
FourQNEON:
Faster Elliptic Curve Scalar Multiplications on

ARM Processors

Patrick Longa

Microsoft Research, USA
plonga@microsoft.com

Abstract. We present a high-speed, high-security implementation of the recently proposed ellip-
tic curve FourQ (ASIACRYPT 2015) for 32-bit ARM processors with NEON support. Exploiting
the versatile and compact arithmetic of this curve, we design a vectorized implementation that
achieves high-performance across a large variety of ARM architectures. Our software is fully
protected against timing and cache attacks, and showcases the impressive speed of FourQ when
compared with other curve-based alternatives. For example, one single variable-base scalar mul-
tiplication is computed in about 235,000 Cortex-A8 cycles or 132,000 Cortex-A15 cycles which,
compared to the fastest genus 2 Kummer and Curve25519 implementations on the same plat-
forms, offers speedups between 1.3x−1.7x and between 2.1x−2.4x, respectively. In comparison
with the NIST standard curve K-283, we achieve speedups above 4x and 5.5x.
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1 Introduction

In 2013, ARM surpassed the 50 billion mark of processors shipped worldwide, consolidating
its hegemony as the most widely used architecture in terms of quantity [21]. One of the main
drivers of this success has been the explosive growth of the mobile market, for which the
Cortex-A and Cortex-M architectures based on the ARMv7 instruction set became key tech-
nologies. In particular, the Cortex-A series include powerful yet power-efficient processors that
have successfully hit the smarthphone/tablet/wearable mass market. For example, Cortex-
A7 based SOCs power the Samsung Gear S2 (2015) smartwatch and the Microsoft Lumia
650 (2016) smartphone; Cortex-A8 and Cortex-A9 cores can be found in the Motorola Moto
360 (2014) smartwatch and the Samsung Galaxy Light (2013) smartphone, respectively; and
Cortex-A15/Cortex-A7 (big.LITTLE) based SOCs power the Samsung Galaxy S5 (2014) and
the Samsung Galaxy A8 (2015) smartphones. Many of these Cortex-A microarchitectures
come equipped with a NEON engine, which provides advanced 128-bit Single Instruction
Multiple Data (SIMD) vector instructions. Thus, these low-power RISC-based ARM plat-
forms with NEON support have become an attractive platform for deploying and optimizing
cryptographic computations.

Costello and Longa [11] recently proposed a highly efficient elliptic curve, dubbed FourQ,
that provides around 128 bits of security and enables the fastest curve-based scalar multipli-
cations on x64 software platforms by combining a four-dimensional decomposition based on
endomorphisms [15], the fastest twisted Edwards formulas [17], and the efficient yet compact
Mersenne prime p = 2127−1. In summary, the results from [11] show that, when computing a
single variable-base scalar multiplication, FourQ is more than 5 times faster than the widely
used NIST curve P-256 and more than 2 times faster than Curve25519 [3]. In comparison to



other high-performance alternatives such as the genus 2 Kummer surface proposed by Gaudry
and Schost [16], FourQ is, in most cases, more than 1.2x faster on x64 processors. For all of
these comparisons, Costello and Longa’s FourQ implementation (i) does not exploit vector
instructions (in contrast to Curve25519 and Kummer implementations that do [10, 6]), and
(ii) is only optimized for x64 platforms. Therefore, the deployment and evaluation of FourQ
on 32-bit ARM processors with NEON support, for which the use of vector instructions pose
a different design paradigm, is still missing.

In this work, we engineer an efficient NEON-based implementation of FourQ targeting 32-
bit ARM Cortex-A microarchitectures that are based on the widely used ARMv7 instruction
set. Our design, although intended for high-performance applications, is not exclusive to only
one architecture; we analyze the different features from multiple Cortex-A architectures and
come up with an implementation that performs well across a wide range of ARM platforms.
Specifically, our analysis includes four popular ARM microarchitectures: Cortex-A7, A8, A9
and A15. In addition, our implementation runs in constant-time, i.e., it is protected against
timing and cache attacks [18], and supports the three core elliptic curve-based computations
found in most cryptographic protocols (including Diffie-Hellman key exchange and digital
signatures): variable-base, fixed-base and double-scalar multiplication. By considering these
design decisions and functionality, we expect to ultimately produce practical software that
can be used in real-world applications. Our code has been made publicly available as part of
version 2.0 of FourQlib [12].

Our benchmark results extend FourQ’s top performance to 32-bit ARM processors with
NEON, and demonstrate for the first time FourQ’s vectorization potential. For example, on a
2.0GHz Odroid XU3 board powered by a Cortex-A15 CPU, our software computes a variable-
base scalar multiplication in only 132,000 cycles (or 66 microseconds for a throughput above
15,150 operations/second). This result is about 1.7x faster than the Kummer implementa-
tion from [6], about 1.8x faster than the GLV+GLS based implementation from [14], about
2.4x faster than the Curve25519 implementation from [8], and about 5.6x faster than the
implementation of the standardized NIST curve K-283 from [9]. As in our case, all of these
implementations are state-of-the-art, exploit NEON instructions and are protected against
timing and cache attacks. See Section 5 for complete benchmark results.

The paper is organized as follows. In Section 2, we provide relevant details about FourQ.
In Section 3, we describe the 32-bit ARM architecture using NEON with focus on the targeted
Cortex-A processors. We describe our vectorized NEON design and optimizations in Section 4
and, finally, Section 5 concludes the paper with the analysis and benchmark results.

2 The FourQ curve

This section describes FourQ, where we adopt the notation from [11] for the most part.
FourQ [11] is defined as the complete twisted Edwards [5] curve given by

E/Fp2 : − x2 + y2 = 1 + dx2y2, (1)

where the quadratic extension field Fp2 = Fp(i) for i2 = −1 and p = 2127 − 1, and d =
125317048443780598345676279555970305165 · i+ 4205857648805777768770.

The Fp2-rational points lying on the curve equation (1) form an abelian group for which
the neutral element is OE = (0, 1) and the inverse of a point (x, y) is (−x, y). The cardinality
of this group is #E(Fp2) = 392·N , where N is a 246-bit prime; thus, the prime-order subgroup
E(Fp2)[N ] can be used to build cryptographic systems.
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Algorithm 1 FourQ’s scalar multiplication on E(Fp2)[N ] (from [11]).

Input: Point P ∈ E(Fp2)[N ] and integer scalar m ∈ [0, 2256).
Output: [m]P.

Compute endomorphisms:
1: Compute φ(P ), ψ(P ) and ψ(φ(P )).
Precompute lookup table:
2: Compute T [u] = P + [u0]φ(P ) + [u1]ψ(P ) + [u2]ψ(φ(P )) for u = (u2, u1, u0)2 in 0 ≤ u ≤ 7.

Write T [u] in coordinates (X + Y, Y −X, 2Z, 2dT ).
Scalar decomposition and recoding:
3: Decompose m into the multiscalar (a1, a2, a3, a4) as in [11, Prop. 5].
4: Recode (a1, a2, a3, a4) into (d64, . . . , d0) and (m64, . . . ,m0) using [11, Alg. 1].

Write si = 1 if mi = −1 and si = −1 if mi = 0.
Main loop:
5: Q = s64 · T [d64]
6: for i = 63 to 0 do
7: Q = [2]Q
8: Q = Q+ si · T [di]
9: return Q

FourQ is equipped with two efficiently computable endomorphisms, ψ and φ, which give
rise to a four-dimensional decomposition m 7→ (a1, a2, a3, a4) ∈ Z4 for any integer m ∈ [1, 2256)
such that 0 ≤ ai < 264 for i = 1, ..., 4 and such that a1 is odd. This decomposition enables a
four-dimensional variable-base scalar multiplication with the form

[m]P = [a1]P + [a2]φ(P ) + [a3]ψ(P ) + [a4]φ(ψ(P )),

for any point P ∈ E(Fp2)[N ].
The details of FourQ’s variable-base scalar multiplication based on the four-dimensional

decomposition are shown in Algorithm 1. The curve arithmetic is based on Hisil et al.’s explicit
formulas that use extended twisted Edwards coordinates [17]: any projective tuple (X : Y :
Z : T ) with Z 6= 0 and T = XY/Z corresponds to an affine point (x, y) = (X/Z, Y/Z). Note
that these formulas are also complete on E , which means that they work without exceptions
for all points in E(Fp2).

The execution of Alg. 1 begins with the computation of the endomorphisms ψ and φ, and
the computation of the 8-point precomputed table (Steps 1−2). These precomputed points
are stored in coordinates (X + Y, Y − X, 2Z, 2dT ) for efficiency. Scalar decomposition and
multiscalar recoding are then applied to the input scalar m at Steps 3 and 4 as described in [11,
Prop. 5] and [11, Alg. 1], respectively. Finally, the main loop consists of 64 iterations each
computing a point doubling (Step 7) and a point addition with a point from the precomputed
table (Step 8). Following [11], the next coordinate representations are used throughout the
algorithm: R1 : (X,Y, Z, Ta, Tb), such that T = Ta · Tb, R2 : (X + Y, Y − X, 2Z, 2dT ),
R3 : (X+Y, Y −X,Z, T ) and R4 : (X,Y, Z). In the main loop, point doublings are computed
as R1 ← R4 and point additions as R1 ← R1 ×R2, where the input using R1 comes from
the output of a doubling (after ignoring coordinates Ta and Tb) and the input using R2 is a
precomputed point from the table.

3 ARM NEON architecture

The 32-bit RISC-based ARM architecture, which includes ARMv7, is the most popular archi-
tecture in mobile devices. It is equipped with 16 32-bit registers (r0-r15) and an instruction
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set supporting 32-bit operations or, in the case of Thumb and Thumb2, a mix of 16- and 32-
bit operations. Many ARM cores include NEON, a powerful 128-bit SIMD engine that comes
with 16 128-bit registers (q0-q15) which can also be viewed as 32 64-bit registers (d0-d31).
NEON includes support for 8-, 16-, 32- and 64-bit signed and unsigned integer operations.

The following is a list of basic data processing instructions that are used in our NEON
implementation. Since our design is based on a signed integer representation (see Section 4),
most instructions below are specified with signed integer datatypes (denoted by .sXX in the
instruction mnemonic). All of the timings provided correspond to Cortex-A8 and A9 (see [1,
2]).

– vmull.s32 performs 2 signed 32 × 32 multiplications and produces 2 64-bit products.
When there are no pipeline stalls, the instruction takes 2 cycles.

– vmlal.s32 performs 2 signed 32 × 32 multiplications, produces 2 64-bit products and
accumulates the results with 2 64-bit additions. It has a cost similar to vmull.s32, which
means that additions for accumulation are for free.

– vadd.s64 and vsub.s64 perform 1 or 2 signed 64-bit additions (resp. subtractions). When
there are no pipeline stalls, the instruction takes 1 cycle.

– vshl.i32 performs 2 or 4 32-bit logical shifts to the left by a fixed value. When there are
no pipeline stalls, the instruction takes 1 cycle.

– vshr.s64 and vshr.u64 perform 1 or 2 64-bit arithmetic and logical (resp.) shifts to the
right by a fixed value. It has a cost similar to vshl.i32.

– vand.u64 performs a bitwise logical and operation. It has a cost similar to vadd.s64.
– vbit inserts each bit from the first operand into the destination operand if the correspond-

ing bit in the second operand is 1. Otherwise, the destination bit remains unchanged. When
there are no pipeline stalls, the instruction takes 1 cycle if operands are 64-bit long and 2
cycles if operands are 128-bit long.

Multiply and multiply-and-add instructions (vmull.s32 and vmlal.s32) have latencies of
6 cycles. However, if a multiply-and-add follows a multiply or another multiply-and-add that
depends on the result of the first instruction then a special forwarding enables the issuing
of these instructions back-to-back. In this case, a series of multiply and multiply-and-add
instructions can achieve a throughput of two cycles per instruction.

3.1 Targeted architectures

Our implementation is optimized for the 32-bit Cortex-A series with ARMv7 support, with
a special focus on Cortex-A7, A8, A9 and A15. Next, we describe the most relevant archi-
tectural features that are considered in the design of our NEON-based software to achieve a
consistent performance across architectures.

Cortex-A7. This architecture has in-order execution, partial dual-issue and a NEON engine
capable of executing (at most) one NEON arithmetic operation per cycle.

Cortex-A8. This architecture has the NEON pipeline logically behind the integer pipeline.
Once NEON instructions flow through the integer pipeline, they are stored in a queue getting
ready for execution. This queue accumulates instructions faster than what it takes to execute
them, which means that the integer pipeline can execute ARM instructions in the background
while the NEON unit is busy. This is exploited in §4.2 to boost the performance of the Fp2

implementation by mixing ARM and NEON instructions. Cortex-A8 also has highly flexible
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dual-issue capabilities that support many combinations of ARM and NEON instructions; for
example, Cortex-A8 can issue a NEON load/store instruction with a NEON arithmetic in-
struction in one cycle. The NEON engine has one execution port for arithmetic instructions
and one execution port for load/store/permute instructions; this enables back-to-back execu-
tion of pairs of NEON {load/store, arithmetic} instructions (see §4.2).

Cortex-A9. This architecture no longer has the NEON unit (with a detached NEON queue)
behind the integer unit as in Cortex-A8. This significantly reduces the cost of NEON to ARM
data transfers, but also reduces the efficiency gain obtained by mixing ARM and NEON in-
structions. In addition, NEON on Cortex-A9 has some limitations: load/store instructions
have longer latency, and there is no dual-issue support. To minimize the inefficiency of the
load/store port it is possible to interleave these instructions with other instructions, as de-
tailed in §4.2.

Cortex-A15. This architecture has out-of-order execution on both ARM and NEON units.
The NEON engine, which is fully integrated with the ARM core, is capable of executing two
operations per cycle. The ARM and NEON load/store ports are also integrated. In many
platforms, Cortex-A15 cores are paired with Cortex-A7 cores to form powerful heterogeneous
systems (a.k.a. big.LITTLE).

4 Vectorization using NEON

The basic feature to consider in a NEON-based design is that vector multiplication is capable
of working over two pairs of 32-bit values to produce one pair of 64-bit products.

In our preliminary analysis, we considered two approaches for vectorization:

– Vectorization across different Fp2 multiplications and squarings inside point formulas.

– Vectorization across different field multiplications inside Fp2 multiplications and squarings.

The first option has the disadvantage that pairing of Fp2 operations inside point addition
and doubling formulas is not perfect and would lead to suboptimal performance. E.g., the
3 squarings in the doubling formula would be computed either as 2 pairs of squarings (in-
creasing the cost in 1 squaring) or as 1 pair of squarings and 1 pair of multiplications, using
any available multiplication (degrading the speed of 1 squaring). This approach also puts
extra pressure on register allocation, which can potentially lead to a high number of memory
accesses. In contrast, the second approach can benefit from the availability of independent
operations over Fp inside the Fp2 arithmetic. Both multiplications and squarings over Fp2

naturally contain pairs of field multiplications; all multiplications are independent from each
other and, therefore, can be optimally paired for NEON vector multiplication.

We chose the second vectorization option for our implementation, which is described next.

4.1 Vectorization of F(2127−1)2 arithmetic

For our design we use radix t = 226 and represent a quadratic extension field element c =
a+b·i ∈ Fp2 using a = a0+a1t+a2t

2+a3t
3+a4t

4 and b = b0+b1t+b2t
2+b3t

3+b4t
4. In a similar

fashion to Naehrig et al.’s interleaving strategy [20], in our implementation the ten-coefficient
vector representing element c is stored “interleaved” as (b4, a4, b3, a3, b2, a2, b1, a1, b0, a0) in
little endian format, i.e., a0 and b4 are stored in the lowest and highest memory addresses,
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respectively. Each coefficient is signed and occupies 32 bits in memory; however, when fully
reduced, coefficients a0, b0, ..., a3, b3 have values in the range [0, 226) and coefficients a4 and b4
have values in the range [0, 223).

Using the representation above, addition and subtraction of two elements in Fp2 are simply
done with 2 128-bit vector addition instructions (resp. subtractions) and 1 64-bit vector addi-
tion instruction (resp. subtraction) using the NEON instruction vadd.s32 (resp. vsub.s32).
The corresponding results are immediately produced in the interleaved representation.

For the case of multiplication and squaring, we base the implementation on a schoolbook-
like multiplication that includes the reduction modulo p = 2127 − 1. Given two field elements
a = a0 + a1t+ a2t

2 + a3t
3 + a4t

4 and b = b0 + b1t+ b2t
2 + b3t

3 + b4t
4, multiplication modulo

(2127 − 1) can be computed by

c0 = a0b0 + 8(a1b4 + a4b1 + a2b3 + a3b2)

c1 = a0b1 + a1b0 + 8(a2b4 + a4b2 + a3b3)

c2 = a0b2 + a2b0 + a1b1 + 8(a3b4 + a4b3) (2)

c3 = a0b3 + a3b0 + a1b2 + a2b1 + 8(a4b4)

c4 = a0b4 + a4b0 + a1b3 + a3b1 + a2b2.

Next, we show how to use (2) in the vectorized computation of multiplication and squaring
over Fp2 . Note that the operation sequences below are designed to maximize performance and
to fit all intermediate computations in the 16 128-bit NEON registers at our disposal.

Multiplication in Fp2. Let A = (b4, a4, b3, a3, b2, a2, b1, a1, b0, a0) and B = (d4, c4, d3, c3, d2,
c2, d1, c1, d0, c0) be coefficient vectors that represent elements (a+b·i) ∈ Fp2 and (c+d·i) ∈ Fp2 ,
respectively. To multiply these two elements, we first shift A to the left by 3 bits to obtain

t1 = (8b4, 8a4, ..., 8b1, 8a1, 8b0, 8a0),

which requires 1 64-bit and 2 128-bit vector shifts using vshl.i32.
We then compute the first three terms of the multiplications bc = b × c and bd = b × d,

by multiplying in pairs (b0d0, b0c0), (8b1d4, 8b1c4), (8b4d1, 8b4c1) and so on, and accumulating
the intermediate values to produce

(bd0, bc0) = (b0d0 + 8b1d4 + ...+ 8b3d2, b0c0 + 8b1c4 + ...+ 8b3c2)

(bd1, bc1) = (b0d1 + b1d0 + ...+ 8b3d3, b0c1 + b1c0 + ...+ 8b3c3)

(bd2, bc2) = (b0d2 + b2d0 + ...+ 8b4d3, b0c2 + b2c0 + ...+ 8b4c3).

The computation above is executed using (2). In total (including the missing two terms
that are computed later on), it requires 25 vector multiplications: 5 are computed using
vmull.s32 and 20 are computed using vmlal.s32. Additions are not counted because they
are virtually absorbed by the multiply-and-add instructions.

Then, we compute the five terms of the multiplications ac = a×c and ad = a×d. Similarly
to above, we compute pairwise multiplications (a0d0, a0c0), (8a1d4, 8a1c4), (8a4d1, 8a4c1) and
so on, and accumulate the intermediate values to produce

(ad0, ac0) = (a0d0 + 8a1d4 + ...+ 8a3d2, a0c0 + 8a1c4 + ...+ 8a3c2)

(ad1, ac1) = (a0d1 + a1d0 + ...+ 8a3d3, a0c1 + a1c0 + ...+ 8a3c3)

(ad2, ac2) = (a0d2 + a2d0 + ...+ 8a4d3, a0c2 + a2c0 + ...+ 8a4c3)

(ad3, ac3) = (a0d3 + a3d0 + ...+ 8a4d4, a0c3 + a3c0 + ...+ 8a4c4)

(ad4, ac4) = (a0d4 + a4d0 + ...+ a2d2, a0c4 + a4c0 + ...+ a2c2).
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As before, this vectorized schoolbook computation requires 25 multiplications: 5 computed
using vmull.s32 and 20 computed using vmlal.s32.

The intermediate values computed so far are subtracted and added to obtain the first
three terms of the results r = ac− bd and s = ad+ bc. This requires 3 64-bit vector additions
using vadd.s64 and 3 64-bit vector subtractions using vsub.s64:

(s0, r0) = (ad0 + bc0, ac0 − bd0)
(s1, r1) = (ad1 + bc1, ac1 − bd1)
(s2, r2) = (ad2 + bc2, ac2 − bd2).

We then compute the remaining two terms in the computation of bc = b×c and bd = b×d
(i.e., (bd3, bc3) and (bd4, bc4)) as follows

(bd3, bc3) = (b0d3 + b3d0 + ...+ 8b4d4, b0c3 + b3c0 + ...+ 8b4c4)

(bd4, bc4) = (b0d4 + b4d0 + ...+ b2d2, b0c4 + b4c0 + ...+ b2c2).

Finally, we complete the computation with the last two terms of the results r = ac − bd
and s = ad + bc. This involves 2 64-bit vector additions using vadd.s64 and 2 64-bit vector
subtractions using vsub.s64:

(s3, r3) = (ad3 + bc3, ac3 − bd3)
(s4, r4) = (ad4 + bc4, ac4 − bd4).

The coefficients in the resulting vector (s4, r4, ..., s0, r0) need to be reduced before they
are used by subsequent multiplications or squarings. We explain this process below, after
discussing squarings in Fp2 .

Squaring in Fp2. Let A = (b4, a4, b3, a3, b2, a2, b1, a1, b0, a0) be a coefficient vector represent-
ing an element (a + b · i) in Fp2 . To compute the squaring of this element we first shift its
coefficients to the right to obtain

t1 = (0, b4, 0, b3, 0, b2, 0, b1, 0, b0),

which requires 1 64-bit and 2 128-bit vector shifts using vshr.u64.
Then, A is subtracted and added with t1 to obtain

t2 = (b4, a4 − b4, b3, a3 − b3, b2, a2 − b2, b1, a1 − b1, b0, a0 − b0)
t3 = (b4, a4 + b4, b3, a3 + b3, b2, a2 + b2, b1, a1 + b1, b0, a0 + b0),

which requires 1 64-bit and 2 128-bit vector additions using vadd.s32 and 1 64-bit and 2
128-bit vector subtractions using vsub.s32.

We then shift A to the left by one bit with 1 64-bit and 2 128-bit vector shifts using
vshl.i32, as follows

t4 = (2a4, 0, 2a3, 0, 2a2, 0, 2a1, 0, 2a0, 0).

We perform a bitwise selection over t2 and t4 using 3 vbit instructions to obtain

t5 = (2a4, a4 − b4, 2a3, a3 − b3, 2a2, a2 − b2, 2a1, a1 − b1, 2a0, a0 − b0).

We then shift the result by 3 bits to the left using 1 64-bit and 2 128-bit vector shifts with
vshr.u64, as follows

t6 = (16a4, 8(a4 − b4), 16a3, 8(a3 − b3), 16a2, 8(a2 − b2), 16a1, 8(a1 − b1), 16a0, 8(a0 − b0)).
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We then compute the five terms of the multiplications r = (a+b)×(a−b) and s = 2a×b. As
before, we compute pairwise multiplications (2a0b0, (a0−b0)(a0+b0)), (16a1b4, 8(a1−b1)(a4+
b4)), (16a4b1, 8(a4−b4)(a1+b1)) and so on, and accumulate the intermediate values to produce

(s0, r0) = (2a0b0 + ...+ 16a3b2, (a0 − b0)(a0 + b0) + ...+ 8(a3 − b3)(a2 + b2))

(s1, r1) = (2a0b1 + ...+ 16a3b3, (a0 − b0)(a1 + b1) + ...+ 8(a3 − b3)(a3 + b3))

(s2, r2) = (2a0b2 + ...+ 16a4b3, (a0 − b0)(a2 + b2) + ...+ 8(a4 − b4)(a3 + b3))

(s3, r3) = (2a0b3 + ...+ 16a4b4, (a0 − b0)(a3 + b3) + ...+ 8(a4 − b4)(a4 + b4))

(s4, r4) = (2a0b4 + ...+ 2a2b2, (a0 − b0)(a4 + b4) + ...+ (a2 − b2)(a2 + b2)).

As before, this computation follows (2) and involves 5 multiplications using vmull.s32

and 20 multiplications using vmlal.s32. The reduction procedure that needs to be applied to
the output vector (s4, r4, ..., s0, r0) before subsequent multiplications or squarings is described
next.

Coefficient reduction. After computing a multiplication or squaring over Fp2 , resulting
coefficients must be reduced to avoid overflows in subsequent operations. Given a coefficient
vector (s4, r4, ..., s0, r0), coefficient reduction can be accomplished by applying a chain of
shifts, additions and logical and instructions using the flow (s0, r0) → (s1, r1) → (s2, r2) →
(s3, r3) → (s4, r4) → (s0, r0). In total, this requires 7 vector shifts using vshr.s64, 6 vector
and operations using vand.u64, and 6 vector additions using vadd.s64. This chain of oper-
ations, however, introduces many data hazards that can stall the pipeline for several cycles.
In our implementation, for computations in which instruction rescheduling is unable to elimi-
nate most of these data hazards, we switch to a different alternative that consists of splitting
the computation in the following two propagation chains: (s0, r0) → (s1, r1) → (s2, r2) →
(s3, r3)→ (s4, r4), and (s3, r3)→ (s4, r4)→ (s0, r0). Even though this approach increases the
operation count in 1 vector shift, 1 vector addition and 1 vector and, it allows to speed up the
overall computation because both chains can be interleaved, which eliminates all data hazards.

Vector-instruction count. Based on the operation description above, multiplication over
Fp2 involves 11 shifts, 7 logical and instructions, 17 additions and 50 multiplications. Similarly,
squaring over Fp2 involves 17 shifts, 7 logical and instructions, 3 bit-selection instructions, 13
additions and 25 multiplications. These counts include coefficient reduction.

4.2 Additional optimizations to the Fp2 implementation

As explained in §3.1, the ARM architecture with NEON support opens the possibility of
optimizing software by exploiting the instruction-level parallelism between ARM and NEON
instruction sets. We remark, however, that the capability of boosting performance by ex-
ploiting this feature strongly depends on the specifics of the targeted microarchitecture and
application. For example, microarchitectures such as Cortex-A8 have a relatively large NEON
instruction queue that keeps the NEON execution units busy once it is filled; when this hap-
pens the ARM core can execute ARM instructions virtually in parallel. In contrast, other
microarchitectures such as Cortex-A7 and Cortex-A15 exhibit a more continuous flow of in-
structions to the NEON execution ports, which means that gaining efficiency from mixing
ARM and NEON instructions gets significantly more challenging. This is especially true for
implementations that rely on the full power of vector instructions. We note, however, that the
technique could still be beneficial for implementations that generate enough pipeline stalls.
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In this case, NEON pipeline stalls could give enough room for ARM instructions to run while
the NEON engine recovers (e.g., see [14]).

In the case of our NEON implementation, careful scheduling of instructions was effective
in dealing with most latency problems inside the Fp2 functions and, thus, we were able to
minimize the occurrence of pipeline stalls. We verified experimentally that this makes very
difficult to obtain any additional speedup by mixing ARM and NEON instructions on mi-
croarchitectures such as Cortex-A7 and A15. In the case of microarchitectures that are more
favorable to the instruction mixing technique (e.g., Cortex-A8 and A9), we applied the follow-
ing approach. We use NEON to perform the relatively expensive multiplications and squarings
over Fp2 , and ARM to execute the simpler additions and subtractions (or any combination of
these operations). To do this, we inserted add/sub ARM code into the larger NEON-based
functions, carefully interleaving NEON and ARM instructions.

We verified that instantiating NEON-based multiplications and squarings that include
ARM-based additions or subtractions effectively reduces the cost of these smaller operations.
We do even better by suitably merging additions and subtractions inside NEON functions.
Specifically, we have identified and implemented the following combinations of operations over
Fp2 after analyzing twisted Edwards point doubling and addition formulas:

– MulAdd: multiplication a× b using NEON, addition c+ d using ARM.

– MulSub: multiplication a× b using NEON, subtraction c− d using ARM.

– MulDblSub: multiplication a× b using NEON, doubling/subtraction 2× c−d using ARM.

– MulAddSub: multiplication a× b using NEON, addition c+ d and subtraction c− d using
ARM.

– SqrAdd: squaring a2 using NEON, addition c+ d using ARM.

– SqrAddSub: squaring a2 using NEON, addition c+ d and subtraction c− d using ARM.

In our software, the use of these functions is optional. Users can enable this optimization by
setting a command flag called “MIX ARM NEON”. Following the details above, we suggest
turning this flag on for Cortex-A8 and A9, and turning it off for Cortex-A7 and A15. See
Appendix A for details about the use of these functions inside point doubling and addition.

Additionally, we improve the performance of multiplication and squaring over Fp2 even
further by interleaving load/store operations with arithmetic operations. As explained in §3.1,
architectures such as Cortex-A8 are capable of executing one load or store instruction and
one arithmetic instruction back-to-back. On the other hand, Cortex-A9 load/store instruc-
tions suffer from longer latencies. It is quite fortunate that, in both cases, suitable interleaving
of load/store instructions with other non-memory instructions does benefit performance (al-
beit under different circumstances). We observed experimentally that some newer processors
such as Cortex-A15 are negatively impacted by such interleaving. Since in our code input
loading and output storing only occur at the very top and at the very bottom of Fp2 arith-
metic functions, resp., it was straightforward to create two different execution paths with
minimal impact to code size. The path selection is done at compile time: users can enable
the optimization by setting a command flag called “INTERLEAVE”. We suggest turning this
flag on for Cortex-A7, A8 and A9, and turning it off for Cortex-A15.

4.3 Putting pieces together

We now describe the implementation details of other necessary operations, and explain how
these and our vectorized functions are assembled together to compute Algorithm 1.
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Since our vectorization approach is applied at the Fp2 level, most high-level functions in
the scalar multiplication remain unchanged for the most part (relative to a non-vectorized im-
plementation). Hence, in our software, endomorphism and point formulas, which are used for
table precomputation and in the main loop of Algorithm 1 (Steps 1−2, 7−8), are implemented
with only a few minor modifications in comparison with the original explicit formulas. Refer
to Appendix A for the modified doubling and addition formulas used in our implementation.

The functions for scalar decomposition and recoding (Steps 3−4) are directly implemented
as detailed in [11, Proposition 5] and [11, Algorithm 1], respectively. To extract points from
the precomputed table, which is required at Step 8, we carry out a linear pass over the full
content of the table performing bitwise selections with vbit instructions. At each step, a mask
computed in constant-time determines if a given value is “taken” or not. Inversion over Fp2 ,
which is required for final conversion to affine coordinates at the very end of Algorithm 1,
involves the computation of field multiplications and squarings. For these operations, we
represent a field element a as a coefficient vector (a4, a3, a2, a1, a0), and apply the schoolbook
computation (2) (exploiting the typical savings for the case of squarings). In this case, vector
multiplications are applied over pairs of internal integer multiplications. This pairing is not
optimal, but the effect over the overall cost is relatively small.

Finally, we implemented straightforward functions to convert back and forth between our
Fp2 vector representation and the canonical representation. These functions are required just
once at the beginning of scalar multiplication to convert the input point to vector represen-
tation, and once at the very end to convert the output point to canonical representation. In
addition, we need to perform one conversion from Fp2 to Fp vector representation (and one
conversion back) when computing a modular inversion during the final conversion to affine
coordinates.

5 Implementation and results

In this section, we carry out a theoretical analysis on the core scalar multiplication operations
and then present benchmark results on a large variety of ARM Cortex-A based platforms:
a 0.9GHz Raspberry Pi 2 with a Cortex-A7 processor, a 1.0GHz BeagleBone board with a
Cortex-A8 processor, a 1.7GHz Odroid X2 with a Cortex-A9 processor and a 2.0GHz Odroid
XU3 with a Cortex-A15 processor. All of these ARM-based devices come equipped with
a NEON vector unit. The software was compiled with GNU GCC v4.7.2 for the case of
Raspberry Pi and BeagleBone, and with GNU GCC v4.8.2 for the case of the Odroid devices.
We report the average of 104 operations which were measured with the clock gettime()

function and scaled to clock cycles using the processor frequency.

Next, we analyze the different scalar multiplications when using FourQ.

Variable-base scalar multiplication. Following Algorithm 1, this operation involves the
computation of 1 φ endomorphism, 2 ψ endomorphisms and 7 points additions in the pre-
computation stage; 64 doublings, 64 additions and 65 constant-time 8-point table lookups
(denoted by lut8) in the evaluation stage; and, finally, 1 inversion and 2 multiplications over
Fp2 for converting the final result to affine coordinates. This represents a cost of 1i + 842m
+ 283s + 950.5a + 65lut8 or 3948M + 128S + 4436A + 65lut8 (considering that 1m =
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4M+2A using schoolbook multiplication and that 1s = 2M+3A1). This operation count
does not include other relatively small computations, such as decomposition and recoding.
We consider that field inversion of an element a is computed as a2

127−3 mod (2127 − 1) using
a fixed chain consisting of 12 modular multiplications and 126 modular squarings.

Fixed-base scalar multiplication. We implemented this operation using the mLSB-set
comb method proposed by Faz-Hernández et al. (see [13, Alg. 5]). Recall that scalars are in
the range [0, 2256). By applying a relatively inexpensive Montgomery reduction, a given input
scalar can be reduced to the range [0, N) and, thus, fix the maximum scalar bitlength to
t = 249. As an example, consider the table parameters w = 5 and v = 5. In this case, the
mLSB-set comb method costs d 249w·v e − 1 = 9 doublings and vd 249w·v e − 1 = 49 mixed additions
using v · 2w−1 = 80 points computed offline. Since precomputed points are stored in coordi-
nates (x + y, y − x, 2t) the storage requirement is 7.5KB and the operation cost is roughly
given by 1i + 372m + 36s + 397a + 49lut16 or 1574M + 128S + 1648A + 49lut16. This
estimate does not include the cost of scalar recoding and conversion.

Double-scalar multiplication. We implemented this operation using width-w non-adjacent
form (wNAF) with interleaving [15]. Given a computation with the form [k]P + [l]Q, scalars
k and l can be split in four 64-bits sub-scalars each using FourQ’s decomposition algorithm.
After converting the eight sub-scalars to w-NAF, we compute an 8-way multiscalar multiplica-
tion as the main operation. As an example, consider window parameters wP = 8 and wQ = 4
(this assumes that the point P is known in advance, which typically happens in signature veri-
fication algorithms). In this case, the computation involves 4 doublings and 4·(2wQ−2−1) = 12
additions (for the online precomputation), 4·( 64

wP+1) = 32 mixed additions, 4·( 64
wQ+1)−1 = 52

additions and 63 doublings (for the evaluation stage) using 4 · 2wP−2 = 256 points computed
offline. Again, we store points in coordinates (x+ y, y− x, 2t). This fixes the storage require-
ment to 24KB; the operation cost is roughly 1i + 951m + 268s + 1034a or 4354M + 128S
+ 4776A. This estimate does not include the cost of 2 scalar decompositions and 8 recodings
to wNAF. E.g., assuming that 1S = 0.8M and 1A = 0.1M, double-scalar multiplication is
expected to be roughly 10% more expensive than variable-base on FourQ.

5.1 Results

Table 1 includes benchmark results of our vectorized FourQ implementation for computing
all of the core scalar multiplication operations. The results highlight the efficiency gain that
can be obtained through the use of fixed-base scalar multiplications (e.g., during signature
generation or ephemeral Diffie-Hellman key generation) using a relatively small amount of
precomputation. Most notably, these results show for the first time the potential of using
FourQ for signature verification: one double-scalar multiplication is, in most cases, less than
15% more expensive than single variable-base scalar multiplication.

In Table 2, we compare our results for variable-base scalar multiplication with other
NEON-based implementations in the literature. We include results for the twisted Edwards
GLV+GLS curve defined over F(2127−5997)2 that was proposed by Longa and Sica [19] and the
genus 2 Kummer surface defined over F2127−1 that was proposed by Gaudry and Schost [16].

1 I, M, S and A represent the cost of modular inversion, multiplication, squaring and addition using p =
2127 − 1 (resp.); i, m, s and a represent the cost of inversion, multiplication, squaring and addition over
F(2127−1)2 (resp.).
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Table 1. Performance results (in terms of thousands of cycles) of core scalar multiplication operations on FourQ
with protection against timing and cache attacks on various ARM Cortex-A processors with NEON support.
Results were rounded to the nearest 103 clock cycles. For this benchmark, fixed-base scalar multiplication used
a precomputed table of 80 points (7.5KB of storage) and double-scalar multiplication used a precomputed
table of 256 points (24KB of storage).

Scalar Multiplication Cortex-A7 Cortex-A8 Cortex-A9 Cortex-A15

[k]P , variable base 373 235 256 132

[k]P , fixed base 204 144 145 84

[k]P + [l]Q 431 269 290 155

Table 2. Performance results (expressed in terms of thousands of clock cycles) of state-of-the-art implemen-
tations of various curves targeting the 128-bit security level for computing variable-base scalar multiplication
on various ARM Cortex-A processors with NEON support. Results were rounded to the nearest 103 clock
cycles. The benchmarks for FourQ were done on a 0.9GHz Raspberry Pi 2 (Cortex-A8), a 1.0GHz Beagle-
Bone (Cortex-A8), a 1.7GHz Odroid X2 (Cortex-A9) and a 2.0GHz Odroid XU3 (Cortex-A15). Cortex-A8
and A9 benchmarks for the Kummer implementation [6] and Cortex-A8, A9 and A15 benchmarks for the
Curve25519 implementation [8] were taken from eBACS [7] (computers “h7beagle”, “h7green” and “sachr”),
while Cortex-A7 benchmarks for Kummer and Curve25519 and Cortex-A15 benchmarks for Kummer were
obtained by running eBACS’ SUPERCOP toolkit on the corresponding targeted platform. The benchmarks
for the GLV-GLS curve were taken directly from [14], and the benchmarks for the binary Koblitz curve K-283
and the binary Edwards curve B-251 were taken directly from [9].

Work Curve
Cortex Cortex Cortex Cortex

A7 A8 A9 A15

This work FourQ 373 235 256 132

Bernstein et al. [6] Kummer 580 305 356 224

Faz-Hernández et al. [14] GLV+GLS - - 417 244

Bernstein et al. [8] Curve25519 926 497 568 315

Câmara et al. [9] B-251 - 657 789 511

Câmara et al. [9] K-283 - 934 1,148 736

These two curves, which we refer to as “GLV+GLS” and “Kummer”, were the previous
speed-record holders before the advent of FourQ. Our comparisons also include the popular
Montgomery curve known as “Curve25519”, which is defined over F2255−19 [3], and two binary
curve alternatives: the binary Edwards curve defined over F2251 [4], referred to as “B-251”,
and the NIST’s standard Koblitz curve K-283 [22], which is defined over the binary field F2283 .

Using the operation counts above and those listed in [11, Table 2], one can determine
that FourQ’s variable-base scalar multiplication is expected to be roughly 1.28 times faster
than Kummer’s ladder computation (assuming that 1I = 115M, 1S = 0.8M, 1A = 0.1M
and 1 word-mul = 0.25M). Our actual results show that FourQ is between 1.3 and 1.7 times
faster than Bernstein et al.’s Kummer implementation [6] on different ARM architectures.
Therefore, FourQ performs even better than expected, demonstrating that its efficient and
compact arithmetic enable vector-friendly implementations. These results also highlight the
effectiveness of the techniques described in §4.2.

In comparison to Curve25519, our NEON implementation is between 2.1 and 2.5 times
faster when computing variable-base scalar multiplication. Our implementation is also sig-
nificantly faster than state-of-the-art NEON implementations using binary curves; e.g., it is
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between 4 and 5.6 times faster than the implementation based on the NIST’s standard K-283
curve.

In some cases, even larger speedups are observed for scenarios in which one can exploit pre-
computations. For example, for signature signing one can leverage the efficiency of fixed-base
scalar multiplications to achieve between factor-2.1 and factor-2.8 speedups in comparison to
the Kummer surface from [16], which does not support these efficient operations that exploit
precomputations.
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A Algorithms for point operations

The basic point doubling and addition functions used in the NEON implementation are
shown in Algorithms 2 and 3, respectively. When selector “MIX ARM NEON” is enabled, the
algorithms use the functions with the labels on the right (MulAddSub, SqrAdd, etc.), which
mix ARM and NEON instructions as described in §4.2.

Algorithm 2 Point doubling using homogeneous/extended homogeneous coordinates on E .

Input: P = (X1, Y1, Z1) ∈ E(Fp2).
Output: 2P = (X2, Y2, Z2, T2,a, T2,b) ∈ E(Fp2).

1: if MIX ARM NEON = true then
2: t1 = X2

1 , X2 = X1 + Y1 {SqrAdd}
3: t2 = Y 2

1

4: Z2 = Z2
1 , T2,b = t1 + t2, t1 = t2 − t1 {SqrAddSub}

5: T2,a = X2
2

6: Y2 = t1 × T2,b, t2 = 2Z2 − t1 {MulDblSub}
7: Z2 = t1 × t2, T2,a = T2,a − T2,b {MulSub}
8: X2 = t2 × T2,a

9: else
10: t1 = X2

1

11: t2 = Y 2
1

12: X2 = X1 + Y1

13: T2,b = t1 + t2
14: t1 = t2 − t1
15: t2 = Z2

1

16: T2,a = X2
2

17: t2 = t2 + t2
18: t2 = t2 − t1
19: T2,a = T2,a − T2,b

20: Y2 = t1 × T2,b

21: X2 = t2 × T2,a

22: Z2 = t1 × t2
23: endif
24: return 2P = (X2, Y2, Z2, T2,a, T2,b).
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Algorithm 3 Point addition using extended homogeneous coordinates on E .
Input: P,Q ∈ E(Fp2) such that P = (X1, Y1, Z1, T1,a, T1,b) and Q = (X2 + Y2, Y2 −X2, 2Z2, 2dT2).
Output: P +Q = (X3, Y3, Z3, T3,a, T3,b) ∈ E(Fp2).

1: if MIX ARM NEON = true then
2: T3,a = T1,a × T1,b, T3,b = X1 + Y1, Y3 = Y1 −X1 {MulAddSub}
3: t1 = 2Z2 × Z1

4: Z3 = (2dT2)× T3,a

5: X3 = (X2 + Y2)× T3,b, t2 = t1 − Z3, t1 = t1 + Z3 {MulAddSub}
6: Y3 = (Y2 −X2)× Y3

7: Z3 = t1 × t2, T3,a = X3 + Y3, T3,b = X3 − Y3

8: X3 = T3,b × t2
9: Y3 = T3,a × t1

10: else
11: t1 = X1 + Y1

12: t2 = Y1 −X1

13: t3 = T1,a × T1,b

14: t4 = 2Z2 × Z1

15: Z3 = (2dT2)× t3
16: X3 = (X2 + Y2)× t1
17: Y3 = (Y2 −X2)× t2
18: T3,a = X3 + Y3

19: T3,b = X3 − Y3

20: t3 = t1 − Z3

21: t1 = t1 + Z3

22: X3 = T3,b × t3
23: Z3 = t3 × t4
24: Y3 = T3,a × t4
25: endif
26: return P +Q = (X3, Y3, Z3, T3,a, T3,b).

15


