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Abstract. We give the first demonstration of a cryptographic hardness
property of the Goldreich-Goldwasser-Micali (GGM) pseudo-random func-
tion family when the secret key is exposed. We prove that for any con-
stant ✏ > 0, the GGM family is a 1/n2+✏-weakly one-way family of func-
tions, when the lengths of seeds, inputs, and outputs are equal. Namely,
any e�cient algorithm fails to invert GGM with probability at least
1/n2+✏ – even when given the secret key. We additionally state a natural
condition under which the GGM family is strongly one-way. Along the
way, we prove a purely combinatorial lemma for ‘GGM-like’ functions,
relating the size of the image of such functions to the statistical distance
between certain ‘sub-functions.’

1 Introduction

Pseudo-random functions are fundamental objects in cryptography, and theoret-
ical computer science generally. A pseudo-random function ensemble is a collec-
tion of (e�cient) functions F = {f

s

}
s2{0,1}⇤ indexed by a secret key s 2 {0, 1}⇤

with the dual properties that (1) given the key s, f
s

is e�ciently computable
and (2) without knowledge of the secret key, no probabilistic polynomial-time
algorithm can distinguish between oracle access to a random function from the
ensemble and access to a random oracle. The security property of pseudo-random
functions depends on the absolute secrecy of the key, and no security is guar-
anteed when the secret key is revealed. Pseudo-random functions have found
wide use in cryptography, often to derandomize algorithms to gain functionality
while not compromising on security. This paradigm is found everywhere from
private-key encryption and digital signatures [Gol04] to derandomizing obfus-
cated circuits [SW14]. Besides cryptography, pseudorandom functions have been
used to show negative results in computational learning theory [Val84], and to
demonstrate the inherent limits of using natural proofs to prove circuit lower-
bounds [RR97].

The first construction of pseudo-random function families starting from any
one-way functions came in 1986 by Goldreich, Goldwasser, and Micali [GGM86].
The GGM family is an important step in understanding the full power of one-way



functions. Assuming only that a function is hard to invert, the construction am-
plifies the secrecy of a short random seed into an exponentially-long, randomly-
accessible sequence of pseudo-random values. For about 10 years, this was the
only known paradigm for constructing of pseudo-random functions, even from
specific assumptions. Almost 30 years later, it remains the only generic approach
to construct PRFs from any one-way function.

Almost three decades after its conception, we are continuing to discover sur-
prising power specific to the GGM pseudo-random function family. The ba-
sic ideas of this construction were used in construction of broadcast encryp-
tion schemes in the early 90s [FN94]. More recently, Zhandry exhibited the
first quantum-secure PRF by demonstrating that the (classical) GGM ensemble
(instantiated with a quantum-secure pseudo-random generator) is secure even
against quantum adversaries [Zha12]. In [BW13,BGI14,KPTZ13], the notion of
constrained pseudo-random functions was introduced. The “constrained keys”
for these PRFs allow a user to evaluate the function on special subsets of the
domain while retaining pseudo-randomness elsewhere. The GGM ensemble (and
modifications thereof) is a constrained PRF for the family of prefix-constraints
(including point-puncturing), and is the only known non-trivial construction of
constrained PRFs from one-way functions. This family of constraints is pow-
erful enough to enable many known applications of these families for program
obfuscation [SW14].

In this work, we give the first demonstration that the GGM family enjoys
some measure of security even when the secret key is revealed to an attacker. In
this setting, pseudo-random functions need not guarantee any security (even for
constrained PRFs). Indeed, the Luby-Racko↵ family of pseudo-random functions
[LR88] are e�ciently invertible given knowledge of the secret key. This suggests
that we must examine specific constructions of pseudo-random functions. In this
work, we ask the following question:

What security, if any, does the GGM ensemble provide when the secret
key is known?

A version of this question was posed and addressed by Goldreich in 20023

[Gol02]. Goldreich casts the question from the angle of correlation intractability.
Informally, a function ensemble {f

s

}
s2{0,1}⇤ is correlation intractable if – even

given the function description s – it is computationally infeasible to find an input
x such that x and f

s

(x) satisfy some “sparse” relation. Correlation intractability
was formalized in [CGH04], which proved that no such family exists for |x| � |s|.

In [Gol02], Goldreich proves that the GGM ensemble is not correlation in-
tractable, even for |x| < |s|, in a very strong sense. Goldreich constructs a
pseudo-random generator G(0) which, when used to instantiate the GGM en-
semble, allows an adversary with knowledge of the secret key s to e�ciently find
preimages of x 2 f�1

s

(0n). This allows the inversion of f
s

for a specific image
0n, but not necessarily for random images.

3 And posed much earlier by Micali and by Barak: see Acknowledgments of [Gol02].



1.1 Our contributions

In this work, we prove that the length-preserving4 GGM ensemble is a weakly
one-way family of functions. This means that any e�cient algorithm A that –
when given the secret key s – purports to invert GGM on random inputs must fail
with some noticeable polynomial probability, with high probability over the keys
s. Moreover, we prove that if either a random function in F

G

is close in statistical
distance to a permutation, or is “regular” in the sense that each image has a
polynomially-bounded number of pre-images, length-preserving GGM ensemble
is strongly one-way. Formally:

Theorem 1. Let F
G

= {f
s

}
s2{0,1}⇤ be the length-preserving GGM function en-

semble with pseudo-random generator G, where f
s

: {0, 1}|s| ! {0, 1}|s|. Then
for every constant ✏ > 0, F

G

is a 1/n2+✏–weakly one-way collection of functions.
That is, for every probabilistic polynomial-time algorithm A, for every constant
✏ > 0, and all su�ciently large n’s,

Pr
s U

n

x U

n

[A(s, f
s

(x)) 2 f�1
s

(f
s

(x))] < 1� 1

n2+✏

(1)

Theorem 2. Let F
G

be the GGM ensemble with pseudo-random generator G.
F

G

is a strongly one-way collection of functions if either of the following hold:

(a) There exists a negligible negl(·) such that for all su�ciently large n

E
s U

n



SD
�

f
s

(Un), Un

�

�

 negl(n) (2)

(b) There exists a polynomial B such that for all su�ciently large n and for all
s, y 2 {0, 1}n

|f�1
s

(y)|  B(n) (3)

Remark 1. The conditions of Theorem 2 are very strong conditions. Whether
a pseudo-random generator G exists which makes the induced GGM ensemble
satisfy either condition is an interesting and open question. The possibility of
such a generator is open even for the stronger requirement that for every seed
s, f

s

is a permutation.

In order to prove the above theorems, we establish the following purely com-
binatorial lemma.

Lemma 1. Let G : {0, 1}⇤ ! {0, 1}⇤ be any length doubling function (not nec-
essarily pseudo-random), and let G0, G1, and F

G

be constructed in the manner
of GGM (see Definition 4). For every constant ✏ > 0 and every n 2 N, either

– There exists k 2 [0, n� 1] such that

E
r fUn (Uk)



SD
�

f
G0(r)(U

n), f
G1(r)(U

n)
�

�

 1� 1

n2+✏

(L.1)

4 We consider only the case when seeds, inputs, and outputs are of the same lengths.



– The expected size of the image of f
s

is large:

E
s U

n

⇥ |Img(f
s

)|
2n

⇤

> 1� 2

n✏/2
(L.2)

Informally, this lemma states that either:

– There is a level k such for a random node r on the kth level, the subtrees
induced by the left child G0(r) and the right child G1(r) are not too dissim-
ilar.

– The image of f
s

is in expectation, very large subset of the co-domain.

The proof of the lemma involves a careful counting argument. Applying the
lemma, we show that if an e�cient algorithm successfully inverts GGM with
random seeds and images uniformly sampled according to f

s

(Un), then the same
algorithm must also succeed when inputs are sampled uniformly according to Un.
This argument makes crucial use of statistical distance, posing a barrier towards
proving strong one-wayness of GGM. Under the same supposition of a strong
inverting algorithm, we violate the pseudo-randomness of the PRG underlying
the GGM family, yielding a contradiction and proving the theorem.

Organization Section 2 provides preliminaries and some essential definitions.
Section 3 proves Lemma 1, along with a reformulation that will be easier for us
to use. Section 4 contains a statement and proof of an additional lemma that we
require, while Section 5 contains a full proofs of the main theorems.

2 Preliminaries

2.1 Notation

For two strings a and b we denote by akb their concatenation. For a bit string
x 2 {0, 1}n, we denote by x[i] its i-th bit, and by x[i : j] (for i < j) the sequence
x[i]kx[i+ 1]k · · · kx[j]. We abbreviate ‘probabilistic polynomial time’ as ‘PPT’.

For a probability distribution D, we use Supp(D) to denote the support of
D. We write x D to mean that x is a sample from the distribution D. By Un,
we denote the uniform distribution over {0, 1}n. For a probabilistic algorithm A,
we let A(x) denote a sample from the probability distribution induced over the
outputs of A on input x, though we occasionally abuse notation and let A(x)
denote the distribution itself. For a function f : X ! Y and a distribution D
over X, we denote by f(D) the distribution over Y induced by (f(x))

x D

.

Definition 1 (Multiset). A multi-set M over a set S is a function M : S ! N.
For each s 2 S, we call M(s) the multiplicity of s. We say s 2M if M(s) � 1,
and denote the size of M by |M | =

P

S

M(s). For two multi-sets M and M 0

over S, we define their intersection M \M 0 to be the multiset (M \M 0)(s) =
min[M(s),M 0(s)] containing each element with the smaller of the two multiplic-
ities.



2.2 Standard cryptographic notions, and the GGM ensemble

Definition 2 (One-way collection of functions; adapted from [Gol04]).
A collection of functions {f

s

: {0, 1}|s| ! {0, 1}⇤}
s2{0,1}⇤ is called strongly (w-

weakly) one-way if there exists a probabilistic polynomial-time algorithm Eval

such that the following two conditions hold:

– E�ciently computable: On input s 2 {0, 1}⇤, and x 2 {0, 1}|s|, algorithm
Eval always outputs f

s

(x).
– Strongly one-way: For every polynomial w(·), for every probabilistic polynomial-

time algorithm A and all su�ciently large n,

Pr
s U

n

x U

n

[A(s, f
s

(x)) 2 f�1
s

(f
s

(x))] <
1

w(n)
(4)

– w-Weakly one-way: There exists a polynomial w(·) such that for every prob-
abilistic polynomial-time algorithm A and all su�ciently large n,

Pr
s U

n

x U

n

[A(s, f
s

(x)) 2 f�1
s

(f
s

(x))] < 1� 1

w(n)
(5)

We emphasize that in weakly one-way definition there is a single polynomial w
which bounds the success probability of every e�cient adversary. Additionally,
weakly one-way collections can be easily amplified to achieve (strong) one-way
functions [Gol04].

Definition 3 (Pseudo-random generator). An e�ciently computable func-
tion G : {0, 1}n ! {0, 1}2n is a (length-doubling) pseudorandom generator, if
G(Un) is computationally indistinguishable from U2n. Namely for any PPT D

�

�

�

�

Pr[D(G(Un)) = 1]� Pr[D(U2n) = 1]

�

�

�

�

= negl(n)

Definition 4 (GGM function ensemble [GGM86]). Let G be a determinis-
tic algorithm that expands inputs of length n into string of length 2n. We denote
by G0(s) the |s|-bit-long prefix of G(s), and by G1(s) the |s|-bit-long su�x of
G(s) (i.e., G(s) = G0(s)kG1(s). For every s 2 {0, 1}n (called the seed), we

define a function f
(G)
s

: {0, 1}n ! {0, 1}n such that for every x 2 {0, 1}n,

f (G)
s

(x[1], . . . , x[n]) = G
x[n](· · · (Gx[2](Gx[1](s)) · · · ) (6)

For any n 2 N, we define F
n

to be a random variable over {f (G)
s

}
s2{0,1}n . We

call F
G

= {F
n

}
n2N the GGM function ensemble with generator G.

The construction is easily generalized to the case when |x| 6= n. Though we
define the GGM function ensemble as the case when |x| = n, we will make use

of the more general case. We will typically write f
s

instead of f
(G)
s

.



The GGM construction may be interpreted as a binary tree, and we will use
this view throughout. Starting from any length-doubling function G : {0, 1}n !
{0, 1}2n, a seed s 2 {0, 1}n can be viewed as recursively defining a binary tree
with root s, and the given by G0(s) and G1(s).

Each node in the binary tree of the GGM function has an n-bit label, and
we will be interested in the possible labels of a node’s parent, namely the set
G�10 (x) [ G�11 (x) for some x 2 {0, 1}n. We will denote this set by G�1⇤ (x) :=
G�10 (x) [G�11 (x).

The following facts follow from [GGM86], or can be shown using essentially
the same techniques.

Facts:

– If G is a pseudo-random generator, then F
G

is a pseudo-random function
family.

– The distribution f
U

n(U `(n)) (sampled by evaluating f
s

(x) for uniform s  
Un and x  U `(n)) is computationally indistinguishable from Un, for any
polynomial `(n).

– For a length-doubling PRG G = (G0, G1), the distribution G
U

(Un) (sampled
by evaluating G

b

(x) for uniform b  U and x  Un) is computationally
indistinguishable from Un.

2.3 Statistical distance

For two probability distributions D and D0 over some universe X, we denote
their statistical distance SD(D,D0):

SD(D,D0) :=
1

2

X

x2X
|D(x)�D0(x)| = max

S✓X

X

x2S
D(x)�D0(x)

For a collection of distributions {D(p)} with some parameter p, and a distribu-
tion P over the parameter p, we write

(p,D(p))
P

to denote the distribution over pairs (p, x) induced by sampling p  P and
subsequently x  D(p).5 It follows from the definition of statistical distance
that for distributions P , D(P ), and D0(P ) (see appendix):

SD
��

p,D(p)
�

P

,
�

p,D0(p)
�

P

�

= E
p P

⇥

SD
�

D(p), D0(p)
�⇤

(7)

The quantity |Img(f)| is related to the statistical distance between the uni-
form distribution Un and the distribution f(Un). For any f : {0, 1}n ! {0, 1}n,

SD(f(Un), Un) = 1� |Img(f)|
2n

(8)

5 For example, the distribution (x,Bernoulli[x])
Uniform[0,1] is the distribution over (x, b)

by drawing the parameter x uniformly from [0, 1], and subsequently taking a sample
b from the Bernoulli distribution with parameter x.



This identity can be easily shown by expanding the definition of statistical dis-
tance, or by considering the histograms of the two distributions and a simple
counting argument. See the appendix for a proof.

An additional fact about the statistical distance of GGM functions will be
useful. For all ` < n and seeds s0 and s1:

SD
�

f
s0(U

`), f
s1(U

`)
�

� SD
�

f
s0(U

n), f
s1(U

n)
�

(9)

This can be shown by expanding the definitions, or by considering the nature
of the distributions. For GGM trees rooted at s, the distribution f

s

(U `) corre-
sponds to picking a uniform node on level ` of the tree. The GGM construction
implies that if two internal nodes have the same label, then their subtrees exactly
coincide. Thus, the fraction of nodes at level n that coincide on trees rooted at
s0 and s1 is at least the fraction of nodes at level ` that coincide.

2.4 Rényi divergences

Similar to statistical distance, the Rényi divergence is a useful tool for relating
the probability of some event under two distributions. Whereas the statistical
distance yields an additive relation between the probabilities in two distributions,
the Rényi divergence yields a multiplicative relation. The following is adapted
from Section 2.3 of [BLL+15].

For any two discrete probability distributions P and Q such that Supp(P ) ✓
Supp(Q), we define the Rényi divergence (of order 2) by

R (PkQ) =

0

@

X

x2Supp(Q)

P (x)2

Q(x)

1

A . (10)

An important fact about Rényi divergence is that for an abitrary event E ✓
Supp(Q)

Q(E) � P (E)2

R (PkQ)
. (11)

3 A combinatorial lemma

We prove the following lemma, which will be critical to establishing our main
theorem. We emphasize that this lemma is purely combinatorial, and makes no
use of computational assumptions.

Lemma 1. Let G : {0, 1}⇤ ! {0, 1}⇤ be any length doubling function (not
necessarily pseudo-random), and let G0, G1, and F

G

be defined as in Definition
4. For every constant ✏ > 0 and every n 2 N, either

– There exists k 2 [0, n� 1] such that

E
r fUn (Uk)



SD
�

f
G0(r)(U

n), f
G1(r)(U

n)
�

�

 1� 1

n2+✏

(L.1)



– The expected size of the image of f
s

is large:

E
s U

n

⇥ |Img(f
s

)|
2n

⇤

> 1� 2

n✏/2
(L.2)

Informally, this lemma states that either:

– There is a level k such that for a random node r on the kth level, the
subtrees induced by the left child G0(r) and the right child G1(r) are not
too dissimilar.

– The image of f
s

is in expectation, a very large subset of the co-domain.

Before proving the lemma, we establish more useful versions of (L.1) and (L.2)
which will be used when proving our main results. Firstly, (L.1) implies the
following inequality:

SD

✓

�

G0(r), f
G0(r)(U

n)
�

r fUn (Uk)
;
�

G0(r), f
G1(r)(U

n)
�

r fUn (Uk)

◆

 SD

✓

�

r, f
G0(r)(U

n)
�

r fUn (Uk)
;
�

r, f
G1(r)(U

n)
�

r fUn (Uk)

◆

= E
r fUn (Uk)



SD

✓

f
G0(r)(U

n) ; f
G1(r)(U

n)

◆�

by (7)

 1� 1

n2+✏

(L.1*)

The first inequality holds because a distinguisher (even unbounded) for the for-
mer pair of distributions implies there exists a distinguisher (with at least the
same advantage) for the latter pair.6

(L.2) implies the following statistical distance bound:

SD
��

s, f
s

(Un)
�

U

n ;
�

Un, Un

��

= E
s U

n



SD
�

f
s

(Un) ; Un

�

�

by (7)

= E
s U

n



1� |Img(f
s

)|
2n

�

by (8)

<
2

n✏/2
(L.2*)

Proof (Lemma 1). Fix n 2 N and a seed s 2 {0, 1}n. For every k 2 [0, n � 1]
and v 2 {0, 1}k (letting {0, 1}0 = {"}, where " is the empty string), we define
two multi-sets over {0, 1}n (‘L’ for ‘leaves’) which together contain all the leaves
contained in the subtree with prefix v of the GGM tree rooted at s.

Ls

v,0 = {f
s

(x) : x = vk0k?}
?2{0,1}n�k�1

Ls

v,1 = {f
s

(x) : x = vk1k?}
?2{0,1}n�k�1

(12)

6 This essentially a data-processing inequality.



Define Is
v

:= Ls

v,0 \ Ls

v,1 to be their intersection. Recall that for a multi-set M ,
M(x) is the multiplicity of the element x in M . Expanding the definition of
statistical distance:

SD(f
G0(fs(v))(U

n�k�1) ; f
G1(fs(v))(U

n�k�1))

=
1

2n�k�1
· max
X✓{0,1}n

X

x2X

✓

Ls

v,0(x)� Ls

v,1(x)

◆

= 1� |Is
v

|
2n�k�1

(13)

Rearranging and using (9) with ` = n� k, we have that

|Is
v

|
2n�k�1

 1� SD

✓

f
G0(fs(v))(U

n) ; f
G1(fs(v))(U

n)

◆

(14)

For each v 2 {0, 1}k, we define a set Bs

v

of “bad” inputs x to the function f
s

.
For each y 2 Is

v

, there are at least Is
v

(y)-many distinct x0 (respectively, x1) such
that f

s

(x0) = y and x0 = vk0k? begins with the prefix vk0 (respectively, vk1).
Assign arbitrarily Is

v

(y)-many such x0 and x1 to the set Bs

v

. By construction,

|Bs

v

| = 2|Is
v

| (15)

Let Bs =
S

n�1
k=0

S

v2{0,1}k Bs

v

, and let Qs := {0, 1}n \Bs.7

Observe that f
s

is injective on Qs. To see why, consider some x 2 Qs, and
let x0 6= x be such that f

s

(x) = f
s

(x0) = y if one exists. Suppose that the length
of their common prefix v = pre(x, x0) is maximal among all such x0. By the
maximality of the prefix v, x must be in Bs

v

.
Therefore,

|Img(f
s

)| � |Qs| (16)

Claim. For ✏ > 0, n 2 N, if (L.1) is false, then

E
s U

n
[
|Bs|
2n

] <
2

n✏/2
(17)

Proved below, this claim implies (L.2), completing the proof.

E
s U

n

⇥ |Img(f
s

)|
2n

⇤

� E
s U

n

⇥ |Qs|
2n

⇤

= 1� E
s U

n

⇥ |Bs|
2n

⇤

> 1� 2

n✏/2
(18)

Proof (Claim 3). Fix constant ✏ > 0. Suppose (L.1) is false: for all k 2 [0, n� 1],

E
r fUn (Uk)



SD

✓

f
G0(r)(U

n) ; f
G1(r)(U

n)

◆�

> 1� 1

n2+✏

(19)

By Markov’s Inequality, for any ⌧ > 0:

Pr
r fUn (Uk)



1� SD

✓

f
G0(r)(U

n) ; f
G1(r)(U

n)

◆

>
⌧

n2+✏

�

<
1

⌧
(20)

7 ‘Q’ for ‘good,’ because G is our pseudo-random generator.



We can now bound the expected size of |Bs| as follows.

E
s U

n



|Bs|
2n

�

(21)

= Pr
s U

n

x U

n

[x 2 Bs]


n�1
X

k=0

X

v2{0,1}k

Pr
s,x

[x 2 Bs

v

] by the definition of Bs

=
n�1
X

k=0

Pr
s,x

h

x 2 Bs

x[1:k]

i


n�1
X

k=0

T · Pr
s,x

 

|Bs

x[1:k]|
2n�k

 T

!

+ Pr
s,x

 

|Bs

x[1:k]|
2n�k

> T

!

for any 0  T  1


n�1
X

k=0

T + Pr
s,x

 

|Is
x[1:k]|

2n�k�1
> T

!

by (15) (22)

Purely to reduce clutter, for r 2 {0, 1}n, let

�(r) = 1� SD

✓

f
G0(r)(U

n) ; f
G1(r)(U

n)

◆

(23)

Continuing the above series of inequalities, and then observing that the dis-
tribution over f

s

(x[1 : k]) is precisely f
U

n(Uk):


n�1
X

k=0

✓

T + Pr
s U

n

x U

n

[� (f
s

(x[1 : k])) > T ]

◆

by (14)

 n
⌧

n2+✏

+ n
1

⌧
for T =

⌧

n2+✏

, by (20)

=
2

n✏/2
for ⌧ = n1+✏/2 (24)

4 Breaking the PRG by inverting

Having established our combinatorial lemma, we now state and prove an ad-
ditional lemma which will be used to establish our main theorems. Informally,
this lemma states that any e�cient algorithm A that can invert f

s

on uniformly
random values y 2 {0, 1}n can be used to distinguish outputs of the PRG G
from random.

Lemma 2. Let G and F
G

be defined as in Definition 4. If there exists a PPT
algorithm A and a polynomial ↵(n) such that for infinitely many n 2 N:

Pr
s U

n

y U

n

[A(s, y) 2 f�1
s

(y)] >
1

↵(n)
(25)



Then there exists a PPT distinguisher D, which for infinitely many n 2 N:
�

�

�

�

Pr
⇥

D (G (Un)) = 1
⇤

� Pr
⇥

D
�

U2n
�

= 1
⇤

�

�

�

�

�
✓

1

4↵(n)

◆5

� negl(n) (26)

Because G is assumed to be a pseudorandom generator, no such PPT distin-
guisher D can exist.

Notice that the distribution over (s, y) in Eq. (25) is not the same as in the
(weakly) one-way function definition: in the lemma y is a uniformly random
element of the co-domain, whereas in the definition of a one-way function y is
distributed according to f

s

(Un) – the image of a uniform pre-image under f
s

.

Proof (Lemma 2). The distinguisher D is defined as follows:

Input : PRG challenge (y0, y1) which is a sample from either G(Un) or
U2n

Output: b 2 {0, 1}
Sample a seed s Un and a bit b U uniformly at random;
Compute x A(s, y

b

);
if f

s

(x) = y
b

and f
s

(x� 0n�11) = y1�b then
Output 1; (“PRG”)

else
Output 0; (“random”)

end
Algorithm 1: The PRG distinguisher D

Notice that if D outputs 1, then either (y0, y1) or (y1, y0) is in Img(G). If
(y0, y1) was sampled uniformly from U2n, then this happens with probability at
most 2n+1/22n. Therefore,

Pr[D(y0, y1) = 1 | (y0, y1) U2n] = negl(n) (27)

We prove that

Pr[D(y0, y1) = 1 | (y0, y1) G(Un)] �
✓

1

4↵(n)

◆5

(28)

At a very high level, the intuition is that for most (y0, y1) 2 Img(G), there are
not too many y01 for which either (y0, y01) 2 Img(G) or (y01, y0) 2 Img(G) is true
(similarly for y00 and y1). After arguing that A must invert even on such “thin”
y’s, the chance that y01�b = y1�b is significant. We now examine this argument
in detail.

We define the function

G⇤ : {0, 1}⇥ {0, 1}n ! {0, 1}n

(b, y) 7! G
b

(y)

Then G�1⇤ (y) := G�10 (y) [ G�11 (y) is the set of all preimages of y under either
G0 or G1, and Img(G⇤) = Img(G0)[ Img(G1) is the set of all n-bit strings in the
image of either G0 or G1.



Definition 5 (✓-thin, ✓-fat). An element y 2 {0, 1}n is called ✓-thin under G
if |G�1⇤ (y)|  ✓. Otherwise, it is called ✓-fat. Define the sets:

Thin

✓

:= {y 2 {0, 1}n : y is ✓-thin}
Fat

✓

:= {0, 1}n \ Thin
✓

Observe that because each ✓-fat y must have at least ✓ preimages, and the domain
of G⇤ is of size 2n+1:

|Fat
✓

|  2n+1

✓
. (29)

For any ✓ 2 {1, . . . , 2n}, we can lower bound the probability that the distin-
guisher D outputs 1 in case of getting a bespoke PRG input.

Pr[D(G(Un)) = 1]

= Pr
s U

n
,b U

(y0,y1) G(Un)

[A(s, y
b

) 2 f�1
s

(y
b

) ^ A(s, y
b

)� 0n�11 2 f�1
s

(y1�b)] (30)

� Pr
b U

(y0,y1) G(Un)

[y
b

2 Thin

✓

]

· Pr
s U

n
,b U

(y0,y1) G(Un)

[A(s, y
b

) 2 f�1
s

(y
b

) | y
b

2 Thin

✓

]

· Pr
s U

n
,b U

(y0,y1) G(Un)

[A(s, y
b

)� 0n�11 2 f�1
s

(y1�b) | A(s, y
b

) 2 f�1
s

(y
b

) ^ y
b

2 Thin

✓

]

(31)

Thus, it su�ces to show that (31) is not negligible. We show that every term is
not negligible.

The first term can be lower-bounded by

Pr
y GU (Un)

[y 2 Thin

✓

] � 1

2↵(n)
� 1

✓
(32)

This follows from (29) and the hypothesis (25) of the lemma (see appendix for
full details).
The third term can be lower-bounded by:

Pr
s U

n
,b U

(y0,y1) G(Un)



A(s, y
b

)� 0n�11 2 f�1
s

(y1�b)

�

�

�

�

A(s, y
b

) 2 f�1
s

(y
b

)
^ y

b

2 Thin

✓

�

� 1

✓
(33)

To see why, suppose that indeed y
b

2 Thin

✓

and A(s, y
b

) 2 f�1
s

(y
b

). Because
y
b

is ✓-thin, there are at most ✓-possible values of y01�b := f
s

(A(s, y
b

)� 0n�11).
The true y1�b is hidden from the adversary’s view, and takes each of the possible
values with probability at least 1/✓. Thus the probability that y1�b = y01�b is as
above.



The second term can be lower-bounded by:

Pr
s U

n

y GU (Un)

[A(s, y) 2 f�1
s

(y) | y 2 Thin

✓

] �
✓

1

4↵(n)

◆3

(34)

See proof below. In the course of that argument, we set ✓ = 4↵(n)

Finally, letting ✓ = 4↵(n) and putting it all together implies that

Pr[D(G(Un)) = 1] >

✓

1

2↵(n)
� 1

✓

◆

·
✓

1

4↵(n)

◆3

· 1
✓

(35)

�
✓

1

4↵(n)

◆5

(36)

proving (28) and completing the proof of the lemma.

Proof (Inequality (34)). To prove the inequality we define the notion of q-good.

Definition 6 (q-good). For any q 2 [0, 1], an element y 2 {0, 1}n is called
q-good with respect to ✓ if it is both ✓-thin and A finds some preimage of y for
a uniformly random seed s with probability at least q. Namely,

Good

q

:=
�

y 2 Thin

✓

: Pr
s U

n
[A(s, y) 2 f�1

s

(y)] > q
 

First, we show that8

Pr
s U

n

y GU (Un)

[A(s, y) 2 f�1
s

(y) | y 2 Thin

✓

]

� Pr
y GU (Un)

[y 2 Good

q

| y 2 Thin

✓

] · Pr
s U

n

y GU (Un)

[A(s, y) 2 f�1
s

(y) | y 2 Good

q

]

� |Good
q

|
✓ | Thin

✓

| · q (37)

This is follows from the following two observations:

– By definition of Good
q

:

Pr
s U

n

y GU (Un)

[A(s, y) 2 f�1
s

(y) | y 2 Good

q

] > q (38)

– The distribution y  G
U

(Un) is equivalent to the distribution (G
b

(x))(b,x) U⇥Un .
The number of pairs (b, x) such that G

b

(x) 2 Good

q

is at least |Good
q

|, while
8 Note that while it the trivial statement that Prs Un

y Un
[A(s, y) 2 f

�1
s (y) | y 2 Thin✓] =

|Goodq |
|Thin✓|

is true, this is not the probability that we here bound.



the number of pairs (b, x) such that G
b

(x) 2 Thin

✓

is at most ✓|Thin
✓

|. There-
fore:

Pr
y GU (Un)

[y 2 Good

q

| y 2 Thin

✓

]

= Pr
(b,x) U⇥Un

[G
b

(x) 2 Good

q

| G
b

(x) 2 Thin

✓

]

� 1

✓
· |Goodq||Thin

✓

|

In the appendix, we show that

|Good
q

|
|Thin

✓

| = Pr
s,y U

n
[y 2 Good

q

|y 2 Thin

✓

] � 1

↵(n)
� 2

✓
� q (39)

Selecting ✓ = 4↵(n) and q = 1/4↵(n), (37) is bounded below by

Pr
s U

n

y GU (Un)

[A(s, y) 2 f�1
s

(y)|y 2 Thin

✓

] � |Good
q

|
✓|Thin

✓

| · q

�
✓

1

4↵(n)

◆3

This completes the proof of (34).

5 The one-wayness of GGM

Using the two lemmata, we now restate and prove our two main theorems.

Theorem 1. Let F
G

be the GGM ensemble with pseudo-random generator G.
Then for every constant ✏ > 0, F

G

is a 1/n2+✏–weakly one-way collection of
functions. That is, for every probabilistic polynomial-time algorithm A, for every
constant ✏ > 0, and all su�ciently large n’s,

Pr
s U

n

x U

n

[A(s, f
s

(x)) 2 f�1
s

(f
s

(x))] < 1� 1

n2+✏

(40)

Proof (Theorem 1). Fix a constant ✏ > 0. We assume for contradiction that
there exists a PPT A and an infinite sequence IA = {n

i

}
i2N such that for every

n 2 IA:

Pr
s U

n

y fs(U
n)

[A(s, y) 2 f�1
s

(y)] > 1� 1

n2+✏

(41)

We will show that there exists a negligible function negl(·) such that for all
su�ciently large n 2 IA:

Pr
s U

n

y U

n

[A(s, y) 2 f�1
s

(y)] >
1

2n2+✏/2
� negl(n) (42)



That is, the same A that successfully inverts on random images with probability
at least 1 � 1/n2+✏ will also invert on uniformly random values y  Un. By
Lemma 2, this su�ces to prove the theorem.

Remark 2. While the proof of our two lemmata are much more technically in-
volved than the proof that follows, the above statement is the conceptual heart
of our result. It is, we think, quite surprising.

Apply Lemma 1 for ✏0 := ✏/2. In the case that (L.2) is true, (42) follows
immediately from (L.2*), observing that:

�

�

�

�

�

�

Pr
s U

n

y fs(U
n)

[A(s, y) 2 f�1
s

(y)]� Pr
s U

n

y U

n

[A(s, y) 2 f�1
s

(y)]

�

�

�

�

�

�

 SD

✓

�

s, f
s

(Un)
�

s U

n ;
�

Un, Un

�

◆

<
2

n✏/4

In the case that (L.1) holds, we proceed by the following series of hybrids,
making use of this fact alongside the pseudo-randomness of G.

H0: This is the weak one-way function security game. By assumption (41):

Pr
s U

n

y fs(U
n)

[A(s, y) 2 f�1
s

(y)] > 1� 1

n2+✏

(43)

H1: For every k 2 [0, n � 1], the pseudo-randomness of the PRG implies that
Un and G0(fUn(Uk)) are computationally indistinguishable.9 In this hybrid, we
pick s from the latter distribution instead of the former, using the k guaranteed
by (L.1). This loses only a negligible amount in A’s success probability.

Pr
r fUn (Uk)
s=G0(r)

y fs(U
n)

[A(s, y) 2 f�1
s

(y)] > 1� 1

n2+✏

� negl(n) (44)

H2: In this hybrid, we use (L.1*) for ✏0 = ✏/2 to switch from picking y from
f
s

(Un), to instead picking y from f
s1(U

n), where s1 = G1(r) is the sibling of s
under G:

�

�

�

�

Pr
r fUn (Uk)
(s,s1)=G(r)
y fs(U

n)

[A(s, y) 2 f�1
s

(y)]� Pr
r fUn (Uk),
(s,s1)=G(r)
y fs1 (U

n)

[A(s, y) 2 f�1
s

(y)]

�

�

�

�

 SD

✓

�

G0(r), f
G0(r)(U

n)
�

r fUn (Uk)
;
�

G0(r), f
G1(r)(U

n)
�

r fUn (Uk)

◆

 1� 1

n2+✏/2

9 See the Facts about GGM in Section 2.



Therefore, for all su�ciently large n 2 IA:

Pr
r fUn (Uk),
(s,s1)=G(r)
y fs1 (U

n)

[A(s, y) 2 f�1
s

(y)] >
1

2n2+✏/2
(45)

H3: In this hybrid, we use the pseudo-randomness of the PRG to sample sample
s and s1 independently (s1 is now implicit). This is computationally indistin-
guishable by the same reasoning as hybrid H1. This loses at most a negligible
factor in A’s success probability:

Pr
s U

n

y fUn (Un)

[A(s, y) 2 f�1
s

(y)] >
1

2n2+✏/2
� negl(n) (46)

H4: We again use the pseudo-randomness to sample y uniformly, losing only a
negligible factor in A’s success probability, establishing (42) and the theorem:

Pr
s U

n

y U

n

[A(s, y) 2 f�1
s

(y)] >
1

2n2+✏/2
� negl(n) (47)

Theorem 2. Let F
G

be the GGM ensemble with pseudo-random generator G.
F

G

is a strongly one-way collection of functions if either of the following hold:

(a) There exists a negligible negl(·) such that for all su�ciently large n

E
s U

n



SD
�

f
s

(Un), Un

�

�

 negl(n) (48)

(b) There exists a polynomial B such that for all su�ciently large n and for all
s, y 2 {0, 1}n

|f�1
s

(y)|  B(n) (49)

Proof (Theorem 2). Suppose F
G

satisfies one of the conditions of Theorem 2.
Further suppose towards contradiction that there exists a probabilistic polynomial-
time A and a polynomial w(·), such that for infinitely-many n 2 N

Pr
s U

n

x U

n

[A(s, f
s

(x)) 2 f�1
s

(f
s

(x))] � 1

w(n)
(50)

By Lemma 2, to derive a condtradiction it su�ces to prove for some polynomial
↵(·) related to w

Pr
s U

n

y U

n

[A(s, y) 2 f�1
s

(y)] >
1

↵(n)
(51)

Case (a) By assumption on E
s

⇥

SD
�

f
s

(Un), Un

�⇤

and Equation (7)

SD
�

(s, f
s

(U
n

))
Un

, (U
n

, U
n

)
�

 negl(n) (52)

It follows immediately that (51) holds for 1/↵(n) = 1/w(n)� 1/poly(n), for any
polynomial poly (e.g. for 1/↵(n) = 1/2w(n)).



Case (b) For this case, we use the facts about Rényi divergence from the
Preliminaries and follow that notation closely. Let P = (s, f

s

(U
n

))
s Un and

Q = (U2n) be probability distributions over {0, 1}2n.

Claim. R (PkQ)  B(n)2.

Proof (Claim 5).

R (PkQ) =
X

(s,y)2{0,1}2n

P (s, y)2

Q(s, y)

= 22n
X

s,y

P (s, y)2

= 22n
X

s,y

⇣

Pr
P

[s] · Pr
P

[y|s]
⌘2

= 22n
X

s,y

✓

1

2n
· Pr

P

[y|s]
◆2

=
X

s,y

Pr
P

[y|s]2

=
X

s,y

✓

|f�1
s

(y)|
2n

◆2

 2�2n
X

s,y

B(n)2

= B(n)2

Let the event E =
n

(s, y) 2 {0, 1}2n : PrA[A(s, y) 2 f�1
s

(y)] > 1
2w(n)

o

. By an

averaging argument:

1

w(n)
< Pr

(s,y) P

[A(s, y) 2 f�1
s

(y)]

= Pr
P

[A(s, y) 2 f�1
s

(y) ^ E]

+ Pr
P

[A(s, y) 2 f�1
s

(y) ^ ¬E]

 Pr
P

[E] + Pr[A(s, y) 2 f�1
s

(y) | ¬E]

 P (E) +
1

2w(n)

Using (11), we get that

P (E) >
1

2w(n)
=) Q(E) >

1

4w(n)2B(n)2
(53)



From the definition of event E, it follows that the condition in Equation (51)
holds, completing the proof:

Pr
s U

n

y U

n

[A(s, y) 2 f�1
s

(y)] >
Q(E)

2w(n)
>

1

8w(n)3B(n)2
(54)

6 Conclusion

In this work, we demonstrated that the Goldreich-Goldwasser-Micali pseudo-
random function family is weakly one way. This is the first demonstration that
the family maintains some cryptographic hardness even when the secret key is
exposed.

Open questions Two interesting open questions suggest themselves.

1. Is GGM strongly one-way for all pseudorandom generators, or does there
exist a generator for which the induced GGM ensemble can be inverted
some non-negligible fraction of the time? A positive answer to this question
would be very interesting and improve upon this work; a negative answer
would be a spiritual successor to [Gol02].

2. In the absence of a positive answer to the above, do there exist pseudorandom
generators for which the induced GGM ensemble is strongly one-way? In
particular, do there exist generators that satisfy the requirements of Theorem
2?
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A Appendix

Proof of (7):

SD ((p,D(p))
P

, (p,D0(p))
P

)

=
1
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Proof of (8):
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�
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�

�

�

�

+
X

↵/2Img(f)

1

2n

⌘

=
1

2

⇣
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Proof of (32): Let Fat
✓

= Img(G⇤) \ Thin✓.
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= 1/2↵(n)� 1/✓ (60)



(58) follows from (29).

(59) is by the following bound:
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)] � Pr
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s
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↵(n)

where, the last inequality is by the hypothesis (25) of the lemma. Thus, 9s such
that 2n

↵(n)  |Imgf
s

|  |Img(G⇤)|.

Proof of (39):

1

↵(n)
< Pr

s U

n

y U

n

[A(s, y) 2 f�1
s

(y)] by (25)

= Pr
s U

n

y U

n

[A(s, y) 2 f�1
s

(y) ^ y 2 Thin

✓

]

+ Pr
s U

n

y U

n

[A(s, y) 2 f�1
s

(y) ^ y 62 Thin

✓

]

 Pr
s U

n

y U

n

[A(s, y) 2 f�1
s

(y) | y 2 Thin

✓

] + Pr
y U

n
[y 62 Thin

✓

]

 Pr
s U

n

y U

n

[A(s, y) 2 f�1
s

(y) | y 2 Thin

✓

] +
2

✓
by (29)

=) 1

↵(n)
� 2

✓
< Pr

s U

n

y U

n

[A(s, y) 2 f�1
s

(y) | y 2 Thin

✓

]

= Pr
s U

n

y U

n

[y 2 Good

q

| y 2 Thin

✓

]

· Pr
s U

n

y U

n

[A(s, y) 2 f�1
s

(y) | y 2 Good

q

]

+ Pr
s U

n

y U

n

[y 62 Good

q

| y 2 Thin

✓

]

· Pr
s U

n

y U

n

[A(s, y) 2 f�1
s

(y) | y 2 Thin

✓

\ Good
q

]

 Pr
s U

n

y U

n

[y 2 Good

q

| y 2 Thin

✓

] + q

The final inequality is by the definition of Thin
✓

\ Good
q

.



Proof of Claim 5:

R (PkQ) =
X

(s,y)2{0,1}2n

P (s, y)2

Q(s, y)

= 22n
X

s,y

P (s, y)2

= 22n
X

s,y

⇣

Pr
P

[s] · Pr
P

[y|s]
⌘2

=
X

s,y

Pr
P

[y|s]2

=
X

s,y

✓

|f�1
s

(y)|
2n

◆2

 2�2n
X

s,y

B(n)2

= B(n)2


