
Sealed-Glass Proofs:
Using Transparent Enclaves to Prove and Sell Knowledge

Florian Tramèr1, Fan Zhang2,4, Huang Lin1, Jean-Pierre Hubaux1, Ari Juels3,4, Elaine Shi2,4
1 EPFL, 2 Cornell University, 3 Cornell Tech, Jacobs Institute,

4 Initiative for CryptoCurrencies and Contracts (IC3)

ABSTRACT
Trusted hardware systems, such as Intel’s new SGX instruc-
tion set architecture extension, aim to provide strong confi-
dentiality and integrity assurances for applications. Recent
work, however, raises serious concerns about the vulnerabil-
ity of such systems to side-channel attacks.

We propose, formalize, and explore a cryptographic prim-
itive called a Sealed-Glass Proof (SGP) that captures com-
putation possible in an isolated execution environment with
unbounded leakage, and thus in the face of arbitrarily pow-
erful side-channel attacks. A SGP specifically models the
capabilities of trusted hardware that can attest to correct
execution of a piece of code, but whose execution is trans-
parent, meaning that an application’s secrets and state are
visible to other processes on the same host.

Despite this strong threat model, we show that a SGP
can support a range of practical applications. Our key ob-
servation is that a SGP permits safe verifiable computing in
zero-knowledge, as information leakage results only in the
prover learning her own secrets. Among other applications,
we describe the implementation of an end-to-end bug bounty
(or zero-day solicitation) platform that couples a SGX-based
SGP with a smart contract. This platform enables a mar-
ketplace that achieves fair exchange, protects against unfair
bounty withdrawals, and resists denial-of-service attacks by
dishonest sellers. We also consider a slight relaxation of the
SGP model that permits black-box modules instantiating
minimal, side-channel resistant primitives, yielding a still
broader range of applications. Our work shows how trusted
hardware systems such as SGX can support trustworthy ap-
plications even in the presence of side channels.

1. INTRODUCTION
Trusted hardware platforms aim at creating secure and

isolated software execution environments that could lead to
many practical applications of secure multiparty computa-
tion. For instance, Intel’s newly released Software Guard
Extensions [25, 26] (SGX) allows programmers to create se-
cure enclaves that execute in isolation from the rest of a
host’s software, including its OS.

While these trusted platforms aim to protect the in-
tegrity, authenticity and confidentiality of enclaved pro-
grams against a variety of software or physical attacks [25,
26], the confidentiality goal appears elusive. Recent work
has shown that enclaves may leak large amounts of sensitive
information to a malicious host through their memory access
patterns [49]. Additional software or physical side-channel
attacks can further compromise an enclave’s secrets [17].
Such attacks are in no way unique to the SGX platform, and
a variety of countermeasures have been developed over the

years [18, 47, 51], usually to protect highly sensitive crypto-
graphic code. It is reasonable to assume that trusted hard-
ware platforms can successfully apply these techniques to
achieve strong protection for a limited set of cryptographic
operations using long term secrets (e.g., cryptographic keys
used for attesting to an enclave’s contents or for protecting
enclave memory). Such protection is essential: A success-
ful extraction of a platform’s private key would essentially
translate into a total security break. A much more challeng-
ing goal is extending side-channel protections to arbitrary
computations [18,22,32,38,39] as the resulting performance
degradation is non-negligible [17, 38, 41] and it remains un-
clear whether data leaks can truly be fully eliminated.

We thus initiate an investigation of a model of secure com-
putation that is intentionally weaker than that of traditional
trusted hardware. Our goal is to predicate such computa-
tion on security assumptions that are more easily achievable
in practice. We define a formal model of transparent enclave
execution in which enclaves guarantee execution integrity
and authenticity, but not confidentiality. That is, we as-
sume that the trusted hardware’s attestation and integrity
protection mechanisms are secure, but that a program run-
ning in an enclave leaks unbounded information to the host.

The question immediately arises: Is this weaker model
of trusted hardware useful? Our key insight is that trans-
parent enclaves provide sufficient guarantees to securely re-
alize a number of functionalities characterized by a “uni-
directional” resource asymmetry between untrusted parties,
for example when one player has knowledge of a secret, but
not the other. Indeed, by having the party holding the secret
host the enclave, we forego the need for execution confiden-
tiality and can rely solely on execution integrity and authen-
ticity. To demonstrate the usability of our model, we show
how to efficiently realize a number of interesting primitives
in the UC framework [12], such as Verifiable Computing,
Commitment Schemes, and Zero-Knowledge Proofs.

We go further to show that transparent enclaves can se-
curely realize a powerful, general functionality that encom-
passes the above three primitives. We call this functionality
a sealed-glass proof (SGP). SGPs are similar in spirit to the
“commit-and-prove” functionality of [15]: A prover first seals
(i.e., commits to) a program and input in an enclave, and
later runs the program over her own input in addition to a
“challenge” input provided by a verifier. We further show
that in cases where the verifier’s challenge is simply a ran-
dom string, the enclave environment can be leveraged to
make such “seal-and-randomize” schemes non-interactive.

When built on top of SGX, SGPs enable provers to con-
vince verifiers of the execution of standalone programs writ-
ten in standard C or C++ [26]. Prior work further shows
that SGX-based SGPs can be applied to unmodified legacy

1

applications [5] as well as Map-Reduce computations [19].
A compelling application of SGPs is fair exchange of a

secret for a monetary reward. In their full generality, such
transactions have a number of applications, such as the sale
of 0-day exploits (as in a bug bounty system) and pay-
ments contingent on a proof of identity. A recently proposed
scheme by Maxwell [33] known as Zero-Knowledge Contin-
gent Payments (ZKCP) enables Bitcoin transactions for the
sale of information between mutually untrusted parties. As
we show, however, this scheme and an extension in [3] have
serious limitations in terms of efficiency, requirements for
interaction among parties, and vulnerability to buyers re-
tracting their offers and denying payment to honest sellers.

We show that SGPs combined with smart contracts [42]
can overcome these limitations and thus vastly improve the
safety and efficiency of such fair exchange protocols in digital
knowledge marketplaces where buyers and sellers are able to
launch respectively bounties or auctions for secret resources.
For buyer-initiated transactions, we further describe slight
relaxations to our transparent enclave execution model that
protect against unfair withdrawal of a bounty, a property
missing in the original ZKCP protocol.

To demonstrate the practicality of such knowledge mar-
ketplaces, we design and implement a secure and fair bug-
bounty system on top of SGX and Ethereum [11, 48]. We
describe use cases of our system involving the sale of 0-day
exploits in several real-world applications: (1) A SQL in-
jection vulnerability in a web login form; (2) Disparities in
certificate validation logic in different TLS implementations;
and (3) A generic framework for MITM attacks that encom-
passes a wide range of attacks on TLS handshakes.

Contributions. In summary, our work offers the following
contributions:

(1) We introduce the novel notion of transparent enclave
execution, a model of trusted hardware that captures
unbounded leakage of application data and thus arbi-
trarily powerful side-channel attacks. We additionally
formalize slight relaxations of this strong threat model
that expand the range of applications for which secure
realization of efficient protocols is possible.

(2) We formalize and show how to instantiate Sealed-Glass
Proofs (SGPs), a primitive realizable with transpar-
ent enclaves that encompasses and generalizes verifi-
able computing, commitment schemes, and ZK proofs.

(3) We present protocols that use SGPs coupled with
smart contracts to realize knowledge marketplaces with
strong fairness guarantees. We describe a practical im-
plementation of such a marketplace in the form of a
secure and fair bug-bounty platform built on top of
SGX and Ethereum, and report on experiments with
sample proofs of 0-day exploits.

2. PRELIMINARIES
In this section, we formalize our novel model of trans-

parent enclave execution and discuss its relevance in view
of known side-channel attacks against current trusted hard-
ware platforms. We further describe generic multiparty com-
putation settings in which our model proves useful.

2.1 Transparent Enclave Execution
The model we describe here serves as a relaxation of the

standard model of trusted hardware (e.g., as in SGX), in
which a program’s execution is assumed to be fully con-
cealed from the host. In our model, only a minimal number
of critical functionalities (e.g., sensitive crypto code such
as random number generators or the platform’s attestation
mechanism) are assumed to be kept secret from the host,
while software enclaves are only assumed to provide authen-
ticity and integrity when executing arbitrary user programs.

In the same sense that enclaves serve as a separation be-
tween trusted code and untrusted code, we further distin-
guish between tasks that require confidentiality from tasks
that require only authenticity and integrity. This lets us
side-step many critical and practical concerns about side-
channel attacks arising from the execution of arbitrary code
on platforms such as SGX [49]. Our thesis is that in practice,
only a small number of privileged cryptographic functional-
ities will be successfully concealed from the host, through
the use of well-studied cryptographic side-channel defenses
(e.g., blinding, code randomization, leakage resilience) [51].

We begin by introducing some notation used throughout
this work, borrowed mainly from [38].

P The host/prover equipped with trusted hardware
V Identifier of the verifier

prog A program to run in an enclave
inp, outp The program’s input and output
mem The program’s memory tape
sid, idx Session identifier and Enclave identifier
λ Security parameter

Σ,KGen A Signature Scheme and its key generation algorithm
←$ Uniformly random sampling from the right-hand set

Formal Model.
For our purposes, enclaves are isolated software containers

loaded with particular programs. We modify the idealized
trusted hardware abstraction of Shi et al. [38,50], to account
for our relaxed enclave transparency assumptions. Our hope
is that our new abstraction narrows the gap between the
idealized functionality and real-world implementations of
trusted hardware platforms. Following [38,50], we define an
ideal functionality FTEE (Transparent Enclave Execution)
for a trusted hardware platform used by any number of hosts
P (Figure 1). Our functionality abstracts a software enclave
as a third party trusted for execution integrity and authen-
ticity, but not confidentiality, with respect to P.

In our context, a host (or prover) P wants to prove state-
ments about the execution of some arbitrary program prog to
a remote client (the verifier) V. The program gets access to
a trusted source of randomness, but its execution is entirely
transparent to the host (i.e., prog and all its inputs includ-
ing the consumed randomness are revealed to P). Only the
platform’s attestation mechanism (more specifically a secret
signing key sktee) is assumed to remain hidden from the host.
This model captures a setting in which the execution of ar-
bitrary code in an enclave leaks complete information about
that program’s memory to the host, e.g., through various
side channels. This setting can be generalized by consider-
ing various constrained information leakage models.

As described in Figure 1, P can load a program prog into
an enclave with identifier idx. Upon a “run” call with in-
put inp, prog is executed on inp and fresh randomness r
until it produces an output outp. All the program’s in-
puts and outputs are revealed to P. The “resume” call of
FTEE can capture a setting in which prog is some state-
ful program that relies on P to handle requests for addi-

2

FTEE[P1, . . . ,Pn]

Init:

(pktee, sktee) := KGen(1λ)

publicize pktee

On receive (idx,“install”, prog) from Pi:
store (idx,Pi, prog, ∅) if no (idx,Pi, ·, ·) is stored, else ignore

On receive (idx,“resume”, inp) from Pi:
find a stored (idx,Pi, prog,mem) or return ⊥
r ←$ {0, 1}∗ // The length of r is defined by prog

outp,mem′ := prog(inp, r,mem)

store (idx,Pi, prog,mem′) // overwrite (idx,Pi, . . .)
σ := Σ.Sig(sktee, (prog, outp)) // software attestation

send (idx, outp, σ, r) to Pi

Figure 1: Ideal transparent enclave execution.

tional inputs (potentially from other parties). In most of
this work, it will be sufficient to consider stateless programs
that take in a single input inp and random string r and
compute outp ← prog(inp, r). One situation in which we
will make use of stateful transparent enclaves is in securely
realizing UC commitments in Section 3. Note that the host
can launch multiple enclaves with different idxs running the
same program prog.

Enclave programs can generate attestations on each
“resume” invocation (as is possible in SGX for instance [26]).
An attestation is a digital signature, under a secret key sktee,
of the loaded program (i.e., a digest of the program binary)
and the program’s output outp.

Remarks about Universal Composability.
We prove the security of our protocols in the Universal

Composability (UC) framework [12], to illustrate the strong
security and modularity guarantees offered by our transpar-
ent enclave execution model. More specifically, FTEE is the
“multi-session extension” [16] of an ideal enclave function-
ality (i.e., a functionality that allows for a single enclave
to be launched). If multiple protocols make use of trusted
enclaves, these protocols implicitly share joint state in the
form of the platform’s attestation key sktee. By the JUC
Theorem [16], arbitrarily many independent protocols mak-
ing use of trusted transparent enclaves can be securely com-
posed with each other by making use of FTEE.

We will assume that each party P is identified by a unique
id (simply denoted P) and by a session id sid [12].

The proposed formalism of FTEE currently fails to capture
composition with arbitrary other protocols sharing a global
trusted hardware functionality. Indeed, platforms such as
SGX are becoming globally available, meaning that an arbi-
trary number of protocols may end up using a same shared
state in the form of the platform’s attestation key. Stronger
composability guarantees could be obtained by proving secu-
rity of our protocols in the GUC framework [13], by modeling
FTEE as a single global functionality. Extending the results
in this paper to GUC introduces some technical artifacts,
regarding the modeling of digital signatures in the GUC
framework [?]. We defer a formal discussion of these mat-
ters, and of an appropriate formalism of FTEE as a global
functionality, to a forthcoming manuscript [?].

Relation to Intel’s SGX.
SGX [26] allows a host to create multiple enclaves that run

programs of the host’s choosing. The “resume” call in the
FTEE functionality abstracts two mechanisms of SGX: (1)
A host may call any trusted function exposed by the loaded
program, or (2) A trusted program may explicitly call an
untrusted function outside of the enclave. The latter can be
seen as prog producing some intermediate output to be sent
as a request to P, and awaiting a “resume” callback with
P’s response. SGX enclaves further have access to a trusted
hardware random number generator. The signature scheme
in FTEE models SGX’s quoting enclave that authenticates
and signs reports obtained from running enclaves. Attesta-
tions can be publicly verified by remote clients.

The transparent execution model of FTEE highlights
known vulnerabilities associated with the execution of ar-
bitrary programs in SGX enclaves. Indeed, although SGX
aims at protecting against known software and hardware at-
tacks [26], it has been shown that enclaves may leak consid-
erable information through side channels [17,49]. Our model
thus pessimistically assumes that computations that have
not been explicitly hardened against known side-channel at-
tacks leak their complete execution trace to the host. We
do rely on assumptions of execution integrity and secure at-
testation, however. As we shall see, these two properties
actually suffice in a number of interesting applications.

2.2 Exploiting Resource Asymmetry
Given this model of transparent enclave execution, the

question we seek to answer is: “What kinds of protocols can
we design that are secure in this model”?

Our key observation is that transparent enclaves can
be securely deployed in environments characterized by an
inherent resource asymmetry between mutually untrusted
parties, e.g., in terms of access to knowledge, computational
power, or storage. We consider a generic setting in which
a prover P wants to convince a verifier V that she ran a
program prog on some input inp and obtained output outp.
We describe three scenarios that correspond to different
forms of resource asymmetry between provers and verifiers:

Verifiable Computing (VC): In a VC scheme, P con-
vinces V that she correctly executed prog with input inp and
output outp. The asymmetry lies in the resources committed
by the two players: The benefit of VC is that V can obtain a
correct outp while committing much less resource, e.g., com-
putation, than V. In our setting, a transparent enclave can
be used to consume P’s resources on behalf of V.

Zero-Knowledge (ZK) Proofs: In a ZK proof, P
wants to convince V that there is an input inp such that
prog(inp) = true, without leaking any information about inp.
We are primarily interested here in zero-knowledge proofs of
knowledge, in which P wants to prove that she knows such an
inp. Here, there is a knowledge asymmetry, and an enclave
can be used to check P’s knowledge of inp on V’s behalf.

Sealed-Glass Proofs (SGP): An SGP generalizes VC
and ZK schemes. In many protocols for both schemes, V
provides an ephemeral secret (i.e., a challenge) r to P. As
enclave execution is transparent to the prover in our model,
enclaves cannot be trusted to safeguard r. We can use our
model, however, to ensure that a prover commits a program
and input of her choice before learning r. We describe ap-
plications of SGPs in the construction of a digital knowledge
marketplace, and a fair bug-bounty program in particular.

3

FSGP[P,V, prog]

On receive (sid,“commit”, inpP) from P:

store (sid, inpP)

send (sid,“commit”) to V
ignore subsequent (sid,“commit”,) messages from P

On receive (sid,“proof”, inpV) from V:

find a stored (sid, inpP) or return ⊥
let outp := prog(inpP , inpV)

send (sid, inpV , outp) to P
On receive (sid,“ok”) from P:

send (sid,“proof”, outp) to V

On receive (sid,“open”) from P:

find a stored (sid, inpP) or return ⊥
send (“open”, inpP) to V

Figure 2: Ideal Sealed-Glass Proof System.

3. SEALED-GLASS PROOFS
Suppose you know an exploit against a system with a

database (e.g., a SQL injection attack). You may want not
to share this exploit explicitly, but instead just prove knowl-
edge of it (e.g., to later sell it for a bug bounty). Directly
demonstrating the exploit on the vulnerable system is not an
option, of course, as it might then be learned by the system
owner. Instead, if the system owner provided the full sys-
tem environment, including the database, you could set up
this environment in an enclave and prove the validity of the
exploit by attesting to a valid program trace that violates
the access-control policy (a NIZK proof, in essence). This
approach is not an option either, though, as the database
contents may be private and sensitive (and large).

In most cases, though, it would suffice to prove that your
exploit works for some database. The system-owner could
then instantiate an enclave you control with a “challenge”
environment containing a database with randomly generated
secrets. In a näıve approach to proving the validity of your
exploit, you might input it into the enclave and show that
it can output secrets from the “challenge.” This would work
if an enclave preserved confidentiality, but cannot work in
a transparent execution environment: You could fake an
exploit simply by extracting secrets from the enclave and
embedding them in the exploit. To avoid such cheating by
a prover, we can instead ask the prover to commit to her
exploit before accepting a challenge from the system owner.

The FSGP Functionality.
Sealed-Glass Proofs meet the requirements of the above

scenario, permitting, e.g., a sound, zero-knowledge proof of
knowledge of an exploit. Specified in Figure 2, an SGP may
be viewed as combining commitment schemes with (zero-
knowledge) verifiable computation. A prover commits to
running a known program on her secret input, together with
a challenge input provided by the verifier. The key idea is
that the verifier’s input is revealed only after the prover com-
mits to her own input. The verifier obtains the output of the
computation, and the prover may later share her secret input
with the verifier by opening her commitment. As we show
in Section 5, an SGP with an efficient decommitment mech-
anism can form the basis of a digital knowledge marketplace
with strong guarantees for fair-exchange.

ProtSGP

Prover P: input = (sid, prog, inpP)

choose a fresh idx and send (idx,“install”, p̂rog) to FTEE

send (idx,“resume”, (sid,“commit”,P, inpP)) to FTEE

On receive (idx, (sid,“commit”,P, N), σc,) from FTEE:

send (sid, N, σc) to V
On receive (sid, inpV) from V:

send (idx,“resume”, (sid,“proof”, inpV)) to FTEE

On receive (idx, (sid,“proof”, outp, inpV , N), σp,) from FTEE:

send (sid, outp, σp) to V
// some time later...

send (idx,“resume”, (sid,“open”)) to FTEE

On receive (idx, (sid,“open”, inpP , N), σo,) from FTEE:

send (sid, inpP , σo) to V

Verifier V: input = (sid, prog, inpV)

On receive (sid, N, σc) from P:

assert Σ.Vf(pktee, σc, (p̂rog, (sid,“commit”,P, N)))

send (sid, inpV) to P
On receive (sid, outp, σp) from P:

assert Σ.Vf(pktee, σp, (p̂rog, (sid,“proof”, outp, inpV , N)))

// some time later...

On receive (sid, inpP , σo) from P:

assert Σ.Vf(pktee, σo, (p̂rog, (sid,“open”, inpP , N)))

Figure 3: Protocol realizing FSGP.

Enclave program wrapper p̂rog

On input ((sid,“commit”,P, inpP), r,mem):

parse r as a nonce N of length λ //mem′ = inpP ||N
return (sid,“commit”,P, N) //will be included in σc

On input ((sid,“proof”, inpV), ,mem):

parse mem as inpP ||N

let outp := prog(inpP , inpV) //mem′ = inpP ||N
return (sid,“proof”, outp, inpV , N) //will be included in σp

On input ((sid,“open”), ,mem):

parse mem as inpP ||N
return (sid,“open”, inpP , N) //will be included in σo

Figure 4: The program wrapper used in ProtSGP.

Realizing FSGP in the FTEE-Hybrid Model.
FSGP is similar to the “commit-and-prove” functionality
FCP of Canetti et al. [15]. As they show, FCP can be realized
in the UC framework by combining a standard commitment
scheme with an ideal ZK functionality.

The protocol we propose here makes use of FTEE to di-
rectly realize both UC commitments and ZK proofs. This
holds because FTEE essentially serves as an extractor for the
prover’s secret input. As the confidentiality requirements in
commitments and ZK proofs are inherently one-sided, these
functionalities are natural fits for our transparent enclave
execution model. Interestingly, our results show that our
model of transparent enclave execution adds to a known list
of setup models, including Common Reference Strings [14]
or Tamper Proof Hardware Tokens [29], in which any multi-
party functionality can be securely realized [14,15].

One subtlety is that a commitment scheme inherently re-
quires state to be kept between the commitment and opening
phases. We need a way for an enclave to attest to a veri-
fier that it received an input from the prover, and that this
same input was later used in a computation. As the prover

4

can launch multiple enclaves running the same program, the
verifier needs to be convinced that the same enclave process
is used throughout the protocol. This is easily done in our
model (and in SGX [26]) by having the hardware platform
provide each enclave with a fresh random nonce. In order to
open a commitment to a different value (i.e., break the bind-
ing property), a prover would need to launch two enclaves
with the same nonce, or break the integrity or authenticity
of the enclave execution.

In Figure 3 we give a protocol ProtSGP between a veri-
fier V and a prover P which realizes the FSGP functional-
ity. The prover runs a “wrapper” around prog in an enclave
(Figure 4), that saves P’s committed input, attests to the
correct execution of prog and later reveals the input.

Theorem 1. Assume that the signature scheme Σ is ex-
istentially unforgeable under chosen message attacks (EU-
CMA). Then ProtSGP securely realizes FSGP in the FTEE-
hybrid model, for static adversaries.

Proof. Our proof is similar to that used for the FCP

functionality in [15]. Let A be a static adversary against
ProtSGPin the FTEE-hybrid model. We construct an ideal-
world adversary (the simulator) Sim such that no environ-
ment Z can distinguish between interactions with A and
ProtSGP or with Sim and FSGP.

We consider two cases, where either P or V is corrupted
(i.e., controlled by the adversary), and prove indistin-
guishability via a sequence of hybrids. In the following,
a probability is considered negligible if it is a negligible
function of the security parameter λ.

Corrupted Prover: Consider the following sequence of
hybrids, starting from a real-world execution of ProtSGP.
Hybrid H1 lets Sim emulate FTEE. H2 rules out forgery
attacks on Σ. H3 ensures that a single enclave is used
throughout the protocol and H4 ensures that the prover
correctly forwards information between FTEE and V.

Hybrid H1 proceeds as in the real protocol, except that
Sim emulates FTEE by generating a keypair (pktee, sktee)
for Σ and publishing pktee. When the adversary A wants
to communicate with FTEE, Sim records A’s messages and
faithfully emulates FTEE’s behavior.

As A’s view in H1 is emulated perfectly as in the real
execution, we have that Z cannot distinguish between H1

and the real execution.

Hybrid H2 is the same as H1 except for the following
modifications. If A invoked FTEE with a correct message
(idx,“install”, p̂rog), then for every “resume” call to p̂rog, Sim
records a tuple (msg, σ) where msg is the output of p̂rog and
σ is the produced attestation under sktee. Let Ω denote the
set of all such tuples. Whenever A sends a signature σ to V,
let msg be the message over which V verifies σ in ProtSGP.
Then, if (msg, σ) /∈ Ω, Sim aborts.

We can show that H2 is indistinguishable from H1 by
a reduction to the EU-CMA property of Σ: If A does not
send one of the correct messages in Ω to V, V’s signature
verification would fail with all but negligible probability
— otherwise, Z and A can be leveraged to construct an
adversary that succeeds in a signature forgery.

Hybrid H3 proceeds as in H2, except for the following dif-
ference. When A sends (sid, N, σc) to V, let idx be the iden-
tifier of the enclave running p̂rog that produced N and σc (if

no such idx exists, Sim aborts). Then, if A ever re-invokes
“commit”on enclave idx or ifA sends a message to V contain-
ing a signature σ generated by an enclave with a different
identifier idx′ 6= idx, Sim aborts.

First note that if an idx as defined above doesn’t exist,
then V’s signature verification will fail (i.e., the sid or
nonce sent by A do not match the ones signed by p̂rog).
As FTEE samples new randomness r on every “resume”
invocation, launching multiple enclaves running p̂rog or
re-calling “commit” will produce a new nonce N ′ 6= N
with overwhelming probability, implying that V’s signature
verification for σp or σo will fail. H3 and H2 are thus
indistinguishable.

Hybrid H4 proceeds as in H3 with the following differences.
When A sends (sid, N, σc) to V, Sim records the input inpP
that A sent to FTEE to obtain σc. Sim forwards the verifier’s
input inpV to A. When A sends (sid, outp, σp) to V, Sim
aborts if outp and σp were not obtained from a “resume” call
to p̂rog with input (sid,“proof”, inpV). Sim also aborts if A
sends a message (sid, inp, σo) to V where inp 6= inpP .
H4 and H3 are trivially indistinguishable, as in both of

the described abort cases, V’s signature verification fails.

It remains to argue that H4 is indistinguishable from
the ideal execution: When A sends (sid, N, σc) to V, Sim
sends the recorded inpP to FSGP. When V sends inpV to
FSGP, Sim forwards it to A. When A sends (sid, outp, σp)
to V, Sim sends (sid,“ok”) to FSGP. Finally, when A sends
(sid, inpP , σo) to V, Sim can send (sid,“open”) to FSGP.
Hybrid H4 is thus equivalent to an ideal world execution.

Corrupted Verifier: Simulating the verifier’s view is
considerably simpler, as V only sends a single message in
ProtSGP. We directly describe Sim’s behavior:

• Upon receiving a message (sid,“commit”) from FSGP,
Sim sends a valid message (sid, N, σc) to A, for a ran-
domly chosen nonce N .

• Sim sends the input inpV received from A to FSGP and
obtains outp. Sim then creates a message (sid, outp, σp)
for A, where σp is a valid signature under sktee over
inpV , outp and N .

• Finally, when the commitment to FSGP is opened, Sim
obtains inpP from FSGP and can open the commitment
to A by creating a valid σo over inpP and N .

The simulation of V’s view is perfect: V obtains valid
digital signatures σc, σp, σo, that are linked by a randomly
chosen nonce N . The real-worlds and ideal-world executions
are thus indistinguishable to Z.

For simplicity, the given FSGP functionality only captures
a single instance of a sealed-glass proof. Extending FSGP to
multiple instances requires “independence” of commitments
and proofs [14]. Non-malleability is immediately guaranteed
in our scheme by the security of FTEE’s signature scheme
(i.e., creating a new commitment or proof requires creating
an attestation). Another concern are relay attacks: V could
take an attestation received from P and submit it to another
party before P opens his commitment. In our setting, there
is a very simple solution to this problem, already included
in ProtSGP: simply include the prover’s identity 1 P in the

1Alternatively, we can link the proof to a single verifier by
including V’s identity in the signature.

5

FS&R[P,V]

On receive (sid, prog, inp) from P:

r ←$ {0, 1}∗ // The length of r is defined by prog

outp := prog(inp, r)

send (sid, r, outp) to P
On receive (sid,“ok”) from P:

send (sid, prog, outp) to V

Figure 5: Ideal Seal-and-Randomize functionality.

first attestation produced by FTEE (further attestations are
then also linked to this identity through the nonce N).

Seal and Randomize.
In Section 6, we describe a number of applications of

sealed-glass proofs in which the verifier’s challenge is simply
some random string. For instance, in our motivating exam-
ple, the verifier’s input is an arbitrary“exploit environment”.
We observe that this scheme can be made non-interactive,
by having the trusted hardware platform generate random-
ness on the verifier’s behalf. The corresponding ideal “seal
and randomize” functionality FS&R is shown in Figure 5.

Using FTEE to transform an interactive proof-system
into a non-interactive one is reminiscent of the Fiat-Shamir
transform for Sigma protocols [21]. An important difference
is that FTEE’s source of randomness cannot be assumed to
behave like a random oracle! The reason is that the prover
may launch arbitrarily many enclaves running the same pro-
gram, obtaining fresh randomness for each execution.

In our applications, we work around the prover’s ability to
adaptively restart executions, by applying standard sound-
ness amplification techniques. More precisely, we can ensure
that with all but negligible probability, the verifier obtains
a reasonable estimate on the probability Prr[prog(inpP , r) =
true], for r chosen uniformly at random (see Section 7.2).

4. BEYOND TRANSPARENT EXECUTION
Thus far, we have seen how authenticated and integrity

protected execution enables efficient constructions of sealed-
glass proofs. We show a number of applications of this prim-
itive in Section 5 and Section 6. Notably, combining such
proofs with smart contracts can form the basis of knowledge
marketplaces with strong fair-exchange guarantees.

The assumption at the heart of this work (namely that en-
clave execution of arbitrary programs is fully transparent to
hosts) is intentionally restrictive. Indeed, our primary goal is
to demonstrate the broad usability of trusted hardware that
provides only integrity and authenticity. We will see that
in a number of applications, though, slight relaxations to
this strong assumption may enable more efficient construc-
tions. Here we discuss and motivate two such relaxations to
the transparent enclave model, namely covert-channel resis-
tance and the ability to secure cryptographic keys.

4.1 Covert Channel Resistance
In our setting, a covert channel is a means for the host

to feed data to a (maliciously crafted) program running in
an enclave, other than through exposed interfaces.2 For in-
stance, a program in an SGX enclave could use timing prim-

2The use of covert channels to pass information from the en-
clave to the host is not considered, as the enclave’s execution
is already assumed to be transparent.

itives to “listen” for signals sent by the host [17,26].
As enclaves attest to the code they are running, it is rea-

sonable to assume that covert channels would be detected by
remote verifiers through code inspection or preconditions on
code compilation (e.g., use of a compiler with information-
flow controls). Crucially, we note that it is much easier to
ensure that no data spuriously enters an enclave, than to en-
sure that no data leaves (i.e., leaks from) an enclave. Indeed,
the former goal does not necessarily require an absence of
side-channels, but simply the inability of the enclave code to
listen. For instance, it is easy to check whether the attested
code abuses timing functionalities.

For applications such as the bug-bounty system described
in Section 7, however, the prover’s secret input may itself
be viewed as a piece of code called by a loader program.
(e.g., the input could be a piece of code specifying an ex-
ploit.) This secret code cannot be included in the enclave at
load-time, as it should not be part of the attestation sent to
the verifier. Rather, the prover’s code should be loaded dy-
namically, as possible in an upcoming extension to SGX [25].

In such a setting, covert channels become a real concern,
as the executed code is not visible to the verifier and cannot
be trusted a priori. For instance, the prover could commit
to a piece of code that simply consists of a“shell” that cheats
by listening on a covert channel to an external process that
itself abuses the transparency of the enclave to extract the
verifier’s challenge! For these applications, we thus require
the stronger assumption that either the hardware platform
or the loader program can ensure that the prover’s dynam-
ically loaded code not communicate with the host. This
could be achieved by restricting the programming model for
dynamically loaded code (e.g., by removing access to timing
functionalities), through use of an approved compiler in an
enclave that attests to the validity of its output binary, or
through standard sandboxing techniques.

4.2 Confidential Functionalities
The transparent enclave execution model is highly con-

servative: it assumes complete leakage of a program’s state.
Here we slightly relax this assumption, and consider enclaves
that can be trusted with the confidentiality of select crypto-
graphic primitives. We motivate this “intermediate” model
with three observations. First, many cryptographic primi-
tives have known leakage-resilient constructions that guar-
antee security even under partial data leakage. Second, side-
channel countermeasures are already routinely used in cryp-
tographic implementations, and incur modest overhead [51].
Third, the security of platforms such as SGX inherently de-
pends on the assumption that the platform’s attestation
mechanism remains secure. Extending this assumption to
other cryptographic primitives appears natural.

Costan and Devadas argue that applying leakage protec-
tion solely to cryptographic keys and algorithms is useless
if the aim is data confidentiality [17]. However, they fail to
note that protecting cryptographic material (and only that)
may still have applications for authentication and integrity.

One natural extension to the programming model de-
scribed in Section 2.1 is the efficient setup of an authen-
ticated channel to a remote party. If an enclave knows the
public key of a remote client, an authenticated channel could
in principle be set up using FTEE: The enclave and remote
client could simply digitally sign their messages. Such use of
FTEE would translate in SGX to use of the quoting enclave

6

to sign all messages—an extremely inefficient approach. In-
stead, we might in practice assume the confidentiality of the
key-exchange and MAC primitives in client-side TLS code,
given our three observations above. Under this assumption,
an enclave could authenticate data from a remote web server
over HTTPS, and attest to properties such as the presence or
availability of data. The recently proposed Town Crier sys-
tem [50] makes use of this functionality to feed trustworthy
data to smart contracts, an application we also consider in
the context of a fair bug-bounty marketplace (Section 5.2).

5. KNOWLEDGE MONETIZATION
In Section 3, we described how a trusted hardware plat-

form realizing the FTEE functionality could be used to cre-
ate “sealed” zero-knowledge proofs. We now further explore
how the FSGP and FS&R functionalities can be combined
with cryptocurrencies and smart contract systems to create
marketplaces for digital knowledge.

For clarity, we will make a slight adjustment to our no-
tation: We consider a Seller S that possesses some piece of
knowledge inp and wishes to sell this information to another
party, a Buyer B, for a reward $Reward. With regard to
sealed-glass proofs, the Seller is the prover, and the Buyer
is the verifier. Without loss of generality, we assume the
existence of a program prog such that the inputs of interest
to the Buyer are those for which prog(inp) = true.

While S may prove possession of inp in zero knowledge
without disclosing it to B (using previously described tech-
niques), a problem arises in a direct exchange of inp for $Re-
ward between the two parties: The first mover is at a disad-
vantage. If S reveals inp to B before receiving $Reward, she
risks not being paid. If B pays $Reward before receiving inp,
he risks not obtaining inp. To ensure against such failures
and establish a workable marketplace for inp, it is necessary
to enforce fair exchange. Fair exchange may be achieved
by a trusted party that swaps $Reward and inp honestly
between S and B (or intervenes when a swap fails [34]).

In this section, we show how sealed-glass proofs may be
combined with modern cryptocurrency systems to emulate
such a trusted party. We go further, however, and also show
that while fair exchange is necessary to achieve a robust mar-
ketplace, it is not sufficient. Fair exchange alone does not
ensure fulfillment of a purchase or sale offer. For example,
Buyer B might offer a bug bounty for a piece of software,
causing potential sellers to invest resources in a search for
bugs. B could then subsequently reject any offer she receives
from any Seller S. B can then beneficially learn of the exis-
tence of a bug, or cancel her offer if she finds a bug before a
Seller does, but B thereby causes S to waste resources.

We instead appeal to a stronger notion of honest behav-
ior, fair exchange with guaranteed fulfillment. We formally
define this notion below, and show how to use SGPs and
smart contracts to achieve it. This forms the basis for a
secure marketplace of digital resources. We further detail
one particular application of such a marketplace, a fair and
automated bug-bounty system.

5.1 The ZKCP Protocol
In the context of Bitcoin, Maxwell proposed the follow-

ing simple protocol for fair exchange, referred to as “Zero-
Knowledge Contingent Payment” (ZKCP) [33].

Let prog(inp) → {true, false} be a program that outputs
true iff inp satisfies B’s requirements (e.g., in a bug-bounty

system, prog might define an execution environment for a
piece of software and inp an exploit). Let H be a cryp-
tographic hash function and Enc a symmetric encryption
scheme. Finally, let hashlock(h,P, $Reward) denote a hash-
locked transaction, as supported in Bitcoin: On input k such
that h = H(k), the transaction sends $Reward to party P.

The ZKCP protocol—whose original specification we gen-
eralize here as a seller-initiated protocol—is as follows:

(1) Publish predicate: B publishes prog, inviting sales offers
of satisfying inputs inp.

(2) Create offer: S constructs and sends B a tuple offer =
(π, h, c), where π is a non-interactive ZK proof that
there exists a bitstring inp such that prog(inp) = true,
c = Enck(inp), and h = H(k).

(3) Post conditional transaction: B posts transaction
HL = hashlock(h,S, $Reward) (possibly with a time-
out to claim back $Reward if the seller aborts).

(4) Claim reward: S sends k to HL, obtaining $Reward.

(5) Recover inp: B decrypts c using k.

Relationship to Sealed-Glass Proofs.
The ZKCP protocol can be seen as a particular case of a

sealed-glass proof system, in which the verifier provides no
input. It is actually a special form of a Commit-and-Prove
functionality [15], wherein the seller provides a commitment
to inp and proves something about inp in ZK. 3

The reasons that the ZKCP makes use of this form of
“commitment” to inp are two-fold:

(1) The input inp may be large, meaning that it would be
impractical and expensive to send it to the blockchain.
In the ZKCP protocol, c can be exchanged off-chain,
so that the opening to the commitment (k, or k||r as
described above) that is sent to the blockchain is small.

(2) Bitcoin transactions have limited expressiveness. Pay-
ments contingent on more complex operations than a
simple hash are not supported.

Restriction (2) can be lifted by using more expressive
smart contracts [42], but exchanging inp off-chain may still
remain preferable for efficiency reasons.

Marketplace Properties Lacking in ZKCP.
The ZKCP protocol is remarkably simple and may suffice

for a variety of scenarios of interest. But it fails to achieve
three key properties of a practical knowledge marketplace:

(1) Performance: For many predicates prog of interest,
construction of a ZK argument or proof can be pro-
hibitively expensive. Maxwell demonstrated his ZKCP
protocol [8,33] using a ZK-SNARK for a trivial appli-
cation (sale of a Sudoku puzzle solution). Practical
knowledge marketplaces will benefit from support for
far more complex predicates.

(2) Denial-of-service (DoS) resistance: In ZKCP, while the
hash-lock HL is valid, $Reward is committed in HL

3A minor caveat is that (c, h) is not a secure (hiding) com-
mitment to inp in the formal sense: The security of the
ZKCP protocol relies on the non-standard assumption that
Enck is secure if H(k) is published. This issue could easily
be fixed, while maintaining compatibility with Bitcoin, by
setting h = H(k||r) for a random r←$ {0, 1}λ, yielding a
secure commitment to inp in the random-oracle model.

7

and unavailable for other purposes. A malicious S can
repeatedly send offers and fail to claim the reward, ty-
ing up B’s monetary resources. A workable knowledge
marketplace should not permit such abuses.

(3) Guaranteed fulfillment: In ZKCP, B can abort after
receiving an offer from S, i.e., fail to execute step 3.
As noted above, this diminishes the value of the mar-
ketplace, as a potential Seller S has no guarantee that
B will pay a reward. A knowledge marketplace should
instead guarantee fulfillment: B should pay $Reward
to the first valid seller emerging before a deadline.

Our constructions of ZK proofs using trusted hardware
platforms can address limitation (1), which is the most ob-
vious barrier to wide-adoption of a knowledge marketplace.
Thus, our first contribution is to show how our sealed-glass
proof model can be used to replace expensive cryptographic
ZK proofs in the ZKCP protocol by more efficient trusted-
hardware-based proofs. We further describe how limitations
(2) and (3) can be addressed using smart contracts.

5.2 Secure and Fair Knowledge Marketplaces
We first present the ideal functionality FKM that we seek

to achieve in a trusted hardware based knowledge market-
place (Figure 6). We define this functionality for a buyer-
initiated scheme with multiple sellers; that for a seller-
initiated marketplace is analogous.4

The FKM functionality presented here extends the non-
interactive variant of SGPs (i.e., seal-and-randomize proofs)
with an additional fair-exchange step. For the sake of clar-
ity, we do not consider the general interactive variant here.
To extend SGPs with fair-exchange, FKM would require an
extra “collection phase”, where all sellers commit to their
inputs, before the buyer reveals her challenge. FKM keeps
an internal state st. On transaction initialization, a timer
starts in the background and activates after a given timeout.

Observe that while simple, FKM accomplishes more than
simple fair exchange, achieving all three key properties given
above. With regard to DoS resistance, note that in FKM,
the buyer needs sets up a single contract and reward, in
order to accept offers from all potential sellers. In the ZKCP
protocol, each new offer from a seller Si would require the
buyer to set up a new hash-lock with its own reward.

Smart Contract Realization.
Figure 7 shows a smart contract (as available in Ethereum

for instance [11,48]) that leverages the FS&R functionality to
realize a buyer-initiated knowledge marketplace. Note that
any data sent to a smart contract is inherently public (i.e., it
is visible on a public blockchain). We thus cannot rely on
the smart contract to run prog over the seller’s private input.

We first consider that the seller’s input is small enough,
so that the ciphertext may be sent directly to the smart
contract. As we will see, guaranteed fulfillment can then be
achieved under no extra assumptions. Later on, we give a
more efficient protocol, in which the ciphertext is exchanged
off-chain, as in the ZKCP protocol. We discuss different

4In a seller-initiated transaction, the seller proves knowledge
of an inp such that prog(inp) = true, and prog is made public.
Potentially multiple buyers may then bid for a reward. After
a fixed time, the highest bidder receives inp and the seller
receives the winning reward.

FKM[B,S1, . . . ,Sn]

On receive (sid,“init”, prog, $Reward, timeout) from B:

if st 6= created then

store (prog, $Reward, timeout)

send (sid, prog, $Reward) to all Si
set st := created, T := 0

On receive (sid,“sell”, inpSi) from some Si:
if st = created then

find stored (prog, $Reward, timeout)

r ←$ {0, 1}∗

send (sid, r) to Si
if prog(inpSi , r) = true then

store (Si,“success”) // Si still has to claim $Reward

On receive (sid,“claim”) from some Si:
if st = created and (Si,“success”) is stored then

find stored (prog, $Reward, timeout)

send (sid, $Reward) to Si
send (sid, inpSi) to B
set st := claimed

Timer:

if (st = created) and (current time T > timeout) then

send $Reward to B
set st := aborted

Figure 6: Ideal buyer-initiated transaction in a knowl-
edge marketplace.

techniques to maintain property (3) in such a setting.
The KM-Buyer contract first receives a program wrapper

description (see Figure 8),5 a public key, a reward and a
timeout value from the buyer. Sellers then have until the
timeout to provide valid inputs, using an enclave program
(Figure 8) realizing the FS&R functionality from Section 3.
The buyer is assured that she can reclaim her reward if no
timely seller appears, and the (honest) sellers that one of
them will obtain the reward if they provide valid inputs.

Theorem 2. Assume that the signature scheme Σ is exis-
tentially unforgeable under chosen message attacks and that
Enc is IND-CPA secure. Then KM-Buyer securely realizes
FKM in the FTEE-hybrid model, for static adversaries.

Sketch of Proof The proof of this theorem is similar to
that of Theorem 1. We describe the main differences below.
Note that the timer functionality is the same in the real and
ideal worlds and thus need not be simulated.

• As we are considering the FS&R functionality here, the
commitment and opening stages of FSGP are omitted.
The simulator Sim simply records a corrupted seller’s
input inpSi when Si sends it to the program p̂rog run-
ning in FTEE. Sim then sends inpSi to FKM and ob-
tains the randomness r to use in the emulation of p̂rog.
As in Theorem 1, a successful distinguisher for the real
and ideal worlds implies a forgery attack on Σ.

• Simulating the view of the buyer is again straight-
forward: when Si claims the reward from FKM, Sim
obtains inpSi , encrypts it under pkB, and generates a
valid attestation σ to be sent to KM-Buyer.

5We assume that a hash digest is produced when a program
is loaded into an enclave, and that this digest is then in-
cluded in the attestation σ (as in SGX [26]). Sending p̂rog
to a contract means sending this hash digest.

8

Contract KM-Buyer

On receive (sid,“init”, $Reward, p̂rog, timeout, pkB) from B:

assert st = ⊥
assert bank[B] ≥ $Reward

bank[B] := bank[B]− $Reward

set st := created, T := 0

On receive (sid,“sell”, c, σ) from some Si:
assert st = created

assert Σ.Vf(pktee, σ, (p̂rog, (sid,Si, pkB, c)))
bank[Si] := bank[Si] + $Reward

set st := claimed

Timer:

if (st = created) and (current time T > timeout) then

bank[B] := bank[B] + $Reward //no seller found

set st := aborted

Figure 7: Smart contract realizing FKM. Messages sent
to the contract are stored and are publicly visible.

Enclave program wrapper p̂rog

On input ((sid,Si, inpS , pkB), r,mem):

assert prog(inpS , r) = true

let c := EncpkB (inpS)

return (sid,Si, pkB, c) // include the seller’s identity in σ

Figure 8: Program wrapper used in KM-Buyer.

• Another difference is that we are considering multiple
sellers (provers) here. As mentioned in Section 3,
binding an attestation to the legitimate seller’s
identity ensures that attestations are not transferable,
i.e., one seller cannot claim the reward for a proof
produced by another seller. If an honest seller claims
the reward of an honest buyer, the view of a malicious
seller can be simulated by replacing the ciphertext c
by a random value. As Enc is IND-CPA secure, the
seller’s view is indistinguishable from a real execution.

Implementation Considerations.
The above scheme can in principle be implemented

today using trusted hardware platforms and smart contract
systems such as SGX [26] and Ethereum [11, 48]. However,
some extensions to our threat model and to current smart
contracts may be required to achieve the most efficient
implementations. We describe some of these below.

Rushing Attacks: For simplicity, Figure 6 omits adver-
sarial delaying and re-ordering of messages sent to a con-
tract. See [30] for a formal modeling of blockchains, and of
these attacks in particular. In practice, an adversaryA capa-
ble of temporarily delaying messages could launch a rushing
attack : If A sees a message (c, σ) before the smart contract
acknowledges it, A could claim it as its own and send it to
the smart contract to obtain the reward. Furthermore, if
A corrupts the buyer, it can decrypt c to obtain the seller’s
input and send this input to the contract to “sell” it to itself.

These attacks are easily prevented by (1) including the
seller’s identity in the enclave’s attestation (see Section 3
and Figure 8); and (2) either having all sellers first com-
mit to their value [27], or even more simply by requiring
that the attestation generation process takes longer than the
blockchain’s transaction latency. Delaying attestation gen-
eration is easily done in platforms such as SGX, in which en-

claves have access to a trusted source of elapsed time [25,26].
Attestation Verification: Verifying attestations di-

rectly in a smart contract may be expensive. Ethereum,
for instance, today lacks native support for the proprietary
EPID signature scheme used in SGX [9], although it may
eventually be added [50]. An alternative approach is to have
SGX enclaves directly produce signatures under a private
key associated with an Ethereum wallet [50]. In our model,
this would require the assumption that enclaves can use a
private signing key (other than the platform’s main attesta-
tion key), without leaking it to the host (see Section 4.2).

Large Inputs: If the seller’s input inpS is large, sending
the ciphertext c = EncpkB (inpS) to the blockchain may itself
be prohibitively inefficient or monetarily expensive. One
way of maintaining guaranteed fulfillment, while allowing
some exchanges to occur off-chain as in the ZKCP protocol,
is to make use of trusted data feeds [11, 48]. The idea is to
have a trusted external “notary” attest to the smart contract
that the seller followed the protocol honestly.

Concretely, a seller posts her ciphertext (under the buyer’s
public key) to a public archive, and asks a trusted notary
(e.g., using Virtual Notary [46] or TLSNotary [45]) to at-
test to the availability and validity of this ciphertext. The
notary’s attestation could be fed into a smart contract to
vouch for the seller’s honest behavior and the availability of
the ciphertext, assuming data persistence in the archive.

In the relaxed execution model with confidential function-
alities explored in Section 4.2, we might instead assume that
enclaves can generate and safeguard keys for select crypto-
graphic primitives, such as those used for the handshake and
record protocols in TLS . The seller’s enclave could then at-
test directly to the availability and validity of the seller’s
ciphertext in an HTTPS-enabled public archive (see [50]).

6. APPLICATIONS
In this section, we describe a number of possible applica-

tions for the protocols described in Section 3 and Section 5.

6.1 Verifiable Computing
In a Verifiable Computing (VC) scheme, one party (usu-

ally called the client) outsources a non-confidential compu-
tation to another (the server), and receives proof that the
computation was performed correctly. This is one of the
simplest possible applications of the FTEE functionality, and
serves as a powerful example of a setting in which execution
confidentiality is typically not a requirement.6

It is easy to see that the sealed-glass proof functionality
FSGP is a generalization of a VC scheme. Indeed, disre-
garding the “commit” and “open” interfaces, the “compute”
functionality of FSGP serves to convince the client of the cor-
rect execution of some program prog over both the server’s
and client’s inputs (the server’s input may be null).

Although viable VC schemes (i.e., with verification com-
plexity lower than evaluation complexity) can be based on
purely cryptographic assumptions [6, 35], trusted-hardware
based schemes could be practical today, and for a much
larger range of applications. For instance, large-scale vol-
unteer computing projects such as SETI@home [1] could use
SGX-based VC schemes to efficiently validate computations
performed by individual untrusted workers.

6Confidential outsourced computing schemes based on SGX
have been proposed in [19,36,38].

9

6.2 Zero-Knowledge Proofs
Like VC schemes, Zero-Knowledge (ZK) proofs are a spe-

cial case of the sealed-glass proof functionality FSGP. If
we omit the input provided by the verifier (and thus the
need for a commitment and opening phase), the function-
ality reduces to a non-interactive proof for the statement
prog(inp) = outp, where inp is the prover’s secret “witness”,
and the verifier only learns prog and outp.7

More formally, if L is a language in NP, then there is
an efficient program progL such that for any x, there exists
a witness y such that progL(x, y) = true iff x ∈ L. Load-
ing progL into an enclave and obtaining an attestation over
(progL, x) serves as a proof of knowledge of y (the knowledge
extractor is simply FTEE). The ZK property is trivial.

A simple and widely applicable use-case of ZK proofs
based on trusted-hardware is in proving knowledge of a hash
preimage. As an example, consider the verification of an
API key. A user with SGX-enabled hardware can produce
an attestation to the fact that she holds an API key k that
hashes to some value h = H(k). The security advantages of
this scheme are two-fold: (1) the server only needs to store
H(k) and is thus less vulnerable to key theft in case of a
security breach; and (2) the key k required for a successful
authentication never leaves the client’s machine, and thus
can’t be intercepted in a network attack.

6.3 Knowledge Marketplaces
We consider two specific applications of the knowledge

marketplace functionality presented in Section 5, namely
machine learning competitions and bug bounties. Of course,
many other scenarios considered in the literature on ZK
proofs and zero-knowledge contingent payments could also
be easily instantiated in our model. For instance, exam-
ples of ZK proofs for the sale of Sudoku solutions [8], or of
factorizations of RSA keys [3] have been proposed.

The applications we consider here are much more general
and complex, and it is not immediately evident how to con-
struct traditional ZK proofs for them. While possible in the-
ory [37], the derived proof systems are typically prohibitively
inefficient. In contrast, a trusted hardware platform such as
SGX can attest to the execution of arbitrary functions, with
minimal overhead [38]. As such, the applications described
here demonstrate a wide gap between traditional ZK proofs
and trusted-hardware-based approaches in their respective
practicality and range of applicability today.

Machine Learning (ML) Competitions.
Consider a party that wishes to buy an ML model that

performs well for a problem of interest. The party organizes
a competition and provides a training set to competitors,
while holding out a test set. The competitor showing the
best results on this test set exchanges her model for a reward.

In typical ML competitions such as those organized by
Kaggle [28], the organizer discloses an unlabeled test set,
and each participant provides the labels computed by her
model. The organizer announces the identity of the win-
ning participant, and exchanges the winning model for the
reward. Under Kaggle’s terms of service, an organizer must
warrant that she will pay a reward to the winning party.

A knowledge marketplace that extends the sealed-glass-

7Note that proofs in ProtSGP are non transferable as
FTEE’s attestation includes the prover’s identity

proof functionality in Figure 2 enables a ML competition
with fair exchange and guaranteed fulfillment. The protocol
proceeds in multiple rounds, with appropriate timeouts. The
organizer first releases a training set, and all participants
commit to a trained model. The organizer then reveals the
(labeled) test set and all participants use trusted enclaves
to attest to their model’s performance. A smart contract
can verify each participant’s attestation, identify the winner,
and fairly exchange the winning model for the reward.

Bug Bounties.
As described in Section 3, a natural motivation for sealed-

glass proofs is in the sale of 0-day software exploits. The in-
stantiation of a fair bug-bounty system, which we describe in
more detail in Section 7, follows naturally from the knowl-
edge marketplace primitive proposed in Section 5. That sys-
tem is buyer-initiated, meaning that a buyer solicits exploits.

Although we do not explore them in detail here, seller-
initiated transactions are also possible. In such transac-
tions, a seller proposes a testing environment together with
an exploit attestation. A smart contract is used to set up
an open ascending price auction between interested buyers.
The seller then encrypts the exploit with the highest bid-
der’s public key and the smart contract fairly exchanges the
ciphertext for the highest bid.

7. A FAIR BUG BOUNTY MARKETPLACE
We propose the implementation of a generic bug-bounty

marketplace, built on top of SGX [26] and Ethereum [11,48].
We first describe features of the SGX programming model
which define the application scope of our system. We then
present our system’s design and analyze three examples of
bug bounties that we designed and constructed.

7.1 The SGX Programming Model
Intel’s SGX software development kit lets developers write

enclave programs using native C and C++ [26]. A subset of
the C and C++ standard libraries are available inside an
enclave, with the notable exception of functions that rely
on interaction with the (untrusted) host (i.e., system calls).
SGX provides special trusted APIs for random number gen-
eration, thread synchronization and exception handling. Ex-
plicit interaction with the host occurs by means of an “out-
side call” (OCall) to an untrusted function outside the en-
clave. Once the function call completes, control is returned
to the enclave and the function output is made available.

Because of such constraints, porting arbitrary software
into an enclave may prove difficult. One solution would be
to make use of a shielded execution system such as Haven [5],
that aims at running unmodified legacy code in SGX. How-
ever, we note that the generality provided by such solutions
also comes at a cost, especially in the context of a bug
bounty system: As the complexity of the execution environ-
ment grows, so does the probability that it itself contains
exploitable bugs. In such a case, a seller may be able to
convince a buyer of a bug found in an application, when the
seller actually exploited a flaw in the execution environment.

In our experiments (see Section 7.3), we focus on demon-
strating bug bounties for applications that can be ported to
SGX with only minimal modifications. These include “stan-
dalone” programs (e.g., many crypto libraries), or modular
applications designed to be portable to various embedded
systems. For instance, we easily port a SQL library (SQlite)

10

and a TLS library (mbedTLS) into SGX enclaves by dis-
abling untrusted OS features (networking, I/O, localization)
and mapping others (dynamic memory allocation, random-
ness generation) to trusted SGX implementations.

7.2 System Design
As some features required to efficiently instantiate the

KM-Buyer contract in Figure 7 are not yet available in
Ethereum (see Section 5.2), we built a working bug-bounty
platform on top of a marketplace that builds upon the origi-
nal ZKCP protocol, but does not provide all the guarantees
of KM-Buyer. Our goal here is to demonstrate a working
system that extends the functionality and greatly improves
the efficiency of the ZKCP protocol.

More specifically, we forgo the desired guaranteed fulfill-
ment property for now, and consider an interactive proto-
col in which sellers Si use trusted hardware to implement a
“seal-and-randomize” proof of exploit. The enclave attests
to the correct encryption of this exploit under some sym-
metric key k, as well as to a commitment com to k, both of
which are sent off-chain to the buyer. An honest buyer sends
(Si, com) to a smart contract holding the reward, which Si
can claim by revealing k. Note that this simplified protocol
achieves the performance and DoS resistance properties we
previously mentioned as limitations of the ZKCP protocol.

The Bounty Wrapper.
We built a generic exploit program wrapper similar to the

abstraction in Figure 8. This wrapper exposes an interface
that the seller uses to attest to the correct execution of her
exploit, as well as to the commitment of the symmetric key
used to encrypt the exploit. The actual exploit environment
is defined in a separate trusted statically-linked library.

The wrapper places no restrictions on the bounty program
other than those imposed by the SGX programming model
described previously. It is up to the buyer to verify that this
program is “sound”, meaning that it correctly classifies the
seller’s exploit as valid or invalid. For instance, the bounty
program may interact with the host through OCalls, but nei-
ther the SGX execution environment nor the program wrap-
per can give any guarantees as to the host’s responses (or
that the host responds at all). The randomness required by
the bounty program is made available dynamically through
calls to SGX’s random number generator.

Soundness Amplification.
In the seal-and-randomize functionality FS&R (Figure 5),

the seller provides some input inp and the enclave then com-
putes prog(inp, r) where r is a fresh random string (of a
length specified by prog). We assume here that the enclave
produces an attestation if prog(inp, r) = true, and aborts
otherwise. Because the seller controls the enclave’s execu-
tion environment, she may arbitrarily restart this execution
and thus force the enclave to sample a new random string.

Assuming the seller is polynomially bounded (a require-
ment for the security of SGX’s attestation mechanism), the
seller obtains an attestation with non-negligible probability
only if Prr[prog(inp, r) = true] is non-negligible, where r is
sampled uniformly at random. Stronger guarantees for the
buyer can be obtained using traditional soundness amplifi-
cation techniques, as described below.

Let p := Prr[prog(inp, r) = true]. Then, the FS&R func-
tionality can be extended to compute an estimate p̃ of p,

Application “Glue” LOC Time (ms) Proof Size (B)
Wrapper 365 37 1152

SQL Injection +166 22908 +166
X.509 Validation +195 42 +220

Table 1: Complexity and performance of exploit
proofs. Lines of code provided are for the “glue” code re-
quired to set up an exploit environment (excluding the vul-
nerable library) and attest to the result. Timings are for
exploit execution and attestation generation. The proof size
comprises SGX’s attestation as well as the encrypted exploit.

by computing prog(inp, ·) for n independent values r. If the
seller launches a new enclave running prog, n fresh indepen-
dent random strings are sampled. By a standard Hoeffding
bound [23], the probability that p̃ and p differ by more than a
constant additive factor δ is negligible if we choose n = Ω(λ).
The buyer thus specifies a target success probability t and
an allowed error δ. The enclave then computes p̃ and pro-
duces an attestation iff p̃ ≥ t. The buyer is thus guaranteed
that exploits with true success probability lower than t − δ
will be accepted with only negligible probability.

7.3 Bug Bounty Examples
We now present three examples of bug bounties that can

be performed in our system. The first two correspond to ex-
ploits specified by a piece of data, and we have successfully
implemented these in the current SGX platform. Table 1
summarizes the code complexity and performance results for
these exploit proofs. The third example describes a general
framework for proving exploits defined as code implement-
ing a MITM attack. We present preliminary evidence of
how to securely prove knowledge of such exploits on top
of SGX2 [25] under the additional assumption of covert-
channel resistance as motivated in Section 4.1.

SQL Injections in Login Forms.
We built a simple web login form that takes as input an

HTTP Post message, extracts a username and password,
and matches these against a user database. The HTTP pro-
cessing makes use of Facebook’s Proxygen library [20] and
the underlying database is built on SQLite [40]. Our appli-
cation is vulnerable to a simple SQL Injection attack [43],
as it directly copies the user’s credentials into a SQL state-
ment. Although SQL Injections are highly recognizable at-
tacks with simple and efficient countermeasures, they remain
one of the primary reported exploits in industry [43].

This setting illustrates the usage of the seal-and-
randomize functionality: If the program populates the user
database in a pre-determined manner, the seller could sim-
ply provide a valid login by choosing one of the entries in the
database. The buyer could also hardcode hashed and salted
random passwords into the program, but this doesn’t fully
prevent the seller from running an (expensive) offline attack
to recover valid credentials and sell a (worthless) exploit.

In our system, the seller provides her exploit to a running
enclave, which then generates random user credentials to
populate the database with. This ensures that the seller’s
exploit is chosen independently from the random environ-
ment in which it will be tested. As the seller’s exploit is
very small (less than 256 bytes), sending the ciphertext di-
rectly to a smart contract appears reasonable.

8Timing is for 10,000 independent runs. The estimation
error |p− p̃| is larger than 5% with probability at most 2−80.

11

Differential Testing of Certificate Validation Logic.
A generic way of proving that an implementation of a

specific standard contains a bug is through differential test-
ing: one proves that some input produces conflicting results
on different implementations of the same standard. This
technique has been successfully applied to the detection of
certificate verification bugs in various TLS libraries [10]. By
crafting randomly “mutated” X.509 certificates, the authors
found that the produced frankencerts could reveal serious
flaws in the certificate validation logic.

Here, we propose to use the same differential testing tech-
nique (for a known malicious certificate) to reveal a bug
in a library. The seller loads a program with two different
TLS certificate verification modules (we experimented with
OpenSSL [44] and mbedTLS [2]) and asks the enclave to at-
test that one of the modules accepted the certificate while
the other rejected it. In the vast majority of cases, this
points to a bug in the “accepting” library [10].

One issue we encountered is that SGX enclaves do not
have access to a trusted source of (absolute) time, which
is required in the certificate validation process (incidentally,
many bugs discovered in [10] were related to incorrect verifi-
cation of a certificate’s validity period). However, we noticed
that for the differential testing process described here, it is
sufficient that the time used by both libraries is consistent.
We thus allow the seller to provide the“current time”as part
of the exploit, and then attest that the two libraries behave
differently for the certificate and time provided by the host.

As an example of an exploit proof, we consider a bug dis-
covered in [10]: in an earlier version of mbedTLS, certificates
would be accepted even if not yet valid. We craft an exploit
consisting of a standard self-signed X.509 certificate and a
“current time” set in the past. The certificate is accepted by
the unpatched version of mbedTLS but correctly rejected by
OpenSSL, thus proving knowledge of a bug.

MITM Attacks on TLS Handshakes.
Consider a generic adversary that can see, delay, drop or

otherwise alter messages sent by two parties over a network.
Such man-in-the-middle (MITM) attacks encompass a large
range of attacks on HTTPS connections. We consider here
a prominent application to TLS handshakes.

To prove knowledge of such exploits, we require a secure
and trusted “simulation environment”. To this end, we set
up an enclave running honest server and client applications
(that know each others’ certificates) that will perform a TLS
handshake over an adversarial network. The goal of the
prover is to show her attack is successful in extracting some
secret (e.g., a key) from the honest applications.

If we were to assume that the enclave environment guar-
antees confidentiality, this could easily be achieved: The
adversarial network would be simulated by having each mes-
sage between client and server be mediated by the host (the
prover). If the prover can provide a secret at the end of
this interaction, the transcript of all messages sent between
client and server constitutes a proof of exploit.

In our transparent model, things are a little trickier. As
the client’s and server’s secrets are expected to irremedia-
bly leak to the prover through side-channels, we need the
prover to commit to her exploit code before the secrets are
generated. This is achieved by loading the prover’s exploit
code into a separate enclave. The network is then simulated
by forwarding all messages to this “adversary enclave”. This

will become possible with Intel’s upcoming SGX2 proces-
sors [25], which will support dynamic memory management.
One could then use a trusted loader enclave to dynamically
load and run the prover’s exploit code.

For the exploit to be “meaningful”, however, we still need
to ensure that the “untrusted” exploit code, once loaded,
only receives information through well-specified interfaces.
In light of our discussion in Section 4.1, the concern could
arise that the prover transmits information to her exploit
code over covert channels. As we argued, this can be pre-
vented by restricting functionalities available to dynamically
loaded code using well-known sandboxing techniques.

8. RELATED WORK
The use of trusted hardware to ensure integrity, authen-

ticity, and confidentiality of computation dates back to plat-
forms such as XOM [31] and Aegis [41]. These secure pro-
cessors, and their successors such as SGX [26], aim to create
secure enclaves isolated from the host’s software stack.

Attacks against these platforms have primarily focused on
breaking confidentiality, by exploiting data leakage from var-
ious side channels [17, 38, 49]. However, to the best of our
knowledge, no successful attacks have been demonstrated
against execution integrity or authenticity. Previous works
either dismiss side-channel attacks as out of scope [5,19,36],
or suggest more defensive architectures [18,22,32]. Our work
appears to be the first to explicitly forgo the goal of execu-
tion confidentiality, and to explore the range of applications
that remain achievable under these weaker assumptions.

In parallel, verifiable computing (whether in ZK or not)
has also been an active field of study in the cryptogra-
phy community. Despite encouraging recent improvements,
primitives such as SK-SNARKs [6,35] or garbled circuits [24]
remain impractical for the vast majority of applications.

Finally, a number of recent works have shown how to use
cryptocurrencies to incentivize fair behavior in multiparty
computations, through threats of monetary penalties [4, 7].
The use of Bitcoin transactions and smart contracts for the
sale of information has been considered in [3, 27,33].

9. CONCLUSION
We have introduced Sealed-Glass Proofs (SGPs), a novel

cryptographic functionality based on transparent enclaves
trusted for execution authenticity and integrity, but not con-
fidentiality. When realized on top of Intel’s SGX, SGPs
sidestep many concerns about data leakage in the presence
of side-channels. We have shown that SGPs generalize many
interesting functionalities in the UC framework, inducing
verifiable computing, commitment schemes, and ZK proofs.

We have described how SGPs combined with smart con-
tracts can create knowledge marketplaces with previously
unachieved combinations of efficiency, denial-of-service re-
sistance, fair exchange, and fulfillment guarantees. As an
application, we have implemented an end-to-end bug-bounty
system leveraging Intel’s SGX and the Ethereum blockchain.
We have used our system to prove knowledge of a SQL-
Injection bug in a sample web login form and inconsistencies
in certificate validation logic between two TLS libraries.

Finally, we have proposed future paths to even broader
and more efficient constructions, either through moderate
relaxations to the transparent enclave model, or through ex-
tensions to smart contract and trusted hardware platforms.

12

10. REFERENCES
[1] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky,

and D. Werthimer. Seti@home: An experiment in
public-resource computing. CACM, 45(11):56–61, Nov.
2002.

[2] ARM Limited. mbedTLS. https://tls.mbed.org/.

[3] W. Banasik, S. Dziembowski, and D. Malinowski.
Efficient zero-knowledge contingent payments in
cryptocurrencies without scripts.
https://eprint.iacr.org/2016/451, 2016.

[4] S. Barber, X. Boyen, E. Shi, and E. Uzun. Bitter to
better—how to make Bitcoin a better currency. In
FC’12, pages 399–414. Springer, 2012.

[5] A. Baumann, M. Peinado, and G. Hunt. Shielding
applications from an untrusted cloud with Haven.
TOCS, 33(3):8, 2015.

[6] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and
M. Virza. Snarks for C: Verifying program executions
succinctly and in zero knowledge. In CRYPTO’13,
pages 90–108. Springer, 2013.

[7] I. Bentov and R. Kumaresan. How to use bitcoin to
design fair protocols. In CRYPTO’14, pages 421–439.
Springer, 2014.

[8] S. Bowe. pay-to-sudoku. https://z.cash/zkcp3.pdf.

[9] E. Brickell and J. Li. Enhanced privacy id from
bilinear pairing. https://eprint.iacr.org/2009/095,
2009.

[10] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and
V. Shmatikov. Using frankencerts for automated
adversarial testing of certificate validation in SSL/TLS
implementations. In IEEE SP’14, pages 114–129.
IEEE, 2014.

[11] V. Buterin. Ethereum: A next-generation smart
contract and decentralized application platform.

[12] R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In FOCS’01,
pages 136–145. IEEE, 2001.

[13] R. Canetti, Y. Dodis, R. Pass, and S. Walfish.
Universally composable security with global setup. In
TCC’07, pages 61–85. Springer, 2007.

[14] R. Canetti and M. Fischlin. Universally composable
commitments. In CRYPTO’01, pages 19–40. Springer,
2001.

[15] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai.
Universally composable two-party and multi-party
secure computation. In STOC’02, pages 494–503.
ACM, 2002.

[16] R. Canetti and T. Rabin. Universal composition with
joint state. In CRYPTO’03, pages 265–281. Springer,
2003.

[17] V. Costan and S. Devadas. Intel SGX explained.
https://eprint.iacr.org/2016/086, 2016.

[18] V. Costan, I. Lebedev, and S. Devadas. Sanctum:
Minimal hardware extensions for strong software
isolation. http://eprint.iacr.org/2015/564, 2015.

[19] T. T. A. Dinh, P. Saxena, E.-C. Chang, B. C. Ooi,
and C. Zhang. M2R: Enabling stronger privacy in
MapReduce computation. In USENIX Security’15,
pages 447–462, 2015.

[20] Facebook. Proxygen.
https://github.com/facebook/proxygen.

[21] A. Fiat and A. Shamir. How to prove yourself:
Practical solutions to identification and signature
problems. In CRYPTO’86, pages 186–194. Springer,
1986.

[22] C. W. Fletcher, M. v. Dijk, and S. Devadas. A secure
processor architecture for encrypted computation on
untrusted programs. In STC’12, pages 3–8. ACM,
2012.

[23] W. Hoeffding. Probability inequalities for sums of
bounded random variables. JASA, 58(301):13–30,
1963.

[24] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster
secure two-party computation using garbled circuits.
In USENIX Security’11, volume 201, 2011.

[25] Intel Corp. Intel R© Software Guard Extensions
Programming Reference. Reference no. 329298-002,
October 2014.

[26] Intel Corp. Intel R© Software Guard Extensions
Evaluation SDK.
https://software.intel.com/en-us/sgx-sdk, 2015.

[27] A. Juels, A. Kosba, and E. Shi. The Ring of Gyges:
Investigating the future of criminal smart contracts.
https://eprint.iacr.org/2016/358, 2016.

[28] Kaggle. Data science competitions.
https://www.kaggle.com.

[29] J. Katz. Universally composable multi-party
computation using tamper-proof hardware. In
EUROCRYPT’07, pages 115–128. Springer, 2007.

[30] A. Kosba, A. Miller, E. Shi, Z. Wen, and
C. Papamanthou. Hawk: The blockchain model of
cryptography and privacy- preserving smart contracts.
In IEEE SP’16. IEEE, 2016.

[31] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln,
D. Boneh, J. Mitchell, and M. Horowitz. Architectural
support for copy and tamper resistant software. ACM
SIGPLAN Notices, 35(11):168–177, 2000.

[32] C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and
E. Shi. Ghostrider: A hardware-software system for
memory trace oblivious computation. In ASPLOS’15,
pages 87–101. ACM, 2015.

[33] G. Maxwell. Zero knowledge contingent payment.
https://en.bitcoin.it/wiki/Zero Knowledge
Contingent Payment.

[34] S. Micali. Fair electronic exchange with invisible
trusted parties. https:
//people.csail.mit.edu/silvio/CommercialPapers/
Fair%20Electronic%20Exchange.pdf.

[35] B. Parno, J. Howell, C. Gentry, and M. Raykova.
Pinocchio: Nearly practical verifiable computation. In
IEEE SP’13, pages 238–252. IEEE, 2013.

[36] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,
M. Peinado, G. Mainar-Ruiz, and M. Russinovich.
VC3: Trustworthy data analytics in the cloud using
SGX. In IEEE SP’15, pages 38–54. IEEE, 2015.

[37] A. Shamir. IP = PSPACE. JACM, 39(4):869–877,
1992.

[38] E. Shi, F. Zhang, R. Pass, S. Devadas, and D. Song.
Trusted hardware: Life, the composable universe, and
everything. Manuscript, 2015.

[39] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena.
Preventing your faults from telling your secrets:

13

https://tls.mbed.org/
https://eprint.iacr.org/2016/451
https://z.cash/zkcp3.pdf
https://eprint.iacr.org/2009/095
https://eprint.iacr.org/2016/086
http://eprint.iacr.org/2015/564
https://github.com/facebook/proxygen
https://software.intel.com/en-us/sgx-sdk
https://eprint.iacr.org/2016/358
https://www.kaggle.com
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://people.csail.mit.edu/silvio/CommercialPapers/Fair%20Electronic%20Exchange.pdf
https://people.csail.mit.edu/silvio/CommercialPapers/Fair%20Electronic%20Exchange.pdf
https://people.csail.mit.edu/silvio/CommercialPapers/Fair%20Electronic%20Exchange.pdf

Defenses against pigeonhole attacks.
arxiv.org/abs/1506.04832, 2015.

[40] SQLite. https://www.sqlite.org/.

[41] E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and
S. Devadas. AEGIS: Architecture for tamper-evident
and tamper-resistant processing. In ICS’03, pages
160–171. ACM, 2003.

[42] N. Szabo. Smart contracts.
http://szabo.best.vwh.net/smart.contracts.html, 1994.

[43] The Open Web Application Security Project. Top
10–2013.
https://www.owasp.org/index.php/Top 10 2013, 2013.

[44] The OpenSSL Project. OpenSSL.
http://www.openssl.org/.

[45] TLSNotary - A mechanism for independently audited
https sessions. https://tlsnotary.org/TLSNotary.pdf.

[46] Virtual-Notary - a free and secure electronic
attestation service. http://virtual-notary.org/.

[47] Z. Wang and R. B. Lee. New cache designs for
thwarting software cache-based side channel attacks.
In SIGARCH Comput. Archit. News, volume 35, pages
494–505. ACM, 2007.

[48] G. Wood. Ethereum: A secure decentralised
generalised transaction ledger. Ethereum Project
Yellow Paper, 2014.

[49] Y. Xu, W. Cui, and M. Peinado. Controlled-channel
attacks: Deterministic side channels for untrusted
operating systems. In IEEE SP’15, pages 640–656.
IEEE, 2015.

[50] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and
E. Shi. Town crier: An authenticated data feed for
smart contracts. https://eprint.iacr.org/2016/168/,
2016.

[51] Y. Zhou and D. Feng. Side-channel attacks: Ten years
after its publication and the impacts on cryptographic
module security testing.
http://eprint.iacr.org/2005/388, 2005.

14

arxiv.org/abs/1506.04832
https://www.sqlite.org/
http://szabo.best.vwh.net/smart.contracts.html
https://www.owasp.org/index.php/Top_10_2013
http://www.openssl.org/
https://tlsnotary.org/TLSNotary.pdf
http://virtual-notary.org/
https://eprint.iacr.org/2016/168/
http://eprint.iacr.org/2005/388

	Introduction
	Preliminaries
	Transparent Enclave Execution
	Exploiting Resource Asymmetry

	Sealed-Glass Proofs
	Beyond Transparent Execution
	Covert Channel Resistance
	Confidential Functionalities

	Knowledge Monetization
	The ZKCP Protocol
	Secure and Fair Knowledge Marketplaces

	Applications
	Verifiable Computing
	Zero-Knowledge Proofs
	Knowledge Marketplaces

	A Fair Bug Bounty Marketplace
	The SGX Programming Model
	System Design
	Bug Bounty Examples

	Related Work
	conclusion
	References

