
Practical Trade-Offs for Multi-Input Functional
Encryption

Marc Joye1 and Alain Passelègue2

1 Technicolor (USA)
2 ENS (France)

Abstract. Multi-input functional encryption is a paradigm that allows
an authorized user to compute a certain function —and nothing more—
over multiple plaintexts given only their encryption. The particular case
of two-input functional encryption has very exciting applications like
comparing the relative order of two plaintexts from their encrypted form,
making range queries over an encrypted database, testing if two encrypted
databases share common entries, and more.
While being extensively studied, multi-input functional encryption is
not ready for a practical deployment, mainly for two reasons. First,
known constructions rely on heavy cryptographic tools such as multilinear
maps. Second, their security is still very uncertain, as revealed by recent
devastating attacks.
This paper investigates a simpler approach. Rather than addressing
multi-input functional encryption in its full generality, we target specific
functions and relax the security notions. As a result, we obtain several
practical realizations of multi-input encryption for specialized applications,
including an efficient construction of order-revealing encryption with
limited leakage, under the standard DLin assumption.

Keywords: Multi-input functional encryption; order-revealing encryp-
tion; property-preserving encryption; encrypted databases; cloud-based
services.

1 Introduction

The growing reliance on numerous cloud-based services for storing and processing
sensitive data demonstrated limitations of traditional encryption techniques.
Specifically, traditional encryption is an all-or-nothing notion: informally, an
unauthorized user (i.e., who has not access to the decryption key) should not
learn any information whatsoever about a plaintext given its encryption. But in
many use cases, there is often a need to get a much more fine-grained control of
the decryption policy.

(Multi-Input) Functional Encryption. The paradigm of functional encryp-
tion [8,20] is an extension of traditional encryption that enables an authorized
user to compute a certain function of the plaintext. Each decryption key skf
corresponds to a specific function f . Informally, this private key skf , given the

encryption of a plaintext x, allows her holder to learn f(x), and nothing more.
An important subclass of functional encryption is predicate encryption [9,16]. A
plaintext x is viewed as pair (I, ẋ) where I is some attribute (associated to the
message) and ẋ is the message itself; functionality f is then defined as

f(I, ẋ) =

{
ẋ if P (I) = 1, and

⊥ otherwise

for a given predicate P .
The function can be defined over multiple plaintexts given their correspond-

ing ciphertexts. This gives rise to multi-input functional encryption [7,15]. Of
particular interest is the case of two-input functional encryption. Suppose that
given two encrypted plaintexts, a cloud-based service wishes to compute their
respective ordering. For a public comparison function, such a functionality is
offered by order-revealing encryption (ORE) [5,7]. We note that order-revealing
encryption necessarily requires secret-key encryption as otherwise a binary search
from the encryption of chosen plaintexts would yield bit-by-bit the decryption of
a given target ciphertext using the ORE comparison procedure. ORE can thus
be seen as a secret-key two-input functional encryption for (public) comparison.
It is a very useful primitive as it allows to answer queries over encrypted data,
including range queries, sorting queries, searching queries, and more [1,4].

From OPE to ORE. Order-revealing encryption evolved from order-preserving
encryption (OPE) [4,5], an encryption primitive that preserves the relative
ordering of the plaintexts. Clearly, an OPE scheme cannot achieve the standard
security notion of indistinguishability under chosen-plaintext attacks (IND-CPA).
The best we can hope from an OPE scheme is that the encryption of a sequence
of plaintexts reveals nothing beyond their relative ordering, the resulting security
notion is termed IND-OCPA. Unfortunately, Boldyreva et al. showed in [4] that
it is impossible to efficiently meet this natural security notion of IND-OCPA,
even when the size of the ciphertext space is exponentially larger than that of
the message space.

The situation for ORE schemes is different. In [7], Boneh et al. present an
ORE scheme actually meeting the analogue of IND-OCPA security. But their
construction is mostly of existential nature and as such should be considered
as a possibility result. The candidate ORE scheme presented in [7] is hardly
implementable since it relies on heavy cryptographic tools, namely (`/2 + 1)-way
multilinear maps for comparing `-bit values. Furthermore, and maybe more
importantly, the underlying security assumption is questionable owing to the
recent attacks mounted against multilinear maps [12,13].

ORE in Practice. A practical construction for order-revealing encryption is
proposed in [11]. It merely requires a pseudorandom function F with output space
{0, 1, 2}. The encryption under secret key K of an `-bit plaintext x = m1m2 · · ·m`

with mi ∈ {0, 1}, ct = (c1, c2, . . . , c`), is obtained iteratively as

ci = F
(
K, (i,m1m2 · · ·mi−1‖0`−i)

)
+mi (mod 3) , for 1 ≤ i ≤ ` .

The comparison of two ciphertexts ct = (c1, c2, . . . , c`) and ct′ = (c′1, c
′
2, . . . , c

′
`),

corresponding to plaintexts x and x′, is conducted by finding the first index i,
1 ≤ i ≤ `, such that c′i 6= ci. Then,{

x < x′ if there exists such an index i and if c′i = ci + 1 (mod 3)

x ≥ x′ otherwise
.

While this construction is very efficient, it has the drawback of leaking
an important amount of information, as one obtains immediately, given two
ciphertexts, the size of the largest common prefix of the two corresponding
plaintexts. In particular, this provides an upper bound on the distance separating
the two plaintexts.

Our contributions. In this paper, we investigate a new approach towards
building efficient secret-key multi-input functional encryption. We propose the
notion of dedicated multi-input functional encryption, which can be viewed both
as a generalization of the notion of property-preserving encryption [10,19] and as
a specialization of the notion of multi-input functional encryption. Basically, a
dedicated multi-input functional encryption scheme is a secret-key encryption
scheme associated to a k-ary function f . The encryption algorithm takes as input
a secret key, a message, and some index i ∈ [k] and outputs a ciphertext. Moreover,
there exists a public procedure such that, given k ciphertexts ct1, . . . , ctk, each
corresponding to an encryption of a message xi at index i, for i ∈ [k], one can
compute f(x1, . . . , xk).

We consider two (indistinguishability-based and simulation-based) security
notions that take into account a possible leakage. The leakage comprises at least
the information resulting from the evaluation function, which is unavoidable.
However, contrary to a perfect solution that would only permit this unavoidable
leakage (as the one offered in [7]), we allow for additional leakage, provided it
is very limited. Doing so, we are able to devise constructions that can be used
in practical applications. Our main construction is an efficient order-revealing
encryption scheme with limited leakage, under standard assumptions.

Of independent interest, we also provide a very simple construction achieving
the best possible security for short messages.

2 Definitions

2.1 Dedicated Multi-Input Functional Encryption

We introduce the paradigm of dedicated multi-input functional encryption
(DMIFE), as a generalization of property-preserving encryption defined by Pandey
and Rouselakis [19] as well as a weakening of the general notion of multi-input
functional encryption [7,15]. Our notion assumes the private-key setting [21] and
corresponds to specialized multi-input functional encryption schemes where the
evaluation of the function is public (i.e., no functional secret key is involved).

Definition 1 (Dedicated Multi-Input Functional Encryption). A dedi-
cated multi-input functional encryption scheme for a k-ary function f consists
of a tuple of algorithms DMIFE = (Setup,Enc,Evalf), defined below.

– Setup(1κ) is a probabilistic algorithm that takes as input the security parameter
1κ and outputs a secret key sk (and public parameters pp —including the
message space M).

– Enc(i, sk, x) takes as input an index i ∈ [k], a key sk, and a message x ∈M.
It outputs a ciphertext ct.
Index i indicates that the output ciphertext ct constitutes the i-th input to
function f .

– Evalf (ct1, . . . , ctk) takes as input k ciphertexts ct1, . . . , ctk and outputs a
value y in the range of f .

For correctness, it is required that for all sk
$← Setup(1κ) and all (x1, . . . , xk) ∈

Mk:

Evalf (ct1, . . . , ctk) = f(x1, . . . , xk) where cti = Enc(i, sk, xi) .

Remark 2. 1. Definition 1 is “asymmetric” in the sense that a given ciphertext
is bound to a specific input position in the Evalf procedure. We could define
a “symmetric” version of dedicated multi-input functional encryption where
the encryption algorithm Enc no longer takes in an index i ∈ [k] so that a
ciphertext can be used in any input position for the Evalf procedure. We do
not study this symmetric version further since, as stated in Lemma 5, it is
implied by the asymmetric version.

2. We choose not to include a decryption algorithm in our definition, since
this omission is without loss of generality. Indeed, if necessary, one could
just augment the encryption of a message x with an encryption of x with a
CPA-secure symmetric encryption scheme under a specific secret-key. Via
CPA-security, this additional information does not compromise the security
of the construction.

3. In this paper, we focus on the three following functions:

– f⊥: (a, b) 7→

{
1 if 〈a, b〉 = 0

0 otherwise
;

– f#: (S, T) 7→ #(S ∩ T) ;

– f<: (x, y) 7→

{
1 if x < y

0 otherwise
.

2.2 Two Security Flavors

We examine two different security notions and explore the relations between them.
The first notion is defined as an indistinguishability-based security game, while
the second (and stronger) one as a simulation-based security game. These are

generalizations of classical notions considered in the case of property-preserving
encryption, e.g. in [3,10,14,19].

The two notions are defined relatively to a leakage function L. As a DMIFE
scheme for a function f has to reveal, via the Evalf procedure, at least the values
of the function f according to any tuple of k messages x1, . . . , xk such that xi is
encrypted for index i ∈ [k], L will contain at least this information This leakage
is written Lf and is defined below.

Definition 3 (Leakage of a Function). The leakage Lf of a k-ary function f
with respect to k vectors x1, . . . ,xk of q1, . . . , qk messages respectively —one vec-
tor of messages per position in the input of the function, so xi = (xi,1, . . . , xi,qi)—
is defined as:

Lf (x1, . . . ,xk) = (f(x1,i1 , . . . , xk,ik))i1∈[q1],...,ik∈[qk] .

L-Indistinguishability Security. A DMIFE scheme (Setup,Enc,Evalf) for
a k-ary function f is L-indistinguishability secure if, for any two sequences of
plaintexts with the same leakage, the corresponding sequences of ciphertexts
are computationally indistinguishable. Security is defined by a variant of the
standard semantic security game and is depicted in Figure 1.

Specifically, the adversary has black-box access to a left-or-right encryption
oracle LoR. This oracle can be adaptively queried with an index i and a pair of
messages (x(0), x(1)) to get Enc(i, sk, x(b)) with b being a fixed bit and sk being
a secret key, initialized by the Initialize procedure. At the end, the adversary
outputs a bit b′ and wins if b = b′; namely, Finalize(b′) = 1. In order to prevent
trivial attacks (i.e., attacks resulting from the leakage function), the adversary is

restricted as follows. If ((x
(0)
i,1 , x

(1)
i,1), . . . , (x

(0)
i,qi
, x

(1)
i,qi

)) denotes the sequence of qi

queries made with index i to the LoR oracle then, letting x
(t)
i = (x

(t)
i,1, . . . , x

(t)
i,qi

)
for t ∈ {0, 1}, the sequence of queries made by the adversary has to satisfy:

L
(
x
(0)
1 , . . . ,x

(0)
k

)
= L

(
x
(1)
1 , . . . ,x

(1)
k

)
.

proc Initialize

b← {0, 1}
sk

$← Setup(1κ)
For i ∈ [k]:

`
(0)
i , `

(1)
i ← ()

proc Finalize(b′)

Return b′ = b

proc LoR(i, x(0), x(1))

`
(0)
i ← `

(0)
i .append(x(0))

`
(1)
i ← `

(1)
i .append(x(1))

If L(`
(0)
1 , . . . , `

(0)
k) 6= L(`

(1)
1 , . . . , `

(1)
k):

Return ⊥
Else:

ct
$← Enc(i, sk, x(b))

Return ct

Fig. 1. Game defining the L-indistinguishability security of a DMIFE scheme.

L-Simulation Security. A DMIFE scheme (Setup,Enc,Evalf) for a k-ary func-
tion f is L-simulation secure if, for any efficient adversary A = (A0,A1, . . . ,Aq)
which is given black-box access to encryption oracle Enc that it queries q times,
there exists an efficient stateful simulator S = (S0,S1, . . . ,Sq) such that the

outputs of the two distributions RealDMIFE
A (κ) and SimDMIFE

A,S,L (κ), described in
Figure 2, are computationally indistinguishable.

proc RealDMIFE
A (κ)

sk
$← Setup(1κ)

stA ← A0(1κ)
For i ∈ [k]:

cti ← ()
For C ∈ [q]:

((i, x), stA)← AC(stA, (ct1, . . . , ctk))
ct

$← Enc(i, sk, x)
cti ← cti.append(ct)

Return (ct1, . . . , ctk)

proc SimDMIFE
A,S,L (κ)

stS ← S0(1κ)
stA ← A0(1κ)
For i ∈ [k]:

cti ← ()
For C ∈ [q]:

((i, x), stA)← AC(stA, (ct1, . . . , ctk))
xi ← xi.append(x)
(ct, stS)

$← SC(stS ,L(x1, . . . ,xk))
cti ← cti.append(ct)

Return (ct1, . . . , ctk)

Fig. 2. Game defining the L-simulation security of a DMIFE scheme.

2.3 Relations Between These Security Notions

As one could expect, simulation security implies indistinguishability security, as
stated in the following lemma. Moreover, as already mentioned in Remark 2, for
both security notions, the existence of a secure “asymmetric” DMIFE implies
the existence of secure “symmetric” DMIFE, as stated in Lemma 5.

Lemma 4. Assuming DMIFE is an L-simulation secure dedicated multi-input
functional encryption scheme, then DMIFE is an L-indistinguishability secure
dedicated multi-input functional encryption scheme.

Lemma 5. Assuming there exists an L-indistinguishability (resp. L-simulation)
secure asymmetric dedicated multi-input functional encryption scheme for a
function f , there exists a symL-indistinguishability (resp. symL-simulation) secure
symmetric dedicated multi-input functional encryption scheme for the function f ,
with symL(x) = L(x, . . . ,x).

The proofs of these two lemmata are detailed in Appendix A.

3 Order-Revealing Encryption with Simulation-Security
for Polynomial-Size Message Space

Before starting to build our main construction, we would like to remark that, while
it seems extremely hard to obtain an Lf<-indistinguishability secure dedicated

2-input functional encryption for the function f<, also called order-revealing
encryption in the “symmetric” case, from standard assumptions, there is actually
a very simple construction that even achieves simulation-based security assuming
only one-way functions, for polynomial-size message space. To improve efficiency,
our construction can be instantiated using a pseudorandom permutation, such as
AES. This leads to a very efficient construction for small message spaces (e.g.,
10-bit integers).

Let {0, . . . , N − 1} denote the message space, and let F : {0, 1}κ × D → R
be a pseudorandom function such that its domain D contains {0, . . . , N − 1} ×
{0, . . . , 2N − 1}.

Construction 1. We define D2IFE< = (Setup<,Enc<,Evalf<) as follows:

– Setup<(1κ) picks K
$← {0, 1}κ at random and returns it as the secret key sk;

– Enc<(i, sk, x) is defined as:

Enc<(i,K, x) =

{
shuffle(FK(x, x+ 1), . . . , FK(x, x+N − 1)) if i = 1

shuffle(FK(0, x), . . . , FK(N − 1, x)) if i = 2
;

[Here shuffle is a randomized algorithm that returns a random shuffling of its
inputs.]

– Evalf<(ct1, ct2) checks whether there is a common value in ct1 and ct2. If so,
it outputs 1; if not, it outputs 0.

Correctness. It is clear that if there is no common value, the output of the
evaluation algorithm, “≥”, is correct. However, it might happen that there is a
common value due to a collision. Hence, to ensure that this does not happen, we
might want FK to be injective (e.g., using a pseudorandom permutation instead
of a pseudorandom function), but one could simply make the range R big enough
so that the probability of a collision is negligible.

Construction 1 being deterministic, it reveals if two ciphertexts encrypted
with the same index corresponds to the same plaintext. This is the only extra
information, beyond the relative order, that is leaked. However, this extra-
information is always leaked in the “symmetric” case, as one can always check,
given two ciphertexts ct1, ct2 corresponding to plaintexts x1, x2, whether x1 ≥ x2
and x2 ≥ x1. Thus, if x1 = x2, the equality is revealed. For this reason, we claim
that Construction 1 achieves ideal security, and we define its leakage L<,= as:

L<,=(x1,x2) = (Lf<(x1,x2),L=(x1,x2)) ,

with L=(x1,x2) = (1=(xb,ib , xb,jb))ib,jb∈[|xb|],b∈{1,2} where 1=(a, b) returns 1 if
and only if a = b. Precisely, Lf<(x1,x2) reveals exactly the relative order of
messages encrypted with index 1 relatively to messages encrypted with index 2,
while L=(x1,x2) reveals exactly the pairs of equal messages encrypted with the
same index.

Theorem 6. Assuming one-way functions exist, there exists an L<,=-simulation
secure dedicated 2-input functional encryption scheme for the function f<, for
polynomial-size message spaces.

The proof of the above theorem is detailed in Appendix B.

4 Orthogonality Testing and Relation with
Predicate-Encryption

In this section, we describe how we obtain a dedicated 2-input functional encryp-
tion scheme for orthogonality testing, namely for the function

f⊥: (a, b) ∈ Znp 7→

{
1 if 〈a, b〉 = 0

0 otherwise
.

This is a first step in building our efficient order-revealing encryption scheme
with limited leakage.

The existence of such a scheme is immediately implied by the existence of a
fully-secure secret-key inner-product encryption scheme, which in particular exists
under the DLin assumption [6], as proven in [18]. More generally, we describe a
transformation from any fully-secure secret-key predicate encryption for a class
of predicate Ff = {fa : b ∈ M 7→ f(a, b) ∈ {0, 1} | a ∈ M} to a dedicated
2-input functional encryption scheme for the function f . A very similar result
was already proposed in the case of property-preserving encryption in [2,10]. For
completeness, definitions of the DLin assumption and of fully-secure secret-key
predicate encryption and inner-product encryption are recalled in Appendix C.
Please note, in particular, that by fully-secure, we mean predicate-hiding and
attribute-hiding.

Theorem 7. Let f : M ×M → {0, 1} be any function. Assuming there ex-
ists a fully-secure secret-key predicate encryption scheme for the class of pred-
icates Ff = {fa : b ∈ M 7→ f(a, b) ∈ {0, 1} | a ∈ M}, then there exists an
Lf -indistinguishability secure dedicated 2-input functional encryption scheme for
the function f .

Proof. Let (Setup,TokenGen,Enc,Dec) be a fully-secure secret-key predicate en-
cryption scheme for the class of predicates Ff . We build an Lf -indistinguishability
secure dedicated 2-input functional encryption scheme (Setupf ,Encf ,Evalf) for
f as follows: Setupf is the same as Setup. Encf (i, sk, x) returns TokenGen(sk, x)
if i = 1 and Enc(sk, (x, 1)) if i = 2, meaning that it encrypts 1 with the attribute
x. Finally, Evalf (ct1, ct2) simply uses ct1 to decrypt ct2, and return 1 if and only
if the decryption outputs 1, and 0 otherwise. Both correctness and security imme-
diately follow from the correctness and the security of the underlying predicate
encryption scheme, and Theorem 7 follows. ut

Let L⊥ denote the leakage of the function f⊥ (so L⊥ = Lf⊥ according to
Definition 3), so L⊥ reveals exactly all the pairs of orthogonal vectors (a, b) such
that a is encrypted at index 1 and b is encrypted at index 2.

Corollary 8. Assuming DLin, there exists an L⊥-indistinguishability secure
2-input functional encryption scheme for orthogonality testing.

Proof. Corollary 8 follows immediately from the existence of a fully-secure inner-
product encryption scheme under the DLin assumption, as proven in [18], and
from Theorem 7. ut

For the rest of the paper, we denote by D2IFE⊥ = (Setup⊥,Enc⊥,Evalf⊥)
an L⊥-indistinguishability secure dedicated 2-input functional encryption scheme
for orthogonality testing.

5 Computing Cardinality of Intersection with Limited
Leakage

We now describe the second step in building our efficient order-revealing encryp-
tion scheme with limited leakage, which is to build a dedicated 2-input functional
encryption scheme for computing the cardinality of intersection. Specifically, the
messages are sets of fixed size n and the function f we target is the function
f#: (S1,S2) 7→ #(S1∩S2). Our construction relies on the existence of a dedicated
2-input functional encryption scheme for f⊥.

In order to ease the reading, we assume that every set in the message space
has a fixed size n. One could circumvent this condition as long as the maximal
size of a set is known and fixed in advance, but this is not useful for our purpose.

We compute the cardinality of the intersection of two sets as follows: given
two sets of integers A = {a1, . . . , an} and B = {b1, . . . , bn}, one can compute the
polynomial PA(X) =

∏n
i=1(X − ai) such that b ∈ A ⇔ PA(b) = 0. The problem

is that this technique does not hide anything about elements in A and B. To
address this issue, one simply notices that, given PA(X) =

∑n
i=0 αi ·Xi, testing

PA(b) = 0 simply consists in checking if 〈α,β〉 = 0, with α = (α0, . . . , αn) and
β = (1, b, b2, . . . , bn). Therefore, this can be tested privately using a dedicated
2-input functional encryption for orthogonality testing.

We denote by coef(S) the vector (α0, . . . , αn) such that
∏
s∈S(X − s) =∑n

i=0 αi ·Xi and by exp(s) the vector (1, s, s2, . . . , sn). It is straightforward that,
for n being polynomial, computations of coef(S) and exp(s) are polynomial-
time. Let D2IFE⊥ = (Setup⊥,Enc⊥,Evalf⊥) be a dedicated 2-input functional
encryption scheme for orthogonality testing.

Construction 2. We build a dedicated 2-input functional encryption scheme
D2IFE# = (Setup#,Enc#,Evalf#) for the function f# as follows:

– Setup# takes as input the security parameter κ and outputs Setup⊥(1κ) = sk;
– Enc# takes as input an index i ∈ {1, 2}, a secret key sk, and a set S =
{s1, . . . , sn} and outputs:

Enc#(i, sk,S) =

Enc⊥(1, sk, coef(S)) if i = 1 ;

shuffle(Enc⊥(2, sk, exp(s1)), . . . ,
Enc⊥(2, sk, exp(sn))) if i = 2 .

– Evalf# takes as input a pair of ciphertexts (ct1, ct2) encrypted with in-
dex 1 and 2 respectively and with ct2 = (ct2,1, . . . , ct2,n), computes yi =
Evalf⊥(ct1, ct2,i) for i = 1, . . . , n and outputs

∑n
i=1 yi.

Correctness. Correctness follows immediately from the correctness of D2IFE⊥.

Security. To compute the size of the intersection of a set S encrypted with
index 1 with a set T encrypted with index 2, one checks, for every element t ∈ T ,
if t ∈ S. Therefore, while it clearly allows to compute the size of the intersection,
this also leaks more information. Indeed, consider two sets S1 and S2 encrypted
with index 1 and another set T encrypted with index 2. Then, for every t ∈ T ,
one can check if t ∈ S1 and if t ∈ S2. Hence, not only the cardinality T ∩ S1
and T ∩ S2 is revealed, but also the one of T ∩ S1 ∩ S2. More generally, if k sets
S1, . . . ,Sk are encrypted with index 1 and a set T is encrypted with index 2,
their encryptions reveal the size of the intersection of T with any intersection of
1 to k different sets from {S1, . . . ,Sk}.

We prove that this is exactly the information that is leaked by our construction
and define the leakage of our construction, denoted L#∗ , as follows. For two
sequences of sets S = (S1, . . . ,Sq1) and T = (T1, . . . , Tq2) encrypted respectively
with index 1 and 2, we define:

L#∗(S,T) = (#(I ∩ Ti))I∈S∩,i∈[q2] ,

where S∩ = {Si1 ∩ · · ·∩Sij | j ∈ [q1], ij ∈ [q1]}, so S∩ contains every intersection
of 1 to q1 different sets encrypted at index 1. In particular, every set Si is in S∩.

Theorem 9. Assuming there exists an L⊥-indistinguishability secure dedicated
2-input functional encryption scheme for orthogonality testing, there exists an
L#∗-indistinguishability secure dedicated 2-input functional encryption scheme
for cardinality of intersection.

Remark 10. Note that, even if L#∗ is formally an exponential-size vector, checking
whether a query made by an adversary is valid or not remains polynomial.
Indeed, for every new query (1,S(0),S(1)), one just needs to check that for
every element t(0) in a set T (0) corresponding to a previous query (2, T (0), T (1))

such that t(0) is also in sets S(0)i1
, . . . ,S(0)ij

corresponding to previous queries

(1,S(0)i1
,S(1)i1

), . . . , (1,S(0)ij
,S(1)ij

), there is also an element in t(1) in the set T (1)

such that t(1) is also in the sets S(1)i1
, . . . ,S(1)ij

, which is clearly a polynomial-time
process. A similar process can be done for every new query made with index 2.
Therefore, the security game defining L#∗-indistinguishability security remains
polynomial-time.

Proof (Theorem 9). Let A be an adversary against the L#∗ -indistinguishability
security of the scheme D2IFE# = (Setup#,Enc#,Evalf#) obtained via Con-
struction 2, that makes q1 queries with index 1 and q2 queries with index 2
to its encryption oracle. Then one can design an adversary B against the L⊥-
indistinguishability security of D2IFE⊥ = (Setup,Enc,Evalf⊥) as follows: B

starts by initializing two empty lists list0, list1. Next, B runs adversary A. When
the latter makes a query (i,S(0),S(1)), B does the following.

If i = 1, B first adds S(0) to list0 and S(1) to list1, then simply computes
α(0) = coef(S(0)) and α(1) = coef(S(1)), queries (1,α(0),α(1)) to its encryption
oracle and returns the value it gets to A.

If i = 2, B proceeds as follows: let listb = (S(b)1 , . . . ,S(b)q) be the two lists stored
by B, for b ∈ {0, 1} (each list contains respectively the q left or right queries
already made by A with index 1). B initializes an empty list out and applies
the following process, termed Pair, to sets S(0),S(1). It picks an element s(0) in

S(0) and checks for i = 1, . . . , q if s(0) ∈ S(0)i . Next, it searches for an element

s(1) ∈ S(1) such that for i = 1, . . . , q, s(1) ∈ S(1)i if and only if s(0) ∈ S(0)i . Once
such an element has been found, it computes β(0) = exp(s(0)) and β(1) = exp(s(1)),
and queries (2,β(0),β(1)) to its encryption oracle and adds the value it gets to the
list out. It then reiterates Pair to the sets S(0) \ {s(0)},S(1) \ {s(1)}. Once every
element has been handled, B shuffles out and sends a vector whose components
are the elements of the list (in a random order) to A. When A halts with some
output, so does B.

First, one needs to prove that the process Pair run by B to pair up elements
from S(0) with elements from S(1) can always be done. As A is a polynomial-
time adversary, it is clear that Pair is polynomial, as q and n are polynomial.
Furthermore, by definition, A is restricted to only make sequences of queries

such that at any time L#∗(S(0)
1 ,S(0)

2) = L#∗(S(1)
1 ,S(1)

2), where S(b)
i denote the

series of left (if b = 0) or right (if b = 1) queries made at index i. This implies
directly that Pair always terminates.

Second, one needs to prove that every query (1,α(0),α(1)) or (2,β(0),β(1))
made by B to its encryption oracle satisfies 〈α(0),β(0)〉 = 0 if and only if
〈α(1),β(1)〉 = 0. This is implied directly by the way process Pair is defined.

Finally, one needs to show that B simulates correctly the oracle, which is
immediate from the description of Construction 2. This concludes the proof of
Theorem 9. ut

Corollary 11. Assuming DLin, there exists an L#∗-indistinguishability secure
2-input functional encryption scheme for the function f#.

Proof. Immediate from Corollary 8 and Theorem 9. ut

6 Order-Revealing Encryption with Limited Leakage

We finally describe how combining the previous tools, one obtain our main
construction. As a preliminary, we explain how one can compare two numbers by
simply checking the disjointness of two sets. Then, combining this technique with
the construction from previous section, one proves the existence, under DLin, of
an efficient order-revealing encryption scheme with limited leakage.

6.1 From Bitstrings to Sets

We define functions Σ0 and Σ1, taking as input an n-bit string x and returning
a set of prefixes, as follows:

Σb : x ∈ {0, 1}n 7−→ Σb(x) =
{
xn−1 ‖ . . . ‖xi+1 ‖ 1 | xi = b

}
0≤i≤n−1 , (1)

for b ∈ {0, 1}. That is, Σ1(x) returns the set of every prefix of x that ends with
a 1, and Σ0(x) returns the set of every z ‖ 1 such that z ‖ 0 is a prefix of x. It
is easily seen that #Σ1(x) = hw(x) and that #Σ0(x) = hw(x̄). In particular,
we have Σ0(1n) = Σ1(0n) = ∅ and thus #Σ0(1n) = #Σ1(0n) = 0. It is also
immediate that #Σ1(x ‖ x̄) = #Σ0(x ‖ x̄) = n, for every x ∈ {0, 1}n.

Functions Σ0 and Σ1 are useful as they allow computing the relative order
of two integers [17]. More precisely, we have:

Lemma 12. Let x, y be two integers such that 0 ≤ x, y < 2n and viewed as n-bit
strings. Then

x < y ⇐⇒ #
(
Σ0(x)∩Σ1(y)

)
= 1 and x ≥ y ⇐⇒ #

(
Σ0(x)∩Σ1(y)

)
= 0 .

The proof of the above lemma is detailed in Appendix D.

6.2 A Generic Transform from DRE to ORE

In this section is described a generic transform to obtain a dedicated 2-input

functional encryption scheme for the function f<: (x, y) 7→

{
1 if x < y

0 otherwise
from

any dedicated 2-input functional encryption scheme for the function f#. This
transform simply relies on the above technique. As we want the size of the sets
encrypted to be some fixed constant, instead of directly encrypting the sets Σ0(x)
or Σ1(x), one encrypts the sets Σ0(x ‖ x̄) or Σ1(x ‖ x̄), which are both of size n
if x is an n-bit integer. It is very easy to see that Lemma 12 still holds even if we
replace Σ0(x) and Σ1(y) by Σ0(x ‖ x̄) and Σ1(y ‖ ȳ) respectively.

Let D2IFE# = (Setup#,Enc#,Evalf#) be a dedicated 2-input functional
encryption scheme for the function f#.

Construction 3. We build a dedicated 2-input functional encryption scheme
D2IFE< = (Setup<,Enc<,Evalf<) for the function f< as follows:

– Setup< takes as input the security parameter κ and outputs Setup#(1κ) = sk;
– Enc< takes as input an index i ∈ {1, 2}, a secret key sk, and a message x and

outputs:

Enc<(i, sk, x) =

{
Enc#(1, sk, Σ0(x ‖ x̄)) if i = 1

Enc#(2, sk, Σ1(x ‖ x̄)) if i = 2
;

– Evalf< takes as input a pair of ciphertexts (ct1, ct2) encrypted with index 1
and 2 respectively, and returns Evalf#(ct1, ct2).

Correctness. The correctness easily follows from the correctness of D2IFE#

and from Lemma 12.

Security. Security immediately follows from the security of D2IFE# and the
leakage is simply the leakage associated of D2IFE# applied to the encrypted
sets, which are either Σ0(x ‖ x̄) or Σ1(x ‖ x̄).

Let L denote a leakage such that D2IFE# is L-indistinguishability secure.
Then, we define the leakage of Construction 3 as:

LL(x1,x2) = L(Σ0(x1), Σ1(x2)) ,

where xi = (xi,1, . . . , xi,qi) is the sequence of integers encrypted with index i,
for i ∈ {1, 2}, and where Σ0(x1) = (Σ0(x1,1 ‖ x̄1,1), . . . , Σ0(x1,q1 ‖ x̄1,q1)), and
Σ1(x2) = (Σ1(x2,1 ‖ x̄2,1), . . . , Σ1(x2,q2 ‖ x̄2,q2)).

Theorem 13. Assuming there exists an L-indistinguishability secure dedicated
2-input functional encryption scheme for the function f#, then there exists an LL-
indistinguishability secure 2-input functional encryption scheme for the function
f<.

Proof. Let A be an adversary against the LL-indistinguishability security of
D2IFE< obtained via Construction 3. Then, one can build an adversary B
against the L-indistinguishability security of D2IFE# as follows: when A makes

a query (i, x(0), x(1)) to the encryption oracle, B does the following. It computes
(S(0),S(1)) = (Σ0(x(0)), Σ0(x(1))) if i = 1 or (S(0),S(1)) = (Σ1(x(0)), Σ1(x(1)))
if i = 2, queries (i,S(0),S(1)) to its encryption oracle, and returns the value it
gets to adversary A. When adversary A halts with output b, so does B. It is clear
that the simulation is perfect. The only thing that one needs to prove is that the
sequence of queries made by B is possible. This is immediate from the definition
of LL. Theorem 13 follows. ut

Remark 14. One could also prove in a very similar manner that the obtained
construction is simulation-secure assuming the underlying scheme D2IFE# is
simulation-secure.

Corollary 15. Assuming DLin, there exists a LL#∗ -indistinguishability secure
2-input functional encryption scheme for the function f<.

Proof. Immediate from Corollary 11 and Corollary 13. ut

Detail of the Leakage. For the sake of clarity, here is a more intelligible
description of the leakage of our resulting order-revealing encryption scheme. For
simplicity, let us consider a sequence of integers (x1, . . . , xq) encrypted respectively
with index 1 and an integer y encrypted with index 2, our encryption scheme
reveals:

1. the order of xi relatively to y, for any 1 ≤ i ≤ q;

2. for every subset S of {x1, . . . , xq} of size at least 2, whether there exists a
bitstring z such that z ‖ 0 is a common prefix of every x ∈ S and z ‖ 1 is a
prefix of y.

The first part is exactly what we want to reveal, but the second part reveals
extra information. However, as shown in Lemma 12, for every x, y, there exists
at most one such bitstring z such that z ‖ 0 is a prefix of x and z ‖ 1 is a prefix of
y (and in that case, x < y). Thus, there is no such bistring z for most subsets
S ⊆ {x1, . . . , xq}, and the second part does not reveal much information.

The general case where multiple integers are encrypted with index 2 simply
reveals the two information detailed above for every y encrypted with index 2.

Possible Security Trade-Off. Since the leakage only depends on the number
of common prefixes, a simple way to restrict this leakage is to first encrypt the
messages with an order-preserving encryption scheme.

Another way to reduce the leakage is to improve the underlying construction
of 2-input dedicated functional encryption for cardinality of intersection. We
recall that a construction for cardinality of intersection with ideal leakage would
immediately imply a solution for comparison with ideal leakage. In particular,
one could use multivariate polynomials instead of univariate polynomials to check
the intersection.

Intuitively, instead of testing PA(b) = 0 with PA(X) =
∏
a∈A(X − a) for

checking if b ∈ A, one could test P
(k)
A (b1, . . . , bk) = 0 with P

(k)
A (X1, . . . , Xk) =∏

i∈[k]
∏
a∈A(Xi − a). The leakage now only reveals if k-tuple of elements in B

have an non-empty intersection with A, but the size of the ciphertexts blow-up,
since one needs to compute inner-products of vectors of length (n+ 1)k instead
of vectors of length n+ 1.

7 Concluding Remarks

7.1 Applications

Membership Testing on a Database and Searchable Encryption. Our
notion of dedicated 2-input functional encryption for the function f# naturally
yields a solution to test whether some private data is already in a database stored
by a given server. Indeed, one could split the database into distinct sets S1, . . . ,Sq
of fixed size n and storing encryptions Enc#(1, sk, coef(Si)) for i ∈ [q]. Then, one
can simply send to the server Enc#(2, sk, exp(a)) so it can learn whether a is
already in the database. One could also use this method with a plaintext x being
a tag used to ask the server to return every encrypted data with the same tag.

Range Queries. Our notion of dedicated 2-input functional encryption for the
function f< allows one to perform efficient range queries on a database. One could
indeed store encryptions Enc<(1, sk, x) on the server, and makes queries of the
form Enc<(2, sk, a),Enc<(2, sk, b) to get encrypted data x ∈ [a; b). In particular,
as our notion is “asymmetric”, the server learns only a few extra information,
while classical order-revealing encryption let the server knows the complete order
of the elements.

7.2 Conclusion

In this paper, we studied particular cases of multi-input functional encryption.
To obtain pratical constructions, we allow our constructions to leak a bit more
information than just the offered functionality. This results in efficient construc-
tions for computing inner-product, cardinality of intersection, and comparison,
under standard assumptions.

Our more general approach enables, in particular, to build an efficient order-
revealing encryption scheme with very limited leakage compared to the informa-
tion leaked by the recent construction proposed in [11]. Of independent interest,
we also propose a construction with ideal security for polynomial-size message
space.

References

1. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving encryption for
numeric data. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Paris, France, June 13–18, 2004. ACM Press.

2. S. Agrawal, S. Agrawal, S. Badrinarayanan, A. Kumarasubramanian, M. Prab-
hakaran, and A. Sahai. Functional encryption and property preserving encryption:
New definitions and positive results. Cryptology ePrint Archive, Report 2013/744,
2013. http://eprint.iacr.org/2013/744.

3. S. Agrawal, S. Agrawal, S. Badrinarayanan, A. Kumarasubramanian, M. Prab-
hakaran, and A. Sahai. On the practical security of inner product functional
encryption. In J. Katz, editor, PKC 2015, volume 9020 of LNCS, pages 777–798.
Springer, Heidelberg, Mar. / Apr. 2015.

4. A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-preserving symmetric
encryption. In A. Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages
224–241. Springer, Heidelberg, Apr. 2009.

5. A. Boldyreva, N. Chenette, and A. O’Neill. Order-preserving encryption revis-
ited: Improved security analysis and alternative solutions. In P. Rogaway, editor,
CRYPTO 2011, volume 6841 of LNCS, pages 578–595. Springer, Heidelberg, Aug.
2011.

6. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Heidelberg,
Aug. 2004.

7. D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, and J. Zimmerman.
Semantically secure order-revealing encryption: Multi-input functional encryption
without obfuscation. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015,
Part II, volume 9057 of LNCS, pages 563–594. Springer, Heidelberg, Apr. 2015.

8. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and chal-
lenges. In Y. Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273.
Springer, Heidelberg, Mar. 2011.

9. D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted
data. In S. P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 535–554.
Springer, Heidelberg, Feb. 2007.

10. S. Chatterjee and M. P. L. Das. Property preserving symmetric encryption revisited.
LNCS, pages 658–682. Springer, Heidelberg, Dec. 2015.

http://eprint.iacr.org/2013/744

11. N. Chenette, K. Lewi, S. A. Weis, and D. J. Wu. Practical order-revealing encryption
with limited leakage. In FSE 2016, LNCS, Bochum, Germany, Mar. 20–23, 2016.
Springer, Heidelberg. Full version available as Cryptology ePrint Archive, Report
2015/1125, http://eprint.iacr.org/2015/1125.

12. J. H. Cheon, P.-A. Fouque, C. Lee, B. Minaud, and H. Ryu. Cryptanalysis of the
new CLT multilinear map over the integers. Cryptology ePrint Archive, Report
2016/135, 2016. http://eprint.iacr.org/2016/135.

13. J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé. Cryptanalysis of the multilinear
map over the integers. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015,
Part I, volume 9056 of LNCS, pages 3–12. Springer, Heidelberg, Apr. 2015.

14. R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric en-
cryption: improved definitions and efficient constructions. In A. Juels, R. N. Wright,
and S. Vimercati, editors, ACM CCS 06, pages 79–88. ACM Press, Oct. / Nov.
2006.

15. S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai,
E. Shi, and H.-S. Zhou. Multi-input functional encryption. In P. Q. Nguyen and
E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 578–602.
Springer, Heidelberg, May 2014.

16. J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In N. P. Smart, editor, EUROCRYPT 2008,
volume 4965 of LNCS, pages 146–162. Springer, Heidelberg, Apr. 2008.

17. H.-Y. Lin and W.-G. Tzeng. An efficient solution to the millionaires’ problem based
on homomorphic encryption. In J. Ioannidis, A. Keromytis, and M. Yung, editors,
ACNS 05, volume 3531 of LNCS, pages 456–466. Springer, Heidelberg, June 2005.

18. T. Okamoto and K. Takashima. Fully secure functional encryption with general
relations from the decisional linear assumption. In T. Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 191–208. Springer, Heidelberg, Aug. 2010.

19. O. Pandey and Y. Rouselakis. Property preserving symmetric encryption. In
D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 375–391. Springer, Heidelberg, Apr. 2012.

20. A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In R. Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidelberg,
May 2005.

21. E. Shen, E. Shi, and B. Waters. Predicate privacy in encryption systems. In
O. Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 457–473. Springer,
Heidelberg, Mar. 2009.

A Proofs of Lemmata in Section 2.3

A.1 Proof of Lemma 4

Let DMIFE be an L-simulation secure property-revealing encryption scheme.
Then, there exists a simulator S such that for any adversary A, the distributions

RealDMIFE
A and SimDMIFE

A,S,L are computationally indistinguishable.
Let B denote an adversary against the L-indistinguishability security of

DMIFE that makes a sequence of queries (x1, . . . ,xk). Then, the sequence of
ciphertexts (ct1, . . . , ctk) is computationally instinguishable from the distribution
output by the simulator S which is computed only from L(x1, . . . ,xk). Hence,

http://eprint.iacr.org/2015/1125
http://eprint.iacr.org/2016/135

as the latter distribution does not depend on the messages but only on their

leakage, for any two sequences of queries (x
(0)
1 , . . . ,x

(1)
k) and (x

(1)
1 , . . . ,x

(1)
k) such

that L(x
(0)
1 , . . . ,x

(0)
k) = L(x

(1)
1 , . . . ,x

(1)
k), the distributions of ciphertexts are

computationally indistinguishable. Lemma 4 follows. ut

A.2 Proof of Lemma 5

Indistinguishability Security. Let DMIFE = (Setup,Enc,Evalf) be an L-
indistinguishability secure “asymmetric” property-revealing encryption scheme
for a k-ary property P . Then, DMIFE ′ = (Setup,Enc′,Evalf) with Setup,Evalf
being the same as in DMIFE and Enc′(sk, x) = (Enc(1, sk1, x), . . . ,Enc(k, skk, x)),
is a symL-indistinguishability secure “symmetric” property-revealing encryption
scheme for the property P . The proof is immediate: given an adversary A
against the indistinguishability security of DMIFE ′ that makes a sequence of

queries ((x
(0)
1 , x

(1)
1), . . . , (x

(0)
q , x

(1)
q)), one can simply build an adversary B against

the indistinguishability security of DMIFE as follows: when A makes a query
(x(0), x(1)), B makes the query (i, x(0), x(1)) to its oracle for all i = 1, . . . , k and
returns the tuple of k ciphertexts obtained to A. When A halts with output
b, so does B. The only thing that one needs to prove is that the sequence
of queries made by B is possible. This is immediate from the fact that A is

restricted to make sequences of queries ((x
(0)
1 , x

(1)
1), . . . , (x

(0)
q , x

(1)
q)) such that

symL(x(0)) = symL(x(1)).

Simulation Security. Let DMIFE = (Setup,Enc,Evalf) be an L-simulation
secure “asymmetric” property-revealing encryption scheme for a k-ary property
P . Then, DMIFE ′ = (Setup,Enc′,Evalf) with Setup,Evalf being the same as in
DMIFE and Enc′(sk, x) = (Enc(1, sk1, x), . . . ,Enc(k, skk, x)) is a symL-simulation
secure symmetric property-revealing encryption scheme for the property P . The
proof is immediate: given an adversary A against the symL-simulation security

of DMIFE ′ that makes a sequence of queries (x1, . . . , xq), one can simply build
an adversary B against the simulation security of DMIFE as follows: when A
makes a query x, B makes the query (i, x) to its oracle for all i = 1, . . . , k. The
L-simulation security of DMIFE guarantees that the distribution of ciphertexts
obtained is indistinguishable from the one computed by the simulator S given
only L(x, . . . ,x).

Lemma 5 easily follows. ut

B Proof of Theorem 6

Let A = (A0, . . . ,Aq1+q2) be an adversary against the L<,=-simulation security of
D2IFE<, described in Construction 1, where q1, q2 are polynomial in the security
parameter and correspond to the number of queries made with index 1 and 2
respectively. To prove security, one needs to build a simulator S = (S0, . . . ,Sq1+q2)

such that the distributions output by the experiments Real
D2IFE<

A and Sim
D2IFE<

A,S,L<,=

are computationally indistinguishable.

The distribution output by experiment Real
D2IFE<

A consists in a sequence of
ciphertexts (ct1, ct2) which are q1 ciphertexts encrypted with index 1 and q2
ciphertexts encrypted with index 2. Let us recall that:

Enc<(i,K, x) =

{
shuffle(FK(x, x+ 1), . . . , FK(x, x+N − 1)) if i = 1

shuffle(FK(0, x), . . . , FK(N − 1, x)) if i = 2
.

Then, under the PRF security of F , the distribution output by Real
D2IFE<

A is
computationally indistinguishable from the distribution Hyb where the ciphertexts
are computed using a trully random function f : D → R.

We now describe our simulator S. S0 initializes an empty table T of size
(q1 + q2) × (N + 2) and outputs stS = T. At any time, the i-the row of T has
the following form: the first column contains whether the i-th query of A is a
query with index 1 or 2. The second column will be a counter starting from 3.
The remaining columns contain the N components of the encryption returned to
the adversary.

When At asks for an encryption of a message xt, St does the following: let us
denote by i and j the numbers of queries made by the adversary to oracle with
index 1 and 2 respectively before step t, so t = i+ j + 1, and let (x1,1, . . . , x1,i)
and (x2,1, . . . , x2,j) denote these two series of queries.

We assume the adversary does not make twice the same query to the same
encryption algorithm. If it does, one can simply adapt the simulator as follows:
assume that there exists k < t such that Ak made the same query xt as At to
the same encryption algorithm. Then, St returns shuffle(T[k, 3], . . . ,T[k,N + 2]).

Let us now assume that all queries made by A to encryption oracle are
different.

Let us assume that the adversary asks makes a query (1, xt) and let x1 =
x1.append(xt). St is executed on input stS and L<,=(x1,x2). In particular, St
knows, for every 1 ≤ k ≤ j whether xt < x2,k. St let T[t, 1]← 1. Let n1, . . . , nj
denote the j indices of the rows of T that corresponds to queries with index 2.
Let c = 3. Then, for any 1 ≤ k ≤ j, St does the following: if xt < x2,k, St lets
T[t, c]← T[nk,T[nk, 2]], T[nk, 2]← T[nk, 2] + 1, c← c+ 1; if xt ≥ x2,k, St does
nothing. Finally, St sets T[t, 2]← c picks N + 3− c values at random in R and
completes the last N + 3− c empty cases of the t-th row of T with these values.
It finally outputs shuffle(T[t, 3], . . . ,T[t,N + 2]) as the ciphertext ct1,i+1.

Let us now assume that the adversary makes a query (2, xt) and let x2 =
x2.append(xt). St is executed on input stS and L<,=(x1,x2). In particular, St
knows, for every 1 ≤ k ≤ i whether x1,k < xt. St let T[t, 1]← 2. Let n1, . . . , ni
denote the i indices of the rows of T that corresponds to queries with index 1.
Let c = 3. Then, for any 1 ≤ k ≤ i, St does the following: if x1,k < xt, St lets
T[t, c]← T[nk,T[nk, 2]], T[nk, 2]← T[nk, 2] + 1, c← c+ 1; if x1,k ≥ xt, St does
nothing. Finally, St sets T[t, 2]← c picks N + 3− c values at random in R and
completes the last N + 3− c empty cases of the t-th row of T with these values.
It finally outputs shuffle(T[t, 3], . . . ,T[t,N + 2]) as the ciphertext ct2,j+1.

Then, it is immediate that the distribution described above is identical to
the distribution of Hyb, which is computationally indistinguishable from the

distribution of Real
D2IFE<

A . Theorem 6 follows. ut

C Additional Definitions

C.1 DLin assumption

We recall the definition of the DLin problem in a group G = 〈g〉 of order N , which
states the hardness of distinguishing whether z = gw1+w2 from a random group
element, when given a tuple (g, ga1 , ga2 , ga1w1 , ga2w2 , z), where ai, wi

$← ZN for
i = 1, 2. The DLin assumption corresponds to the hardness of the DLin problem.

C.2 Predicate Encryption and Inner Product Encryption

Definition 16 (Secret-Key Predicate Encryption). A secret-key predicate
encryption scheme is a tuple of PPT algorithms (Setup,TokenGen,Enc,Dec),
defined as follows:

– Setup takes as input the security parameter 1κ and ouputs a secret key sk;
– TokenGen takes as inputs a secret key sk and a predicate P and outputs a

token tkP ;
– Enc takes as inputs a secret key sk and an attribute I and a message x and

outputs a ciphertext ctI,x;
– Dec takes as input a token tkP and a ciphertext ctI,x and outputs x or ⊥.

For correctness, we require that for any sk
$← Setup(1κ) and any pair (tkP , ctI,x)

with ctI,x = Enc(sk, I, x) and tkP = TokenGen(sk, P), then Dec(tkP , ctI,x) =
x ⇐⇒ P (I) = 1.

Security. A secret-key predicate encryption scheme is fully-secure if a token
tk (resp. a ciphertext ct) reveals nothing about the predicate (resp. attribute,
message) vector beyond the value of the predicate on queried attributes (resp.
the values of queried predicates on the attribute). This security notion is de-
fined as follows: the adversary has access to two left-or-right oracles that can
be adaptively queried with pair of predicates (P0, P1) (resp. pair of attributes
and messages ((I0, x0), (I1, x1))) to get token tkPb

(resp. ciphertext ctIb,xb
),

where b is a fixed bit chosen at random in the Initialize procedure. At the
end, the adversary outputs a bit b′ and wins if b = b′. Once again, the ad-
versary is restricted to avoid trivial attacks. Hence, for any sequence of mes-

sages (((I
(1)
0 , x

(1)
0), (I

(1)
1 , x

(1)
1)), . . . , ((I

(q1)
0 , x

(q1)
0), (I

(q1)
1 , x

(q1)
1))) and predicates

(P
(1)
0 , P

(1)
1), . . . , (P

(q2)
0 , P

(q2)
1), we require that for all 1 ≤ i ≤ q1 and 1 ≤ j ≤ q2,

P
(j)
0 (I

(i)
0) = 1 ⇐⇒ P

(j)
1 (I

(i)
1) and if so, x

(i)
0 = x

(i)
1 .

Definition 17 (Secret-Key Inner Product Encryption). A secret-key in-
ner product encryption scheme is a tuple of probabilistic polynomial-time algo-
rithms (Setup,TokenGen,Enc,Query), defined as follows:

– Setup takes as input the security parameter 1κ and ouputs a secret key sk;
– TokenGen takes as inputs a secret key sk and a predicate vector y and outputs

a token tky;
– Enc takes as inputs a secret key sk and an attribute (or plaintext) vector x

and outputs a ciphertext ctx;
– Query takes as input a token tky and a ciphertext ctx and outputs 0 or 1.

For correctness, we require that for any sk
$← Setup(1κ) and any pair (tky, ctx)

with ctx = Enc(sk,x) and tky = TokenGen(sk,y), then Query(tky, ctx) = 1 ⇐⇒
〈x,y〉 = 0.

Security. A secret-key inner product encryption scheme is fully-secure if a token
tk (resp. a ciphertext ct) reveals nothing about the predicate (resp. attribute)
vector beyond the value of the predicate on queried attributes (resp. the values of
queried predicates on the attribute). This security notion is defined as follows: the
adversary has access to two left-or-right oracles that can be adaptively queried
with pair of predicates (y0,y1) (resp. pair of attributes (x0,x1)) to get token tkyb

(resp. ciphertext ctxb
), where b is a fixed bit chosen at random in the Initialize

procedure. At the end, the adversary outputs a bit b′ and wins if b = b′. Once
again, the adversary is restricted to avoid trivial attacks. Hence, for any sequence

of queries (x
(1)
0 ,x

(1)
1), . . . , (x

(q1)
0 ,x

(q1)
1), (y

(1)
0 ,y

(1)
1), . . . , (y

(q2)
0 ,y

(q2)
1), we require

that for all 1 ≤ i ≤ q1 and 1 ≤ j ≤ q2, 〈x(i)
0 ,y

(j)
0 〉 = 0 ⇐⇒ 〈x(i)

1 ,y
(j)
1 〉 = 0.

D Proof of Lemma 12

Suppose first that x ≤ y. Then there must exist a biggest index i ∈ {0, . . . , n−1}
such that xi = 0 and yi = 1 and, if i 6= n−1, xn−1 ‖ . . . ‖xi+1 = yn−1 ‖ . . . ‖ yi+1.
If i = n − 1 this implies {1} ⊆ Σ0(x) ∩ Σ1(y), and if i 6= n − 1 this implies
{xn−1 ‖ . . . ‖xi+1 ‖ 1} ⊆ Σ0(x) ∩Σ1(y).

Suppose now that Σ0(x) ∩ Σ1(y) 6= ∅. If Σ0(x) ∩ Σ1(y) = {1} then it
is cleat that x < y. Otherwise, there exists an index i ∈ {0, . . . , n − 2} such
that xn−1 ‖ . . . ‖xi+1 ‖ 1 ∈ Σ0(x) ∩Σ1(y). This means that xi = 0, yi = 1,
and xn−1 ‖ . . . ‖xi+1 = yn−1 ‖ . . . ‖ yi+1, which in turn means x < y, since∑i−1
k=0 yk · 2k ≤

∑i−1
k=0 2k = 2i − 1 < 2i.

It remains to show that Σ0(x) ∩ Σ1(y) contains at most one element. Let
us assume that #

(
Σ0(x) ∩ Σ1(y)

)
> 1. Then there exist i, j ∈ {0, . . . , n − 1}

distinct and such that we have xn−1 ‖ . . . ‖xi+1 = yn−1 ‖ . . . ‖ yi+1 as well as
xn−1 ‖ . . . ‖xj+1 = yn−1 ‖ . . . ‖ yj+1, and xi = xj = 0, and yi = yj = 1. We can
assume without loss of generality that i > j. Hence, i ≥ j+1 and since xi = 0 and
yi = 1, it is impossible that xn−1 ‖ . . . ‖xj+1 = yn−1 ‖ . . . ‖ yj+1. This concludes
the proof. ut

	Practical Trade-Offs for Multi-Input Functional Encryption

