
Catching MPC Cheaters: Identification and Openability∗

Robert Cunningham, Benjamin Fuller, and Sophia Yakoubov

MIT Lincoln Laboratory
{rkc, bfuller, sophia.yakoubov}@ll.mit.edu

Abstract. Secure multi-party computation (MPC) protocols do not completely prevent ma-
licious parties from cheating and disrupting the computation. A coalition of malicious parties
can repeatedly cause the computation to abort or provide an input that does not correspond
to reality.
In this work, we augment MPC with two new properties to discourage cheating. The first of
these is a strengthening of identifiable abort where all parties who do not follow the protocol
will be identified as cheaters by each honest party. The second is openability, which means that
if a computation output is discovered to be untrue (e.g. by a real-world event contradicting
it), a distinguished coalition of parties can recover the MPC inputs.
We provide the first efficient MPC protocol achieving both of those properties. Our scheme ex-
tends the SPDZ protocol (Damgard et al., Crypto 2012). SPDZ leverages an offline (computation-
independent) pre-processing phase to speed up the online computation. Our protocol is op-
timistic: it has the same communication and computation complexity in the online phase
as SPDZ when no parties cheat. If cheating does occur, each honest party can additionally
perform a local computation to identify all cheaters.
We achieve identifiable abort by using a new locally identifiable secret sharing scheme (as
defined by Ishai, Ostrovsky, and Zikas (TCC 2012)) which we call commitment enhanced secret
sharing, or CESS. In CESS, each SPDZ input share is augmented with a linearly homomorphic
commitment. When cheating occurs, each party can use the linear homomorphism to compute
a commitment to the corresponding share of the output value. Parties whose claimed output
share does not match their output share commitments are identified as cheaters.
We achieve openability through the use of verifiable encryption and specialized zero-knowledge
proofs. Openability relies on the availability of an auditable public transcript of the MPC
execution, as introduced by Baum, Damgard, and Orlandi (SCN 2014).

1 Introduction

Secure multi-party computation (MPC) allows multiple parties to evaluate a function of their private
inputs while maintaining their privacy. In this work, we focus on identifying malicious behavior
that is not prevented by the guarantees of traditional MPC. We describe two such behaviors, and
introduce consequences for parties that engage in them.

Completely Identifiable Abort First, in traditional MPC, while a malicious party cannot
cause the computation to return an incorrect output, it can cheat by deviating from the protocol
and causing an abort (a termination with an error). Since the cheater remains anonymous, it does

? Approved for public release: distribution unlimited. This material is based upon work supported under
Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions
or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the U.S. Air Force.

2

not face any consequences for its actions. Even if the honest parties want to try and recompute the
function, they are stuck because they do not know whom they need to exclude. In order to avoid
such stalemates, it is desirable to be able to identify the cheaters. MPC protocols that support
cheater identification are referred to as MPC with identifiable abort [BS90,WW95,CFN94,IOZ14],
and guarantee that all honest parties agree on a subset of cheating parties.1 We introduce MPC
with completely identifiable abort, which guarantees that all honest parties agree on all cheating
parties.

Openability Second, traditional MPC guarantees that each party provides a well-formed input.
However, parties are free to provide any well-formed input they want. Many MPC applications
require that the inputs to the computation be measurement values from the real world, but since
there is no binding between each party’s input and the real measurement value, malicious parties
can lie about their measurements. These lies may change the output of the MPC to one that clearly
does not match reality; if this occurs, it is desirable to be able to identify the party responsible.
To achieve this goal, we enable the recovery of MPC inputs by an opening coalition. We call this
openability.

To ensure that openability does not break the security of the underlying MPC, we need opening
coalitions to contain at least one distinguished party that did not participate in the MPC. We call
this distinguished party a judge J. In reality, this judge’s role may be shared by more than one
party.

1.1 Our construction

We now show how to augment MPC with completely identifiable abort and openability while
maintaining efficiency. Our construction achieves security in the presence of an active adversary
statically making arbitrarily many corruptions. We extend SPDZ [DPSZ12,DKL+13], which is one
of the fastest known MPC protocols; it leverages an inefficient offline pre-processing phase to enable
quick online computation. Our protocol is optimistic; if cheating does not occur, the online com-
munication and computation are only twice those of the SPDZ protocol, which uses primarily fast
information-theoretic tools. In particular, the communication cost remains O(nm), where n is the
number of parties in the MPC and m is the number of multiplications evaluated. If cheating does
occur, each party must perform an additional local computation whose complexity is O(n|C|) in or-
der to identify the cheaters, where |C| is the size of the circuit being evaluated. (The additional local
work uses computionally-secure tools, which are slower.) This is much more efficient than previous
MPC constructions with identifiable abort, which require a significant communication overhead -
at least O(n2|C|) [CFN94].

Starting Point: SPDZ SPDZ [DPSZ12,DKL+13] is an MPC protocol (defined in Section 2.2)
which is secure against an active and adaptive adversary making n − 1 corruptions, where n is
the number of parties. SPDZ leverages Beaver triples [Bea92], which are pre-computed during the
offline phase. Each input is additively secret shared; the computation then proceeds gate by gate.
Additions are computed by each party locally. Multiplications use Beaver triples (described in
Section 4.2), and require two values to be reconstructed (which requires two broadcast messages
from each participant). To prevent malicious parties from providing incorrect shares during these

1 Cheater identification gained popularity in the areas of secret sharing [BS90,WW95,IOS12] and pay
television [CFN94].

3

reconstructions, SPDZ uses a linear MAC of the form MAC(x) = αx, where α is is the MAC key
which is secret shared amongst all the parties. The linear MAC shares follow the computation, and
are checked only at the end of the computation to detect whether any cheating took place.

Adding Completely Identifiable Abort We add completely identifiable abort to the SPDZ
protocol using a new locally-identifiable secret sharing scheme which we call commitment-enhanced
secret sharing (CESS). A locally-identifiable secret sharing scheme is a secret sharing scheme (de-
fined in Section 3) where during reconstruction, all honest parties agree on the set of parties that
modified their shares [IOS12]. Each CESS share contains an additive share (as in SPDZ), and ad-
ditionally includes linearly homomorphic commitments to every additive share.2 Each CESS share
also contains the decommitment value for the commitment to the corresponding additive share. In
Section 3, we show how these commitments enable local identification during reconstruction. Infor-
mally, by the binding property of the commitment scheme, no party should be able to convince any
other party of the validity of an altered additive share.

In Sections 4 and 5, we show how CESS enables MPC with completely identifiable abort. Since
we use linearly homomorphic commitments, if cheating occurs, each honest party can use the
homomorphism of the commitment scheme to transform the input share commitments of each
other party into a commitment to that party’s output share. All parties whose claimed output
shares do not match their output share commitments are identified as cheaters.3

Auditability Openability relies on a property called auditability, introduced by Baum, Damg̊ard,
and Orlandi [BDO14]. They build on top of the SPDZ protocol by adding a public transcript τ
(modeled as a public append-only bulletin board) to allow for public auditing of the correctness of
a protocol execution even in the case when all parties are malicious. The protocol assumes a single
public output out that is used with the transcript τ to check if the protocol executed correctly.
The public transcript τ contains Pedersen commitments [Ped92] (described in Appendix C.1) to
each precomputed Beaver triple value and input ini. (We emphasize that our construction includes
commitments for each input share, while the construction of Baum et. al [BDO14] includes a single
commitment for each input. This does increase the number of committed values, but does not affect
the online communication complexity at all.)

τ also contains all values reconstructed during the computation; namely the Beaver triple differ-
ences, described in Section 4.2. Though τ does not contain Pedersen commitments to intermediate
computation values or to the output, these commitments can be computed using the linear ho-
momorphism of Pedersen commitments and the posted Beaver triple differences. So, an auditor
holding a transcript τ and the evaluation circuit C can derive a Pedersen commitment cout to the
correct computation output out. The auditor can then check that cout is indeed a commitment to
the claimed output out′.

We leverage auditability when we add openability: we only require the inputs to be recoverable
if an audit of the transcript succeeds. Without an audit check to ensure that the transcript is well-
formed, openability is unachievable, as the parties would then be able to omit crucial information
from the transcript.

2 We use Pedersen commitments to enable efficient zero-knowledge proofs.
3 An alternative approach uses bitcoin to introduce financial repercussions for cheating [KB14,ADMM16].

4

Adding Openability An openable MPC protocol allows a distinguished opening coalition to
recover the computation inputs. We add openability by adding four tasks for every party providing
an input:

1. additively secret sharing the input for the opening coalition,
2. computing commitments to each additive share,
3. computing verifiable encryptions [FO97,Bou00,DF02,CS03] to each additive share and the cor-

responding decommitment value, and
4. computing non-interactive zero-knowledge proofs (NIZKPs) of the validity and consistency of

these commitments and encryptions.

Each verifiable encryption will use the public key of the relevant coalition party. Pedersen com-
mitments and our verifiable encryption scheme (a variant of the one described by Camenisch and
Shoup [CS03]) lend themselves to particularly efficient zero-knowledge proofs. We detail our open-
able MPC construction in Section 6.

Concurrent Work The recently posted work of Baum et. al [BOS16] augments SPDZ with
identifiable abort using an information-theoretic signature scheme. In terms of efficiency, their
scheme requires n + 2nm + O(n2) broadcast messages during the online phase, where n is the
number of parties involved in the computation, and m is the number of multiplications evaluated.
In contrast, our online phase requires n+2nm+O(n) broadcast messages. However, in the event of
cheating, our scheme relies on computational techniques to identify the misbehaving party, while the
scheme of Baum et. al uses information-theoretic techniques.4 They also do not consider openability.

1.2 A Motivating Example

In this section we present satellite conjunction analysis [HWB14] as a motivating use case for our
augmented MPC.5 Those readers who are convinced of the need to catch MPC cheaters may proceed
to Section 1.3.

Multiple government organizations and companies own satellites. The purpose of many satellites
is secret, so organizations are not willing to share their positions. However, there is risk to not
sharing position information. The active Iridium 33 satellite collided with the inactive Cosmos 2251
satellite in 2009 [Jak10] creating significant debris which endangered other satellites [Wri09]. To
avoid such catastrophes, the organizations want to jointly compute whether collisions will occur
without revealing satellite positions. As a result of the computation, parties should learn only
whether a collision will take place, and who the involved organizations are. Hemenway et al. observed
that MPC enables such a joint and private computation [HWB14,HLOW16].

In traditional MPC protocols malicious parties cannot affect the output of the computation
(other than by changing their inputs). However, malicious parties can cause the computation to
abort - to terminate with an error - without ever being identified as the culprit. Imagine that some
malicious organization wants to cause a satellite collision. All it would have to do is aim its satellite
at another, prevent the MPC from completing every time it is run, sit back and wait! Because no

4 We use the Pedersen commitment scheme, which is information-theoretically hiding but only computa-
tionally binding. So, computational assumptions are only necessary for the correctness of cheater identi-
fication.

5 Other sensitive applications include economic markets [BCD+09] and elections [BDO14].

5

culprit in an abort can be identified, the malicious organization would not be caught until it is too
late. In order to avoid this, we augment MPC with completely identifiable abort.

Satellites generally reside in one of three bands: low-earth orbit (LEO), medium-earth orbit
(MEO), or geonsynchronous orbit (GEO). Collisions between functioning objects at different levels
are unlikely; however, if a collision occurs at one level, the resulting debris may collide with objects at
other levels. Suppose that the above satellite collision computation is performed by all organizations
with objects in medium earth orbit. Organizations with satellites in low earth orbit are also affected
by the results of the computation, even though they don’t participate, since a collision in medium
earth orbit could cause debris to fly into low earth orbit, potentially damaging the satellites there.
For convenience we will refer to one of the organizations owning satellites in low earth orbit as Leo.
Leo wants to be able to determine whether the medium earth orbit computation was performed
correctly even if all of the organizations involved in it might have malicious intentions, so as to
determine the risk to his own satellites. Given a transcript τ of the MPC, any external organization
such as Leo should be able to audit the correctness of the computation, as described by Baum et.
al [BDO14].

Now, imagine that Leo performed the audit, and determined that the MPC was performed
correctly. However, the next day, a collision occurs and debris destroys one of Leo’s satellites! This
could only have occurred if one of the organizations participating in the MPC provided incorrect
inputs to the computation. In such a situation, it would be crucial to be able to determine who is
responsible. We achieve this property by adding openability.

1.3 Organization

The rest of the paper is organized as follows. In Section 2 we describe our augmented MPC def-
initions. In Section 3 we introduce commitment-enhanced secret sharing, which is crucial for our
construction. In Section 4, we describe how commitment-enhanced secret sharing can be used in
MPC. Section 5 adds completely identifiable abort to SPDZ; finally, Section 6 adds openability.

In Appendix A, we present the preprocessing phase of our scheme. In Appendix B we prove
security. In Appendix C, we describe the building blocks we use in our construction: commitments,
verifiable encryption and zero-knowledge proofs.

2 Definitions

2.1 Preliminaries

Notation Throughout this work we implicitly consider a sequence of protocols parameterized by a
security parameter k. For notational clarity we usually omit k (except in the cryptographic building
block descriptions in Appendix C), but it is implied that all algorithms take k as input.

All of our MPC protocols consider arithmetic circuits over p-order fields, where p is a large
Sophie-Germain prime (that is, q = 2p+ 1 is also a prime). Zp refers to the field {0, . . . , p− 1}; Z∗p
refers to Zp\{0} = {1, ..., p− 1}. QRp refers to {x2 mod p : x ∈ Z∗p} (quadratic residues modulo p).
An element g of a group G is a generator of that group if ∀x ∈ G,∃a such that ga = x.

Model We implicitly assume two available functionalities: a broadcast channel, and an append-
only bulletin board. Like Damg̊ard et. al [DPSZ12,DKL+13], we assume the availability of a broad-
cast channel for the same cost as a point-to-point communication. See Appendix A.3 of Damg̊ard
et. al for a discussion on implementing broadcast channels.

6

There are several ways to implement an append-only public bulletin board. One simple way
is using a public server against which privacy is desirable (so, this server cannot simply be used
to perform the computation in question), but which is trusted to behave semi-honestly. Another
way, which does not require trust in an additional third party, is using a blockchain (but without
necessarily using proofs of work which rely on an honest majority). Put very simply, every post p
to the bulletin board is broadcast together with a signature σ by the posting party on p and a hash
of the previous post (or posts, if there were simultaneous posts broadcast). The use of the public
bulletin board in our protocol is unusual in that it is public knowledge who needs to be providing a
post at which point in the protocol. Thus, omitting a post contributed by a party would not result
in a valid bulletin board transcript. Chaining the posts together by signing the posts together with
hashes of previous posts ensures that parties’ posts cannot be replayed from protocol execution to
protocol execution.

2.2 Multi-Party Computation (MPC)

Consider n parties (P1, . . . ,Pn) each of whom has a secret input (in1, . . . , inn). Secure Multi-Party
Computation (MPC) allows them to compute a joint function C(in1, . . . , inn) = out on their values,
where C is a circuit representing the function. As a result of this computation, all of the parties
learn the output out, but no party learns anything else about others’ inputs.

This privacy guarantee should hold even if some parties are adversarially controlled, meaning
that they are trying to learn something about other parties’ inputs. Different MPC protocols main-
tain their security in the presence of different numbers and types of adversarially controlled parties.
In this paper, we consider security in the presence of arbitrarily many adversarial parties, chosen
statically (meaning that the adversarial parties are fixed before the protocol begins, but it could
be that all parties participating in the protocol are adversarial). Adversarial parties run in prob-
abilistic polynomial time and can act maliciously, meaning that they can deviate arbitrarily from
the specified protocol.

The security requirement of MPC is formally defined with respect to an ideal functionality,
wherein a trusted third party receives inputs from everyone, performs the computation internally,
and then distributes the output. When interacting with this ideal functionality, no party learns
more than their own input and the output, since those are the only values it sees. For an MPC
protocol to be secure, there must exist an efficient simulator that, given the view of all adversarial
parties in an ideal execution (meaning their input and the output), can produce a view that is
indistinguishable from a real protocol execution view.6

Intuitively, the two most important properties of an MPC protocol (both implied by this def-
inition) are correctness and privacy. Informally, an MPC protocol π satisfies correctness if for all
inputs (in1, . . . , inn) and circuits C where C(in1, . . . , inn) = out, the protocol π returns out when
evaluating C on inputs in1, . . . , inn. An MPC protocol π satisfies privacy if no party Pi can learn
anything about the inputs of any other party, other than what is revealed by out.

Another desirable property is fairness; fairness means that if one party learns the output, so do
all parties. In the setting where the majority of parties may be adversarial, fairness is known to be
unachievable [Cle86]. So, we instead consider security with abort, a weaker notion of security that
allows an adversary to violate fairness by causing an abort. The ideal functionality for secure MPC
with abort is shown in Figure 1.

6 We call the list of protocol messages the view of the protocol. We use the word transcript or τ to refer
to the public information used for auditing (following the notation of [BDO14]).

7

Functionality F

Init: On input (Init, C, p) from all parties (where C is a circuit with n inputs and 1 output, consisting
of addition and multiplication gates over Zp):
1. Store C and p.
2. Wait for A to provide the set I of adversarially controlled parties.

Input: On input (Input,Pi, ini) from party Pi and (Input,Pi) from all parties Pj , j 6= i:
Store (Input,Pi, ini).

Eval: On input (Eval) from all parties:
1. If not all inputs values have been provided, output REJECT.
2. Evaluate the circuit C on inputs (in1, . . . , inn). When the evaluation is completed, store the

resulting value out as (Output, out).
Output: On input (Output) from all parties:

1. Retrieve (Output, out).
2. Send out to all adversarially controlled parties P ∈ I; wait for a response.

3a. If all adversarially controlled parties respond ACCEPT, output out to all parties.
3b. Otherwise, output ⊥ to all parties.

Fig. 1. Ideal Functionality for MPC.

2.3 MPC with Identifiable Abort

The ideal MPC functionality given in Figure 1 implies that if any malicious parties attempt to cause
the computation to return anything other than the correct output, the protocol aborts (returns ⊥).
The honest parties are left knowing something went wrong - however, they do not learn what went
wrong, or which of the other parties are to blame. MPC with identifiable abort, defined by Ishai,
Ostrovsky and Zikas [IOZ14], ensures that when an abort occurs all the honest parties agree on the
identity of at least one malicious party Pi. We extend the definition of Ishai et. al [IOZ14], defining
MPC with completely identifiable abort as MPC which ensures that when an abort occurs all honest
parties agree on the identities of all parties who deviated from the protocol. More formally, Figure
2 describes the ideal functionality FCIDA for MPC with completely identifiable abort. FCIDA is simply
FCIDA,AUDIT,OPEN without the Audit and Open commands.

2.4 Auditability

Any MPC which supports arbitrarily many adversarially controlled parties enables all honest parties
to determine whether the protocol was executed correctly. It is also useful to allow any third party
to inspect some evidence of the computation and arrive at the same conclusion. Baum, Damgard
and Orlandi [BDO14] introduce auditability to MPC; they describe a protocol where, given the
circuit C being evaluated, a presumed output out′ and a public transcript τ updated throughout
the computation, any third party can audit the computation and ascertain that it was performed
correctly with output out′. In this setting, we model the MPC as also outputing τ .

More formally, Baum et. al introduce the Verify algorithm. Verify takes in the public tran-
script τ which is created during computation, the circuit C which was evaluated, and the compu-
tation output out, and returns a 0 or a 1, depending on whether the computation was correct.

8

Definition 1 (Auditable Correctness, from Baum et. al [BDO14]). We say that an MPC
protocol satisfies Auditable Correctness if for all circuits C and for all potential outputs out,

– Verify(τ, C, out) = 1 with overwhelming probability if for some inputs in1, . . . , inn, C(in1, . . . , inn) =
out and τ is a transcript of the MPC evaluation of C on in1, . . . , inn, and

– Verify(τ, C, out) = 0 with overwhelming probability if for all inputs in1, . . . , inn, C(in1, . . . , inn) 6=
out or τ is not a valid transcript of an MPC evaluation of C on inputs in1, . . . , inn.

While auditability makes the computation execution more transparent, it does not provide
any check on the veracity of the computation inputs. As motivated in the introduction, a correct
computation on false inputs can be catastrophic. To address this issue, we define openability in
Section 2.5.

2.5 Openability

In extreme cases, it may be necessary to open the inputs of an MPC evaluation. Using the example
from Section 1.2, let’s say a satellite collision occurred despite the fact that an MPC determined
that there was no risk of collision. Some party must have lied about their satellite trajectory, but
followed the protocol while executing the MPC. It would be useful to be able to recover the inputs
to the protocol and identify the lying party (or parties).

Of course, inputs should not be recoverable by any one party; this would violate the privacy
guarantees of MPC. However, we can define allowable coalitions, or groups of parties who we trust
not to abuse this privilege. In this context, one might want several additional players that we will
call judges {Ji}. A judge Ji notionally has the power to determine that an opening is justified. We
include multiple judges to compensate in case some of the parties who participated in the MPC
do not cooperate. This is something we need to account for, since if party Pi knows that it will be
identified as a liar, it will not cooperate with an input opening. Allowable opening coalitions might
be all the parties from the MPC together with any judge party ({P1, . . . ,Pn, Ji}), or some t of the
parties together with two judges ({Pi1 , . . . ,Pit , Ji, Jj}).

More formally, we introduce the protocol Open executed jointly by an allowable opening coali-
tion. Open takes in a transcript τ , and returns (in1, . . . , inn). We require that the Open protocol
be sound, as described in Definition 2. Notice that the transcript τ also needs to be hiding, mean-
ing that it shouldn’t reveal any information about the values being computed on. However, this
property is implied by the privacy requirement of MPC, and does not need to be explicitly restated.

Definition 2 (Opening Soundness). We say that an MPC protocol satisfies Opening Soundness
if for all circuits C and for all inputs in1, . . . , inn, for all MPC evaluations of C on in1, . . . , inn
resulting in output out and transcript τ (where all participants may be malicious), the probability
that Verify(τ, C, out) = 1 and Open(τ) 6= (in1, . . . , inn) is negligible.

Figure 2 describes the ideal functionality FCIDA,AUDIT,OPEN of such a protocol. For Open to work
for only allowable coalitions, such coalitions (and their associated cryptographic identity) must be
known when Eval is executed.

3 Commitment-Enhanced Secret Sharing

This section describes a new locally identifiable secret sharing scheme which we call commitment-
enhanced secret sharing (CESS). CESS is our main building block for MPC with completely identi-
fiable abort, as described in Section 5. We first describe basic secret sharing (Section 3.1), and then

9

Functionality FCIDA,AUDIT,OPEN

Init: as in F . Additionally, receive and record the set of allowable coalitions {Ci} from all parties.
Input: as in F .
Eval: as in F .
Output: On input (Output) from all parties:

1. Retrieve (Output, out).
2. Send out to all adversarially controlled parties P ∈ I; wait for a response.

3a. If all adversarially controlled parties respond ACCEPT, output out to all parties.
3b. Otherwise, create a list Lcheat of cheating parties. For each party Pi that responds something

other than ACCEPT, add Pi to Lcheat. Output (⊥, Lcheat) to all parties (revealing to them the
parties responsible for the computation failure).

Audit: On input (Audit, out′) from a third party auditor:
if Eval was not executed OR out = ⊥, then output NO AUDIT POSSIBLE.
if out′ = out then output ACCEPT.
else output REJECT.

Open: On input (Open) from all of the parties in an allowable coalition (some C ∈ {Ci}):
if Eval was executed AND out 6=⊥: return in1, . . . , inn.
else: return ⊥.

Fig. 2. Ideal Functionality for Openable and Auditable MPC with Completely Identifiable Abort

describe locally identifiable secret sharing (LISS, Section 3.2) before proceeding to describe CESS
(Section 3.3).

3.1 Secret Sharing

Secret sharing was introduced by Shamir [Sha79]. A t-out-of-n sharing of a secret x is an encoding
of the secret into n pieces, or shares, such that any t shares together can be used to reconstruct
the secret x, but fewer than t shares give no information at all about x. A secret sharing scheme
consists of two algorithms: Share and Rec.

– Share(x)→ (s1, . . . , sn) takes in a secret x and produces the n secret shares.
– Rec(si1 , . . . , sit)→ x̃ takes in t secret shares and returns the reconstructed secret x̃.

For n-out-of-n secret sharing, a simple scheme called additive secret sharing (SSAdd) can be used.
SSAdd.Share(x) generates n−1 random elements s1, . . . , sn−1 in some additive group, and computes
the nth share as sn = x− (s1 + · · ·+ sn−1). Any n− 1 shares appear completely random; however,
the sum of all n shares gives the secret x. Additive secret sharing has some linear properties: a
shared value x can be multiplied by a constant, or added to another shared value x′, by separately
operating on the individual shares. We use the notation [x]Pj to denote the additive secret share of
element x belonging to party Pj .

Shamir t-out-of-n secret sharing (SSShamir) uses degree-(t − 1) polynomials over some field.
SSShamir.Share(x) generates a random degree-(t − 1) polynomial f with x as its y-intercept; each
share si is a point (xi, f(xi)) on the polynomial (with xi 6= 0). For simplicity, we fix xi = i. Any

10

t shares can be used to interpolate the polynomial, reconstructing x. Any fewer than t shares give
no information about x.

Looking ahead, our MPC protocols are presented using additive secret sharing, but can be
trivially extended to use Shamir secret sharing if a t-out-of-n sharing (for some t < n − 1) is
desired.

3.2 Locally-Identifiable Secret Sharing (LISS)

Secret sharing provides confidentiality. However, there are no guarantees that the reconstruction
protocol Rec returns the correct secret in the presence of malicious parties. Robust secret shar-
ing guarantees reconstruction correctness in the presence of active adversaries [TW86].7 It is also
useful to identify the parties that provided incorrect shares; this is known as an identifiable secret
sharing [KOO95]. Identifiable secret sharing becomes impossible when a majority of parties are
adversarial [IOS12, Theorem 3]. However, a slightly weaker task is possible in the presence of an
adversarial majority: honest parties can agree on the set of parties who provided incorrect shares,
but cannot prove it to a third party who did not hold one of the shares. This is known as locally
identifiable secret sharing (LISS). We modify the inputs to the reconstruction algorithm Rec of
a LISS to also include the index i of the party performing the reconstruction; if that party Pi is
honest, it has the additional knowledge that the share si has not been tampered with. Definition 3
is taken from [IOS12, Definition 4].

Definition 3 (Locally-Identifiable Secret Sharing). An n-out-of-n secret sharing scheme is
locally identifiable if it satisfies two requirements: unanimity, meaning that all honest parties should
agree on either a correct reconstruction or on the correct set of cheating parties, and predictable
failure, meaning that the output of the reconstruct algorithm should be simulatable if it does not
return the correct secret. Predictable failure ensures that the output of the reconstruction algorithm
does not reveal anything about the secret, unless it correctly returns the secret. We give more rigorous
descriptions of unanimity and predictable failure below.

Unanimity For any probabilistic polynomial time adversary A and for any secret x, the prob-
ability of A’s success in the following game is negligible:

1. (s1, . . . , sn)← Share(x).
2. A outputs a set I ⊂ {1, . . . , n} of adversarial party indices. Let H = {1, . . . , n} \ I be the set of

honest party indices.
3. A receives si for i ∈ I.
4. A selects some B ⊆ I, and outputs s′i for i ∈ B, where s′i 6= si.
5. Let x̃i be the value reconstructed by each party Pi, for i ∈ H, with the assumption that si is

correct. That is, each party Pi runs x̃i ← Rec(i, t1, . . . , tn) (where tj = s′j if j ∈ B and tj = sj
otherwise).

The adversary A succeeds unless:

1. All honest parties reconstruct the correct secret (x̃i = x for all i ∈ H), or
2. All honest parties agree on the set of cheating players (x̃i = (REJECT, Lcheat = B) for all i ∈ H).

7 Robust secret sharing does not require security in the presence of a malicious dealer. This is in contrast
to verifiable secret sharing [RBO89]. Looking ahead, the reason we do not require security against a
malicious dealer is that dealing is done via MPC in the preprocessing phase.

11

Predictable Failure There exists an algorithm SimRec such that for any probabilistic poly-
nomial time adversary A and for any secret x, the probability of A’s success in the following game
is negligible:

1. (s1, . . . , sn)← Share(x).
2. A outputs a set I ⊂ {1, . . . , n} of adversarial party indices. Let H = {1, . . . , n} \ I be the set of

honest party indices.
3. A receives si for i ∈ I.
4. A selects some B ⊆ I, and outputs s′i for i ∈ B, where s′i 6= si.
5. simout← SimRec(I, B, {si}i∈I , {s′i}i∈B).
6. x̃i ← Rec(i, t1, . . . , tn) for i ∈ {1, . . . , n}, where tj = s′j if j ∈ B and tj = sj otherwise.

The adversary A succeeds unless:

1. simout = success and x̃i = x for all i ∈ {1, . . . , n}, or
2. simout = {x̃i}i∈I .

3.3 Our LISS Construction

In order to support cheater identification, we introduce the commitment-enhanced secret sharing
(CESS) scheme. A CESS of a secret x is based on an additive secret sharing of x. The ith CESS share
additionally includes a Pedersen commitment (described in Appendix C.1) to each additive share,
as well as the decommitment value for the ith commitment. The decommitment values contained
in the CESS shares can be viewed as an additive secret sharing of one global decommitment value
rx. The product of the commitments will itself be a valid commitment cx to the secret x, and the
sum of the individual decommitments will be the corresponding decommitment value. We use the
following notation to denote a CESS share of x belonging to party Pi:

〈x〉Pi
def
= ([x]Pi , [rx]Pi , (cx,1, . . . , cx,n)),

where

– cx,i is the Pedersen commitment pc([x]Pi , [rx]Pi) to value [x]Pi with decommitment value [rx]Pi
(as described in Appendix C.1),

– [x]Pi is the additive secret share of x belonging to Pi (as described in Section 3.1), and
– [rx]Pi is the decommitment value for cx,i (equivalently, the additive secret share of the decom-

mitment value rx for cx) belonging to Pi.

We informally refer to a CESS share as an 〈〉-share.
Notice that each 〈〉-share contains O(n) elements, which makes it large and unwieldy. However,

the commitments, which make up the bulk of the 〈〉-share, do not ever need to be communicated
in order to execute reconstruction CESS.Rec, since they are replicated in every share. The recon-
struction algorithm CESS.Rec only receives the additive secret shares, together with one party’s
local copy of the commitment values (cx,1, . . . , cx,n). CESS.Rec is described in Figure 3.

Theorem 1. The CESS cheme is a locally identifiable secret sharing scheme (LISS), as described
in Definition 3.

12

Protocol CESS.Rec for the Reconstruction of a CESS 〈〉-Sharing

Preconditions: Each party Pi has 〈x〉Pi = ([x]Pi , [rx]Pi , (cx,1, . . . , cx,n)).
CESS.Rec(i, ([x]P1 , [rx]P1), . . . , ([x]Pn , [rx]Pn), (cx,1, . . . , cx,n)): 1. Let Lcheat = [].

2. For j ∈ {1, . . . , n}, j 6= i: check that pc([x]Pj , [rx]Pj) = cx,j . If this does not hold, add Pj to Lcheat.

3. If Lcheat is empty: return x =
∑
j∈{1,...,n}[x]Pj .

4. Else: return (REJECT, Lcheat).

Fig. 3. Protocol Rec for the Reconstruction of a 〈〉-Sharing

Proof. The CESS scheme achieves unanimity. In order to succeed, the adversary A would have
to provide an incorrect additive share of the secret [x]′Pi or an incorrect additive share of the
decommitment value [rx]′Pi for every corrupt party that tampers with their share (Pi, i ∈ B).
(Notice that we do not consider the commitments to be a tamperable part of the sharing, since
they are never communicated.) In order to avoid having honest parties add Pi to the list of cheaters
Lcheat, the adversary must supply [x]′Pi and [rx]′Pi such that

pc([x]′Pi , [rx]′Pi) = cx,i = pc([x]Pi , [rx]Pi),

which violates the binding property of the Pedersen commitment scheme.
The CESS scheme also achieves predictable failure. The reconstruction simulator SimRec simply

checks the decommitments provided by all of the adversarial parties. If Pi’s decommitment does
not verify, SimRec adds Pi to Lcheat; it then returns (REJECT, Lcheat). If all of the decommitments
do verify (meaning that none of the shares could have been altered), SimRec returns success.

4 Adapting Commitment-Enhanced Secret Sharing for use with SPDZ

The CESS scheme as described in Section 3 isn’t quite ready to be used in MPC. Firstly, the CESS
reconstruction algorithm Rec requires each party to compute n commitments to assemble the list
of cheaters Lcheat, whether cheating occurred at all or not. This is inefficient, and we remedy it in
Section 4.1. Secondly, we need to homomorphically compute on CESS shares. We address this in
Section 4.2.

4.1 Augmenting CESS with MACs

It would be nice for each party to be able to begin reconstruction by performing an efficient check
to determine if cheating occurred, and only proceed with the expensive computation of Lcheat when
cheating is detected. We can employ the linear MACs from Damg̊ard et. al [DPSZ12] to detect
cheating. The linear MACs consist of MAC(x) = αx, where α is an additively secret-shared MAC
key. MAC(x) is then itself additively secret-shared. MACs can be checked without reconstructing
the MAC key α, as described in Figure 4.

We use the following notation to denote a MAC-augmented CESS (CESSMAC) share of x be-
longing to party Pi:

〈〈x〉〉Pi
def
= ([x]Pi , [rx]Pi , (cx,1, . . . , cx,n), [MAC(x)]Pi),

13

Protocol MACCheck for Checking a MAC Without Reconstructing the MAC Key
(From Damg̊ard et. al [DKL+13], Figure 10)

Preconditions: Each party Pi has an additive share [α]Pi of the MAC key α. All parties have an opened value x, and
additionally each party Pi has an additive share [MAC(x)]Pi of the MAC value MAC(x) = αx.

MACCheck: 1. The parties jointly pick a random value r ∈ Zp, as described in Figure 4 of Baum et. al.
2. Each party computes the public value a = rx.
3. Each party Pi computes bi = r[MAC(x)]Pi , and fi = bi − [α]Pia (which is equal to r[MAC(x)]Pi − [α]Pirx).
4. Each party Pi computes a commitment ci to fi and publishes it.
5. Each party Pi, upon the receipt of all other parties’ commitments, publishes the decommitment value di.
6. Each party Pi, upon the receipt of all other parties’ decommitments, checks the decommitments. If any

of them are invalid, Pi compiles a list Lcheat of parties that gave invalid decommitments, and returns
(REJECT, Lcheat).

7. If
∑
i∈{1,...,n} fi 6= 0, the parties return REJECT.

Note that such MAC checks can also be batched for m values x1, . . . , xm, by choosing m random values r1, . . . , rm,
setting a =

∑
j∈{1,...,m} rjxj , and setting bi =

∑
j∈{1,...,m} rj [MAC(xj)]Pi .

Fig. 4. Protocol MACCheck for Checking a MAC Without Reconstructing the MAC Key

where cx,i = pc([x]Pi , [rx]Pi), all of (cx,1, . . . , cx,n) is public, and each party Pi is separately assumed
to hold an additive share of the secret MAC key α. The reconstruction algorithm CESSMAC.Rec,
executed interactively by the parties, is shown in Figure 5.

Protocol CESSMAC.Rec for the Reconstruction of a MAC-augmented CESS 〈〈〉〉-Sharing

Preconditions: Each party Pi has 〈〈x〉〉Pi = ([x]Pi , [rx]Pi , (cx,1, . . . , cx,n), [MAC(x)]Pi).
CESSMAC.Rec: 1. Each party Pi broadcasts [x]Pi and [rx]Pi , and computes x =

∑
j∈{1,...,n}[x]Pj .

2. All parties execute MACCheck, described in Figure 4, to check the MAC without reconstructing the MAC
itself or the MAC key α.

3. If the MAC verifies: return x.
4. Otherwise: all parties Pi execute the CESS reconstruction protocol

CESS.Rec(i, ([x]P1 , [rx]P1), . . . , ([x]Pn , [rx]Pn), (cx,1, . . . , cx,n)) as described in Figure 3.

Fig. 5. Protocol Rec for the Reconstruction of a 〈〈〉〉-Sharing

This remains a locally identifiable secret sharing scheme, because a cheating party would have
to cause the MAC to verify in order to avoid detection, which they can only do with negligible
probability, as shown by Damg̊ard et. al [DKL+13].

In later sections, we will describe how multiple 〈〈〉〉-sharings are dealt with throughout our MPC
protocol. If it is desired, steps 2 through 4 in Figure 5 can be postponed, and then performed in
batch form. If the MAC verifies, each party’s MAC check communication overhead is independent
of the number of sharings being verified.

14

4.2 Computing on Commitment-Enhanced Secret Shares

Finally, in order to use MAC-augmented CESS (CESSMAC) in MPC, we need to describe how to
compute on shares. Once we can compute CESSMAC shares, the locally identifiable property of
CESSMAC will be used to provide completely identifiable abort.

Linear Computations Linear computations on CESSMAC shares can be performed locally, as
shown below, since both additive shares and Pedersen commitments are linearly homomorphic.

– To add a constant ε to 〈〈x〉〉Pi = ([x]Pi , [rx]Pi , (cx,1, . . . , cx,n), [MAC(x)]Pi), first compute [x+ε]Pi
as

[x+ ε]P1 = [x]P1 + ε and [x+ ε]Pi = [x]Pi for i 6= 1.

Then compute

〈〈x+ ε〉〉Pi = ([x+ ε]Pi , [rx]Pi , (cx,1pc(ε, 0), cx,2, . . . , cx,n)), [MAC(x)]Pi + ε[α]Pi .

– To add 〈〈x〉〉Pi = ([x]Pi , [rx]Pi , (cx,1, . . . , cx,n), [MAC(x)]Pi) and
〈〈y〉〉Pi = ([y]Pi , [ry]Pi , (cy,1, . . . , cy,n), [MAC(y)]Pi), compute

〈〈x+ y〉〉Pi = ([x]Pi + [y]Pi , [rx]Pi + [ry]Pi , (cx,1cy,1, . . . , cx,ncy,n), [MAC(x)]Pi + [MAC(y)]Pi).

– To multiply 〈〈x〉〉Pi = ([x]Pi , [rx]Pi , (cx,1, . . . , cx,n), [MAC(x)]Pi) by a constant ε, compute

〈〈εx〉〉Pi = (ε[x]Pi , ε[rx]Pi , (c
ε
x,1, . . . , c

ε
x,n), ε[MAC(x)]Pi).

Multiplications Using Beaver Triples Beaver triples are a commonly used technique in
MPC [Bea92]. A Beaver triple consists of secret sharings (computed during the preprocessing phase)
of values a, b and c such that ab = c. Each Beaver triple allows a single multiplication to be effi-
ciently computed during the online phase. Beaver triples can be augmented for CESSMAC. Given a
Beaver triple 〈〈a〉〉, 〈〈b〉〉 and 〈〈c〉〉, the multiplication of 〈〈x〉〉 and 〈〈y〉〉 can be done as follows:

– To multiply 〈〈x〉〉Pi by 〈〈y〉〉Pi :
1. Open the sharings 〈〈ε〉〉Pi = 〈〈x − a〉〉Pi and 〈〈δ〉〉Pi = 〈〈y − b〉〉Pi to obtain the difference

values ε and δ.

2. Compute the product 〈〈xy〉〉Pi = 〈〈c+ δa+ εb+ εδ〉〉Pi by performing the linear operations
as described above.

5 Efficient Malicious-Majority MPC with Identifiable Abort

In the previous two sections, we introduced CESSMAC (a locally-identifiable secret sharing scheme)
and showed how to compute on it. In this section, we build an efficient MPC scheme with completely
identifiable abort on top of CESSMAC. As discussed in the introduction, we augment the SPDZ
protocol.

In the setup phase Init of SPDZ, shares of random values and Beaver triples are generated
ahead of time (using slower somewhat-homomorphic encryption techniques), and are then used to
facilitate fast multiplications throughout the on-line computation. For our construction, we need a

15

Protocol π
FSETUP
CIDA : MPC With Identifiable Abort, with oracle access to the setup functionality FSETUP

Init: To initiate the evaluation of circuit C with n inputs and one output, consisting of addition and multiplication
gates over Zp,

1. Parties invoke the functionality FSETUP. (Appendix A contains an instantiation πSETUP of FSETUP.) FSETUP generates
the additively secret-shared MAC key α, as well as 〈〈〉〉-shared Beaver triples and 〈〈〉〉-shared random values.

Input: To enable Pi to provide input ini, the parties do the following (using a fresh random CESSMAC sharing 〈〈s〉〉
generated during Init):

1. 〈〈s〉〉 is privately opened as s, rs to Pi (meaning that all parties send their additive shares of s and rs to Pi,
where rs is the decommitment value, and Pi reconstructs s and rs as described in Figure 5.

2. Pi broadcasts ε = ini − s (to all parties Pj and to the transcript τ if one is used).
3. All parties Pj locally compute 〈〈ini〉〉Pj = 〈〈s+ ε〉〉Pj .

Eval: If Init has been executed and inputs for all input wires of C have been assigned, proceed gate by gate as follows:
Add: For two values 〈〈x1〉〉Pj , 〈〈x2〉〉Pj :

(a) Each party Pj locally computes 〈〈x3〉〉Pj = 〈〈x1 + x2〉〉Pj .

Mult: For two values 〈〈x1〉〉, 〈〈x2〉〉:
(a) Let 〈〈a〉〉, 〈〈b〉〉 and 〈〈c〉〉 be a fresh Beaver triple generated during πSETUP. The parties use this Beaver

triple to compute 〈〈t〉〉 = 〈〈x1x2〉〉, as described in Section 4.2.
Output: To recover the output,

1. Each party Pi broadcasts the additive shares contained in 〈〈out〉〉Pi .
2. The parties execute the reconstruction procedure CESSMAC.Rec described in Figure 5, catching any parties

providing malicious shares.

Fig. 6. MPC with Completely Identifiable Abort

setup functionality FSETUP that generates 〈〈〉〉 sharings of random numbers and beaver triples.8 We
describe a secure instantiation πSETUP of FSETUP in Appendix A.

Figure 6 gives a slightly simplified illustration of our protocol. The simplification comes from
our modular usage of the 〈〈〉〉-share reconstruction protocol Rec, so that cheating detection and
cheater identification is performed with every reconstruction. During Eval, the only communi-
cation involved is the reconstruction of two values ε and δ. Using the reconstruction procedure
CESSMAC.Rec described in Figure 5, any parties providing malicious shares will be caught.

Theorem 2. Assuming that the discrete log problem (DLP) is hard in the Pedersen commitment
group QRq, the protocol πFSETUP

CIDA with oracle access to the functionality FSETUP is a UC-secure imple-
mentation of the functionality FCIDA.

Informally, Theorem 2 holds because after running Init, the only messages sent are (1) a sin-
gle value broadcast during Input, and (2) reconstructions of 〈〈〉〉-sharings. Since the 〈〈〉〉-sharing
scheme (CESSMAC) is a locally identifiable secret sharing scheme, adversarially controlled parties
are not be able to change any shared values without the honest parties identifying their malicious
behavior. The value broadcast during Input defines the input in question, and inconsistencies with
that value will also be detected during reconstructions. A formal proof of Theorem 2 appears in
Appendix B.2.

By the universal composition theorem [Can00], this implies that a UC-secure implementation
πSETUP of FSETUP gives a UC-secure implementation ππSETUP

CIDA of FCIDA, simply by replacing the call to
FSETUP with a call to πSETUP.

8 The SPDZ protocol generates the same number of shared values. However, their sharings only contain
an additive secret sharing and a linear MAC. The size of 〈〈〉〉-shares grows linearly with the number of
players, while SPDZ shares have a constant size for a fixed security parameter.

16

Optimistic Protocol The cheater detection and identification inherent in the CESSMAC open-
ings of Eval can be safely postponed to Output. That way, cheating detection (MACCheck)
is batched in such a way that the communication required is independent of the number of mul-
tiplications performed, as described in Figure 4. If MACCheck reveals that cheating occurred,
the parties will finally perform all of the relevant computations on the CESSMAC commitments, as
described in Section 4.2.

To make the protocol optimistic, parties must save all of the difference values ε and δ from
Beaver triple multiplications performed throughout the computation.9 This adds an O(nm) storage
overhead for each party, where n is the number of parties and m is the number of multiplications in
the computation. However, this does not asymptotically increase the storage requirements, because
each party must store O(nm) secret-shared Beaver triples anyway, which are generated during
πSETUP.

6 Openable Auditable MPC

In this section, we augment our construction from Section 5 with auditability and openability.
Auditability is achieved by logging all public values (including commitments from setup and publicly
opened difference values) from the construction in Section 5 to the public transcript τ . As in Baum
et. al [BDO14], the input commitments together with the public values can be used to obtain a
commitment to the output, and that commitment can then be checked against the claimed output
and output decommitment values.

Intuitively, openability should be achievable by doing the following:

1. Parties in the opening coalition C generate a verifiable encryption key pair (pkC , skC), in such
a way that
– the encryption key pkC is publicly available, and
– the decryption key skC is secret-shared among the opening coalition C.10

2. Each party Pi publishes the following:
– a verifiable encryption ei = Encver(pkC , ini) of their input ini, and
– a non-interactive zero-knowledge proof that ei is an encryption of the input.

This approach doesn’t quite work. For each honest party, the simulator needs to produce an encryp-
tion ei of their input ini without knowing ini. Since most encryption schemes are perfectly binding,
the simulator would be unable to produce encryptions that open to the correct inputs.

To overcome this problem, we add a layer of secret sharing and commitments to secret shares.
The augmented construction is as follows (formal description in Figure 7):

1. Each party Pi additively shares ini among the opening coalition Pj ∈ C.
2. The parties in C might not be online at the time of the sharing, so Pi encrypts the shares to

the parties in C and posts these encryptions to the transcript τ . More specifically, Pi publishes
the following values to τ for each Pj ∈ C:
– c(i,j): a commitment to Pj ’s share of ini;
– e(i,j): a verifiable encryption (under Pj ’s key) of the same value,
– e(i,j,r): a verifiable encryption of the decommitment value r(i,j) for c(i,j).

9 Note that if a public transcript τ is maintained, it contains all of these difference values.
10 For convenience we assume a single coalition C.

17

3. Pi computes and posts the following non-interactive zero-knowledge proofs:
(a) That e(i,j) encrypts the value in c(i,j) for each Pj ∈ C.
(b) That e(i,j,r) encrypts the decommitment value r(i,j) for c(i,j).
(c) That the sum of the committed shares in c(i,j) for all Pj ∈ C is equal to the sum of the

committed shares in the input 〈〈〉〉-sharing.
4. During Open, members Pj of the opening coalition C reveal [ini]Pj and r(i,j) for c(i,j) to one

another. The commitments are checked, and the output reconstructed.

A simulator for this protocol only needs to open a commitment to a secret share of ini, not an
encryption. Since Pedersen commitments are only computationally binding the simulator can break
computational binding.11

Protocol π
FSETUP
CIDA,AUDIT,OPEN: Openable MPC with Identifiable Abort, with oracle access to the setup functionality FSETUP

Init: Same as in πCIDA (Figure 6). Additionally,
1. All parties Pi in the opening coalition C generate a public-secret verifiable encryption key pair (pki, ski),

and publish pki. For parties in the opening coalition C not participating in the computation, we assume that
verifiable encryption key pairs already exist.

Input: Same as in πCIDA (Figure 6). Additionally, party Pi does the following:
1. Let ci be the commitment to the input ini in the 〈〈〉〉-sharing of ini.
2. Pi computes an additive secret sharing [ini] of ini for the opening coalition C. For each Pj ∈ C:

(a) Pi chooses a fresh random r(i,j), and computes and publishes a commitment c(i,j) = pc([ini]Pj , r(i,j)).

(b) Pi computes and publishes a verifiable encryption e(i,j) = Encver([ini]Pj , pkj) where pkj is the public

verifiable encryption key of Pj .
(c) Pi computes and publishes a verifiable encryption e(i,j,r) = Encver(r(i,j), pkj).
(d) Pi computes and publishes a NIZKP (as in Appendix C.3) that c(i,j) and e(i,j) are to the same thing.
(e) Pi computes and publishes a NIZKP (as in Appendix C.3) that e(i,j,r) encrypts the decommitment

value of c(i,j).
3. Pi computes and publishes a NIZKP that the sum of the committed values in c(i,j) is the same as the

committed value in ci. This can be done by computing c′i =
∏

Pj∈C
c(i,j), and computing a NIZKP (as in

Appendix C.3) that ci and c′i are to the same thing.
Eval: Same as in πCIDA (Figure 6).
Output: Same as in πCIDA (Figure 6).
Audit: The auditor receives the transcript τ , together with the output value out and decommitment value rout. They

use the commitments in the transcript τ , together with the opened values, to compute commitments to the
additive shares of the output belonging to each party. (Informally, this can be done using exactly as described
in Section 4.2, but ignoring all secret share values except the commitments.) They then compute the product of
these additive share commitments; this value is cout. If cout = pc(out, rout), the auditor outputs ACCEPT. Otherwise,
they output REJECT. (Similarly, if the auditor receives each party Pi’s additive secret shares of the output [out]Pi
and of the decommitment value [rout]Pi , they can audit each individual party’s behavior.)

Open: For each i ∈ {1, . . . , n}:
1. All parties Pj in the opening coalition C retrieve their encrypted shares e(i,j) and decommitment values

e(i,j,r), decrypt them to obtain [ini]Pj and r(i,j), and broadcast them.

2. All parties check that c(i,j) = pc([ini]Pj , r(i,j)).

3. All parties reconstruct ini.

Fig. 7. Openable MPC with Identifiable Abort

Theorem 3. Assuming (a) that the discrete log problem (DLP) is hard in the Pedersen commitment
group QRq, (b) a secure NIZKP scheme, and (c) that (KeyGen,Encver,Decver) is a semantically

11 The simulator chooses the generators used in the Pedersen commitment scheme when selecting the CRS.

18

secure verifiable encryption scheme, the protocol πFSETUP

CIDA,AUDIT,OPEN with oracle access to the functionality
FSETUP is a UC-secure implementation of the functionality FCIDA,AUDIT,OPEN.

Informally, Theorem 3 holds because the zero-knowledge proofs in Input prove that encryptions
to valid shares of the input values are decryptable by the opening coalition C. A formal proof of
Theorem 3 appears in Appendix B.3.

Efficiency To achieve auditability, no additional values need to be computed at all. As stated
above, public values are posted to the bulletin board. Openability requires one additional additive
secret-sharing of each input (to the opening coalition C), and a verifiable encryption (described in
Appendix C.2) and commitment (described in Appendix C.1) to each share. Additionally, 2|C|+ 1
non-interactive zero-knowledge proofs (described in Appendix C.3) are required, where |C| is the
size of opening coalition. This cost is small, and independent of the computation.

Open Problems

One interesting open problem is achieving our communication complexity (O(nm), as opposed to
O(n2 + nm)) using only efficient information-theoretically secure techniques.

Another open problem is to integrate fairness into our protocol. Our protocol makes no attempt
to provide fairness when the majority of players act honestly (when less than n/2 players are
corrupt). It may be possible to construct an MPC protocol that provides fairness when the majority
of parties act honestly and completely identifiable abort when they do not.

Acknowledgements

c© 2016 Massachusetts Institute of Technology. Delivered to the US Government with Unlimited
Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright
notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-
7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government
may violate any copyrights that exist in this work.

The authors would like to thank Samuel Yeom, Mayank Varia and Arkady Yerukhimovich for
helpful discussion.

References

[ADMM16] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. Secure
multiparty computations on Bitcoin. Commun. ACM, 59(4):76–84, March 2016.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of knowledge.
Journal of Computer and System Sciences, 37(2):156–189, 1988.

[BCD+09] Peter Bogetoft, DanLund Christensen, Ivan Damg̊ard, Martin Geisler, Thomas Jakobsen,
Mikkel Krigaard, JanusDam Nielsen, JesperBuus Nielsen, Kurt Nielsen, Jakob Pagter, Michael
Schwartzbach, and Tomas Toft. Secure multiparty computation goes live. In Roger Dingledine
and Philippe Golle, editors, Financial Cryptography and Data Security, volume 5628 of Lecture
Notes in Computer Science, pages 325–343. Springer Berlin Heidelberg, 2009.

[BDO14] Carsten Baum, Ivan Damg̊ard, and Claudio Orlandi. Publicly auditable secure multi-party
computation. In Security and Cryptography for Networks - 9th International Conference, SCN
2014, Amalfi, Italy, September 3-5, 2014. Proceedings, pages 175–196, 2014.

19

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Advances in
Cryptology–CRYPTO91, pages 420–432. Springer, 1992.

[BOS16] Carsten Baum, Emmanuela Orsini, and Peter Scholl. Efficient secure multiparty computation
with identifiable abort. Cryptology ePrint Archive, Report 2016/187, 2016. http://eprint.

iacr.org/.
[Bou00] Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In Advances in

Cryptology-EUROCRYPT 2000, pages 431–444. Springer, 2000.
[BS90] Ernest F Brickell and Douglas R Stinson. The detection of cheaters in threshold schemes. In

Proceedings on Advances in Cryptology, pages 564–577. Springer-Verlag New York, Inc., 1990.
[Can00] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.

Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.iacr.org/.
[CFN94] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In Advances in Cryptology–

CRYPTO–94, pages 257–270. Springer, 1994.
[Cle86] R Cleve. Limits on the security of coin flips when half the processors are faulty. In Proceedings

of the Eighteenth Annual ACM Symposium on Theory of Computing, STOC ’86, pages 364–369,
New York, NY, USA, 1986. ACM.

[CM99] Jan Camenisch and Markus Michels. Separability and efficiency for generic group signature
schemes. In Michael Wiener, editor, Advances in Cryptology, CRYPTO, volume 1666 of Lecture
Notes in Computer Science, pages 413–430. Springer Berlin Heidelberg, 1999.

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes for large groups. In
Advances in Cryptology-CRYPTO’97, pages 410–424. Springer, 1997.

[CS03] Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of discrete
logarithms. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of
Lecture Notes in Computer Science, pages 126–144. Springer Berlin Heidelberg, 2003.

[DF02] Ivan Damg̊ard and Eiichiro Fujisaki. A statistically-hiding integer commitment scheme based
on groups with hidden order. In Advances in Cryptology-ASIACRYPT 2002, pages 125–142.
Springer, 2002.

[DKL+13] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P Smart.
Practical covertly secure MPC for dishonest majority–or: Breaking the SPDZ limits. In Com-
puter Security–ESORICS 2013, pages 1–18. Springer, 2013.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Advances in Cryptology - CRYPTO 2012 - 32nd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings,
pages 643–662, 2012.

[FO97] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In Advances in Cryptology-CRYPTO’97, pages 16–30. Springer, 1997.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Advances in Cryptology-CRYPTO’86, pages 186–194. Springer, 1986.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems.
SIAM J. Comput., 18(1):186–208, February 1989.

[HLOW16] Bret Hemenway, Steve Lu, Rafail Ostrovsky, and William IV Welser. High-precision secure
computation of satellite collision probabilities. Cryptology ePrint Archive, Report 2016/319,
2016. http://eprint.iacr.org/.

[HWB14] Brett Hemenway, William IV Welser, and Dave Baiocchi. Achieving higher-fidelity conjunction
analyses using cryptography to improve information sharing. Technical Report, 2014. http:

//www.rand.org/pubs/research_reports/RR344.html.
[IOS12] Yuval Ishai, Rafail Ostrovsky, and Hakan Seyalioglu. Identifying cheaters without an honest

majority. In Theory of Cryptography - 9th Theory of Cryptography Conference, TCC 2012,
Taormina, Sicily, Italy, March 19-21, 2012. Proceedings, pages 21–38, 2012.

[IOZ14] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party computation with identi-
fiable abort. In Advances in Cryptology – CRYPTO 2014: 34th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part II, pages 369–386, 2014.

20

[Jak10] Ram S Jakhu. Iridium-cosmos collision and its implications for space operations. In Yearbook
on Space Policy 2008/2009, pages 254–275. Springer, 2010.

[KB14] Ranjit Kumaresan and Iddo Bentov. How to use Bitcoin to incentivize correct computations. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’14, pages 30–41, New York, NY, USA, 2014. ACM.

[KOO95] Kaoru Kurosawa, Satoshi Obana, and Wakaha Ogata. t-cheater identifiable (k, n) threshold
secret sharing schemes. In Advances in Cryptology–CRYPT0–95, pages 410–423. Springer, 1995.

[Lys02] Anna Lysyanskaya. Signature schemes and applications to cryptographic protocol design. MIT
PhD Dissertation, 2002. http://groups.csail.mit.edu/cis/theses/anna-phd.pdf.

[Ped92] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret shar-
ing. In Advances in Cryptology-CRYPTO91, pages 129–140. Springer, 1992.

[RBO89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority. In Proceedings of the twenty-first annual ACM symposium on Theory of computing,
pages 73–85. ACM, 1989.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.
[TW86] Martin Tompa and Heather Woll. How to share a secret with cheaters. In Advances in

Cryptology–CRYPTO–86, pages 261–265. Springer, 1986.
[Wri09] David Wright. Colliding satellites: Consequences and implications. Union of Concerned Scien-

tists, 26, 2009.
[WW95] T-C Wu and T-S Wu. Cheating detection and cheater identification in secret sharing schemes.

In IEE Proceedings - Computers and Digital Techniques, volume 142, pages 367–369. IET, 1995.

A Preprocessing

In describing our MPC schemes, we assumed a secure, auditable setup implementation πSETUP which
generates commitment-enhanced secret sharings of Beaver triples. In Figure 14, we describe such a
πSETUP. It is similar to the setup phases of Damg̊ard et. al [DPSZ12] and Baum et. al [BDO14], but
it supports 〈〈〉〉-sharings. πSETUP must do the following:

1. Establish an additively secret-shared MAC key α,
2. Generate random 〈〈〉〉-shared values to be used during Input, and
3. Generate 〈〈〉〉-shared Beaver triples for every multiplication to be performed in the online phase.

To achieve these goals, like Damg̊ard et. al [DPSZ12] and Baum et. al [BDO14], we use somewhat
homomorphic encryption. We also assume a protocol PickRandom for choosing randomness. Such
a protocol is described in Figure 4 of Baum et. al.

Somewhat Homomorphic Encryption πSETUP requires the use of a somewhat homomor-
phic encryption scheme; let (HKeyGen,HEnc,HDec) be such a scheme. We refer to Baum et.
al [BDO14] for an extensive discussion of appropriate encryption schemes; here, we will only de-
scribe their basic functionality requirements. (HKeyGen,HEnc,HDec) must support homomor-
phic additions and one homomorphic multiplication. It must also support distributed key generation
(denoted DistKeyGen), wherein each participating party ends up holding a share of the secret
decryption key, and all parties hold the public encryption key. The secret-shared decryption key
can then be used for distributed decryption (denoted DistDec), which takes in a ciphertext and
results in each party holding the plaintext. We assume that DistKeyGen and DistDec are both
implemented with completely identifiable abort; this can easily be achieved by having each party
give a non-interactive zero-knowledge proof (NIZKP) of the validity of each message it sends. Given
the simplicity of both protocols, this is fairly efficient. Posting all public values and NIZKPs to the
transcript τ also makes the protocols publicly auditable.

21

Building πSETUP, The Preprocessing Protocol Using DistDec, we can implement a reshar-
ing protocol AdditiveReshare. AdditiveReshare takes in a ciphertext, and returns an additive
[]-sharing of the underlying plaintext to the parties. AdditiveReshare is shown in Figure 8. The
sharing we truly want, however, is a 〈〈〉〉-sharing, and in order to acquire such a sharing, we first
need to generate a secret-shared MAC key α. DistMACKeyGen, shown in Figure 9, is a protocol
for distributed MAC key generation (which returns additive shares of the MAC key together with its
encryption eα). Reshare, shown in Figure 10, uses DistMACKeyGen; it takes in a ciphertext and
returns a 〈〈〉〉-sharing of the underlying plaintext. We also introduce PickSecretSharedRandom
(described in Figure 11), which generates a 〈〈〉〉-shared random value.

Next, we use these protocols to construct MultSecretSharedValues, a protocol that enable
parties to multiply 〈〈〉〉-sharings without using Beaver triples. This is used to generate the Beaver
triples themselves (as described in Figure 13) and is less efficient than multiplication using Beaver
triples.

MultSecretSharedValues is described in Figure 12. Finally, πSETUP simply runs DistKeyGen,
DistMACKeyGen, PickSecretSharedRandom and PickSecretSharedBeaverTriple.

We do not show the simulator for preprocessing here. It is similar to the one shown by Baum
et. al [BDO14].

Completely Identifiable Abort and Auditability Notice that all communication in each
protocol described in this section consists of (a) calls to sub-protocols, and (b) messages the cor-
rectness of which is proved in non-interactive zero-knowledge (NIZK). Our base sub-protocols
DistKeyGen and DistDec have completely identifiable abort; so, by also checking each pro-
vided NIZK proof, it can be shown that we get completely identifiable abort in the composite
protocol. By logging all public values and NIZK proofs to the transcript τ , it can be shown that we
also get auditability.

AdditiveReshare: Protocol for Additively Resharing an Element x Given its Ciphertext ex

Preconditions: The parties are assumed to have already run DistKeyGen, so each party knows the public encryption
key pkhom, and an additive secret share of the secret decryption key skhom.

AdditiveReshare(ex): In this protocol, the parties take a ciphertext ex of x, and compute an additive []-secret sharing
of the underlying plaintext x.

1. Each party Pi does the following:
(a) Picks a random value fi ∈ Zp. Notionally, these are additive secret shares of a random value f ∈ Zp.
(b) Computes the ciphertext efi = HEnc(pkhom, fi), and a non-interactive zero-knowledge proof (NIZKP)

of its validity.
(c) Publishes efi together with the NIZKP (either broadcasting them to all parties or posting them to the

transcript τ if one is being used).
(d) Upon the receipt of ciphertexts and NIZKPs from all parties, checks all the NIZKPs. If any of them do

not verify, compiles a list Lcheat of parties whose NIZKP did not verify, and returns (REJECT, Lcheat).
(e) Using the homomorphic properties of the encryption scheme, computes the encryption ef of f =∑

i∈{1,...,n} fi, and the encryption ex+f of x+ f .

2. The parties invoke DistDec to decrypt ex+f . All parties learn the value x+ f .
3. The parties can now compute the additive secret sharing: party P1 sets [x]P1 = x + f − f1, and every other

party Pi (i ∈ {2, . . . , n}) sets [x]Pi = −fi.

Fig. 8. AdditiveReshare: Additively Resharing an Element x Given its Ciphertext ex

22

DistMACKeyGen: Protocol for the Distributed Generation of an Additively Secret-Shared MAC key α

Preconditions: The parties are assumed to have already run DistKeyGen, so each party knows the public encryption
key pkhom, and an additive secret share of the secret decryption key skhom.

DistMACKeyGen: In this protocol, the parties compute an additive []-sharing of a random MAC key α, together with
an encryption eα of α. Each party Pi does the following:

1. Picks a random value αi ∈ Zp, and sets [α]Pi = αi.
2. Computes the ciphertext eαi = HEnc(pkhom, αi), and a non-interactive zero-knowledge proof (NIZKP) of its

validity.
3. Publishes eαi together with the NIZKP (either broadcasting them to all parties or posting them to the

transcript τ if one is being used).
4. Upon the receipt of ciphertexts and NIZKPs from all other parties, checks all the NIZKPs. If any of them

do not verify, compiles a list Lcheat of parties whose NIZKP did not verify, and returns (REJECT, Lcheat).
5. Using the homomorphic properties of the encryption scheme, computes the encryption eα of α =∑

i∈{1,...,n} αi.

Fig. 9. DistMACKeyGen: Distributed Generation of an Additively Secret-Shared MAC key α

B Proofs of Security

B.1 Background: Universal Composability (UC)

Universal composability [Can00] is defined in the context of two worlds - the real world and the
ideal world. In both worlds, the environment Z sets all participating parties’ inputs, and receives
all of their outputs. Additionally, it participates in the protocol π on behalf of the corrupt parties,
sending arbitrary messages and observing all messages received. In the ideal world, unbeknownst to
the environment, the execution of the protocol π is replaced with a simulated execution courtesy of
a simulator S, who observes corrupt parties’ inputs and outputs from the functionality F , but sees
nothing else. Afterwards, the environment Z outputs a guess as to which world it was in - “real”
or “ideal”. Protocol π UC-securely implements a functionality F if there exists an probabilistic
polynomial time (PPT) simulator S such that for all PPT environments Z, the outputs of Z in the
real and ideal worlds are computationally indistinguishable.

B.2 Simulator for MPC with Identifiable Abort

Proof (Theorem 2). We can build a simulator SCIDA for πCIDA. SCIDA gains an advantage by providing
the CRS from which the Pedersen commitment generators g and h are derived. SCIDA can provide
a CRS such that it will know the discrete log relationship between the two generators, thus allow-
ing SCIDA, given a commitment c and any element x ∈ Zp, to compute randomness rx such that
pc(x, rx) = c.

In order to generate a simulated view, SCIDA follows the protocol πCIDA closely, with some excep-
tions, as shown in Figure 15. One such exception is using fixed inputs ini = 0 for honest parties Pi.
Fewer than n 〈〈〉〉-shares are information-theoretically hiding, and so reveal nothing about shared
values, making it impossible for an adversary to detect whether ini = 0. Thus, the simulated view
is indistinguishable from the real view.

23

Reshare: Protocol for 〈〈〉〉-Resharing an Element x Given its Ciphertext ex

Preconditions: – A modulus and generators for the Pedersen commitment scheme are known.
– The parties are assumed to have already run DistKeyGen, so each party holds the public encryption key
pkhom, and an additive secret share of the secret decryption key skhom.

– The parties are assumed to have already run DistMACKeyGen (described in Figure 9), so each party holds
an additive secret share of the MAC key α, and an encryption eα of α.

Reshare(ex): In this protocol, the parties take a ciphertext ex of x, and compute a 〈〈〉〉-secret sharing of the underlying
plaintext x.

1. Each party Pi does the following:
(a) Picks random values fi, ri ∈ Zp. The values fi are additive secret shares of a random value f ∈ Zp, and

the values ri are additive secret shares of a random value rf ∈ Zp.
(b) Computes the ciphertext efi = HEnc(pkhom, fi), and a non-interactive zero-knowledge proof (NIZKP)

of its validity.
(c) Computes the commitment cfi = pc(fi, ri), and a NIZKP that it is to the same thing as ef,i.
(d) Publishes efi and cfi together with the NIZKPs (either broadcasting them to all parties or posting

them to the transcript τ if one is being used).
(e) Upon the receipt of values from all other parties, checks all the NIZKPs. If any of them do not verify,

compiles a list Lcheat of parties whose NIZKP did not verify, and returns (REJECT, Lcheat).
(f) Using the homomorphic properties of the encryption scheme, computes the encryption ef of f =∑

i∈{1,...,n} fi, and the encryption ex+f of x+ f .

(g) The parties invoke DistDec to decrypt ex+f . All parties learn the value x+ f .
2. The parties invoke PickRandom to jointly choose a random value rx+f ∈ Zp.
3. Each party locally computes the commitment cx+f = pc(x+ f, rx+f).
4. The parties can now compute additive secret shares of x and of the decommitment value rx:

– Party P1 sets [x]P1 = x+ f − f1, and [rx]P1 = rx+f − r1.
– Party Pi (i ∈ {2, . . . , n}) sets [x]Pi = −fi, and [rx]Pi = −ri

5. Each party also locally computes commitments to every party’s additive share of x, as follows:
– c1 = cx+fc

−1
f1

.

– For i ∈ {2, . . . , n}, ci = c−1
fi

.

Note that [rx]Pi is the decommitment value for the commitment ci.
6. Using the homomorphic properties of the encryption scheme and the ciphertexts eα (encrypting the MAC

key α) and ex (encrypting the element x), each party locally computes the encryption eMAC(x) of the MAC
value MAC(x) = αx.

7. The parties run AdditiveReshare on eMAC(x) as described in Figure 8, such that each party Pi ends up with
[MAC(x)]Pi .

8. Each party Pi now holds 〈〈x〉〉Pi = ([x]Pi , ri, (c1, . . . , cn), [MAC(x)]Pi).

Fig. 10. Reshare: Resharing an Element x Given its Ciphertext ex (A Sub-Protocol of πSETUP, described
in Figure 14)

24

PickSecretSharedRandom: Protocol for Generating Secret-Shared Randomness

Preconditions: – A modulus and generators for the Pedersen commitment scheme are known.
– The parties are assumed to have already run DistKeyGen, so each party holds the public encryption key
pkhom, and an additive secret share of the secret decryption key skhom.

– The parties are assumed to have already run DistMACKeyGen (described in Figure 9), so each party holds
an additive secret share of the MAC key α, and an encryption eα of α.

PickSecretSharedRandom: In this protocol, the parties jointly choose a 〈〈〉〉-shared random value r ∈ Zp.
1. Each party Pi does the following:

(a) Picks random si ∈ Zp. Notionally, si is an additive secret share of random values s ∈ Zp.
(b) Computes ciphertext ei = HEnc(pkhom, si), together with a non-interactive zero-knowledge proof

(NIZKP) of its validity.
(c) Publishes ei together with the NIZKP (either broadcasting them to all parties or posting them to the

transcript τ if one is being used).
(d) Upon receipt of ciphertexts and NIZKPs from all parties, checks all NIZKPs. If any NIZKP is incorrect,

compiles a list Lcheat of parties whose NIZKPs are incorrect, and returns (REJECT, Lcheat).
(e) Using the homomorphic properties of the encryption scheme, computes an encryption e of s =∑

i∈{1,...,n} si.

2. The parties run Reshare on e, resulting each party Pi holding 〈〈s〉〉Pi .

Fig. 11. PickSecretSharedRandom: Generating Secret-Shared Randomness

MultSecretSharedValues: Protocol for Multiplying Secret Shared Values Without Using Beaver Triples

Preconditions: – A modulus and generators for the Pedersen commitment scheme are known.
– The parties are assumed to have already run DistKeyGen, so each party holds the public encryption key
pkhom, and an additive secret share of the secret decryption key skhom.

– The parties are assumed to have already run DistMACKeyGen (described in Figure 9), so each party holds
an additive secret share of the MAC key α, and an encryption eα of α.

MultSecretSharedValues(〈〈a〉〉, 〈〈b〉〉): Each party Pi holds 〈〈a〉〉Pi = ([a]Pi , [ra]Pi , (ca,1, . . . , ca,n), [MAC(a)]Pi) and
〈〈b〉〉Pi = ([b]Pi , [rb]Pi , (cb,1, . . . , cb,n), [MAC(b)]Pi). In this protocol, the parties compute 〈〈c〉〉, where c = a × b.
Each party Pi should end up holding 〈〈c〉〉Pi .

1. Each party Pi does the following:
(a) Computes ciphertexts ea,i = HEnc(pkhom, [a]Pi) and eb,i = HEnc(pkhom, [b]Pi).
(b) Computes non-interactive zero-knowledge proofs (NIZKPs) of:

– the validity of ea,i and eb,i,
– the fact that ca,i is to the same thing as ea,i, and
– the fact that cb,i is to the same thing as eb,i.

(c) Publishes ea,i, eb,i and the NIZKPs (either broadcasting them to all parties or posting them to the
transcript τ if one is being used).

(d) Upon receipt of ciphertexts and NIZKPs from all parties, checks all NIZKPs. If any NIZKP is incorrect,
compiles a list Lcheat of parties whose NIZKPs are incorrect, and returns (REJECT, Lcheat).

2. Using the homomorphic properties of the encryption scheme, all parties compute:
– an encryption ea of a =

∑
i∈{1,...,n} ai,

– an encryption eb of b =
∑
i∈{1,...,n} bi, and

– an encryption ea×b of the product of a and b.
3. The parties run Reshare on ea×b, as described in Figure 10. Each party Pi ends up with a secret share
〈〈c〉〉Pi of c = a× b.

Fig. 12. MultSecretSharedValues: Multiplying Secret Shared Values Without Using Beaver Triples

25

PickSecretSharedBeaverTriple: Protocol for Generating a Secret-Shared Beaver Triple

Preconditions: – A modulus and generators for the Pedersen commitment scheme are known.
– The parties are assumed to have already run DistKeyGen, so each party holds the public encryption key
pkhom, and an additive secret share of the secret decryption key skhom.

– The parties are assumed to have already run DistMACKeyGen (described in Figure 9), so each party holds
an additive secret share of the MAC key α, and an encryption eα of α.

PickSecretSharedBeaverTriple: In this protocol, the parties compute three 〈〈〉〉-shared values 〈〈a〉〉, 〈〈b〉〉 and 〈〈c〉〉,
where a and b are random elements in Zp, and c = a× b.

1. The parties invoke PickSecretSharedRandom (described in Figure 11) to create sharings 〈〈a〉〉 and 〈〈b〉〉 of
random values a, b ∈ Zp.

2. The parties invoke MultSecretSharedValues(〈〈a〉〉, 〈〈b〉〉) (described in Figure 12) to multiply the sharings
〈〈a〉〉 and 〈〈b〉〉, resulting in a new sharing 〈〈c〉〉, where c = a× b.

Fig. 13. PickSecretSharedBeaverTriple: Generating Secret-Shared Beaver Triples

Protocol πSETUP (Setup for Auditable MPC)

Preconditions: – A modulus and generators for the Pedersen commitment scheme are known.
Init: On input (Init, p) from all parties:

1. The parties invoke DistKeyGen to obtain a shared homomorphic encryption key pair (skhom, pkhom), where
pkhom is public and skhom is additively secret-shared among the parties.

2. The parties invoke DistMACKeyGen, shown in Figure 9, to obtain a 〈〈〉〉-shared secret-shared MAC key α
(together with its encryption eα).

3. The parties invoke PickSecretSharedRandom, shown in Figure 11, to generate a 〈〈〉〉-sharing of a random
number for each input.

4. The parties invoke PickSecretSharedBeaverTriple, shown in Figure 13, to generate 〈〈〉〉-sharings of a Beaver
triple for each multiplication they will need to perform.

Fig. 14. Preprocessing: a Circuit Independent Protocol to be Executed Prior to Circuit Evaluation. This
processing stage is used for all of our constructions.

26

Simulator SCIDA for Protocol πCIDA (Private-Output Auditable MPC)

Init: 1. SCIDA provides a CRS such that it knows the discrete log relationship of the two generators g and h of the
Pedersen commitment scheme. This is done in such a way that the CRS is indistinguishable from random.

2. SCIDA simulates πSETUP (in a way similar to that described by Baum et. al [BDO14]). During this simulation,
SCIDA learns the private decryption key skhom, recovering the MAC key α.

Input: For each party Pi,
1. If Pi is adversarial, SCIDA learns the input ini and executes Input with it as described in πCIDA.
2. If Pi is honest, SCIDA executes Input (interacting with the adversarial parties as needed) as described in πCIDA

with a fixed input of 0.
Eval: SCIDA evaluates C gate by gate (interacting with the adversarial parties as needed), as described in πCIDA.
Output: SCIDA gets the output out from the functionality FCIDA.

1. SCIDA changes the output additive share [out]Pi of one of the honest parties Pi to force the shares to reconstruct
to out.

2. SCIDA finds a randomness rout,i such that pc([out]Pi , rout,i) = cout,i. (It can do this since it has the trapdoor
information - the discrete log relationship between the two Pedersen commitment generators.) SCIDA sets
[rout]Pi = rout,i.

3. Similarly, SCIDA changes the output MAC additive share [MAC(out)]Pi of one of the honest parties Pi to force
the shares to reconstruct to MAC value α · out.

4. SCIDA then runs Output as described in πCIDA (interacting with the adversarial parties as needed).

Fig. 15. Simulator for MPC with Identifiable Abort

B.3 Simulator for Openable MPC

Proof (Theorem 3). We build a simulator SCIDA,AUDIT,OPEN for πCIDA,AUDIT,OPEN. Much like SCIDA,AUDIT,OPEN
described in Appendix B.3, SCIDA,AUDIT,OPEN gains an advantage by providing the CRS from which
the Pedersen commitment generators g and h are derived. Like SCIDA,AUDIT,OPEN, in order to generate
a simulated view, SCIDA,AUDIT,OPEN follows the protocol πCIDA,AUDIT,OPEN closely, with some exceptions,
as shown in Figure 16. One such exception is using fixed inputs ini = 0 for honest parties Pi.

During Open, there is assumed to be at least one honest party in the opening coalition. For
that honest party Pj , the simulator computes a new share [ini]

′
Pj

and decommitment r′(i,j) such that

[ini]
′ reconstructs to ini and pc([ini]

′
Pj
, r′(i,j)) = c(i,j). The simulator then runs Open with those

values.

C Primitives and Components

In this section we describe the technical tools we use in our constructions (Figures 6 and 7). These are
Pedersen commitments (Appendix C.1), verifiable encryption (Appendix C.2) and non-interactive
zero-knowledge proofs (Appendix C.3).

C.1 Commitments

Let M be a message space. A commitment scheme [BCC88] consists of three algorithms: Setup,
Commit and Open.

– Setup(1k)→ ck generates the public commitment key.
– For any x ∈M, Commit(ck, x)→ (c, d) produces a commitment/decommitment pair for x.
– Open(ck, c, d)→ x̃ ∈M∪ {⊥} opens the commitment, where ⊥ is returned if c is not a valid

commitment.

27

Simulator SCIDA,AUDIT,OPEN for Protocol πCIDA,AUDIT,OPEN (Openable MPC)

Init: 1. SCIDA,AUDIT,OPEN provides a CRS such that it knows the discrete log relationship of the two generators g and
h of the Pedersen commitment scheme. This is done in such a way that the CRS is indistinguishable from
random.

2. SCIDA,AUDIT,OPEN simulates πSETUP (in a way similar to that described by Baum et. al [BDO14]). During this
simulation, SCIDA,AUDIT,OPEN learns the private decryption key skhom, recovering the MAC key α.

Input: For each party Pi,
1. If Pi is adversarial, SCIDA,AUDIT,OPEN learns the input ini and executes Input with it as described in πCIDA,AUDIT,OPEN.
2. If Pi is honest, SCIDA,AUDIT,OPEN executes Input (interacting with the adversarial parties as needed) as described

in πCIDA,AUDIT,OPEN with a fixed input of 0.
Eval: SCIDA,AUDIT,OPEN evaluates C gate by gate (interacting with the adversarial parties as needed), as described in

πCIDA,AUDIT,OPEN.
Output: SCIDA,AUDIT,OPEN gets the output out from the functionality FCIDA,AUDIT,OPEN.

1. SCIDA,AUDIT,OPEN changes the output additive share [out]Pi of one of the honest parties Pi to force the shares to
reconstruct to out.

2. SCIDA,AUDIT,OPEN finds a randomness rout,i such that pc([out]Pi , rout,i) = cout,i. (It can do this since it has the
trapdoor information - the discrete log relationship between the two Pedersen commitment generators.)
SCIDA,AUDIT,OPEN sets [rout]Pi = rout,i.

3. Similarly, SCIDA,AUDIT,OPEN changes the output MAC additive share [MAC(out)]Pi of one of the honest parties Pi
to force the shares to reconstruct to the MAC value α · out.

4. SCIDA,AUDIT,OPEN then runs Output as described in πCIDA,AUDIT,OPEN (interacting with the adversarial parties as
needed).

Audit: SCIDA,AUDIT,OPEN runs Audit as described in πCIDA,AUDIT,OPEN.
Open: SCIDA,AUDIT,OPEN gets the inputs (in1, . . . , inn) from the functionality FCIDA,AUDIT,OPEN. The allowable opening coalition

C is assumed to contain at least one honest party Pj . For each input ini,
1. SCIDA,AUDIT,OPEN computes an additive share [ini]

′
Pj

and decommitment r′(i,j) such that [ini]
′ reconstructs to

ini and pc([ini]
′
Pj
, r′(i,j)) = c(i,j). (It can do this since it has the trapdoor information - the discrete log

relationship between the two Pedersen commitment generators.)
SCIDA,AUDIT,OPEN then runs Open as described in πCIDA,AUDIT,OPEN (interacting with the adversarial parties as needed).

Fig. 16. Simulator for Openable MPC

28

A commitment scheme should be correct, meaning that for any message x ∈M,

Open(ck,Commit(ck, x)) = x.

It should also be hiding (meaning that the commitment value c should reveal nothing about the mes-
sage x), and binding (meaning that for a given commitment value c, it should be hard or impossible
to produce two decommitment values d1, d2 such that ⊥ 6= Open(ck, c, d1) 6= Open(ck, c, d2) 6= ⊥.

Our MPC protocols use Pedersen commitments [Ped92] in QRq, the group of quadratic residues
modulo q = 2p+1. (This choice of group ensures that the commitment messages spaceM is Zp, just
like the message space supported by our secret sharing scheme described in Section 3.) Pedersen
commitments work as follows:

– Setup(1k): Let q = 2p+1, and choose two random generators g and h of QRq. Let ck = (q, g, h).
– pc(ck = (q, g, h), x): Choose a random value r ← Z∗p, and set c = gxhr mod q, d = (x, r).
– Openp(ck = (q, g, h), c, d = (x, r)): Return x if c = gxhr mod q, and return ⊥ otherwise.

For simplicity, in this paper we often refer to r (instead of (x, r)) as the decommitment value.

C.2 Verifiable Encryption

To achieve openability, we leverage verifiable encryption. Verifiable encryption schemes support
efficient zero knowledge proofs on ciphertexts. We introduce a slightly modified version of the
verifiable encryption scheme described by Camenisch and Shoup [CS03].12 Our modifications consist
solely of removing elements from the ciphertext, so the modified scheme naturally inherits CPA
security of the original (but not its CCA security).

– KeyGen(k):

• Let n = pq where p = 2p′ + 1 and q = 2q′ + 1, and p′ and q′ are k-bit primes.
• Let h = 1 + n.
• Choose a random generator g ∈ Z∗n2 .
• Choose a random secret key sk ∈ {1, . . . , b(n2)/4c}.
• Let pk = gsk mod n2.

– Encver(pk, x):

• Choose a random r ∈ [n/4].
• e = (gr mod n2, pkrhx mod n2).
• Return the ciphertext e.

– Decver(sk, e = (u, v)):

• hx = v/(usk) mod n2.
• Compute x (this is possible for h = 1 + n).
• Return the plaintext x.

This encryption scheme is verifiable, because statements about the underlying plaintext can be
proven by executing the zero knowledge proofs described below.

12 Their scheme is designed it to be secure against chosen ciphertext attacks, which is unnecessary for our
purposes.

29

C.3 (Non Interactive) Zero Knowledge Proofs

To achieve the auditability and openability properties (described in Sections 2.4 and 2.5), we lever-
age zero knowledge proofs [GMR89]. A zero knowledge proof (ZKP) is a two-party protocol between
a prover P and a verifier V, where P convinces V that some claim is true without the verifier learning
anything beyond the claim statement.

This section describes two interactive zero knowledge proofs. The proofs can be made non-
interactive by means of the Fiat-Shamir heuristic [FS86]. We suggest this concrete non-interactive
zero knowledge proof only for the sake of efficiency. It can be replaced with any other non-interactive
zero knowledge proof of the same statement.

Figure 17 describes a concrete efficient zero knowledge proof used in our protocol, wherein the
prover P proves knowledge of a committed value. More precisely, P proves knowledge of an element
x and decommitment value r such that c = gxhr mod n. In Camenisch-Stadler notation [CS97],
this can be expressed as:

ZKP [(x, r) : c = gxhr mod n](n, g, h, c)

(n, g, h, c)
P(x, r) V

pick t1, t2 ∈ Zn

T = gt1ht2 T−→
c←− pick c ∈ Zn

s1 = t1 + cx mod φ(n)

s2 = t2 + cr mod φ(n)
s1,s2−−−→ check Tcc = gs1hs2 mod n

Fig. 17. Proof of Knowledge of Committed/Encrypted Value

Figure 18 describes another concrete efficient zero knowledge proof used in our construction,
wherein the prover P proves that two commitments are to the same value. (Note that these two com-
mitments do not need to have the same parameters - they can use different moduli and generators.)
More precisely, P proves that c1 = gx1h

r1
1 mod n1 and c2 = gx2h

r2
2 mod n2 for some x [CM99,Lys02].

In Camenisch-Stadler notation [CS97], this can be expressed as:

ZKP [(x, r1, r2) : c1 = gx1h
r1
1 mod n1 ∧ c2 = gx2h

r2
2 mod n2]

(n1, n2, g1, g2, h1, h2, c1, c2).

30

(n1, n2, g1, g2, h1, h2, c1, c2)
P(x, r1, r2) V

pick random l-bit
numbers t1, t2, t3
T1 = gt11 h

t2
1 mod n1

T2 = gt12 h
t3
2 mod n2

T1,T2−−−−→
pick l-bit1 random

c←− challenge c
s1 = t1 + cx
s2 = t2 + cr1

s3 = t3 + cr2
s1,s2,s3−−−−−→ check that

T1c1
c ≡ gs11 h

s2
1 mod n1

and
T2c2

c ≡ gs12 h
s3
2 mod n2.

1l is a security parameter much larger than the size of x.

Fig. 18. Proof of Equality of Committed/Encrypted Values

Both of the above proofs can be used to prove statements about Pedersen commitments (de-
scribed in Section C.1) and verifiable encryptions (described in Section C.2), since they have the
same structure; both consist of a product of two exponentials.

