
On the Impossibility of Merkle Merge Homomorphism

Yuzhe Tang†

Syracuse University
Syracuse, NY 13244

†ytang100@syr.edu

1. INTRODUCTION
This work considers a theoretic problem of merging the digests of

two ordered lists “homomorphically.” This theoretic problem has

potential applications to efficient and verifiable data outsourcing,

which is especially desirable in the public cloud computing where

the cloud is not trustworthy. We consider the case of merge-sort as

it is fundamental to many cloud-side operations, such as database

join [6], data maintenance [3], among others.

Informally, a merge-homomorphic digest enables that the digest

of an ordered list, merged from two sublists, is computable from

the digests of the two sublists. We present the formal definition of

a merge-homomorphic digest (§ 2).

We then examine the feasibility of using Merkle hash tree or

MHT [5] to construct the merge-homomorphic digest (§ 3). Our

theoretic result is that we proved the impossibility of merge-

homomorphism for MHT (§ 3.1) by contradiction to the definition

of collision-resistant hashes.

This negative result is useful to understanding the limitations for

designing a merge-homomorphic digest and might shed lights for

a correct construction in the future.

2. MERGE-HOMOMORPHIC SIGNATURE
A merge-homomorphic signature scheme for message space M

consists of four polynomial-time algorithms as below. Our formu-

lation follows those in homomorphic MAC [1] and p-homomorphic

signature [2].

• KeyGen(1k) → sk, pk: the key generation algorithm takes as

input 1k (k is security parameter), and outputs a key pair includ-

ing public key pk and secret key sk.

• Sign(sk,L1) → δ1, state and Sign(sk,L2, state) → δ2: We

only consider the simplest case of signing up to two ordered lists;

It can be naturally extended to the case of more than two ordered

lists. To L1, the algorithm takes as input the secret key sk, an or-

dered lists L1 from message space M. The algorithm produces

as output the signature δ1 on L1, and a state. To L2, the al-

gorithm differs in taking the state as input and producing only

delta2 as output.

Conference Location

• SignMerge(pk,L1, L2, δ1, δ2, L) → {δ12,⊥}: the algorithm

takes as input the public key pk, two ordered lists L1 and L2

from message space M with their corresponding signatures δ1
and δ2, and a list L. If L = merge(L1, L2), the algorithm

outputs the signature δ12 on L12; otherwise, it outputs ⊥.

• Verify(pk,L, δ) → {0, 1}: the algorithm takes as input public

key pk, an ordered list L from message space M with its signa-

ture δ, and outputs a binary indicating whether the signature is

valid (1 for valid signature and 0 otherwise).

Correctness. We require that all key pairs (pk, sk) generated by

KeyGen(1k) and for all L1, L2, L ∈ M we have:

• if merge(L1, L2) = L, then SignMerge(pk,L1, L2, δ1, δ2) 6=
⊥ and

• for all δ1 such that SignMerge(pk,L1, L2, δ1, δ2, L) → δ12,

we have Verify(pk,L, δ12) = 1.

Security: Unforgeability. We define the security for merge-

homomorphic signature. We use the basic notion of existential

unforgeability with regards to adaptive chosen message attacks

(CMA) [4]. Roughly, the idea is to allow the attacker to obtain

the signature on arbitrary ordered lists of her choice (analogous to a

chosen message attack on signatures). The unforgeability states the

attacker should be unable to produce a valid tuple (L, δ12) where

L 6= merge(L1, L2). Formally,

Attack game. Let T = (Sign,SignMerge,Verify) be a

merge-homomorphic signature scheme. We define the security

of T using the following game between a challenger and a PPT

adversary A.

Setup. The challenger runs KeyGen and obtains key-pair

sk, pk.

Queries. A adaptively submits a series of queries where the

i-th query is (Li
1, L

i
2); L

i
1 and Li

2 are two ordered lists chosen

from message space M. For each query, the combination of

(Li
1, L

i
2) is unique. To respond to query (Li

1, L
i
2), the chal-

lenger sends back to A: δi1 = Sign(Li
1), δ

i
2 = Sign(Li

2).

Output. The adversary A outputs (L, δ).

The adversary wins the security game if Verify(pk,L, δ) = 1,

and ∀i, L 6= merge(Li
1, L

i
2).

The advantage NC-adv[A, T ] of adversary A w.r.t. T is de-

fined to be the probability that A wins the security game.

DEFINITION 2.1. A merge-homomorphic signature

scheme T is secure if for all polynomial time adversary A

the quantity NC-adv[A, T ] is negligible.



3. CANDIDATE CONSTRUCTION BY

MERKLE HASH TREE
We first describe a conjectured property of a Merkle hash tree

(MHT), and then describe the possible construction of merge-

homomorphic signature using MHT.

DEFINITION 3.1. Let + be a binary function on elements in

the domain of Merkle hash digests. Let O be the domain of records

with ordering; the length of record is bound by k(O). Let MS be

the domain of possible ordered lists of records from O. We say an

MHT on domain MS has the merge-homomorphism property (or

is merge-homomorphic) if ∀L1, L2 ∈ O, the following equation

always holds:

MH(merge(L1, L2)) = MH(L1) + MH(L2) (1)

Here, MH(L1) denotes a Merkle hash digesting ordered list L1.

merge(L1, L2) is a merge operation of two ordered lists L1 and

L2.

We now consider the construction of the digest between a verifier

V and a prover P. The construction is below:

• V.KeyGen(1k) → sk, pk is by the standard public-

private key generation.

• V.Sign(sk, L1) → δ1, state:

1. rh1 = MH(L1)

2. state.add(rh1)

3. δ1 = Sgsk(rh1), where Sgsk(·) is the signing function

in a digital signature.

4. output δ1, state

• V.Sign(sk, L2,V.state) → δ2:

1. rh2 = MH(L2)

2. rh1 → V.state

3. rh12 = rh1 + rh2

4. V.state.add(rh12, rh2)

5. output δ2 = {Sgsk(rh2), Sgsk(rh12)}

• P.SignMerge(pk,L1, L2, δ1, δ2, L) → {δ12,⊥}:

1. if(L = merge(L1, L2)) output δ12 = Sgsk(rh12)

2. else outputs ⊥

• P.Verify(pk,L, δ) → {0, 1}:

1. V f(δ12,MH(L12)) where V f is the verification

function in a digital signature.

Correctness. can be easily established.

Unforgeability. requires that if P.Verify(pk,L, δ) = 1 then

L = merge(L1, L2). The unforgeability can be proved by: 1)

the unforgeability of a digital signature which ensures that when

V f(δ12,MH(L12)) = 1, MH(L12) = rh12 = rh1 + rh2 and

2) the following equation:

MH(L12) = rh12 = rh1 + rh2

= MH(L1) + MH(L2)

= MH(merge(L1, L2))

Due to the oneway-ness of MHT (·), L12 = merge(L1, L2).

It can be seen the correctness of using MHT for merge-

homomorphic signature depends on the existence of a merge-

homomorphic MHT. Unfortunately, a merge-homomorphic MHT

does not exist. We formally present our theoretical result.

3.1 Impossibility of Merkle merge-

homomorphism
THEOREM 3.2. The is no Merkle tree that can instan-

tiates the Merkle merge-homomorphism defined in Defini-

tion 3.1. In other words, there is no operation + such that

MH(merge(L1, L2)) = MH(L1) + MH(L2).

PROOF. We prove the theorem by contradicting the merge-

homomorphism to the following facts:

G1. The construction of an MHT, that is, for any two lists, L < L′,1

MH(L‖L′) = H(MH(L)‖MH(L′)). Here, H(·) is a crypto-

graphic hash function, and ‖ is concatenation on sets or Merkle

hash strings..

G2. By definition, a cryptographic hash functions is collision resis-

tant, which means that for any u, it is computationally unfeasible

to find a different value u′ such that H(u) = H(u′). In here, we

consider a cryptographic hash H(·) takes a variable-length input u

and generates a fixed-length output z = H(u).

G3. Cryptographic hash can not be collision free to all input values.

That is, there must exist value u, such that there exist value u′

and H(u) = H(u′) – By definition, the input space of a hash is

much larger than the output space of the hash; hence there must be

collision.

We consider a value x with collision, that is, there is value y such

that H(x) = H(y). Without loss of generality, we assume x <

y. We denote by L1 and L2 two single-element lists respectively

containing x and y; L1 = {x} and L2 = {y}. Therefore:

MH(L2) = H(y) = H(x) = MH(L1)

Assuming there is an MHT with merge-homomorphism:

MH(merge(L1, L2)) = MH(L1) + MH(L2)

= MH(L1) + MH(L1)

= MH(merge(L1, L1))

= MH(L1) = H(x) (2)

On the other hand, we have:

1This means the largest element in L is smaller than the smallest
element in L′.



MH(merge(L1, L2)) = MH({x, y})

= H(H(x)‖H(y))

= H(H(x)‖H(x)) (3)

By combining Equation 2 and Equation 3, we have H(x) =
H(H(x)|H(x)), hence another collision.2

Thus, from the existence of collision between x and y, we find

another collision of x whose value is easy to derive from x,

H(x)|H(x). Because there must be at least one value with colli-

sion (G3), we find a contradiction to collision resistance (G2).

4. REFERENCES
[1] S. Agrawal and D. Boneh. Homomorphic macs: Mac-based

integrity for network coding. In Applied Cryptography and

Network Security, 7th International Conference, ACNS 2009,

Paris-Rocquencourt, France, June 2-5, 2009. Proceedings,

pages 292–305, 2009.

[2] J. H. Ahn, D. Boneh, J. Camenisch, S. Hohenberger,

A. Shelat, and B. Waters. Computing on authenticated data. J.

Cryptology, 28(2):351–395, 2015.

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,

M. Burrows, T. Chandra, A. Fikes, and R. Gruber. Bigtable: A

distributed storage system for structured data (awarded best

paper!). In OSDI, pages 205–218, 2006.

[4] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature

scheme secure against adaptive chosen-message attacks. SIAM

J. Comput., 17(2):281–308, 1988.

[5] R. C. Merkle. A certified digital signature. In Proceedings on

Advances in Cryptology, CRYPTO ’89, 1989.

[6] Y. Zhang, J. Katz, and C. Papamanthou. Integridb: Verifiable

SQL for outsourced databases. In Proceedings of the 22nd

ACM SIGSAC Conference on Computer and Communications

Security, Denver, CO, USA, October 12-6, 2015, pages

1480–1491, 2015.

2It is easy to see x 6= H(x)|H(x) as they are on different domains:
By the definition of cryptographic hash, the input domain (x) can
be arbitrarily larger than the output domain (H(x)).


	Introduction
	merge-homomorphic signature
	Candidate construction by Merkle hash tree
	Impossibility of Merkle merge-homomorphism

	References

