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Abstract

Secure multilinear maps (mmaps) have been shown to have remarkable applications in cryp-
tography, such as multi-input functional encryption (MIFE) and program obfuscation. To date,
there has been little evaluation of the performance of these applications. In this paper we ini-
tiate a systematic study of mmap-based constructions. We build a general framework, called
5Gen, to experiment with these applications. At the top layer we develop a compiler that takes
in a high-level program and produces an optimized matrix branching program needed for the
applications we consider. Next, we optimize and experiment with several MIFE and obfuscation
constructions and evaluate their performance. The 5Gen framework is modular and can easily
accommodate new mmap constructions as well as new MIFE and obfuscation constructions, as
well as being an open-source tool that can be used by other research groups to experiment with
a variety of mmap-based constructions.

1 Introduction

A multilinear map (mmap) [BS02] is an extremely powerful tool for constructing advanced cryp-
tographic systems including program obfuscation [GGH+13b], n-party non-interactive key ex-
change [BS02], multi-input functional encryption [GGG+14, BLR+15], optimal broadcast encryp-
tion [BWZ14a], witness encryption [GGSW13], and many others. The recent emergence of candi-
date mmaps [GGH13a, CLT13, CLT15, GGH15] bring these proposals closer to reality, although
several of the current candidates have been shown to be too weak for some of these applications,
as discussed in §5.

Despite the remarkable power of mmaps, few published works study the efficiency of the result-
ing applications, primarily due to the rapid pace of development in the field and the high resource
requirements needed for carrying out experiments. In this paper we develop a generic framework
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called 5Gen1 (available at https://github.com/5GenCrypto) that lets us experiment with powerful
applications of current and future mmaps. We focus on two applications in particular: multi-input
functional encryption (MIFE) and program obfuscation, both of which can be instantiated with
some of the existing mmap candidates (see §5). Our framework is built as a multi-layer software
stack where different layers can be implemented with any of the current candidates or replaced
altogether as new constructions emerge.

The top layer of our framework is a system to compile a high-level program written in the Cryptol
language [Cry] into a matrix branching program (MBP), as needed for the most efficient MIFE and
obfuscation constructions. We introduce several novel optimizations for obtaining efficient MBPs
and show that our optimizations reduce both the dimension and the total number of matrices
needed.

The next layer implements several variants of MIFE and obfuscation using a provided MBP.
This lets us experiment with several constructions and to compare their performance.

The lowest layer is the multilinear map library, libmmap. We demonstrate our framework
by experimenting with two leading candidate mmaps: GGHLite [GGH13a, LSS14, ACLL15] and
CLT [CLT13, CLT15]. Our experiments show that for the same level of security, the CLT mmap
performs considerably better than GGHLite in all the applications we tried, as explained in §8.
(Although the GGH15 multilinear map [GGH15] was not included in our implementation or exper-
iments, we hope that future work might integrate this multilinear map into our framework.)

Our framework makes it possible to quickly plug in new mmaps as new proposals emerge, and
easily measure their performance in applications like MIFE and obfuscation.
MIFE experiments. Recall that functional encryption [BSW11] is an encryption scheme where
the decryption key skf is associated with a function f . If c is the encryption of message m then
decrypting c with the key skf gives the decryptor the value f(m) and nothing else. An n-input
MIFE scheme is the same, except that the function f now takes n inputs. Given independently
created ciphertexts c1, . . . , cn, with each ci an encryption of a message mi and associated with
“slot” i, decrypting these ciphertexts using skf reveals f(m1, . . . ,mn) and nothing else.

One important application of 2-input MIFE is order-revealing encryption (ORE) [GGG+14,
BLR+15]. Here the function f(x, y) outputs 1 if x < y and 0 otherwise. Thus, the key skf
applied to ciphertexts c1 and c2 reveals the relative order of the corresponding plaintexts. ORE
is useful for responding to range queries on an encrypted database. For large domains, the only
known constructions for secure ORE are based on mmaps. We conduct experiments on ORE using
real-world security parameters where mmaps give the best known secure construction.

We also experiment with 3-input MIFE. Here, we choose a DNF formula f that operates
on triples of inputs, which is useful in the context of privacy-preserving fraud detection where a
partially trusted gateway needs to flag suspicious transactions without learning anything else about
the transactions (see §6.3). Again, the best known construction for such a scheme uses mmaps.

We use our framework to evaluate the implementation of these schemes using existing mmaps
for which they are currently believed to be secure. Clearly these systems are too inefficient to be
used in practice. Nevertheless, our experiments provide a data point for the current cost of using
them. Moreover, our framework makes it possible to easily plug in better or more secure mmaps
as they become available.
Obfuscation experiments. Roughly speaking, an obfuscator takes as input a program and

1The name 5Gen comes from the fact that multilinear maps can be considered the “fifth generation” of cryptog-
raphy, where the prior four are: symmetric key, public key, bilinear maps, and fully homomorphic encryption.
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outputs a functionally equivalent program such that the only way to learn information about the
program is to run it. We experiment with several obfuscators built on the obfuscator described
by Barak et al. [BGK+14], including those inspired by Sahai and Zhandry [SZ14] and Ananth
et al. [AGIS14]. These improvements allow for obfuscation of a point function with increased
security at less than half the total obfuscation size reported by Apon et al. [AHKM14]. We also
implemented the Zimmerman [Zim15] obfuscator, but we ultimately found that it was too inefficient
for the settings that we consider in our experiments.

1.1 Our Contributions

Summarizing, we make the following contributions:

• An optimizing compiler from programs written in the Cryptol language to MBPs, which
are used in many mmap applications including MIFE and obfuscation. Our compiler uses
optimizations such as dimension reduction, matrix pre-multiplication, and condensing the
input representation, and solves a constraint-satisfaction problem needed to obtain the most
efficient MBP. See §4 for details.

• A library providing a clean API to various underlying mmap implementations. This allows
researchers to experiment with different mmaps, as well as to easily plug future mmaps into
our framework. See §5 for more details.

• A general MIFE construction based on the scheme of Boneh et al. [BLR+15] using real-
world security parameters. We contribute optimized implementations of two-input MIFE (in
particular, order-revealing encryption) and three-input MIFE (in particular, a functionality
needed for privacy-preserving fraud detection), as well as performance results that characterize
our constructions. See §6 for details and §8 for evaluation results.

• Obfuscation constructions [BGK+14, SZ14, AGIS14, Zim15] using real-world security param-
eters. We experiment with obfuscating point functions and evaluate their performance. See
§7 for details and §8 for evaluation results.

1.2 Related Work

Several groups have previously implemented mmaps [ACLL15, CLT13, CLT15] to experiment with
their performance. However, they did not go so far as experimenting with cryptographic applica-
tions of mmaps beyond direct applications such as multi-party non-interactive key exchange. The
goal of our work is to explore the performance of more advanced applications such as MIFE and
obfuscation. An earlier work implementing obfuscation [AHKM14] experimented with obfuscating
point functions, and was only able to successfully obfuscate a 14-bit point function.

Our work builds on the vast amount of previous work showing applications of mmaps—most
notably, MIFE [GGG+14, BLR+15] and obfuscation [BR14, BGK+14, PST13, AGIS14, Zim15,
AB15, GLSW15, BMSZ15, Lin16, LPST16, GMS16, MSZ16b, DGG+16].

2 Preliminaries

In this section, we introduce notation and also define the various cryptographic constructions that
we use in the rest of this work.
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Notation. For an integer n > 0, we use [n] to denote the set of integers {1, . . . , n}. We use λ
to represent the security parameter, where “λ-bit security” means that security should hold up
to 2λ clock cycles. We assume that all of our procedures run efficiently, or more formally, in
polynomial-time with respect to the size of the input to the procedure, and polynomial in the
security parameter λ.
Multilinear maps. Boneh and Silverberg [BS02] first proposed the concept of multilinear maps
(mmaps), but it was only in 2013 that Garg, Gentry, and Halevi [GGH13a] introduced the first
plausible construction of an mmap. Since then, mmaps have been shown to be powerful tools in
solving numerous problems in cryptography.

A multilinear map [BS02, GGH13a] (or graded encoding scheme) is a primitive for producing
randomized encodings of plaintexts that may be publicly added, multiplied, and zero-tested but
otherwise “do not reveal any information.” Encodings are associated with a “level” that restricts the
types of operations that may be performed on that encoding. More formally, a degree-κ multilinear
map is a tuple of algorithms (Setup,Encode,Add,Mult,ZeroTest) where:

• Setup takes as input the security parameter, and outputs a private parameter sp and a public
parameter pp that, in particular, specifies a ring R.

• Encode takes sp, an element x ∈ R, and a level S ⊆ [κ], and outputs a level-S encoding of x
denoted JxKS .

• Add takes pp and two encodings JxKS , JyKS at the same level S, and outputs an encod-
ing Jx+ yKS .

• Mult takes pp and two encodings JxKS1
, JyKS2

for disjoint levels S1, S2, and outputs an encoding
Jx · yKS1∪S2

.

• ZeroTest takes pp and an encoding JxKU for U = [κ]. It outputs 1 if and only if x = 0.

Informally, an mmap is secure if the only information that an attacker can figure out from the en-
codings of random elements is exactly the information that can be obtained from running Add,Mult,
and ZeroTest, and no more. (We omit any formal definitions since we do not directly rely on them
in this work but instead inherit them from prior work.)
Matrix branching programs. A matrix branching program (MBP) of length n on length-`, base-d
inputs is a collection of variable-dimension matrices Bi,j for i ∈ [n] and j ∈ {0, . . . , d− 1}, a “final
matrix” P, and an “input mapper” function inp : [`]→ [n]. We require that, for each i ∈ [2, n] and
j ∈ {0, . . . , d− 1}, the number of columns of Bi−1,j is equal to the number of rows of Bi,j , so that
the product of these matrices is well-defined. The evaluation of an MBP on input x ∈ {0, . . . , d−1}`
is defined as

MBP(x) =
{

1, if
∏n
i=1 Bi,xinp(i) = P,

0, otherwise.

We note that numerous generalizations and extra properties [BLR+15, SZ14] of MBPs have been
explored in the literature—however, we will only need to use our simplified definition of MBPs for
the remainder of this work.
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Figure 3.1: Framework architecture. We use cryfsm to compile a Cryptol program (here denoted by
prog.cry) to an MBP, which can either be used as input into our MIFE implementation or our obfuscation
implementation. Both these implementations use libmmap as a building block, which supports both the CLT
(libclt) and GGHLite (libgghlite) mmaps.

3 Framework Architecture

Our framework incorporates several software components that together enable the construction of
applications using mmaps and MBPs. In particular, we use our framework to develop implemen-
tations of MIFE and program obfuscation. See Figure 3.1 for the framework architecture.

The top layer of our framework, cryfsm, takes as input a program written in Cryptol [Cry],
a high-level language designed to express manipulations over bitstreams in a concise syntax, and
compiles the program into an MBP. This process, and the various optimizations we introduce, are
described in more detail in §4.

The bottom layer of our framework, libmmap, provides an API for using various mmaps, which
in our case includes the CLT (through the libclt library) and GGHLite (through the libgghlite
library) mmaps. The libmmap library, which we describe in §5, is also designed to allow for a
straightforward integration of future mmap implementations.

We combine the above components to realize various applications of mmaps and MBPs: in
particular, MIFE and program obfuscation. We demonstrate the applicability of our MIFE im-
plementation (cf. §6) through two examples: order-revealing encryption (ORE) and three-input
DNF (3DNF) encryption. We implement program obfuscation based on two main approaches: the
techniques described by Sahai and Zhandry [SZ14], and also the scheme by Zimmerman [Zim15],
which operates over arithmetic circuits, but only applies to the CLT mmap.

4 From Programs to MBPs

One of our key contributions in this work is a compiler, cryfsm, that takes as input a program
written in Cryptol [Cry], a domain-specific language for specifying algorithms over generic streams
of bits, and produces an MBP for the given input program. cryfsm does this by translating a
Cryptol specification into a layered state machine, which can then be transformed into an optimized
corresponding MBP.

Our toolchain proceeds as follows. The user writes a Cryptol function of type [n] -> Bit
for some n (that is, the function takes n input bits and produces one output bit). This function
is interpreted as deciding membership in a language. The toolchain symbolically evaluates this
function to produce a new version of the function suitable for input to an SMT solver, as explained
in detail below. Queries to the SMT solver take the form of deciding the prefix equivalence relation
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between two initial bitstrings, which is sufficient to build the minimal layered state machine, which
we then convert to an MBP.

Our solver-based approach results in a substantial dimension reduction of the corresponding
output MBPs that we tested. In contrast, the traditional approach would be to heuristically opti-
mize the state machine design in an attempt to achieve a best-effort optimization. The dimension
reduction we achieve recovers the most efficient known MBPs for several previously studied bit-
string functions, including MBPs for point functions that are smaller than the MBPs constructed
from boolean formulas using existing techniques (e.g., [SZ14]). In the remainder of this section, we
describe the key steps in this toolchain, along with several optimizations to the MBPs that we use
throughout the remainder of this work.
Specifying functions in Cryptol. Cryptol is an existing language widely used in the intelligence
community for describing cryptographic algorithms. A well-formed Cryptol program looks like
an algorithm specification, and is executable. The Cryptol tool suite supports such execution,
along with capabilities to state, verify, and formally prove properties of Cryptol specifications, and
capabilities to both prove equivalence of implementation in other languages to Cryptol specifications
and automatically generate such implementations. In our work, a user specifies an MBP in Cryptol,
and then we use cryfsm to transform the high-level specification into a minimal layered state
machine, and further transform it into an efficient MBP.
Minimal layered state machines. There is a standard translation from traditional finite state
machines to MBPs: create a sequence of matrix pairs (or matrix triples for three-symbol alphabets,
etc.) that describe the adjacency relation between states. If state i transitions to state j on input
symbol number b, then the bth MBP matrix will have a 1 in the ith row and jth column and 0
elsewhere. For many languages of interest, this is inefficient: for an automaton with |S| states, each
matrix must be of size |S|2, even though many states may be unreachable.

In the applications of mmaps that we study in this work, we consider functions on inputs of a
fixed length. Hence, for a positive integer n, we can take advantage of this property by restricting
ourselves to layered state machines of depth n, which are simply (deterministic) finite state machines
that only accept length-n inputs. Here, the ith “layer” of transitions in the machine is only used
when reading the ith digit of the input. As a result, layered state machines are acyclic.

To generate minimal layered state machines, our compiler must introduce machinery to track
which states are reachable at each layer, which allows us to reduce the overall MBP matrix dimen-
sions. To do this, cryfsm computes the quotient automaton of the layered state machine using an
SMT solver to decide the state equivalence relation. The quotient automaton is then used as the
new minimal layered state machine for the specified function. Then, from a layered state machine
of depth n, we construct the corresponding MBP on base-d inputs of length n in a manner essen-
tially equivalent to the techniques of Ananth et al. [AGIS14] for constructing layered branching
programs. Intuitively, for each i ∈ [n] and j ∈ [d], the ith matrix associated with the jth digit
is simply the adjacency matrix corresponding to the transitions belonging to the ith layer of the
machine, associated with reading the digit j. Then, the “final matrix” (that defines the output of
the MBP being 1) is simply the adjacency matrix linking the initial state to the final state of the
layered state machine.
Optimizations for MBP creation. Boneh et al. [BLR+15] describe a simple five-state finite state
machine appropriate for ORE applications, and describe the translation to MBPs that produces
5× 5 matrices at each depth. The MBP we build and use for our ORE application differs from this
one via three transformations that can be generalized to other programs: change of base, matrix
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premultiplication, and dimension reduction. Of these, matrix premultiplication and dimension
reduction are a direct consequence of the technique used by cryfsm for constructing MBPs and
therefore automatically apply to all programs, whereas choosing an input base remains a manual
process because it must be guided by outside knowledge about the performance characteristics
of the mmap used to encode the MBPs. While the change of base and matrix pre-multiplication
optimizations are described by Boneh et al., we introduce dimension reduction as a new optimization
that is useful for ORE yet generalizable to other applications.

For each optimization, we use the integer d to represent the “input base”, the integer n to
represent the length (number of digits) of each input, the integer N to represent the input domain
size (so, we have that dn ≥ N), the integer m to represent the length of the MBP, and the integer
M to represent the total number of elements across all the matrices of the MBP.

At a high level, the optimizations are as follows.

• Condensing the input representation corresponds to processing multiple bits of the
input, by increasing d, to reduce the length of the MBP, at the expense of increasing the
number M of total elements.

• Matrix premultiplication also aims to reduce the parameter m, but without increasing
the parameter M .

• Dimension reduction aims to directly reduce the number M of total elements, but may
not be fully compatible with matrix premultiplication, depending on the function.

To help with the understanding of the intuition behind these optimizations, we use the simple
comparison state machine as a running example—however, we stress that these optimizations are
in no way specific to the comparison function, and can be applied more generally to any function
expressed as a layered state machine.
Condensing the input representation. The most immediate optimization that we apply is to
condense the representation of inputs fed to our state machines. MBPs are traditionally defined as
operating on bitstrings, so it is natural to begin with state machines that use bits as their alphabet,
but using larger alphabets can cut down on the number of state transitions needed (at the potential
cost of increasing the state space).

As an example, for evaluating the comparison state machine, this optimization translates to
representing the input strings in a larger base d > 2, and to adjust the comparison state machine
to evaluate using base-d representations. The resulting state machine consists of d+ 3 total states.

A naive representation of an input domain of size N with a state machine that processes the
inputs bit-by-bit (in other words, d = 2) would induce an MBP length of m = 2 · dlog2(N)e
and M = 50 · m total elements (in two 5 × 5 matrices). However, by using the corresponding
comparison state machine that recognizes the language when the inputs are in base-d, we can then
set m = 2 · dlogd(N)/ log2(d)e and M = 2 · (d+ 3)2 ·m.

Concretely, setting N = 1012, without condensing the input representation, we require m = 80
and M = 2000 for the resulting MBP. However, if we represent the input in base-4, we can then
obtain m = 20 and M = 1960, a strict improvement in parameters.
Matrix premultiplication. Boneh et al. [BLR+15] informally describe a simple optimization to
the comparison state machine, which we explain in more detail here. The natural state machine
for evaluating the comparison function on two n-bit inputs x and y reads the bits of x and y in the
order x1y1x2y2 · · ·xnyn.
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However, Boneh et al. show that a slight reordering of the processing of these input bits can
result in reduced MBP length without compromising in correctness. When the inputs are instead
read in the following order:

x1y1y2x2x3y3 · · · ynxn, (1)

then, rather than producing one matrix for each input bit position during encryption, the two
matrices corresponding to y1 and y2 can be pre-multiplied, and the result is a single matrix rep-
resenting two digit positions. Naturally, this premultiplication can be performed for each pair of
adjacent bit positions belonging to the same input string (such as for x2x3, y3y4, and so on), and
hence the number of matrices produced is slightly over half of the number of matrices in the naive
ordering of input bits.

As a result, for evaluating the comparison state machine, where n is the length of the base-d
representation of an input, applying this optimization implies m = n + 1, a reduction from the
naive input ordering, which would result in m = 2n, and a reduction from M = 2 · (d+ 3)2 ·m to
M = (d+ 3)2 ·m. When applying this optimization in conjunction with representing the input in
base d = 4, for example, setting N = 1012 only requires m = 21 and M = 1029, a huge reduction
in cost that was emphasized by Boneh et al., and another strict improvement in parameters.
A new optimization: dimension reduction. We now describe a more sophisticated optimiza-
tion that can be applied to general MBPs which also results in a reduced ciphertext size. As an
example, we describe this optimization, called dimension reduction, as it applies to the comparison
function state machine (without applying the reordering of input bits from matrix premultipli-
cation), but we emphasize that the technique does not inherently use the structure of this state
machine in any crucial way, and can naturally be extended to general MBPs.

Our new optimization stems from the observation that, for each bit position in the automaton
evaluation, the transitions in the automaton do not involve all of the states in the automaton. This
is the same observation that motivates the use of layered state machines over finite state machines.

In particular, for the even-numbered bit positions, the transitions map from a set of d states
to a set of only 3 states. Similarly, for the odd-numbered bit positions, the transitions map from a
set of (at most) 3 states to a set of d states. As a result, the corresponding matrices for each bit
position need only be of dimension d×3 or 3×d (depending on the parity), as opposed to the naive
interpretation of the Boneh et al. construction which requires matrices of dimension (d+3)×(d+3).

Note, however, that the dimension reduction optimization is not fully compatible with matrix
premultiplication, since the effectiveness of dimension reduction can degrade if matrix premulti-
plication is also applied. In particular, when applying matrix premultiplication to the comparison
state machine, we notice that there is less room for improvements with dimension reduction, as the
transitions for the position y1y2 correlate from a domain of d states to a range of also d states.

In §6.1, we concretely show how to apply a mixture of these optimizations to the comparison
automaton, and then use these optimizations to obtain asymptotically shorter ciphertexts for order-
revealing encryption.
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vtable function comments

mmap pp vtable
fread/fwrite read/write public parameters

clear clear public params

mmap sk vtable
init/clear initialize/clear secret key

fread/fwrite read/write secret key

mmap enc vtable

init/clear initialize/clear encoding
fread/fwrite read/write encoding

set copy encoding
add implements Add
mul implements Mult

is zero implements ZeroTest
encode implements Encode

Table 5.1: Interfaces exported by the libmmap library.

5 A Library for Multilinear Maps

In this section we describe our library, libmmap, which provides an API for interacting with different
mmap backends. In this work we implement GGHLite (libgghlite) and CLT (libclt) backends2,
although we believe that it should be relatively straightforward to support future mmap implemen-
tations.

The libmmap library exports as its main interface a virtual method table mmap vtable, which
in turn contains virtual method tables for the public parameters (mmap pp vtable), the secret
key (mmap sk vtable), and the encoded values (mmap enc vtable). Table 5.1 lists the available
functions within each table. Each underlying mmap library must export functions matching these
function interfaces and write a wrapper within libmmap to match the virtual method table inter-
face. A user of libmmap then defines a pointer const mmap vtable * which points to the virtual
method table corresponding to the mmap of the user’s choice (in our case, either clt vtable or
gghlite vtable). In the following, we describe the two mmap schemes we support within libmmap:
libgghlite (§5.1) and libclt (§5.2).

Figure 5.1 presents estimates for the size of an encoding using GGHLite and CLT for security
parameters λ = 80 and λ = 40. We describe our parameter choices for arriving at these estimates
in Appendix A. As we can see, the CLT mmap produces smaller encodings than GGHLite as we
vary both λ and κ. This appears to be due to the growth of the lattice dimension in GGHLite
compared to the number of secret primes required by the CLT scheme, among other factors.

5.1 The GGHLite Multilinear Map

Building off of the original mmap candidate construction of Garg et al. (GGH) [GGH13a], Lan-
glois et al. [LSS14] proposed a modification called GGHLite, along with parameter and performance
estimates for the resulting encodings of the scheme. More recently, Albrecht et al. [ACLL15] pro-
posed further modifications and optimizations on top of GGHLite, along with an implementation

2We also have a “dummy” mmap implementation for testing purposes.
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Figure 5.1: Estimates for the size of a single encoding in megabytes (MB) produced for security parameters
λ = 80 and λ = 40 and varying the multilinearity degree κ ∈ [2, 30] for the GGHLite and CLT mmaps.

of their scheme under an open-source license. In this work, we refer to GGHLite as the construction
from the work of Albrecht et al., as opposed to the original work of Langlois et al.
Our GGHLite implementation. We use as our starting point the implementation of GGHLite3

released by Albrecht et al. [ACLL15]. We modified this implementation to add functionality for
handling the reading and writing of encodings, secret parameters, and public parameters to disk.
We also extended the implementation to handle more expressive index sets, which are used in MIFE
and obfuscation, as follows.

Typically, multilinear maps only support “levels”, where each encoding is created with respect
to an integer i ∈ [κ] (for an mmap of degree κ). The GGHLite implementation supports more
advanced labelings of encodings, by allowing for a universe U of κ indices to be defined, and each
encoding can be created with respect to a singleton subset (containing only one element) of this
universe U . Multiplication of two encodings with respect to sets of indices S1 and S2 produces
an encoding with respect to the multiset union of S1 and S2. The zero-testing parameter is then
created to test for encodings which are labeled with respect to U . However, this functionality is still
not sufficiently expressive to match the needs of our implementation and our definition of mmaps.

Consequently, we upgraded the handling of these encodings to support labelings of an encoding
with respect to any subset S of indices of the universe U . Then, when two encodings labeled with
two different subsets are multiplied, the resulting encoding is labeled with respect to their multi-set
union. Finally, as before, the zero-testing parameter allows to check for encodings of 0 labeled at U ,
only.

Finally, we isolated and rewrote the randomness generation procedures used by GGHLite, since
the original implementation relied on the randomness obtained from the GMP library, which is
not generated securely. We split this into a separate library, libaesrand, which uses AES-NI for
efficient randomness generation, and which may be useful in other contexts.
Attacks on GGHLite. Recently, Hu and Jia [HJ16] showed how to perform “zeroizing” attacks
on GGHLite, to recover the secret parameters given certain public encodings of 0. However, since
neither MIFE nor obfuscation publish any encodings of 0, these applications seem to be unaffected
by the zeroizing attacks. More recently, Albrecht, Bai, and Ducas [ABD16] gave a quantum break

3https://bitbucket.com/malb/gghlite-flint
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for GGHLite without using any encodings of 0 or the public zero-testing parameter. Subsequently,
Cheon, Jeong, and Lee [CJL16] showed how to give a (classical) polynomial-time attack on GGH-
Lite, again without using any encodings of 0. However, their attack requires exponential time if
the parameters of GGHLite are sufficiently increased (by a polynomial amount).

In concurrent work, Miles, Sahai, and Zhandry [MSZ16a] gave a completely different form
of attack, known as an “annihilation” attack, on applications of GGHLite, specifically, MIFE and
program obfuscation. They show that provably secure instantiations of these primitives from mmaps
are in fact insecure when the mmap is instantiated with GGHLite. Despite the annihilation attacks,
our implementations of these primitives from GGHLite still serve as a useful benchmark for the
efficiency of GGHLite and for the efficiency of future GGH-like schemes resistant to annihilation
attacks, which will inevitably arise from improvements to the GGH framework.

5.2 The CLT Multilinear Map

Coron, Lepoint, and Tibouchi [CLT13] proposed a candidate multilinear map over the integers,
which works over a composite modulus that is assumed to be hard to factor.
Our CLT implementation. Our implementation started with the implementation4 of CLT in
C++ by Coron et al. [CLT13]. We rewrote it in C and added functionality to save and restore en-
codings and the public parameters. As in the GGHLite case, we also modified its basic functionality
to support indices instead of levels.

Furthermore, in our extension of CLT, we improve the efficiency of the encoding process which
allows for us to apply the CLT multilinear map to the large parameter settings that we consider
in the remainder of this work. The original CLT implementation applies the Chinese Remainder
Theorem in the procedure that produces encodings of plaintext elements. Our implementation
employs a certain trade-off that allows for the application of the Chinese Remainder Theorem
in a recursive manner, resulting in more multiplications to compute the encoding, but with the
efficiency gain that the elements being multiplied are much smaller. Experimentally, this yields
a large speedup in the encoding time, more noticeably with larger parameters. In particular, for
λ = 80 and κ = 19, without this optimization, it takes 134 seconds to produce a CLT encoding,
whereas with our optimization, this time drops to 33 seconds.
Attacks on CLT. Similarly to other candidate constructions for multilinear maps, the CLT con-
struction was not based on an existing hardness assumption but rather introduced a new assump-
tion. Subsequently Cheon et al. [CHL+15] demonstrated a zeroizing attack against the construction
of CLT, which succeeds in recovering the secret parameters of the scheme. This attack was further
extended in the work of Coron et al. [CGH+15], which demonstrated how it can be generalized
and applied against some proposed countermeasures [BWZ14b, GGHZ14] to the attack by Cheon
et al. [CHL+15]. But again, as with the zeroizing attacks on GGHLite, these results do not apply
directly to the constructions we consider in this work.

6 Multi-Input Functional Encryption

The notion of multi-input functional encryption (MIFE), introduced by Goldwasser et al. [GGG+14],
extends the concept of functional encryption [BSW11] so that a decryption key is associated with
a multi-input function which is evaluated over multiple ciphertexts. More formally, a secret-key,

4https://github.com/tlepoint/multimap
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fixed-key MIFE scheme for a function f , on m inputs and with output in a range R, is a tuple of
algorithms (keygen, encrypt, eval) such that:

• keygen(1λ) → (pp, sk). The algorithm takes as input the security parameter and generates
the public parameters pp and a secret key sk.

• encrypt(sk, i, x)→ ct. The algorithm takes as input the secret key sk, an input position index
i, and an input x, and outputs a ciphertext ct.

• eval(pp, ct1, . . . , ctm) → z. The algorithm takes as input a secret key sk and m ciphertexts
ct1, . . . , ctm, and produces an output z ∈ R.

Correctness requires that for any inputs x1, . . . , xm, for (pp, sk) ← keygen(1λ), letting cti =
encrypt(sk, i, xi) for each i ∈ [m], we have that

eval(pp, ct1, . . . , ctm) = f(x1, . . . , xm).

Informally, an MIFE scheme is secure if the information revealed by a collection of ciphertexts
is exactly the information that can be obtained by running eval, and no more. We omit formal
security definitions since we do not directly rely on them in this work.

Goldwasser et al. [GGG+14] gave a general MIFE construction that uses indistinguishability
obfuscation in a black-box manner. Boneh et al. [BLR+15] proposed a secret-key MIFE construction
that is based directly on mmaps (instead of obfuscation) in order to obtain better efficiency. A
particular instantiation of this MIFE construction, where the function used in the decryption
key is the comparison function, results in a construction for order revealing encryption (ORE),
which allows comparisons over ciphertexts while hiding all other information about the encrypted
messages. More specifically, an ORE scheme is a MIFE scheme with the function f(x, y) that
outputs the ordering between x and y. This ORE scheme achieves the optimal security definition
for a scheme that allows the comparison functionality over encrypted data, improving over the
security level provided by order-preserving encryption schemes.
MIFE implementation. We implemented the Boneh et al. [BLR+15] MIFE construction on
top of the libmmap library, and provide interfaces for keygen, encrypt, and eval, which perform the
respective operations supported by MIFE. We parallelize the computation performed during keygen,
but for encrypt, we choose to sequentially construct the encodings belonging to the ciphertext, and
instead defer the parallelism to the underlying mmap implementation for producing encodings, in
the interest of reducing memory usage at the cost of potentially increased running times. We note
that, since CLT enjoys much more parallelism than GGHLite when constructing encodings, this
optimization causes the encrypt time for GGHLite to be less efficient. Finally, for eval, we multiply
encodings in parallel for CLT, since the multiplication of CLT encodings natively does not support
parallelism. However, for GGHLite, we choose to multiply encodings sequentially, and instead rely
on the parallelism afforded by GGHLite encoding multiplication.

The ciphertexts produced by a call to encrypt on an `-length input are split into ` components
(one for each input slot), which can be easily separated and combined with different components
from other ciphertexts in a later call to eval. Hence, with a collection of full ciphertexts, an evaluator
can specify which components from each ciphertext should be passed as input to eval, in order to
evaluate the function on components originating from different sources.
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6.1 Optimizing Comparisons

In this section, we describe a case study of applying the optimizations detailed in §4 to the com-
parison function. We establish two distinct “variants” of the comparison function which result
in shorter ciphertext sizes. Both variants are built from a combination of condensing the input
representation into a larger base d > 2, followed by dimension reduction, and optionally applying
matrix pre-multiplication.

• DC-variant. The degree-compressed optimization is to first apply matrix pre-multiplication
to re-order the reading of the input bits as in Equation (1). Then, the dimensions of the
resulting matrices from the layered state machine are slightly reduced.

• MC-variant. The matrix-compressed optimization is to directly apply dimension reduction in
the normal interleaved ordering of the bits (as x1y1x2y2 · · ·xnyn). Here, the dimensions of
the matrices can be reduced to depend only linearly in the base representation d, as opposed
to quadratically.

We now discuss each optimization in more detail.
The degree-compressed variant (DC-variant). By optimizing the (layered) comparison state
machine, we obtain that not all matrices need to be of dimension (d + 3) × (d + 3). For example,
the first matrix need only be of dimension 1× d, and the second matrix need only be of dimension
d× (d+2). Also, the last matrix can be of dimension (d+2)×3. And finally, each of the remaining
intermediate matrices need only be of dimension (d + 2) × (d + 2). Putting these observations
together, the total number of encodings in the ciphertext is

M = d+ d(d+ 2) + 3(d+ 2) + (κ− 3)(d+ 2)2

= d2(κ− 2) + (d+ 1)(4κ− 6). (2)

The matrix-compressed variant (MC-variant). Note, however, that if we do not apply the
matrix pre-multiplication optimization, but instead apply dimension reduction directly to the com-
parison state machine associated with the normal (not interleaved) ordering of the input digits,
then the first matrix is of dimension 1× d, the second matrix is of dimension d× 3, and all other
κ − 2 matrices are of dimension either 3 × (d + 2) or (d + 2) × 3. Putting this together, we have
κ = 2n and

M = d+ 3d+ 3(κ− 2)(d+ 2)
= 3(κ− 2)(d+ 2) + 4d. (3)

Concretely, for a domain of size N = 1012, if we choose to represent the inputs in base d = 5,
then this implies n = 18 (since 12 ≤ log10(518) < 13), and hence with the matrix pre-multiplication
optimization along with the Cryptol optimization for dimension reduction, we have κ = 19 and
M = 845. Without applying matrix pre-multiplication and only using dimension reduction with
base d = 10, we have n = 12, κ = 24, and M = 832.

Experimentally for the mmaps we tested, we found that the matrix pre-multiplication op-
timization produces shorter ciphertexts than applying dimension reduction without matrix pre-
multiplication. However, we only tested this for an input domain of N = 1012 and security pa-
rameter λ = 80. As N grows larger, depending on the asymptotic behavior of encoding sizes
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as κ increases and λ varies, future implementations of the comparison state machine may find
that one can produce shorter ciphertexts when applying dimension reduction without matrix pre-
multiplication.

6.2 Order-Revealing Encryption

To implement order-revealing encryption, we set our plaintext domain to the numbers in the
range [N ]. By taking N = 1012, we found that selecting the base representation d = 5 and
applying the matrix pre-multiplication optimization resulted in using only κ = 19 levels of the un-
derlying mmap, which achieved the shortest ciphertexts for this domain. In fact, this construction
yields the shortest known ciphertexts for ORE on a domain of size 1012, as explained below.
An alternative (basic) construction. The closest competitor to our ORE construction in terms
of ciphertext size and overall efficiency is a construction due to Lewi and Wu [LW16], which we
refer to as the “basic” ORE scheme, described below.

Let [N ] be the message space. Let F : {0, 1}λ × {0, 1}λ → {0, 1}λ be a secure pseudorandom
function (PRF) and H : {0, 1}λ×{0, 1}λ → {0, 1} be a hash function (modeled as a random oracle).
Let cmp be the comparison function, defined as cmp(x, y) = 1 if x < y and cmp(x, y) = 0 if x > y.
The basic ORE scheme Πore is defined as follows.

• keygen(1λ) → (pp, sk). The algorithm samples a PRF key k
r←− {0, 1}λ for F , and a random

permutation π : [N ] → [N ]. The secret key sk is the pair (k, π), and there are no public
parameters.

• encrypt(sk, i, x) → ct. Write sk as (k, π). If i = 1, the ciphertext output is simply ct =
(F (k, π(x)), π(x)). If i = 2, then the encryption algorithm samples a nonce r r←− {0, 1}λ,
and for j ∈ [N ], it computes vj = cmp(π−1(j), y) ⊕ H(F (k, j), r). Finally, it outputs ct =
(r, v1, v2 . . . , vN ).

• eval(pp, ct1, ct2) → {0, 1}. The compare algorithm first parses ct1 = (k′, h) and ct2 =
(r, v1, v2, . . . , vn), then outputs vh ⊕H(k′, r).

Note that a single ciphertext from this scheme is precisely N + 2λ + dlog2(N)e bits long. For
N = 1012 and λ = 80, this amounts to ciphertexts of length 116.42 GB.5

Choosing the best optimizations. Our goal is to construct an ORE scheme which achieves
shorter ciphertexts than the above construction, without compromising security. To do this, we use
our MIFE implementation for the comparison function, and we apply our optimizations to make
the ciphertext as short as possible.

We compare the ciphertext sizes for four different ORE constructions, obtained from either using
the GGHLite or CLT mmap, and by applying either the DC-variant or MC-variant optimizations. For
each of these options, we fix the input domain size N = 1012 and vary the input base representation
d ∈ [2, 25]. Using Equations (2) and (3), we can compute the estimated ciphertext size as a function
of d (since κ is determined by the choice of d and N). See Figure 6.1 for the results. We find that,
for N = 1012, the shortest ciphertexts for ORE from GGHLite are obtained when d = 5 using the
DC-variant optimization, and the shortest ciphertexts for ORE from CLT are obtained when d = 4
using the DC-variant optimization as well.

5Clearly, increasing λ has a relatively unnoticeable effect on the overall ciphertext size for the settings of N we
consider.
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Figure 6.1: Estimates of the ciphertext size (in GB) for ORE with best-possible semantic security at
λ = 80, for domain size N = 1012 and for bases d ∈ [2, 25]. We compare GGHLite and CLT, with the
DC-variant and MC-variant optimizations.
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Figure 6.2: Estimates of the ciphertext size (in GB) for ORE with best-possible semantic security at
λ = 80, for varying domain sizes. The exponent e on the x-axis denotes support for plaintexts in the range
from 1 to N = 10e. We compare GGHLite map (DC-variant), the CLT map, and the basic construction Πore
(described in §6.2).

Under these settings, the DC-variant optimization for GGHLite reads the inputs in base 5,
requiring κ = 19, to produce a total of 845 encodings per ciphertext, for a total size of 91.4 GB.
For CLT, the DC-variant optimization reads in the inputs in base 4, requiring κ = 21, to produce
a total of 694 encodings, for a total size of 5.68 GB.

We also measure the ciphertext size as we vary the domain size; see Figure 6.2. We measure
the estimated ciphertext size for various domain sizes when using GGHLite, CLT, and the Πore
construction described above. The results for GGHLite and CLT are using the optimal bases as
detailed in Figure 6.1. We find that for N = 1011 and N = 1012, ORE using the CLT mmap and
GGHLite mmap, respectively, produces a smaller ciphertext than Πore. This demonstrates that for
certain domain sizes, our ORE construction produces the smallest known ciphertexts (versus ORE
schemes that do not require mmaps).
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6.3 Three-Input DNF Encryption

We now explore the applications of MIFE to a function on three inputs, which we call the 3DNF
function. For n-bit inputs x = x1 · · ·xn, y = y1 · · · yn, and z = z1 · · · zn, the 3DNF function is
defined as

3DNF(x, y, z) = (x1 ∧ y1 ∧ z1) ∨ · · · ∨ (xn ∧ yn ∧ zn) ∈ {0, 1}.

This function bears resemblance to the “tribes” function studied by Gentry et al. [GLW14], who
also use mmaps to construct tribe instances. We refer to a MIFE scheme for the 3DNF function as
a 3DNF encryption scheme, and we refer to each ciphertext as consisting of three components, one
for each input slot: the left encryption, middle encryption, and right encryption. To the best of our
knowledge, 3DNF encryption schemes do not appear to follow directly from simpler cryptographic
assumptions.
Application to fraud detection. An immediate application of 3DNF encryption is in the fraud
detection of encrypted transactions. Consider the scenario where a (stateless) user makes payments
through transactions that are audited by a payment authority. In this setting, each transaction is
associated with a string of n flags, represented as bits pertaining to a set of n properties of the
transaction. A payment authority, in the interest of detecting fraud, restricts the user to make at
most (say) ` = 3 transactions per hour, and wants to raise an alarm if a common flag is set in all `
of the transactions made in the past hour (if less than ` transactions were made in the past hour,
then the authority does not need to perform a check).

To protect the privacy of the user, the length-n flag string associated with each transaction
can be sent to the payment authority as encrypted under a 3DNF encryption scheme, where the
stateless user holds the decryption key. Here, the user would send a left encryption for the first
transaction, a middle encryption for the second, and a right encryption for the third. Then, since
the payment authority cannot decrypt any of the flag strings for the transactions, the privacy of
the user’s transactions is protected. However, the payment authority can still perform the fraud
detection check by evaluating a set of ` transactions to determine if they satisfy the 3DNF function.
Since we require that the user is stateless between transactions, this application fits the model for
a 3DNF encryption scheme, and does not seem to directly follow from simpler primitives.
Optimizing 3DNF encryption. Similar to the case of the comparison function, we can apply
the branching program optimizations to the 3DNF function as well, in order to reduce the overall
efficiency of the resulting 3DNF encryption scheme. We constructed a 3DNF encryption scheme
using our MIFE implementation, for n = 16 bit inputs at security parameter λ = 80. We optimized
the 3DNF encryption scheme by condensing the input representation into base d = 4. Additionally,
we applied the matrix pre-multiplication optimization, which meant that our input bits were read
in the order x1y1z1z2y2x2x3y3 · · · (the natural generalization of the interleaving of Equation (1)
to three inputs). This resulted in a setting of degree κ = 17 for the underlying mmap. Finally,
we used cryfsm to generate the corresponding MBP, which automatically applied the appropriate
dimension reduction optimizations. Under the CLT mmap, a left encryption is 637 MB, a middle
encryption is 1.4 GB, and a right encryption is 680 MB.

7 Program Obfuscation

A program obfuscator [BGI+01, GGH+13b] is a compiler that aims to make a program “unintelligi-
ble” while preserving its functionality. Formally, an obfuscator O is a tuple of algorithms written as
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O = (obf, eval), where the obfuscation algorithm obf takes as input a program P (e.g., expressed as
a Boolean circuit), and outputs an obfuscated program obf(P), and the evaluation algorithm takes
an obfuscated program obf(P) and produces an output. An obfuscator is correct for a program P
if, for all valid inputs x accepted by P, we have that eval(obf(P))(x) = P(x).
VBB and pseudo-VBB security. An obfuscator O is virtual black-box (VBB) secure6 for a
program P if for any efficient adversary A, there exists an efficient simulator S, given only oracle
access to P(·), for which the quantity∣∣∣Pr

[
A(1λ, obf(P)) = 1

]
− Pr

[
SP(·)(1λ) = 1

]∣∣∣
is negligible. We say that an obfuscator O is pseudo-VBB secure (pVBB) for program P and
obfuscator O′ = (obf ′, eval′) if O′ is both VBB secure and for every efficient adversary A, there
exists an efficient adversary B for which the quantity∣∣∣Pr

[
A(1λ, obf(P)) = 1

]
− Pr

[
B(1λ, obf ′(P)) = 1

]∣∣∣
is negligible. In other words, if an obfuscator O is pVBB secure for a program P and obfuscator
O′, then any efficient attack on the security of O translates directly to an efficient attack on the
VBB security of O′ for the program P.

In our work, we construct a point function obfuscator that is pVBB secure for the Sahai-Zhandry
obfuscator [SZ14]. Our obfuscator operates identically to the Sahai-Zhandry obfuscator, which is
VBB secure, except that we discard half of the ciphertext that corresponds to the second input
in the “dual-input” branching programs that obfuscator uses. Effectively, our obfuscator can be
seen as operating on “single-input” branching programs, which do not obtain VBB security, but do
obtain pseudo-VBB security. We emphasize that this distinction in security is purely definitional
from an attacker’s point of view, as any attack on our obfuscator immediately results in an attack
on the Sahai-Zhandry obfuscator.

In this section we show how we use cryfsm and libmmap to build such a program obfusca-
tor. Apon et al. [AHKM14] gave the first implementation of program obfuscation, using the CLT
mmap [CLT13] and a program compiler based on the approaches of Barak et al. [BGK+14] and
Ananth et al. [AGIS14]. We extend this codebase in the following ways:

• Multilinear maps. We integrate in libmmap to support both the CLT and GGHLite mmaps.

• Program compilers. We support MBPs output by cryfsm, using the Sahai-Zhandry ob-
fuscator [SZ14].

Point function obfuscation. We evaluated our implementation by obfuscating point func-
tions, namely, functions that output 0 on a single (secret) input, and 1 otherwise. Previous
work [AHKM14] also evaluated obfuscation for point functions, but was only able to success-
fully obfuscate 14-bit point functions with an mmap security parameter of λ = 60. As noted by
Bernstein et al. [BHLN15], the secret input of an n-bit point function can be recovered by simply
enumerating over all 2n possible inputs. In our experiments, we set n = λ, and consider point
function obfuscation for 40-bit and 80-bit inputs.

6The reason we consider VBB versus indistinguishability obfuscation is that we consider point functions, for which
VBB obfuscators are believed to exist.
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Figure 7.1: Estimates for the ciphertext size (in GB) for point function obfuscation, for domain sizes
N = 280 = 2λ and N = 240 = 2λ. In the case of λ = 80, the minimums are achieved at d = 19 for GGHLite
and d = 8 for CLT. In the case of λ = 40, the minimums are achieved at d = 9 for GGHLite and d = 6 for
CLT.

The MBP for a λ-bit point function is of length λ and consists of a total of 2λ matrices, each of
dimension 2× 2. As a small optimization, we can apply dimension reduction to obtain a branching
program where the first pair of matrices need only be of dimension 1 × 2. The more significant
optimization comes by condensing the input representation through increasing the input base d.

The total number of encodings that we must publish in the obfuscation of a λ-bit point function
can be computed as M = 2 + 4 ·d · `, where ` is the length of the MBP. We estimate the ciphertext
size for various choices of bases in Figure 7.1, which incorporates our estimations for the size of a
single encoding in GGHLite and CLT for λ = 40 and λ = 80.

• For λ = 40, we find that the minimal ciphertext size for domain size N = 240 is produced
using MBPs under base 9 and length 13 for GGHLite, and base 6 and length 16 for CLT.

• For λ = 80, we find that the minimal ciphertext size for domain size N = 280 is produced
using MBPs under base 19 and length 19 for GGHLite, and base 8 and length 27 for CLT.

Obfuscator implementation. Our implementation is in a mix of Python and C, with Python
handling the frontend and with C handling all the computationally expensive portions, and provides
interfaces to both obfuscate (obf) and evaluate (eval) an MBP. We parallelize the encoding of
the elements in the MBP by using a threadpool and delegating each encoding operation to a
separate thread. Once all the threads for a given matrix in the MBP complete, we then write the
(encoded) matrix to disk. Thus, the threadpool approach has a higher RAM usage (due to keeping
multiple encodings in memory as we parallelize) than encoding one element at a time and letting
the underlying mmap library handle the parallelization, but is more efficient.
Other obfuscators. Our obfuscator is built upon improvements inspired by the Sahai-Zhandry
obfuscator, which is built on the general obfuscator described by Barak et al. [BGK+14] and Ananth
et al. [AGIS14]. In addition to these obfuscators, we also implemented the Zimmerman [Zim15]
obfuscator. However, because the Zimmerman obfuscator induces a seemingly unavoidable lower
bound on the degree of multilinearity for the inputs we consider, we found that the Zimmerman
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obfuscator was not competitive with the obfuscator we implemented. More specifically, the Zim-
merman obfuscator requires that the degree of multilinearity for the obfuscation of any program be
at least twice the number of inputs that the circuit accepts—a cost that may be insignificant when
obfuscating other programs, but was too high for point functions (even when we tried to increase
the input base representation to minimize this cost), and hence unsuitable for our purposes.

8 Experimental Analysis

All of our experiments were performed using the Google Compute Engine servers with a 32-core
Intel Haswell CPU at 2.5 GHz, 208 GB RAM, and 100 GB disk storage.

8.1 MIFE Experiments

We evaluated our multi-input functional encryption constructions with two applications: order-
revealing encryption (ORE) (cf. §6.2) and three-input DNF (3DNF) encryption (cf. §6.3). In §6,
we showed how we can accurately estimate the ciphertext size from parameters derived from the
input size and the security parameter λ, and our experiments confirmed that these parameter
estimates are reasonably accurate (all within 1–2% of our reported values).

Additionally, we assessed the performance of the MIFE interface algorithms keygen, encrypt, and
eval, along with memory utilization during the encrypt computation, which was by far the most
costly step. We note that, since the files that we are working with are so large, a non-trivial amount
of time was spent in the reading and writing of these files to disk, and so an exact reproduction of
our numbers may also need to mimic the disk storage specification we use.

As another sidenote, we reiterate that our primary interest in selecting the parameters for
our applications is to create the most compact ciphertexts possible. As a result, some of our
optimizations come with a cost of increased evaluation time, and hence, we believe that it is
possible to reduce our evaluation time (potentially at the expense of having larger ciphertexts).
Experimental results. We summarize our MIFE experiments in Tables 8.1 and 8.2. We evalu-
ated the MIFE constructions for ORE with input domain sizes N = 1010 and N = 1012, and for
3DNF encryption on 8-bit inputs, testing both GGHLite and CLT as the underlying mmap. For
each experiment, we report the computation wall time for encrypt and eval, the overall ciphertext
size |ct|, along with the memory usage during the encrypt computation. The keygenoperation varied
from several seconds (for CLT with λ = 40) to 145 minutes (for GGHLite with λ = 80). The en-
cryption statistics measured were for generating a complete ciphertext, containing all components,
as opposed to containing only the left or right (or middle) components.

Since the CLT mmap produces shorter encodings, the encryption and evaluation time for the
experiments using CLT were much faster than the corresponding experiments for GGHLite. This
is also partly due to the fact that CLT enjoys much more parallelism than GGHLite. We also only
present timings for CLT with λ = 80 because we ran out of RAM during the encryption procedure
when using GGHLite.

8.2 Program Obfuscation Experiments

To evaluate our program obfuscation implementation, we chose a random secret 40-bit and a random
secret 80-bit point, and used cryfsm to create the corresponding MBPs for the point functions
associated with these points. We selected the input base representation for these programs with

19



λ mmap N d ` encrypt eval |ct| RAM

40
CLT 1010 4 19 1 s 0.3 s 13 MB 17 MB

1012 4 22 3 s 1.6 s 18 MB 18 MB

GGH 1010 4 19 38 m 47 s 7.1 GB 23 GB
1012 4 22 52 m 68 s 9.6 GB 25 GB

80 CLT 1010 4 19 28 m 4 m 4.7 GB 5 GB
1012 4 22 37 m 6 m 6.0 GB 6 GB

Table 8.1: ORE experiments. “λ” denotes the security parameter of the underlying multilinear map;
“mmap” denotes the multilinear map; “N” denotes the domain size; “d” denotes the MBP base; “`” denotes
the MBP length; “encrypt” denotes the running time of encryption; “eval” denotes the running time of
evaluation, “|ct|” denotes the size of the ciphertext; and “RAM” denotes the RAM required to encrypt. We
use “h” for hours, “m” for minutes, and “s” for seconds.

λ mmap N d ` encrypt eval |ct| RAM

40 CLT 16-bit 4 17 0.6 s 0.2 s 7.4 MB 18 MB
GGH 16-bit 4 17 20 m 28 s 3.9 GB 22 GB

80 CLT 16-bit 4 17 12 m 3 m 2.5 GB 4 GB

Table 8.2: 3DNF experiments. See Table 8.1 for the column details.

the goal of minimizing the total obfuscation size for each obfuscated point function (see §7 for our
calculations). Like with MIFE, optimizing for obfuscation or evaluation time could lead to different
optimal input base representations.
Experimental results. We tested three settings for point function obfuscation: 40-bit inputs with
λ = 40, 80-bit inputs with λ = 40, and finally, 80-bit inputs with λ = 80. We also obfuscated using
both CLT and GGHLite for λ = 40, but only used CLT for λ = 80, as the GGHLite experiment
was too resource-intensive. Our results are summarized in Table 8.3. As we observed in the
MIFE experiments, we note that GGHLite performs significantly worse when used in obfuscation
compared to CLT. We also note that while obfuscation takes a huge amount of time and resources,
evaluation is much less resource-intensive, for both GGHLite and CLT—a consequence of the fact
that eval only requires multiplying (encoded) matrices, which is highly parallelizable and also much
less costly than the encoding operation itself.

These results, while evidently impractical, are a huge improvement over prior work [AHKM14],
which took 7 hours to obfuscate a 14-bit point function with λ = 60, resulting in an obfuscation of
31 GB. This improvement mainly come from (1) using a much tighter matrix branching program
representation of the program, and (2) operating over different sized bases.

9 Conclusions

In this work, we presented 5Gen, a framework for the prototyping and evaluation of applications
that use multilinear maps (mmaps) and matrix branching programs. 5Gen is built as a multi-
layer software stack which offers modularity and easy integration of new constructions for each
component type. Our framework offers an optimized compiler that converts programs written
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λ mmap N d ` obf eval |obf| RAM

40
CLT 40-bit 6 16 1.7 s 0.1 s 6.3 MB 1.7 GB

80-bit 7 29 6.6 s 0.3 s 21.7 MB 1.7 GB

GGH 40-bit 9 13 28 m 5.9 s 3.5 GB 38 GB
80-bit 6 31 56 m 39 s 13.7 GB 37 GB

80 CLT 80-bit 8 27 3.3 h 180 s 8.3 GB 11 GB

Table 8.3: Program obfuscation experiments. “λ” denotes the security parameter of the underlying multi-
linear map; “mmap” denotes the multilinear map; “N” denotes the domain size; “d” denotes the MBP base;
“`” denotes the MBP length; “obf” denotes the obfuscation time; “eval” denotes the evaluation time; “|obf|”
denotes the obfuscation size; and “RAM” denotes the RAM required to obfuscate (evaluation RAM usage
never exceeded 1 GB). Due to the resource requirement for λ = 80, we ran this experiment on a machine
with 2 TB of RAM and 128 cores operating at 2.5 GHz. We use “h” for hours, “m” for minutes, and “s” for
seconds.

in the Cryptol language into matrix branching programs, a representation widely used in mmap-
based constructions. 5Gen includes a library of mmaps available through a common API; we
currently support the GGHLite and CLT mmaps, but our library can be easily extended with
new candidates. Leveraging the capabilities of our compiler and mmap libraries, we implemented
applications from two computing paradigms based on mmaps: multi-input functional encryption
(MIFE) and obfuscation.

We measured the efficiency of our MIFE and obfuscation applications with various parameter
settings using both the GGHLite and CLT mmaps. While the results show efficiency that is clearly
not usable in practice, they provide a useful benchmark for the current efficiency of these techniques.

Constructing multilinear maps is an active and rapidly-evolving area of research. Our 5Gen
framework provides an easy-to-use testbed to evaluate new mmap candidates for various applica-
tions and is open-source and freely available at https://github.com/5GenCrypto.
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A Parameter Selection

In this section, we discuss the parameter selection for both the GGHLite and CLT mmaps that we
consider in this work. Throughout, we use λ as the security parameter and κ as the multilinearity
parameter.
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A.1 GGHLite

We now discuss the parameter selection used for the GGHLite mmap discussed in §5.1. We discuss
the various parameters, and where applicable, the values we set them to and why. As we build off
of the code from Albrecht et al. [ACLL15], many of these parameter settings come directly from
that work; we simply document them explicitly here.

• n: The dimension of the lattice. We set n by iteratively producing the below parameters and
then checking whether they satisfy the security parameter according to [APS15], increasing
n by a power of two each iteration (cf. [ACLL15, §4.4]).

• σ: The Gaussian parameter. We set σ = 4πn
√
e ln(8n)/π according to [LSS14, Eq. (4)].

• `−1
g : The upper bound on the size of ‖g−1‖. We set `−1

g = 4
√
eπn/σ according to [LSS14,

Eq. (4)].

• `: The number of bits to extract from the level-κ encoding. We set ` = dlog2(8σn)e according
to the discussion in [ACLL15, §4.2].

• σ′: The Gaussian parameter for encoding values. We set σ′ = max
{

2n1.5σ
√
e log(8n)/π

7n2.5 ln1.5(n)σ

}
according to the discussion in [LSS14, §6].

• q: The modulus. Selected according to [ACLL15, §4.2, pg. 10].

A.2 CLT

We now discuss the parameter selection used for the CLT mmap discussed in §5.2. As above, we
discuss the various parameters, and where applicable, the values we set them to and why.

• ρ: The bitlength of the randomness used for encodings. We set ρ = λ to avoid the attack of
Lee and Seo [LS14].

• α: The bitlength of the message slots gi. We set α = λ as suggested by [CLT13].

• β: The bitlength of the random hi values. We set β = λ to avoid a GCD attack similar
to [CLT13, §5.2].

• ρf : The maximum bitlength of the randomness in a level-κ encoding. For the specific usecase
of obfuscation we can set ρf = κ(ρ+ α).

• n: The number of secret primes pi. In Appendix B we show how to adapt the lattice attack
on encodings by Coron et al. [CLT13, §5.1] to the “general” setting where no 0-level encodings
of zero are available, and thus we need to set n = ω(η log λ). However, rather than setting n
to match some asymptotic, such as ηλ, we consider the concrete costs of the various attacks
to give an accurate estimate of n. We use the approach detailed by Tancrède Lepoint [Lep14,
§7.2] using the more conservative estimate for the running time of the LLL algorithm [Lep14,
§7.2.5].

• η: The bitlength of the secret primes pi. We set η = ρf + α + β + log2(n) + 9 according
to [CLT13, Lemma 8].
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• ν: The bitlength of the image of the mmap. We set ν = η−β−ρf−λ−3 according to [CLT13,
Lemma 8].

Note that n, η, and ν depend on each other. Thus, to compute these values we simply loop until
we reach a fixed point, using the requirement that β + α+ ρf + log2(n) ≤ η − 9 and ν ≥ α+ 6, as
detailed in [CLT13, Lemma 8].

B Lattice Attack on Encodings

In this section we describe how to adapt the lattice attack on encodings by Coron et al. [CLT13,
§5.1] to our particular use of the CLT mmap.7 In particular, we consider the case where an attacker
has access to t > n level-1 encodings. Without loss of generality, we assume a single z.

Let x0 =
∏n
i=1 pi. For j ∈ [t] consider the level-1 encoding x′j = xj/z mod x0 of secret message

mj = (mij)i, where xj ∈ Zx0 is such that xj mod pi = rijgi + mij . Note that xj mod pi is of size
ρ+ α bits and can be considered as a level-0 encoding of mj . Let x′ = (x′j)j and let x = (xj)j .

As detailed by Coron et al., we want to use x′ to relate the lattice of vectors u orthogonal to
x′ mod x0 to the lattice of vectors orthogonal to each “plaintext” vector si = (sij)j = (rijgi+mij)j .
We do so as follows.

By construction we have that

u · x′ ≡ 0 (mod x0)
⇐⇒ z(u · x′) ≡ 0 (mod x0)
⇐⇒ u · x ≡ 0 (mod x0),

where the last equivalence comes from the fact that z and x0 are coprime with high probability.
We can thus apply the attack detailed by Coron et al. [CLT13, §5.1] on vector x′ to directly recover
the vectors si.

Now, given these vectors, we can recover pi for i ∈ [n] with high probability as follows [CHL+15].
Note that

x′1
si1
≡ x′2
si2

(mod pi)

⇐⇒ x′1si2 − x′2si1 ≡ 0 (mod pi).

Thus, we can compute gcd(x′1si2 − x′2si1, x0) to learn pi.

7We thank Tancrède Lepoint for detailing this adaptation.
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Changelog

• Version 2.0 (October 26, 2016):

– Updated tables and graphs.
– Added appendices.
– Edits throughout.

• Version 1.0 (June 14, 2016): First release.
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