input: Six 128-bit registers Ri, with i ∈ {0 . . . 5}, containing the elements
R0 = t0|s0, R1 = t1|s1, R2 = t2|s2, R3 = (t0 ⊕ t1)|(s0 ⊕ s1), R4 = (t0 ⊕ t2)|(s0 ⊕ s2),
R5 = (t1 ⊕ t2)|(s1 ⊕ s2).

Output: Three 128-bit registers Ri, with i ∈ {6 . . . 8}, which store the value
v(x) = s(x) · t(x) = v5 · x320 + v4 · x256 + v3 · x192 + v2 · x128 + v1 · x64 + v0 as
R6 = v1|v0, R7 = v3|v2, R8 = v5|v4.

1: tmp0 ← R0 ×HL R0

2: tmp1 ← R1 ×HL R1

3: tmp2 ← R2 ×HL R2

4: tmp3 ← R3 ×HL R3

5: tmp4 ← R4 ×HL R4

6: tmp5 ← R5 ×HL R5

7: tmp5 ← tmp5 ⊕ tmp1
8: tmp5 ← tmp5 ⊕ tmp2

9: tmp1 ← tmp1 ⊕ tmp0
10: tmp4 ← tmp4 ⊕ tmp1
11: tmp4 ← tmp4 ⊕ tmp2
12: tmp3 ← tmp3 ⊕ tmp1
13: R6 ← (tmp3 � 64)
14: R8 ← (tmp5 � 64)
15: R7 ← ((tmp5, tmp3) B 64)

The algorithm requires six carry-less instructions, six vectorized xors and
three bitwise shift instructions. In order to calculate the total multiplication
cost, it is necessary to include the Karatsuba pre-computation operations at the
base field level (twelve vectorized xors and six byte interleaving instructions)
and at the quadratic field level (six vectorized xors). Also, we must consider the
reorganization of the registers in order to proceed with the modular reduction
(six vectorized xors).

4.3 Modular reduction

The modular reduction of an element a = (a0 + a1u), where a0 and a1 are
384-bit polynomials, takes nine vectorized xors and six bitwise shifts. The com-
putational savings of the previously discussed register configuration can be seen
when we compare the reduction of quadratic field elements, presented in Algo-
rithm 6 with the modular reduction of the base field elements (see Algorithm
3). The cost of reducing an element in F2149 in 64-bit registers is about the same
as the cost of the reduction of an element in F22·149 stored into 128-bit registers.
Thus, we achieved a valuable speedup of 100%.

4.4 Squaring

Squaring is a very important function in the Koblitz curve point multiplication
algorithm, since it is the building block for computing the τ endomorphism.
In our implementation, we computed the squaring operation through carry-less
multiplication instructions which, experimentally, was an approach less expen-
sive than the bit interleaving method (see [15, Section 2.3.4]). The pre-processing
phase is straightforward, we just need to rearrange the 32-bit packed words of the
128-bit registers in order to prepare them for the subsequent modular reduction.



Algorithm 6 Modular reduction of the terms a0, a1 of an element a = (a0+a1u)
modulo g(x) = x192 + x19 + 1

Input: An element a = a0 + a1u = (F · x320 +E · x256 +D · x192 +C · x128 +B · x64 +
A)+(L ·x320 +K ·x256 +J ·x192 +I ·x128 +H ·x64 +G)u, with the 64-bit words (A-L)
arranged in six 128-bit registers as R0 = G|A,R1 = H|B,R2 = I|C,R3 = J |D,R4 =
K|E,R5 = L|F

Output: Elements (a0, a1) mod g(x) = M · x128 +N · x64 +O,P · x128 +Q · x64+R,
with the 64-bit words (M-R) organized in three 128-bit registers as
R6 = R|O,R7 = Q|N,R8 = P |M

1: R8 ← R2 ⊕R5

2: R7 ← R1 ⊕R4

3: R8 ← R8 ⊕ (R5 � 19)
4: R7 ← R7 ⊕ (R4 � 19)
5: R8 ← R8 ⊕ (R4 � 45)

6: R7 ← R7 ⊕ (R3 � 45)
7: R6 ← R3 ⊕ (R5 � 45)
8: R6 ← R6 ⊕ (R6 � 19)
9: R6 ← R6 ⊕R0

The pre- and post-processing phases require three shuffle instructions, three
vectorized xors and three bitwise shifts. The complete function is described
in Algorithm 7. Given 128-bit registers Ri, we depict the SSE 32-bit shuffle
operation as R0 ← R1 G xxxx. For instance, if we compute R0 ← R1 G 3210, it
just maintains the 32-bit word order of the register R1, in other words, it just
copies R1 to R0. The operation R0 ← R1 G 2103 rotates the register R1 to the
left by 32-bits. See [18, 17] for more details.

Algorithm 7 Squaring of an element a = (a0 + a1u) ∈ F22·149

Input: Element a = a0 + a1u = (C · x128 + B · x64 + A) + (F · x128 + E · x64 +
D)u ∈ F22·149 , with the 64-bit words (A-F) arranged in three 128-bit registers as
R0 = D|A,R1 = E|B,R2 = F |C

Output: Element a2 = c = c0 + c1u = (I · x128 +H · x64 +G) +
(L · x128 +K · x64 + J)u ∈ F22·149 , where both elements (c0, c1) ∈ F2[x] are reduced
modulo x192 +x19 +1. The 64-bit words (G-L) are arranged in three 128-bit registers
as R3 = J |G,R4 = H|K,R5 = I|L.

1: tmp0 ← R0 G 3120
2: tmp1 ← R1 G 3120
3: tmp2 ← R2 G 3120
4: aux0 ← tmp0 ×LL tmp0
5: aux1 ← tmp0 ×HH tmp0
6: aux2 ← tmp1 ×LL tmp1
7: aux3 ← tmp1 ×HH tmp1
8: aux4 ← tmp2 ×LL tmp2

9: aux5 ← tmp2 ×HH tmp2
10: R3, R4, R5 ← ModularReduction(aux0...5)
11: tmp0 ← R3 � 64
12: tmp1 ← R4 � 64
13: tmp2 ← R5 � 64
14: R3 ← R3 ⊕ tmp0
15: R4 ← R4 ⊕ tmp1
16: R5 ← R5 ⊕ tmp2

4.5 Inversion

The inversion operation is computed via the Itoh-Tsujii method [19]. Given an

element c ∈ F2m , we compute c−1 = c(2
m−1−1)·2 through an addition chain,



which in each step computes the term (c2
i−1)2

j · c2j−1 with 0 ≤ j ≤ i ≤ m− 1.
For the case m = 149, the following chain is used,

1→ 2→ 4→ 8→ 16→ 32→ 33→ 66→ 74→ 148.

This addition chain is optimal and was found through the procedure described
in [7]. Note that although we compute the inversion operation over polynomials
in F2[x] (reduced modulo g(x) = x192 + x19 + 1), we still have to perform the
addition chain with m = 149, since we are in fact interested in the embedded
F2149 field element.

As previously discussed, in each step of the addition chain, we must calculate
an exponentiation c2

j

followed by a multiplication, where the value j represents
the integers that form the addition chain. Experimentally, we found that when
j ≥ 4, it is cheaper to compute the exponentiation through table look-ups in-
stead of performing consecutive squarings. Our pre-computed tables process four
bits per iteration, therefore, it is required d 1924 e = 48 table queries in order to
complete the multisquaring function.

5 τ -and-add scalar multiplication

In this Section we discuss the single-core algorithms that compute a timing-
resistant scalar multiplication through the τ -and-add method over Koblitz curves
defined over F4. There are two basic approaches, the right-to-left and the left-
to-right algorithms.

5.1 Left-to-right τ -and-add

This algorithm is similar to the traditional left-to-right double-and-add method.
Here, the point doubling operation is replaced by the computationally cheaper
τ endomorphism. In addition, we need to compute the width w-τNAF represen-
tation of the scalar k and perform linear passes (cf. §5.3) in the accumulators in
order to avoid cache attacks [34, 26]. The method is shown in Algorithm 8.

The main advantage of this method is that the sensitive data is indirectly
placed in the points Pvi . However, those points are only read and then added to
the unique accumulator Q. As a consequence, only one linear pass per iteration
is required before reading Pvi . On the other hand, the operation τw−1(Q) must
be performed by successive squarings, since computing it through look-up tables
could leak information about the scalar k.

5.2 Right-to-left τ -and-add

This other method processes the scalar k from the least to the most significant
digit. Taking advantage of the τ endomorphism, the GLV method is brought to
its full extent. This approach is presented in Algorithm 9.



Algorithm 8 Left-to-right regular w-TNAF τ -and-add on Koblitz curves de-
fined over F4

Input: A Koblitz curve Ea/F22m , a point P ∈ Ea(F22m) of order r, k ∈ Zr
Output: Q = kP

1: Compute ρ = r0 + r1τ = k partmod
(
τm−1
τ−1

)
2: Ensure that r0 and r1 are odd.

3: Compute the width-w regular τ -NAF of r0 + r1τ as
∑dm+2

w−1
+1e

i=0 viτ
i(w−1)

4: for v ∈ {1, 3, . . . 4w−1 − 1} do Compute Pv = αv · P end for
5: Q← O
6: for i = m+2

w−1
+ 1 to 0 do

7: Q← τw−1(Q)
8: Perform a linear pass to recover Pvi
9: Q← Q± Pvi

10: end for
11: Subtract P, τ(P ) from Q if necessary
12: return Q = kP

Here, we have to perform a post-computation in the accumulators instead of
precomputing the points Pi as in the previous approach. Also, the τ endomor-
phism is applied to the point P , which is usually public. For that reason, we can
compute τ with table look-ups instead of performing squarings multiple times.

The downside of this algorithm is that the accumulators carry sensitive in-
formation about the digits of the scalar. Also, the accumulators are read and
written. As a result, it is necessary to apply the linear pass algorithm to the
accumulators Qi twice per iteration.

5.3 Linear pass

The linear pass is a method designed to protect sensitive information against
side-channel attacks associated with the CPU cache access patterns. Let us con-
sider an array A of size l. Before reading a value A[i], with i ∈ [0, l−1], the linear
pass technique reads the entire array A but only stores, usually into an output
register, the requested data A[i]. In that way, the attacker does not know which
array index was accessed just by analyzing the location of the cache-miss in his
own artificially injected data. Writing in A[i] occurs in a similar vein. Assuming
that the data to be written is stored in a register, we proceed by “deceitfully
updating” all values of A, except for A[i], which receives the real data. Note
that this method causes a considerable overhead, that depends on the size of the
array.

In this work, we implemented the linear pass method using 128-bit SSE
vectorized instructions and registers. At first, we create an array D of 128-bit
SSE values containing values from 0 to 22(w−1)−1, which corresponds to the
number of different digits after applying the width-w τNAF regular recoding
on k. Next, on each iteration of the main loop we create an array of masks M
by comparing the actual digit ki with the values of the array D using the SSE



Algorithm 9 Right-to-left regular w-TNAF τ -and-add on Koblitz curves de-
fined over F4

Input: A Koblitz curve Ea/F22m , a point P ∈ Ea(F22m) of order r, k ∈ Zr
Output: Q = kP
1: Compute ρ = r0 + r1τ = k partmod (mod τm−1

τ−1
)

2: Ensure that r0 and r1 are odd.

3: Compute the width-w regular τ -NAF of r0 + r1τ as
∑dm+2

w−1
+1e

i=0 viτ
i(w−1)

4: for i ∈ {1, 3, . . . 4w−1 − 1} do Qi = O
5: for i = 0 to m+2

w−1
+ 1 do

6: Perform a linear pass to recover Qi
7: Qi ← Qi ± P
8: Perform a linear pass to store Qi
9: P ← τw−1(P )

10: Q← O
11: for u ∈ {1, 3, . . . 4w−1 − 1} do Q = Q+ αv ·Qi
12: Subtract P, τ(P ) from Q if necessary
13: return Q = kP

instruction pcmpeqq, that compares the values of two 128-bit registers A and B
and sets the resulting register C with bits one, if A and B are equal, and bits
zero otherwise. As a result, we have an array of masks where all values are set
to bits 0, except for one, which has only bits 1.

Then, by performing logical operations between M and each of the values of
A, we can read and write safely into A. The techniques for reading and writing
are presented in Algorithms 10 and 11, respectively. Experimental results shows
that the implementation of the linear pass technique with SSE registers is more
efficient than using 64-bit conditional move instructions [25] by a factor of 2.125.

Algorithm 10 Reading linear pass using 128-bit AVX vectorized instructions

Input: An array A and a mask array M , both of size l, a requested index d, SSE
128-bit registers tmp, dst.

Output: The register dst containing A[d].
1: dst← 0
2: for i ∈ {0, . . . , l − 1} do
3: tmp←M [i] ∧A[i]
4: dst← dst⊕ tmp
5: end for

6 Results and discussion

Our software library can be executed in any Intel platform, which comes with
the SSE 4.1 vector instructions and the 64-bit carry-less multiplier instruction



Algorithm 11 Writing linear pass using 128-bit AVX vectorized instructions

Input: An array A and a mask array M , both of size l, a requested index d, SSE
128-bit registers tmp, src.

Output: The value A[d] containing src.
1: for i ∈ {0, . . . , l − 1} do
2: tmp← (M [i] ∧ src)⊕ (M [i] ∧A[i])
3: A[i]← tmp
4: end for

pclmulqdq. The benchmarking was executed in an Intel Core i7 4770k 3.50
GHz machine (Haswell architecture) with the TurboBoost and HyperThreading
features disabled. Also, the library was coded in the GNU11 C and Assembly
languages.

Regarding the compilers, we performed an experimental analysis on the per-
formance of our code compiled with different systems: GCC (Gnu Compiler
Collection) versions 5.3, 6.1; and the clang frontend for the LLVM compiler in-
frastructure versions 3.5 and 3.8. All compilations were done with the flags -O3
-march=haswell -fomit-frame-pointer. For the sake of comparison, we re-
ported our timings for all of the previously mentioned compilers. However, when
comparing our code with the state-of-the-art works, we opted for the clang/llvm
3.8, since it gave us the best performance.

6.1 Parameters

Given q = 2m, with m = 149, we constructed our base binary field Fq
∼=

F2[x]/(f(x)) with the 69-term irreducible polynomial f(x) described in Section 4.
The quadratic extension Fq2

∼= Fq[u]/(h(u)) was built through the irreducible
quadratic h(u) = u2 + u + 1. However, our base field arithmetic was computed
modulo the redundant trinomial g(x) = x192 + x19 + 1, which has among its
irreducible factors, the polynomial f(x).

Our Koblitz curve was defined over Fq2 as E1/Fq2 : y2 + xy = x3 + ux2 + u,
and the group E1(Fq2) contains a subgroup of interest of order

r = 0x637845F7F8BFAB325B85412FB54061F148B7F6E79AE11CC843ADE1470F7E4E29,

which corresponds to approximately 255 bits. In addition, throughout our scalar
multiplication, we represented the points in λ-affine [20, 28] and λ-projective [25]
coordinates. We selected an order-r base point P at random represented in λ-
affine coordinates as,

xP = 0x1B0CB55BC0B41C3EC1820E4E24EBC310451476

+ 0x4649A2FF1A1B8BA00AA8A706C04D6D97DF60C · u,
λP = 0x6B64DFA496D1DEEA880545B44AC9CC4950C1C

+ 0x1ADB1DA167DBDF597F03D9A0889FF76FB0B2A1 · u.



Table 5. Timings (in clock cycles) for the finite field operations in F22·149 using different
compiler families

Compilers Multiplication Squaring
Multi-

Inversion
Reduction

squaring modulo f(x)

GCC 5.3 52 20 100 2,392 452
GCC 6.1 52 20 104 2,216 452
clang 3.5 64 24 100 1,920 452
clang 3.8 60 20 96 1,894 452

Table 6. The ratio between the arithmetic and multiplication in F2149 . The timings
were taken from the code compiled with the clang 3.8 compiler

Operations Squaring Multisquaring Inversion
Reduction
modulo f(x)

operation /
0.33 1.60 31.56 7.53

multiplication

6.2 Field and elliptic curve arithmetic timings

In Table 5, we present the timings for the base and the quadratic field arith-
metic. The multisquaring operation is used to support the Itoh-Tsujii addition
chain, therefore, it is implemented only in the field F2149 (actually, in a 192-bit
polynomial in F2[x]). In addition, we gave timings to reduce a 192-bit polynomial
element in F2[x] modulo f(x). Finally, all timings of operations in the quadratic
field include the subsequent modular reduction.

Applying the techniques presented in [27], we saw that our machine has a
margin of error of four cycles. This range is not of significance when considering
the timings of the point arithmetic or the scalar multiplication. Nevertheless, for
inexpensive functions such as multiplication and squaring, it is recommended to
consider it when comparing the timings between different compilers.

In the following, we compare in Table 6 the base arithmetic operation timings
with the multiplication operation, which is the main operation of our library.
The ratio squaring/multiplication is relatively expensive. This is because the
polynomial g(x) = x192 + x19 + 1, does not admit a reduction specially designed
for the squaring operation. Furthermore, the multisquaring and the inversion
operations are also relatively costly. A possible explanation is that here, we
are measuring timings in a Haswell architecture, which has a computationally
cheaper carry-less multiplication when compared with the Sandy Bridge platform
[18].

In Table 7 we give the timings of the point arithmetic functions. There, we
presented the costs of applying the τ endomorphism to an affine point (two
coordinates) and a λ-projective point (three coordinates). The reason is that,
depending on the scalar multiplication algorithm, one can apply the Frobenius
map on the accumulator (projective) or the base point (affine). In addition,
we report in Table 7, the mixed point doubling operation, which is defined as



follows. Given a point P = (xP , yP ), the mixed-doubling function computes,
R = (XR, LR, ZR) = 2P . In other words, it performs a point doubling on an
affine point and returns the resulting point in projective representation. Such
primitive is useful in the computation of the τNAF representations αv = v mod
τw (see §2.2).

Table 7. Timings (in clock cycles) for point addition over a Koblitz curve E1/q
2 using

different compiler families

Compilers
Full Mixed Full Mixed τ endomorphism

Addition Addition Doubling Doubling 2 coord. 3 coord.

GCC 5.3 792 592 372 148 80 120
GCC 6.1 796 588 368 148 80 120
clang 3.5 768 580 404 164 84 124
clang 3.8 752 564 384 160 84 120

Table 7 also shows the superior performance of the clang compiler in the point
arithmetic timings, since the only operations where it has a clear disadvantage
are the full and mixed point doubling. However, those functions are rarely used
throughout a Koblitz curve scalar multiplication. In fact, they are used only in
the precomputing phase. Next, in Table 8, we show the relation of the point
arithmetic timings with the field multiplication.

Table 8. The ratio between the timings of point addition and the field multiplication.
The timings were taken from the code compiled with the clang 3.8 compiler

Operations
Full Mixed Full Mixed τ endomorphism

Addition Addition Doubling Doubling 2 coord. 3 coord.

operation /
12.53 9.39 6.40 2.66 1.40 2.00

multiplication

6.3 Scalar multiplication timings

Here the timings for the left-to-right and right-to-left regular w-τNAF τ -and-
add scalar multiplication, with w = 2, 3, 4 are reported. The setting w = 2 is
presented in order to analyze how the balance between the pre-computation and
the main iteration costs works in practice. Our main result lies in the setting
w = 3. First, in Table 9, we present the costs for the regular recoding and the
linear pass functions.

Regarding the regular recoding function, we saw an increase of about 46%
in the 3-τNAF timings when comparing with the w = 2 case. The reason is
that, for the w = 3 case, we must compute a more complicated arithmetic. Also,



Table 9. A comparison of the support functions timings (in clock cycles) between
different compiler families

Compilers
Regular recoding Linear pass
w=2 w=3 w=4 w=2 w=3 w=4

GCC 5.3 1,656 2,740 2,516 8 40 240
GCC 6.1 1,792 2,688 2,480 8 44 240
clang 3.5 1,804 2,680 2,396 8 44 272
clang 3.8 1,808 2,704 2,376 8 40 264

when selecting the digits, we must perform a linear pass in the array that stores
them. Otherwise, an attacker could learn about the scalar k by performing a
timing-attack based on the CPU cache.

The linear pass function also becomes more expensive in the w = 3 case,
since we have more points in the array. However, in the m = 149 case, we have
to process 64 more iterations with the width w = 2, when compared with the
3-τNAF point multiplication (since the number of iterations depends on m and
w: m+2

w−1 + 2). As a result, the linear pass function overhead is mitigated by the
savings in mixed additions and applications of τ endomorphisms in the main
loop. Finally, our scalar multiplication measurements consider that the point
Q = kP is returned in the λ-projective coordinate representation. If the affine
representation is required, it is necessary to add about 2,000 cycles to the total
scalar multiplication timings. The results are presented in Table 10.

Table 10. A comparison of the scalar multiplication timings (in clock cycles) between
different compiler families

Compilers
Right-to-Left Left-to-Right

w=2 w=3 w=4 w=2 w=3 w=4

GCC 5.3 98,332 78,248 134,420 100,480 72,556 90,020
GCC 6.1 97,356 79,044 134,152 99,456 71,728 89,740
clang 3.5 93,260 75,812 140,992 96,812 69,696 86,632
clang 3.8 93,392 77,188 126,032 95,196 68,980 85,244

Except for the w = 2 algorithms, whose regular τNAF recoding generates
only two different digits for the scalar k, in the other two cases, the left-to-
right outperforms the right-to-left method. For w = 3, the latter is 12% slower
and for the w = 4 case, it is 48% slower (when comparing the clang 3.8 code).
The reason for that, besides the extra linear pass application for writing into
the array, is that the post-computation points are in projective form, which
requires full point additions to be processed. On the other hand, in the left-to-
right approach, we can apply optimization techniques to maximize the number
of mixed point additions (see Table 3).



6.4 Comparisons

In Table 11, we compare our left-to-right algorithm implementations with the
state-of-the-art works. Our 3-τNAF left-to-right τ -and-add point multiplica-
tion outperformed by 29.64% the work in [24], which is considered the fastest
protected 128-bit secure Koblitz implementation. When compared with prime
curves, our work is surpassed by 15.29% and 13.06% by the works in [8] and [2],
respectively.

Table 11. Scalar multiplication timings (in clock cycles) on 128-bit secure elliptic
curves

Curve/Method Architecture Timings

Koblitz over F2283 (τ -and-add, 5-τNAF [24]) Haswell 99,000

GLS over F22·127 (double-and-add, 4-NAF [25]) Haswell 61,712

Twisted Edwards over F(2127−1)2 (double-and-add [8]) Haswell 59,000

Kummer genus-2 over F2127−1 (Kummer ladder [2]) Haswell 60,556

Koblitz over F4149 (τ-and-add, 2-τNAF (this work)) Haswell 96,822
Koblitz over F4149 (τ-and-add, 3-τNAF (this work)) Haswell 69,656
Koblitz over F4149 (τ-and-add, 4-τNAF (this work)) Haswell 85,244

Skylake architecture In addition, we present timings for our left-to-right scalar
multiplication algorithms, also compiled with clang 3.8, in the Skylake architec-
ture (Intel Core i7 6700K 4.00 GHz). The results (in clock cycles) for the cases
w = 2, 3, 4 are, respectively, 71,138, 51,788 and 66,286.

7 Conclusion

We have presented a comprehensive study of how to implement efficiently Koblitz
elliptic curves defined over quaternary fields F4m , using vectorized instructions
on the Intel micro-architectures codename Haswell and Skylake.

As a future work, we plan to investigate the use of 256-bit AVX2 registers
to improve the performance of our code. In addition, we intend to implement
the scalar multiplication algorithms in other architectures such as the ARMv8.
Finally, we would like to design a version of our point multiplication in the
multi-core and known point scenarios.
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