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Abstract. In this work, we analyze the resistance of Simon-like ciphers against differential attacks
without using computer-aided methods. In this context, we first define the notion of a Simon-
like cipher as a generalization of the Simon design. For certain instances, we present a method
for proving the resistance against differential attacks by upper bounding the probability of a
differential characteristic by 2−2T+2 where T denotes the number of rounds. Interestingly, if 2n
denotes the block length, our result is sufficient in order to bound the probability by 2−2n for
all full-round variants of Simon and Simeck. Thus, it guarantees security in a sense that, even
having encryptions of the full codebook, one cannot expect a differential characteristic to hold.
The important difference between previous works is that our proof can be verified by hand and
thus contributes towards a better understanding of the design. However, it is to mention that we
do not analyze the probability of multi-round differentials.
Although there are much better bounds known, especially for a high number of rounds, they are
based on experimental search like using SAT/SMT solvers. While those results have already shown
that Simon can be considered resistant against differential cryptanalysis, our argument gives more
insights into the design itself. As far as we know, this work presents the first non-experimental
security argument for full-round versions of several Simon-like instances.
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1 Introduction

Once a new cipher is proposed, the designers are expected to provide security arguments, at
least against the most important and powerful attack vectors known, that are differential [12]
and linear cryptanalysis [22]. Thus, any new design itself should allow for an, if possible simple,
security argument. Nowadays, a majority of block ciphers is based on Feistel- and Substitution-
Permutation (SP) constructions. As the name already implies, SP designs iterate both substi-
tution and permutation operations. While the latter is a linear function (linear layer), the
substitution layer consists of highly non-linear components (e.g. S-boxes). The alternation of
those layers is responsible for both offering confusion and diffusion [26].

This separation into linear and non-linear components offers the advantage of analyzing the
structure more easily. Two design principles are common, that are the wide-trail strategy [16]
and the use of computer-aided methods. In the wide-trail strategy, which was introduced by
Daemen and Rijmen, the idea is that the design of the linear layer is related to coding theory,
as its construction is based upon a linear code over GF (2m) with high (and often optimal) min-
imum distance. Thereby, the parameter m defines the word size of the S-box. As the minimum
distance indicates the number of active S-boxes over two consecutive rounds, it contributes to
the resistance against differential and linear cryptanalysis in a provable (by pen and paper)
way. A more clever choice of the linear layer even allows for arguments on four (resp. eight,
sixteen,...) rounds using the so-called superbox (resp. megabox, gigabox, etc.) structure, as
for example described in [8,9,17]. In fact, the Rijndael cipher [18], which was standardized as
the Advanced Encryption Standard in 2000 [25], was designed according to this principle. The
advantage of the wide-trail strategy is one reason why so many AES-like designs occurred in
the last years. It also emphasizes that designers prefer well-understood principles. While for
AES-like ciphers counting the number of active S-boxes can be somehow done independently of
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the choice of the S-box, some other strategies use specific properties of the non-linear compo-
nents. For instance, the designers of Present showed that an arbitrary five-round differential
characteristic has at least 10 active S-boxes under certain assumptions [14].

The other strategy is measuring the security using computer-aided search methods. For
instance, one can model the propagation of differential and linear characteristics as a mixed-
integer linear programming problem [8,23,29]. Examples of a design which uses experimental
arguments are Keccak [10] and Serpent [11]. However, the bounds obtained with this ap-
proach are not verifiable without a machine and do not contribute significantly to a better
understanding of the design itself.

Basically, in both strategies, (if the non-linear component is not too weak) the design of the
linear layer is the crucial step when it comes to providing security against differential and linear
attacks. While a single round can often be analyzed quite easily, the analysis of the linear layer
w.r.t. diffusion properties usually has to be done using a more complex argument over multi-
ple rounds. Unfortunately, besides the wide-trail strategy, not many constructions are known
that guarantee security using pen and paper arguments. Especially, almost every multi-round
argument uses some sort of superbox (resp. megabox, etc.) structure. One therefore may seek
for alternative design principles. Especially for lots of Feistel designs, the constructions might
be less clear and less understood. However, there are some fundamental results on bounding
the differential and linear behavior [24]. There are also Feistel designs which consist of SP-type
round functions [27,28] combining the advantages of the Feistel construction and the simple
arguments of the wide-trail strategy.

In contrast to a scientific design process, the NSA recently presented the Simon family
of lightweight block ciphers [6]. Besides its specification, no arguments on the security are
provided. Especially since Simon is an innovative Feistel cipher, its design is harder to analyze.
Besides its non-bijective round function and combining the branches after every round, the
difficulties are caused by the bitwise structure. Since the design choice was left unclear, one
seeks for a deeper understanding of the cipher1.

Related Work. The appearance of the Simon family of block ciphers [6] in the cryptol-
ogy eprint archive inspired the cryptographic community taking further investigations on
the possible design rationale. Therefore, several cryptanalytic results followed. For instance,
see [1,2,3,4,5,13,15,20,30,31,32] for a selection. They are mostly based on experimental search.

At CRYPTO 2015, Kölbl, Leander and Tiessen pointed out some interesting properties of
Simon-like round functions [21]. These observations were then used for a further analysis of
the differential and linear behavior over multiple rounds. Although the analysis of the round
function was done in a mathematical rigorous manner, the multi-round behavior was derived
using a computer-aided approach. As one result, the rotation constants of Simon turned out
to be in some sense not optimally chosen. Inspired by the design, Yang et. al. proposed the
Simeck family of lightweight block ciphers at CHES 2015 [33]. It can be seen as a Simon-like
cipher using different rotation constants in its round function and a key schedule inspired by
Speck [6].

Recently, the designers of Simon published a follow-up paper at the NIST lightweight
workshop covering some implementation aspects [7]. However, the authors gave no additional
insights into the design choice from a cryptanalytic point of view.

Contribution. After describing a generalization of the Simon design by decoupling the round
function into a linear and a non-linear component, we show that the structure of a Simon-like

1 As we only focus on the probabilities of differential characteristics and do not provide a full security analysis,
this work should not be seen as a recommendation for using Simon. Some design choices are still unclear. To
mention is the key schedule as one example.



design allows for a proof on the resistance against differential attacks under certain assump-
tions. The question whether the proof works depends on the interaction between these two
components. If the non-linear part ρ is of the form ρ(x) = (x ≪ a) ∧ (x ≪ b), it can be in
general formulated as a property of the linear layer. A sufficient condition is that the linear
layer has a branch number of at least 11. Since this is not the case for Simon and Simeck, we
consider these ciphers separately. In particular, for all instantiations of Simon and Simeck,
we are able to upper bound the probability of any differential characteristic by 2−2n where 2n
denotes the block length. We show this in detail for the example of Simon.

In clear distinction to prior work such as [21], our argument is a formal proof covering
multiple rounds and can thus be verified without experimental tools. In our approach, we
use the well-known property of the Simon-like round function that the set of possible output
differences Uα defines an affine subspace depending on the input difference α and that the
differential probability highly depends on the Hamming weight of α. The main idea is that we
extend the analysis of the round function to the cases where α has a Hamming weight equal
to 2 and consider the propagation of Hamming weights over the Feistel structure.

Figure 1 illustrates the bounds proven with our method and, as a comparison, the bounds
obtained from experimental search described in [21, Section 5.2] for two instances of Simon. It
is to mention that, although our bounds are worse than the experimental results, they are still
much better than the bounds one obtains by trivially multiplying the worst-case probabilities
for every round. Moreover, since the development of the experimental bounds becomes more
complex for a high number of rounds, we believe that one cannot expect to significantly improve
upon our theoretical result by using a simple argument. Such an argument will likely cover lots
of rounds.
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Fig. 1. Comparison of the experimental bounds for Simon32 and Simon48 as described in [21,
Section 5.2] and our provable bounds.

2 Preliminaries

Elements in the vector space Fn2 are denoted with bold letters. The all zero vector will be
denoted by 0 and the all one vector by 1, respectively. We use wt(x) to denote the Hamming
weight of a vector x = (x0, x1, . . . , xn−1). Moreover, a superscript notation is used for describing
the index of a component. For example, the element (0, . . . , 0, y(i), 0, 0, . . . , 0) denotes the vector
(x0, x1, . . . , xn−1) with xi = y and xk = 0 for all k 6= i. The Boolean operations, bitwise AND,



OR, NOT and bitwise XOR, are denoted by ∧,∨, and ⊕, respectively. A cyclic rotation (with
offset r) is denoted by ≪ r, if the rotation is to the left, and by ≫ r, if the rotation is to the
right.

Differential Cryptanalysis. In the following, we recall the basic definitions in differential
cryptanalysis. We use the notion of XOR differences in this context.

Definition 1. For a vectorial function f : Fn2 → Fm2 , the probability of the differential α
f→ β

is defined as

P (α
f→ β) :=

|∆f (α,β)|
2n

where
∆f (α,β) := {x ∈ Fn2 | β = f(x)⊕ f(x⊕α)}.

If fi denotes the i-th round function of an iterated cipher, a valid T -round differential charac-

teristic C : α0
f1→ α1

f2→ . . .
fT→ αT has |∆fi(αi−1,αi)| 6= 0 for all 1 ≤ i ≤ T . Assuming that

the probabilities of all one-round differentials are independent, we compute the probability of
the characteristic C as

P (C) =
T∏
i=1

P (αi−1
fi→ αi).

Note that for a key-alternating cipher, this holds under the assumption of independent
round-keys. When designing a block cipher, one would like to avoid the existence of (multi-
round) differentials with high probability. Since in general, computing the maximum probability
of multi-round differentials is not a trivial task, one concentrates on upper bounding the proba-
bility of a characteristic instead. If n denotes the block length, a typical approach is to estimate
the number of rounds T ′ such that P (C) ≤ 2−n for any T ′-round characteristic C and specify
the number of rounds of the primitive as T = T ′ + κ with a reasonable security margin κ.

A Remark on the Feistel Construction. We point out a useful property of the Feistel
construction in the following. Recall that for a vectorial function f : Fn2 → Fn2 and k ∈ Fn2 , we
define a Feistel round function as

F fk : Fn2 × Fn2 → Fn2 × Fn2
(x,y) 7→ (f(x)⊕ y ⊕ k,x).

Thereby, f is called the Feistel function (or simply f -function) and k is called the round key.
For simplicity, we will use an identical Feistel function f in every round.

A difference within the Feistel cipher is denoted as (γ, δ) describing the left and the right
branch, respectively. Lemma 1 presents a general observation on the Feistel construction. It
states that, having upper bounds on the probability for all differential characteristics starting
with (0,α) and ending with (0,β), one can easily bound the probability of any characteristic.

Lemma 1. For t ≥ 1, let for all non-zero differences α,β, the differential probability of any
t-round characteristic starting with (0,α) and ending with (0,β) be upper bounded by p(t).

Let further p(0) := 1 and q := maxα 6=0,β P (α
f→ β). Then,

P (C) ≤ max
k≤T

p(k)qT−k−1

for any non-trivial T -round characteristics C with T > 0.

Proof. For a given T -round characteristic C = (γ0, δ0)
F f→ . . .

F f→ (γT, δT), it holds that

P(C) =
∏T−1
i=0 P (γi

f→ γi+1) assuming independent probabilities. The proof is now split into
two cases.



(i) Let’s assume that there exist distinct i, j such that γi = γj = 0. Then one can choose
w.l.o.g two distinct indices i′, j′ such that γi′ = γj′ = 0 and γk 6= 0 for all k < i′ and all
k > j′. Now, by definition

P((γi′ , δi′)
F f→ . . .

F f→ (γj′ , δj′)) ≤ p(j′ − i′).

Since γj′ = 0 and all other γk 6= 0, we have

P(C) ≤ p(j′ − i′)
i′−1∏
k=0

P (γk
f→ γk+1)

T−1∏
k=j′+1

P (γk
f→ γk+1)

≤ p(j′ − i′)qi′qT−(j′+1) = p(j′ − i′)qT−(j′−i′)−1.

(ii) If γi = 0 for at most one i, then∏
k<T

P (γk
f→ γk+1) ≤

∏
k 6=i

P (γk
f→ γk+1) ≤ qT−1 = p(0)qT−1.

ut

As Lemma 1 is a general statement for all Feistel ciphers, we give a simplified version in
Section 3 as Corollary 1. It covers the special case of a Simon-like round function, which will
be defined next.

SIMON and SIMON-like Ciphers. We generalize the design of the Simon block cipher
to the Simon-like structure. Figure 2 illustrates this construction. For the Simon-like design,
one requires a quadratic, rotational invariant function as the non-linear component. A vectorial
function f : Fn2 → Fn2 is called rotational invariant iff f(x ≪ r) = (f(x) ≪ r) for all elements
x ∈ Fn2 and all offsets r. This leads to the following definition.

Definition 2. A Simon-like f -function is composed of an F2-linear function θ and a degree-2
function ρ of the form ρ(x) = ϑ1(x) ∧ ϑ2(x) with F2-linear and rotational invariant ϑi as

fS : Fn2 → Fn2 ,x 7→ ρ(x)⊕ θ(x).

In this context, a Simon-like cipher uses such an f -function in a Feistel construction.

Note that the rotational invariance is, in this general case, not required for the linear part
θ.
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Fig. 2. Illustration of the Simon and the generalized Simon-like round function



3 Analysis of Differential Characteristics

In this section, we analyze the propagation characteristics of differences over several rounds
under certain assumptions. We rely on the fact that a single Simon-like round is quite well
understood. Let

Lα(x) := (ϑ1(x) ∧ ϑ2(α))⊕ (ϑ1(α) ∧ ϑ2(x)).

We first recall the observation that for any input difference α ∈ Fn2 into a Simon-like round
function fS , the output difference lies in the affine subspace Uα := ImLα + fS(α). This is
formally stated in Theorem 1.

Theorem 1 (Kölbl, Leander, Tiessen [21]). For an input difference α ∈ Fn2 into fS, the

set of possible output differences defines an affine subspace Uα s.t. P (α
fS→ β) 6= 0 if and only

if β ∈ Uα. Defining dα := dim ImLα it holds

β ∈ Uα ⇔ β ⊕ fS(α) ∈ ImLα

and P (α
fS→ β) = 2−dα for all valid differentials over fS.

Since the probability is the same for all output differences β in this subspace, we simply

write pα for P (α
fS→ β) with β ∈ Uα. For all output differences which are not elements in this

subspace, the probability will be zero.
Because of the rotational invariance, it holds that ImL(α≪r) = (ImLα ≪ r) with p(α≪r) =

pα. One can thus restrict the consideration to a single representative of this equivalence class
if only one round function is analyzed.

3.1 Restriction to ϑ1(x) = (x ≪ a) and ϑ2(x) = (x ≪ b)

This describes the most simple structure of a generalized Simon-like cipher. For the θ step
defined as θ(x) = (x ≪ c), one obtains Simon and Simeck as a special case using (8, 1, 2),
resp. (5, 0, 1), as a choice for the rotation constants (a, b, c). The following lemma states that we
can obtain an upper bound on the differential probability over fS depending on the Hamming
weight of the input difference. While a weaker version of Lemma 2 can be deduced from [21,
Theorem 3, p. 9], we improved the bound from [21] if the Hamming weight of the input difference
equals 2. Although this improvement seems to be of little importance at a first glance, it is
exactly this tighter bound which allows us to prove the main result. Thus, Lemma 2, and
especially case (2), is one of the core components in our proof of the upper bound on the
probability of differential characteristics.

Lemma 2. Let ϑ1(x) = (x ≪ a) and ϑ2(x) = (x ≪ b). Assume that n ≥ 6 is even and
gcd(a − b, n) = 1. Let α be an input difference into fS. Then, for the differential probability
over fS it holds that

(1) If wt(α) = 1, then pα ≤ 2−2.
(2) If wt(α) = 2, then pα ≤ 2−3.
(3) If wt(α) 6= n, then pα ≤ 2−wt(α).
(4) If wt(α) = n, then pα ≤ 2−n+1.

Proof. Without loss of generality one can assume that b = 0 and a < n
2 , a 6= 0 because of the

rotational invariance and since a − b and n are coprime. According to [21, Theorem 3, p. 9],
it is pα = 2−dα with

dα =

{
wt
(
((α≪ a) ∨α)⊕ (α ∧ (α≪ a) ∧ (α≪ 2a))

)
iff wt(α) 6= n

n− 1 iff wt(α) = n
.



Note that dα = dim ImLα where

Lα(x) = ((x ≪ a) ∧α)⊕ ((α≪ a) ∧ x) .

(1), (3) and (4) follow directly from the above formula. In order to show (2), we construct three
linearly independent elements in ImLα.

Let wt(α) = 2 with α0 = αi = 1. Again, w.l.o.g. let i ≤ n
2 , i 6= 0 since every α with

a Hamming weight of two is rotational equivalent to that one assumed. Now, consider the
following three elements x,y, z:

x = (0, . . . , 0, 1(a), 0, . . . , 0) ⇒ Lα(x) = (1(0), 0, . . . , 0, α
(a)
2a , 0, . . . , 0)

y = (0, . . . , 0, 1(a+i), 0, . . . , 0) ⇒ Lα(y) = (0, . . . , 1(i), 0, . . . , 0, α
(i+a)
i+2a , 0, . . . , 0)

z = 1 ⇒ Lα(z) = (α≪ a)⊕α

Clearly, Lα(x) and Lα(y) are linearly independent. To show that Lα(z) /∈ span{Lα(x), Lα(y)},
consider the two cases

(i) αi+2a = 0 : Then Lα(y)i+a = 0. Since Lα(z)n−a = 1 and n − a /∈ {0, i, a}, the linear
independence follows.

(ii) αi+2a = 1 : Then i+ 2a mod n ∈ {0, i} because of the construction of α. However, since
2a 6= 0 mod n, it follows that i+ 2a = 0 mod n. Hence, 2a = n− i. Now 2a 6= i, because
otherwise n = 4a which is contradictory to gcd(a, n) = 1 (since n ≥ 6). Thus Lα(x)a =
0. In addition, i 6= a because otherwise 3a = 0 mod n which is also contradictory to
gcd(a, n) = 1. Now, Lα(z)i−a mod n = 1 and i− a /∈ {0, i, i+ a}. ut

In all cases, we thus have pα ≤ 2−2 if α 6= 0 and p0 = 1. The interesting property is the
fact that pα ≤ 2−wt(α)−1 if α has a Hamming weight of 2. This is what we make use of in
the following arguments. The basic idea is to guarantee enough transitions with a probability
≤ 2−3 before a zero input difference into fS occurs (then p0 = 1). This allows us to catch
up the factor 2−2 that we lose for the zero input difference. Otherwise, if we were not able to
guarantee the tighter bound described in Lemma 2 (2), the input difference into fS of every
second round might be equal to zero in the worst case and our argument would only provide the
trivial bound of 2−T over T rounds. See also Figure 1 for an illustration. For the formal proof,
we give Corollary 1 at first. It is an implication of Lemma 1 for the Simon-like f function.

Corollary 1. Let for all non-zero differences α,β and all t ≥ 1 the differential probability of
any t-round characteristic starting with (0,α) and ending with (0,β) be upper bounded by 2−2t.
Let further pα ≤ 2−2. Then,

P (C) ≤ 2−2T+2

for any non-trivial T -round characteristics C with T > 0.

Proof. With the notation in Lemma 1, it is p(t) = 2−2t and q = 2−2. Thus,

P (C) ≤ max
k≤T

p(k)qT−k−1 = max
k≤T

2−2k2−2T+2k+2 = 2−2T+2.

ut

Thus, in order to prove an upper bound on the probability of a differential characteristic of
2−2T+2 we only have to concentrate on t-round characteristics of the form (0,α)→ · · · → (0,β)
and prove an upper bound of 2−2t for all of these. We further can restrict ourselves to the
shortest characteristics of this form, e.g. γi 6= 0 for all intermediate γi. The reason is that one
can easily concatenate these short characteristics to longer ones for which the property holds
as well.



We have to do the analysis for a specific choice of the linear mapping θ. As a more general
case, Theorem 2 formulates a sufficient condition for the argument to work. For a linear mapping
θ : Fn2 → Fn2 , the differential branch number is defined as the minimum number of active bits

in the differential (α
θ→ θ(α)), formally

Bθ := min
α 6=0
{wt(α) + wt (θ (α))} .

Theorem 2. Let Bθ ≥ 11. Then for any distinct a, b and any n fulfilling the properties of
Lemma 2, the probability of a T -round differential characteristic is upper bounded by 2−2T+2.

Proof. Fix a t-round characteristic of the form

(0,α)→ (γ1 = α,0)→ (γ2, δ2)→ · · · → (γt−1, δt−1)→ (0,β)

with γi 6= 0 for all i ∈ {1, . . . , t − 1}. Thus, we have pγi ≤ 2−2 for all i. Since γ1 = α and

(0,α)
1→ (α,0) holds with certainty (p0 = 1), we have to show that either pγi ≤ 2−4 for at

least one i or that pγi , pγj ≤ 2−3 for at least two distinct indices i, j. In other words, one has
to make sure to gain a factor of 2−2 within the characteristic. In order to show this, we make
use of Lemma 2. If wt(α) ≥ 4, we are clearly done since pγ1 = pα ≤ 2−wt(α). We thus have to
distinguish 3 cases.

(i) wt(α) = 1: Because of the branch number, it is wt(θ(x)⊕ θ(x⊕ α)) ≥ 10. Since further
wt(ρ(x)⊕ ρ(x⊕α)) ≤ 2, we have wt(γ2) ≥ 8 and pγ2 ≤ 2−4.

(ii) wt(α) = 2: It is wt(θ(x)⊕ θ(x⊕α)) ≥ 9 and wt(ρ(x)⊕ ρ(x⊕α)) ≤ 4. Thus, wt(γ2) ≥ 5
and therefore pγ2 ≤ 2−4.

(iii) wt(α) = 3: We already have pα ≤ 2−3. Since wt(θ(x) ⊕ θ(x ⊕ α)) ≥ 8 and wt(ρ(x) ⊕
ρ(x⊕α)) ≤ 6, it is wt(γ2) ≥ 2 and therefore pγ2 ≤ 2−3.

See also Figure 3 for the propagation of the differential Hamming weights. ut
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Fig. 3. Propagation of the differential Hamming weight for wt(α) ∈ {1, 2, 3}.

We recall that θ does not have to be rotational invariant. Nevertheless, having a branch
number of at least 11 is a quite restrictive property on a linear layer and in fact, for n = 16,
there does not exist such a linear mapping. The reason is that the minimum distance d of
any [32, 16, d] code over F2 is at most 8 [19]. However, for n ∈ {24, 32, 48, 64}, such a linear
mapping θ exists as one can also deduce from [19]. As the previous argument is more generic,
we investigate the linear part of Simon in more detail in the rest of the paper.



3.2 Obtaining the upper bound for SIMON and Simeck

In the following, we consider the linear layer θ(x) = (x ≪ c) which has a branch number
of only 2. Choosing (8, 1, 2) for the rotation constants (a, b, c), we obtain the round function
of Simon. Theorem 3 states the same bound as above for all variants of Simon. Note that
the results are dependent on the specific choice of the rotation constants, but can be proven
for other choices in a similar way. Of course, it does not hold for all possible a, b and c. For
example, if c = a or c = b, one obtains the trivial bound of 2−t since(

(1, 0, . . . , 0) 0
)
→
(
0 (1, 0, . . . , 0)

)
→
(
(1, 0, . . . , 0) 0

)
would be a valid two-round iterative characteristic with probability 2−2.

Theorem 3 (Bounds for Simon). Let n ∈ {16, 24, 32, 48, 64} and let θ(x) = (x ≪ 2). For
the rotation constants a = 8, b = 1, the probability of any T -round differential characteristic is
upper bounded by 2−2T+2.

Proof. Again, fix a t-round characteristic of the form

(0,α)→ (γ1 = α,0)→ (γ2, δ2)→ · · · → (γt−1, δt−1)→ (0,β)

with γi 6= 0 for all i ∈ {1, . . . , t−1}. We have to show that either pγi ≤ 2−4 for at least one i or
that pγi , pγj ≤ 2−3 for at least two distinct indices i, j. In order to show this, Lemma 2 is used
several times within this proof. Again, we have to distinguish 3 cases. Note that for simplicity
with indices, we assume rotations to the right in the following. We use the ∗ symbol to indicate
an unknown bit.

(i) wt(α) = 1: Considering the rotational equivalence, let w.l.o.g.

α = (1, 0, . . . , 0).

Recall that we get Uα = ImLα ⊕ fS(α). Since we assume

fS : x 7→ (x ≫ 8) ∧ (x ≫ 1)⊕ (x ≫ 2),

we obtain

γ2 = (0, ∗1, 1, 0, 0, 0, 0, 0, ∗2, 0, 0, 0, 0, 0, 0, 0 . . . ) ∈ Uα ⊕ 0.

Case 1 (∗2 = 0): Then,

γ3 = (1, 0, ∗, ∗, 1, 0, 0, 0, 0, ∗, ∗, 0, 0, 0, 0, 0 . . . ) ∈ Uγ2 ⊕α,
γ4 = (0, ∗, ∗†, ∗, ∗, ∗, 1, 0, ∗, 0, ∗, ∗, ∗, 0, 0, 0 . . . ) ∈ Uγ3 ⊕ γ2.

If now the weight of γ4 is higher than 1, then pγ3 , pγ4 ≤ 2−3. Thus, let wt(γ4) = 1. It
follows that

γ5 = (1, 0, ∗, ∗, 1, 0, 0, ∗, 1, ∗, ∗, 0, 0, 0, ∗, 0 . . . ) ∈ Uγ4 ⊕ γ3

and thus pγ5 ≤ 2−3.
Case 2 (∗2 = 1): Then pγ2 ≤ 2−3 already holds and

γ3 = (∗‡, 0, ∗, ∗, 1, 0, 0, 0, 0, ∗, ∗, 0, 0, 0, 0, 0 . . . ) ∈ Uγ2 ⊕α.

Again, let w.l.o.g wt(γ3) = 1. It follows that

γ4 = (0, ∗, 1, 0, 0, ∗, 1, 0, 1, 0, 0, 0, ∗, 0, 0, 0 . . . ) ∈ Uγ3 ⊕ γ2

and thus pγ4 ≤ 2−3.

† This bit is only unknown if the bitlength is 16 bit (n = 16). Therefore, w.l.o.g. we assume this bit to be
unknown. In the following, we may also consider certain bits to be unknown if the actual value does not
matter for the proof.
‡ Of course, this bit is already equal to 1 if the bitlength n is greater than 16.



(ii) wt(α) = 2: Considering the rotational equivalence, let w.l.o.g.

α = (1, 0, . . . , 0, 1(i), 0, . . . , 0)

with i ≤ n
2 . It follows that already pα ≤ 2−3.

Case 1 (i = 1): Then,

γ2 = (0, ∗, ∗, 1, 0, 0, 0, 0, ∗, ∗, 0, 0, 0, 0, 0, 0 . . . ) ∈ Uα ⊕ 0.

Again, let w.l.o.g. wt(γ2) = 1. Then,

γ3 = (1, 1, 0, 0, ∗, 1, 0, 0, 0, 0, 0, ∗, 0, 0, 0, 0 . . . ) ∈ Uγ2 ⊕α

and thus pγ3 ≤ 2−3.
Case 2 (i = 4): Then,

γ2 = (0, ∗, 1, 0, 0, ∗, 1, 0, ∗, 0, 0, 0, ∗, 0, 0, 0 . . . ) ∈ Uα ⊕ 0

and pγ2 ≤ 2−3.
Case 3 (i 6= 1, i 6= 4): Then,

γ2 = (∗, ∗, 1, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗ . . . ) ∈ Uα ⊕ 0.

Again, let w.l.o.g. wt(γ2) = 1. Then,

γ3 = (1, ∗, ∗, ∗, 1, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗ . . . ) ∈ Uγ2 ⊕α

and thus pγ3 ≤ 2−3.
(iii) wt(α) = 3: Let w.l.o.g. α = (1, 0, . . . , 1(i), 0, . . . , 1(j), 0, . . . , 0) with i ≥ n

3 because of the
rotational invariance. Again, pα ≤ 2−3. Since n ≥ 16, it is i ≥ 6. We distinguish the
following cases:
Case 1 (j 6= n− 6, i 6= n− 6): Then,

γ2 = (∗, ∗, 1, ∗, ∗, ∗, ∗, ∗, . . . ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗) ∈ Uα ⊕ 0

and for wt(γ2) = 1 we obtain

γ3 = (1, 0, 0, ∗, 1, 0, ∗, ∗, . . . ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗) ∈ Uγ2 ⊕α

such that pγ3 ≤ 2−3.
Case 2 (i = n− 6): Then,

γ2 = (∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, . . . ∗, ∗, ∗, ∗, 1, ∗, ∗, ∗) ∈ Uα ⊕ 0

if j 6= n− 5 and

γ2 = (∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, . . . ∗, ∗, ∗, ∗, ∗, 1, ∗, ∗) ∈ Uα ⊕ 0

if j = n− 5. In both cases, for wt(γ2) = 1 we obtain

γ3 = (1(0), 0, 0, 0, ∗, ∗, 0, 0, . . . 0, 0, 1(i), ∗, ∗, ∗, ∗, ∗) ∈ Uγ2 ⊕α

such that pγ3 ≤ 2−3.
Case 3 (j = n − 6): Now, we still have to consider the two possibilities j − i 6= 6 and
j − i = 6. For the first case, one gets

γ2 = (∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, . . . ∗, ∗, ∗, ∗, 1, ∗, ∗, ∗) ∈ Uα ⊕ 0



and for wt(γ2) = 1,

γ3 = (1, ∗, ∗, ∗, ∗, ∗, ∗, ∗, . . . ∗, ∗, ∗, ∗, ∗, ∗, 1, ∗) ∈ Uγ2 ⊕α.

If j − i = 6, then,

γ2 = (∗, ∗, ∗, ∗, . . . ∗, ∗, 1(i+2), ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗) ∈ Uα ⊕ 0

and for wt(γ2) = 1,

γ3 = (1(1), ∗, ∗, ∗, . . . 1(i), ∗, ∗, ∗, 1, ∗, 1(j), ∗, ∗, ∗, ∗, ∗) ∈ Uγ2 ⊕α.

ut

Using a similar argument, one obtains the bounds for Simeck as the following theorem states.

Theorem 4 (Bounds for Simeck). Let n ∈ {16, 24, 32} and θ(x) = (x ≪ 1). For the
rotation constants a = 5, b = 0, the probability of any T -round differential characteristic is
upper bounded by 2−2T+2.

Interestingly, for every instance of Simon and Simeck, it turns out that our approach is
sufficient in order to bound the probability of differential characteristics below 2−2n where n
denotes the bit length of one Feistel branch. For n up to 32, the security margin κ of the
corresponding primitive(s) can be considered as reasonable. See Table 1 for a comparison.

Table 1. Number of rounds needed for bounding the differential probability of a characteristic
by 2−2n for all instances of Simon and Simeck. The ? symbol indicates that there is an
appropriate instance of Simeck with the same number of rounds.

rounds rounds
needed

margin κ

Simon32/64? 32 17 15
Simon48/72 36 25 11
Simon48/96? 36 25 11
Simon64/96 42 33 9
Simon64/128? 44 33 11
Simon96/96 52 49 3
Simon96/144 54 49 5
Simon128/128 68 65 3
Simon128/192 69 65 4
Simon128/256 72 65 7

4 Conclusion

We presented a more general description of Simon-like designs by separating the round func-
tion into a linear and a non-linear component and proved upper bounds on the probability
of differential characteristics for specific instances. In fact, we developed a non-experimental
security argument on full-round versions of Simon that can be verified by pen and paper. We
hope that this work encourages to further research on analyzing Simon-like designs. An open
question is whether our approach can be generalized in order to obtain better bounds over
multiple rounds. However, as described earlier, we believe that such an argument would be
much more complex. Furthermore, it would be favorable to avoid the consideration of every
special case individually. This is related to the question of how to design the linear part θ in
this set-up.
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