
The SKINNY Family of Block Ciphers
and its Low-Latency Variant MANTIS

(Full Version)

Christof Beierle1, Jérémy Jean2, Stefan Kölbl3, Gregor Leander1, Amir Moradi1,
Thomas Peyrin2, Yu Sasaki4, Pascal Sasdrich1, and Siang Meng Sim2

1 Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany
{Firstname.Lastname}@rub.de

2 School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

Jean.Jeremy@gmail.com, Thomas.Peyrin@ntu.edu.sg, SSIM011@e.ntu.edu.sg

3 DTU Compute, Technical University of Denmark, Denmark
stek@dtu.dk

4 NTT Secure Platform Laboratories, Japan
Sasaki.Yu@lab.ntt.co.jp

Abstract. We present a new tweakable block cipher family SKINNY, whose goal is
to compete with NSA recent design SIMON in terms of hardware/software perfor-
mances, while proving in addition much stronger security guarantees with regards
to differential/linear attacks. In particular, unlike SIMON, we are able to provide
strong bounds for all versions, and not only in the single-key model, but also in
the related-key or related-tweak model. SKINNY has flexible block/key/tweak sizes
and can also benefit from very efficient threshold implementations for side-channel
protection. Regarding performances, it outperforms all known ciphers for ASIC
round-based implementations, while still reaching an extremely small area for serial
implementations and a very good efficiency for software and micro-controllers im-
plementations (SKINNY has the smallest total number of AND/OR/XOR gates used
for encryption process).
Secondly, we present MANTIS, a dedicated variant of SKINNY for low-latency imple-
mentations, that constitutes a very efficient solution to the problem of designing a
tweakable block cipher for memory encryption. MANTIS basically reuses well under-
stood, previously studied, known components. Yet, by putting those components
together in a new fashion, we obtain a competitive cipher to PRINCE in latency and
area, while being enhanced with a tweak input.

Key words: lightweight encryption, low-latency, tweakable block cipher, MILP.

This article is the full version of the paper published in the proceedings of CRYPTO 2016
(c©IACR 2016, DOI: 10.1007/978-3-662-53008-5 5). Updated information on SKINNY will be made
available via https://sites.google.com/site/skinnycipher/.

https://sites.google.com/site/skinnycipher/

Table of Contents

1 Introduction . 3
2 Specifications of SKINNY . 6
3 Rationale of SKINNY . 11

3.1 Estimating Area and Performances . 12
3.2 General Design and Components Rationale . 12
3.3 Comparing Differential Bounds . 16
3.4 Comparing Theoretical Performance . 17

4 Security Analysis . 18
4.1 Differential/Linear Cryptanalysis . 19
4.2 Meet-in-the-Middle Attacks . 19
4.3 Impossible Differential Attacks . 20
4.4 Integral Attacks . 21
4.5 Slide Attacks . 25
4.6 Subspace Cryptanalysis . 26
4.7 Algebraic Attacks . 26

5 Implementations, Performance and Comparison . 27
5.1 ASIC Implementations . 27
5.2 FPGA Implementations . 33
5.3 Software Implementations . 35
5.4 Micro-Controller Implementations . 36

6 The Low-Latency Tweakable Block Cipher MANTIS . 38
6.1 Description of the Cipher . 39
6.2 Design Rationale . 40
6.3 Security Analysis . 42
6.4 Implementations . 42

A 8-bit Sbox for SKINNY-128 . 44
B Test Vectors . 44

B.1 Test Vectors for SKINNY . 44
B.2 Test Vectors for MANTIS . 45

C Comparing Theoretical Performance of Lightweight Ciphers 45
D Computing Active S-Boxes using MILP and Diffusion Test 47

1 Introduction

Due to the increasing importance of pervasive computing, lightweight cryptography is
currently a very active research domain in the symmetric-key cryptography community.
In particular, we have recently seen the apparition of many (some might say too many)
lightweight block ciphers, hash functions and stream ciphers. While the term lightweight is
not strictly defined, it most often refers to a primitive that allows compact implementations,
i.e. minimizing the area required by the implementation. While the focus on area is certainly
valid with many applications, most of them require additional performance criteria to be
taken into account. In particular, the throughput of the primitive represents an important
dimension for many applications. Besides that, power (in particular for passive RFID tags)
and energy (for battery-driven device) may be major aspects.

Moreover, the efficiency on different hardware technologies (ASIC, FPGA) needs to be
taken into account, and even micro-controllers become a scenario of importance. Finally,
as remarked in [?], software implementations should not be completely ignored for these
lightweight primitives, as in many applications the tiny devices will communicate with
servers handling thousands or millions of them. Thus, even so research started by focusing
on chip area only, lightweight cryptography is indeed an inherent multidimensional problem.

Investigating the recent proposals in more detail, a major distinction is eye-catching
and one can roughly split the proposals in two classes. The first class of ciphers uses very
strong, but less efficient components (like the Sbox used in PRESENT [?] or LED [?], or
the MDS diffusion matrix in LED or PICCOLO [?]). The second class of designs uses very
efficient, but rather weak components (like the very small KATAN [?] or SIMON [?] round
function).1

From a security viewpoint, the analysis of the members of the first class can be conducted
much easily and it is usually possible to derive strong arguments for their security. However,
while the second class strategy usually gives very competitive performance figures, it is
much harder with state-of-the-art analysis techniques to obtain security guarantees even
with regards to basic linear or differential cryptanalysis. In particular, when using very
light round functions, bounds on the probabilities of linear or differential characteristics
are usually both hard to obtain and not very strong. As a considerable fraction of the
lightweight primitives proposed got quickly broken within a few months or years from
their publication date, being able to give convincing security arguments turns out to be of
major importance.

Of special interest, in this context, is the recent publication of the SIMON and SPECK

family of block ciphers by the NSA [?]. Those ciphers brought a huge leap in terms of
performances. As of today, these two primitives have an important efficiency advantage
against all its competitors, in almost all implementation scenarios and platforms. However,
even though SIMON or SPECK are quite elegant and seemingly well-crafted designs, these
efficiency improvements came at an essential price. Echoing the above, since the ciphers have
a very light round function, their security bounds regarding classical linear or differential
cryptanalysis are not so impressive, quite difficult to obtain or even non-existent. For
example, in [?] the authors provide differential/linear bounds for SIMON, but, as we will
see, one needs a big proportion of the total number of rounds to guarantee its security
according to its block size. Even worse, no bound is currently known in the related-key
model for any version of SIMON and thus there is a risk that good related-key differential
characteristics might exist for this family of ciphers (while some lightweight proposals such
as LED [?], PICCOLO [?] or some versions of TWINE [?] do provide such a security guarantee).
One should be further cautious as these designs come from a governmental agency which
does not provide specific details on how the primitives were built. No cryptanalysis was

1Actually, this separation is not only valid for lightweight designs. It can well be extended to
more classical ciphers or hash functions as well.

3

ever provided by the designers. Instead, the important analysis work was been carried out
by the research community in the last few years and one should note that so far SIMON or
SPECK remain unbroken.

It is therefore a major challenge for academic research to design a cipher that can
compete with SIMON’s performances and additionally provides the essential strong security
guarantees that SIMON is clearly lacking. We emphasize that this is both a research challenge
and, in view of NSA’s efforts to propose SIMON into an ISO standard, a challenge that has
likely a practical impact.

Lightweight Tweakable Block Ciphers and Side-Channel Protected Implemen-
tations. We note that tiny devices are more prone to be deployed into insecure environ-
ments and thus side-channel protected implementations of lightweight encryption primitives
is a very important aspect that should be taken care of. One might even argue that instead
of comparing performances of unprotected implementations of these lightweight primitives,
one should instead compare protected variants (this is the recent trend followed by ciphers
like ZORRO [?] or PICARO [?] and has actually already been taken into account long before
by the cipher NOEKEON [?]). One extra protection against side-channel attacks can be the
use of leakage resilient designs and notably through an extra tweak input of the cipher.
Such tweakable block ciphers are rather rare, the only such candidate being Joltik-BC [?]
or the internal cipher from SCREAM [?]. Coming up with a tweakable block cipher is indeed
not an easy task as one must be extremely careful how to include this extra input that
can be fully controlled by the attacker.

Low-Latency Implementations for Memory Encryption. One very interesting field
in the area of lightweight cryptography is memory encryption (see e.g. [?] for an ex-
tensive survey of memory encryption techniques). Memory encryption has been used in
the literature to protect the memory used by a process domain against several types of
attackers, including attackers capable of monitoring and even manipulating bus trans-
actions. Examples of commercial uses do not abound, but there are at least two: IBM’s
SecureBlue++ [?] and Intel’s SGX whose encryption and integrity mechanisms have been
presented by Gueron at RWC 2016.2 No documentation seems to be publicly available
regarding the encryption used in IBM’s solution, while Intel’s encryption method requires
additional data to be stored with each cache line. It is optimal in the context of encryption
with memory overhead, but if the use case does not allow memory overhead then an entirely
different approach is necessary.

With a focus on data confidentiality, a tweakable block cipher in ECB mode would
then be the natural, straightforward solution. However, all generic methods to construct a
tweakable block cipher from a block cipher suffer from an increased latency. Therefore,
there is a clear need for lightweight tweakable block ciphers which do not require whitening
value derivation, have a latency similar to the best non-tweakable block ciphers, and that
can also be used in modes of operation that do not require memory expansion and offer
beyond-birthday-bound security.

While being of great practical impact and need, it is actually very challenging to come
up with such a block cipher. It should have three main characteristics. First, it must be
executed within a single clock cycle and with a very low latency. Second, a tweak input is
required, which in the case of memory encryption will be the memory address. Third, as
one necessarily has to implement encryption and decryption, it is desirable to have a very
low overhead when implementing decryption on top of encryption. The first and the third
characteristics are already studied in the block cipher PRINCE [?]. However, the second
point, i.e. having a tweak input, is not provided by PRINCE. It is not trivial to turn PRINCE

2The slides can be found here.

4

https://drive.google.com/file/d/0Bzm_4XrWnl5zOXdTcUlEMmdZem8/view

into a tweakable block cipher, especially without increasing the number of rounds (and
thereby latency) significantly.

Our Contributions. Our contributions are twofold. First, we introduce a new lightweight
family of block ciphers: SKINNY. Our goal here is to provide a competitor to SIMON in
terms of hardware/software performances, while proving in addition much stronger security
guarantees with regard to differential/linear attacks. Second, we present MANTIS, a dedicated
variant of SKINNY that constitutes a very efficient solution to the aforementioned problem
of designing a tweakable block cipher for memory encryption.

Regarding SKINNY, we have pushed further the recent trend of having a SPN cipher with
locally non-optimal internal components: SKINNY is an SPN cipher that uses a compact
Sbox, a new very sparse diffusion layer, and a new very light key schedule. Yet, by carefully
choosing our components and how they interact, our construction manages to retain very
strong security guarantees. For all the SKINNY versions, we are able to prove using mixed
integer linear programming (MILP) very strong bounds with respect to differential/linear
attacks, not only in the single-key model, but also in the much more involved related-key
model. Some versions of SKINNY have a very large key size compared to its block size and
this theoretically renders the bounds search space huge. Therefore, the MILP methods
we have devised to compute these bounds for a SKINNY-like construction can actually
be considered a contribution by itself. As we will see later, compared to SIMON, in the
single-key model SKINNY needs a much lower proportion of its total number of rounds to
provide a sufficient bound on the best differential/linear characteristic. In the related-key
model, the situation is even more at SKINNY’s advantage as no such bound is known for
any version of SIMON as of today.

With regard to performance, SKINNY reaches very small area with serial ASIC imple-
mentations, yet it is actually the very first block cipher that leads to better performances
than SIMON for round-based ASIC implementations, arguably the most important type
of implementation since it provides a very good throughput for a reasonably low area
cost, in contrary to serial implementations that only minimizes area. We also exhibit
ASIC threshold implementations of our SKINNY variants that compare for example very
favourably to AES-128 threshold implementations. As explained above, this is an integral
part of modern lightweight primitives.

Regarding software, our implementations outperform all lightweight ciphers, except
SIMON which performs slightly faster in the situation where the key schedule is performed
only once. However, as remarked in [?], it is more likely in practice that the key schedule
has to be performed everytime, and since SKINNY has a very lightweight key schedule
we expect the efficiency of SKINNY software implementations to be equivalent to that of
SIMON. This shows that SKINNY would perfectly fit a scenario where a server communicate
with many lightweight devices. These performances are not surprising, in particular for
bit-sliced implementations, as we show that SKINNY uses a much smaller total number of
AND/NOR/XOR gates compared to all known lightweight block ciphers. This indicates
that SKINNY will be competitive for most platforms and scenarios. Micro-controllers are no
exception, and we show that SKINNY performs extremely well on these architectures.

We further remark that the decryption process of SKINNY has almost exactly the same
description as the encryption counterpart, thus minimizing the decryption overhead.

We finally note that similarly to SIMON, SKINNY very naturally encompasses 64- or 128-
bit block versions and a wide range of key sizes. However, in addition, SKINNY provides a
tweakable capability, which can be very useful not only for leakage resilient implementations,
but also to be directly plugged into higher-level operating modes, such as SCT [?]. In order
to provide this tweak feature, we have generalized the STK construction [?] to enable more
compact implementations while maintaining a high provable security level.

5

The SKINNY specifications are given in Section 2. The rationale of our design as well as
various theoretical security and efficiency comparisons are provided in Section 3. Finally,
we conducted a complete security analysis in Section 4 and we exhibit our implementation
results in Section 5.

Regarding MANTIS, we propose in Section 6 a low-latency tweakable block cipher
that reuses some design principles of SKINNY.3 It represents a very efficient solution to
the aforementioned problem of designing a tweakable block cipher tailored for memory
encryption.

The main challenge when designing such a cipher is that its latency is directly related
to the number of rounds. Thus, it is crucial to find a design, i.e. a round function and a
tweak-scheduling, that ensures security already with a minimal number of rounds. Here,
components of the recently proposed block ciphers PRINCE and MIDORI [?] turn out to be
very beneficial.

The crucial step in the design of MANTIS was to find a suitable tweak-scheduling that
would ensure a high number of active Sboxes not only in the single-key setting, but also
in the setting where the attacker can control the difference in the tweak. Using, again,
the MILP approach, we are able to demonstrate that a rather small number of rounds is
already sufficient to ensure the resistance of MANTIS to differential (and linear) attacks in
the related-tweak setting.

Besides the tweak-scheduling, we emphasize that MANTIS basically reuses well under-
stood, previously studied, known components. It is mainly putting those components
together in a new fashion, that allows MANTIS to be very competitive to PRINCE in latency
and area, while being enhanced with a tweak. Thus, compared to the performance figures
of PRINCE, we get the tweak almost for free, which is the key to solve the pressing problem
of memory encryption.

2 Specifications of SKINNY

Notations and SKINNY Versions. The lightweight block ciphers of the SKINNY family
have 64-bit and 128-bit block versions and we denote n the block size. In both n = 64
and n = 128 versions, the internal state is viewed as a 4× 4 square array of cells, where
each cell is a nibble (in the n = 64 case) or a byte (in the n = 128 case). We denote ISi,j
the cell of the internal state located at Row i and Column j (counting starting from 0).
One can also view this 4× 4 square array of cells as a vector of cells by concatenating the
rows. Thus, we denote with a single subscript ISi the cell of the internal state located at
Position i in this vector (counting starting from 0) and we have that ISi,j = IS4·i+j .

SKINNY follows the TWEAKEY framework from [?] and thus takes a tweakey input
instead of a key or a pair key/tweak. The user can then choose what part of this tweakey
input will be key material and/or tweak material (classical block cipher view is to use the
entire tweakey input as key material only). The family of lightweight block ciphers SKINNY
have three main tweakey size versions: for a block size n, we propose versions with tweakey
size t = n, t = 2n and t = 3n (versions with other tweakey sizes between n and 3n are
naturally obtained from these main versions) and we denote z = t/n the tweakey size to
block size ratio. The tweakey state is also viewed as a collection of z 4× 4 square arrays of
cells of s bits each. We denote these arrays TK1 when z = 1, TK1 and TK2 when z = 2,
and finally TK1, TK2 and TK3 when z = 3. Moreover, we denote TKzi,j the cell of the
tweakey state located at Row i and Column j of the z-th cell array. As for the internal
state, we extend this notation to a vector view with a single subscript: TK1i, TK2i and
TK3i. Moreover, we define the adversarial model SK (resp. TK1, TK2 or TK3) where
the attacker cannot (resp. can) introduce differences in the tweakey state.

3For the genesis of the cipher MANTIS, we acknowledge the contribution of Roberto Avanzi, as
specified in Section 6.

6

Initialization. The cipher receives a plaintext m = m0‖m1‖ · · · ‖m14‖m15, where the mi

are s-bit cells, with s = n/16 (we have s = 4 for the 64-bit block SKINNY versions and
s = 8 for the 128-bit block SKINNY versions). The initialization of the cipher’s internal
state is performed by simply setting ISi = mi for 0 ≤ i ≤ 15:

IS =

m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15

This is the initial value of the cipher internal state and note that the state is loaded

row-wise rather than in the column-wise fashion we have come to expect from the AES;
this is a more hardware-friendly choice, as pointed out in [?].

The cipher receives a tweakey input tk = tk0‖tk1‖ · · · ‖tk30‖tk16z−1, where the tki are
s-bit cells. The initialization of the cipher’s tweakey state is performed by simply setting
for 0 ≤ i ≤ 15: TK1i = tki when z = 1, TK1i = tki and TK2i = tk16+i when z = 2, and
finally TK1i = tki, TK2i = tk16+i and TK3i = tk32+i when z = 3. We note that the
tweakey states are loaded row-wise.

Table 1. Number of rounds for SKINNY-n-t, with n-bit internal state and t-bit tweakey
state.

Tweakey size t

Block size n n 2n 3n

64 32 rounds 36 rounds 40 rounds

128 40 rounds 48 rounds 56 rounds

The Round Function. One encryption round of SKINNY is composed of five opera-
tions in the following order: SubCells, AddConstants, AddRoundTweakey, ShiftRows and
MixColumns (see illustration in Figure 1). The number r of rounds to perform during

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Fig. 1. The SKINNY round function applies five different transformations: SubCells (SC),
AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR) and MixColumns (MC).

encryption depends on the block and tweakey sizes. The actual values are summarized in
Table 1. Note that no whitening key is used in SKINNY. Thus, a part of the first and last
round do not add any security. We motivate this choice in Section 3.

SubCells. A s-bit Sbox is applied to every cell of the cipher internal state. For s = 4,
SKINNY cipher uses a Sbox S4 very close to the PICCOLO Sbox [?]. The action of this
Sbox in hexadecimal notation is given by the following Table 2.

7

Table 2. 4-bit Sbox S4 used in SKINNY when s = 4.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S4[x] c 6 9 0 1 a 2 b 3 8 5 d 4 e 7 f

S−1
4 [x] 3 4 6 8 c a 1 e 9 2 5 7 0 b d f

Note that S4 can also be described with four NOR and four XOR operations, as
depicted in Figure 2. If x0, x1, x2 and x3 represent the four inputs bits of the Sbox
(x0 being the least significant bit), one simply applies the following transformation:

(x3, x2, x1, x0)→ (x3, x2, x1, x0 ⊕ (x3 ∨ x2)),

followed by a left shift bit rotation. This process is repeated four times, except for the
last iteration where the bit rotation is omitted.

MSB LSB

MSB LSB

Fig. 2. Construction of the Sbox S4.

MSB LSB

MSB LSB

Fig. 3. Construction of the Sbox S8.

For the case s = 8, SKINNY uses an 8-bit Sbox S8 that is built in a similar manner as
for the 4-bit Sbox S4 described above. The construction is simple and is depicted in
Figure 3. If x0, . . ., x7 represent the eight inputs bits of the Sbox (x0 being the least
significant bit), it basically applies the below transformation on the 8-bit state:

(x7, x6, x5, x4, x3, x2, x1, x0)→ (x7, x6, x5, x4 ⊕ (x7 ∨ x6), x3, x2, x1, x0 ⊕ (x3 ∨ x2)),

followed by the bit permutation:

(x7, x6, x5, x4, x3, x2, x1, x0) −→ (x2, x1, x7, x6, x4, x0, x3, x5),

repeating this process four times, except for the last iteration where there is just a bit
swap between x1 and x2. Besides, we provide in Appendix A the table of Sbox S8 and
its inverse in hexadecimal notations.

AddConstants. A 6-bit affine LFSR, whose state is denoted (rc5, rc4, rc3, rc2, rc1, rc0)
(with rc0 being the least significant bit), is used to generate round constants. Its update
function is defined as:

(rc5||rc4||rc3||rc2||rc1||rc0)→ (rc4||rc3||rc2||rc1||rc0||rc5 ⊕ rc4 ⊕ 1).

8

The six bits are initialized to zero, and updated before use in a given round. The bits
from the LFSR are arranged into a 4× 4 array (only the first column of the state is
affected by the LFSR bits), depending on the size of internal state:

c0 0 0 0

c1 0 0 0

c2 0 0 0

0 0 0 0

 ,
with c2 = 0x2 and

(c0, c1) = (rc3‖rc2‖rc1‖rc0, 0‖0‖rc5‖rc4) when s = 4

(c0, c1) = (0‖0‖0‖0‖rc3‖rc2‖rc1‖rc0, 0‖0‖0‖0‖0‖0‖rc5‖rc4) when s = 8.

The round constants are combined with the state, respecting array positioning, using
bitwise exclusive-or. The values of the (rc5, rc4, rc3, rc2, rc1, rc0) constants for each
round are given in the table below, encoded to byte values for each round, with rc0
being the least significant bit.

Rounds Constants

1 - 16 01,03,07,0F,1F,3E,3D,3B,37,2F,1E,3C,39,33,27,0E

17 - 32 1D,3A,35,2B,16,2C,18,30,21,02,05,0B,17,2E,1C,38

33 - 48 31,23,06,0D,1B,36,2D,1A,34,29,12,24,08,11,22,04

49 - 62 09,13,26,0C,19,32,25,0A,15,2A,14,28,10,20

AddRoundTweakey. The first and second rows of all tweakey arrays are extracted and
bitwise exclusive-ored to the cipher internal state, respecting the array positioning.
More formally, for i = {0, 1} and j = {0, 1, 2, 3}, we have:
• ISi,j = ISi,j ⊕ TK1i,j when z = 1,
• ISi,j = ISi,j ⊕ TK1i,j ⊕ TK2i,j when z = 2,
• ISi,j = ISi,j ⊕ TK1i,j ⊕ TK2i,j ⊕ TK3i,j when z = 3.

Extracted
8s-bit subtweakey

PT

LFSR

LFSR

Fig. 4. The tweakey schedule in SKINNY. Each tweakey word TK1, TK2 and TK3 (if any)
follows a similar transformation update, except that no LFSR is applied to TK1.

Then, the tweakey arrays are updated as follows (this tweakey schedule is illustrated
in Figure 4). First, a permutation PT is applied on the cells positions of all tweakey
arrays: for all 0 ≤ i ≤ 15, we set TK1i ← TK1PT [i] with

PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7],

9

and similarly for TK2 when z = 2, and for TK2 and TK3 when z = 3. This corresponds
to the following reordering of the matrix cells, where indices are taken row-wise:

(0, . . . , 15)
PT7−→ (9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7)

Finally, every cell of the first and second rows of TK2 and TK3 (for the SKINNY

versions where TK2 and TK3 are used) are individually updated with an LFSR. The
LFSRs used are given in Table 3 (x0 stands for the LSB of the cell).

Table 3. The LFSRs used in SKINNY to generate the round constants. The TK parameter
gives the number of tweakey words in the cipher, and the s parameter gives the size of cell
in bits.

TK s LFSR

TK2
4 (x3||x2||x1||x0) → (x2||x1||x0||x3 ⊕ x2)

8 (x7||x6||x5||x4||x3||x2||x1||x0) → (x6||x5||x4||x3||x2||x1||x0||x7 ⊕ x5)

TK3
4 (x3||x2||x1||x0) → (x0 ⊕ x3||x3||x2||x1)

8 (x7||x6||x5||x4||x3||x2||x1||x0) → (x0 ⊕ x6||x7||x6||x5||x4||x3||x2||x1)

ShiftRows. As in AES, in this layer the rows of the cipher state cell array are rotated, but
they are to the right. More precisely, the second, third, and fourth cell rows are rotated
by 1, 2 and 3 positions to the right, respectively. In other words, a permutation P is
applied on the cells positions of the cipher internal state cell array: for all 0 ≤ i ≤ 15,
we set ISi ← ISP [i] with

P = [0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14, 15, 12].

MixColumns. Each column of the cipher internal state array is multiplied by the following
binary matrix M:

M =

1 0 1 1

1 0 0 0

0 1 1 0

1 0 1 0

 .

The final value of the internal state array provides the ciphertext with cells being
unpacked in the same way as the packing during initialization. Test vectors for SKINNY

are provided in Appendix B. Note that decryption is very similar to encryption as all
cipher components have very simple inverse (SubCells and MixColumns are based on a
generalized Feistel structure, so their respective inverse is straightforward to deduce and
can be implemented with the exact same number of operations).

Extending to Other Tweakey Sizes. The three main versions of SKINNY have tweakey
sizes t = n, t = 2n and t = 3n, but one can easily extend this to any size4 of tweakey
n ≤ t ≤ 3n:

4For simplicity we do not include here tweakey sizes that are not a multiple of s bits. However,
such cases can be trivially handled by generalizing the tweakey schedule description to the bit
level.

10

• for any tweakey size n < t < 2n, one simply uses exactly the t = 2n version but the last
2n− t bits of the tweakey state are fixed to the zero value. Moreover, the corresponding
cells in the tweakey state TK2 will not be updated throughout the rounds with the
LFSR.

• for any tweakey size 2n < t < 3n, one simply uses exactly the t = 3n version but
the last 3n − t bits of the tweakey state are fixed to the zero value. Moreover, the
corresponding cells in the tweakey state TK3 will not be updated throughout the
rounds with the LFSR.

We note that some of our 64-bit block SKINNY versions allow small key sizes (down
to 64-bit). We emphasize that we propose these versions mainly for simplicity in the
description of the SKINNY family of ciphers. Yet, as advised by the NIST [?], one should
not to use key sizes that are smaller than 112 bits.

Instantiating the Tweakey State with Key and Tweak Material. Following the
TWEAKEY framework [?], SKINNY takes as inputs a plaintext or a ciphertext and a
tweakey value, which can be used in a flexible way by filling it with key and tweak material.
Whatever the situation, the user must ensure that the key size is always at least as big as
the block size.

In the classical setting where only key material is input, we use exactly the specifications
of SKINNY described previously. However, when some tweak material is to be used in the
tweakey state, we dedicate TK1 for this purpose and XOR a bit set to “1” every round to
the second bit of the top cell of the third column (i.e. the second bit of IS0,2). In other
words, when there is some tweak material, we add an extra “1” in the constant matrix
from AddConstants). Besides, in situations where the user might use different tweak sizes,
we recommend to dedicate some cells of TK1 to encode the size of the tweak material, in
order to ensure proper separation. Note that these are only recommendations, thus not
strictly part of the specifications of SKINNY.

3 Rationale of SKINNY

Several design choices of SKINNY have been borrowed from existing ciphers, but most of
our components are new, optimized for our goal: a cipher well suited for most lightweight
applications. When designing SKINNY, one of our main criteria was to only add components
which are vital for the security of the primitive, removing any unnecessary operation
(hence the name of our proposal). We end up with the sound property that removing any
component or using weaker version of a component from SKINNY would lead to a much
weaker (or actually insecure) cipher. Therefore, the construction of SKINNY has been done
through several iterations, trying to reach the exact spot where good performance meets
strong security arguments. We detail in this section how we tried to follow this direction
for each layer of the cipher.

We note that one could have chosen a slightly smaller Sbox or a slightly sparser diffusion
layer, but our preliminary implementations showed that these options represent worse
tradeoff overall. For example, one could imagine a very simple cipher iterating thousands
of rounds composed of only a single non-linear boolean operation, an XOR and some bit
wiring. However, such a cipher will lead to terrible performance regarding throughput,
latency or energy consumption.

When designing a lightweight encryption scheme, several use cases must be taken in
account. While area optimized implementations are important for some very constrained
applications, throughput or throughput-over-area optimized implementations are also very
relevant. Actually, looking at recently introduced efficiency measurements [?], one can see
that our designs choices are good for many types of implementations, which is exactly
what makes a good general-purpose lightweight encryption scheme.

11

3.1 Estimating Area and Performances

In order to discuss the rationale of our design, we first quickly describe an estimation in
Gate Equivalent (GE) of the ASIC area cost of several simple bit operations (for UMC
180nm 1.8 V [?]): a NOR/NAND gate costs 1 GE, a OR/AND gate costs 1.33 GE, a
XOR/XNOR gate costs 2.67 GE and a NOT gate costs 0.67 GE. Finally, one memory bit
can be estimated to 6 GE (scan flip-flop). Of course, these numbers depend on the library
used, but it will give us at least some rough and easy evaluation of the design choices we
will make.

Besides, even though many tradeoffs exist, we distinguish between a serial implemen-
tation, a round-based implementation and a low-latency implementation. In the latter,
the entire ciphering process is performed in a single clock cycle, but the area cost is
then quite important as all rounds need to be directly implemented. For a round-based
implementation, an entire round of the cipher is performed in a single clock cycle, thus
ending with the entire ciphering process being done in r cycles and with a moderate area
cost (this tradeoff is usually a good candidate for energy efficiency). Finally, in a serial
implementation, one reduces the datapath and thus the area to the minimum (usually a few
bits, like the Sbox bit size), but the throughput is greatly reduced. The ultimate goal of a
good lightweight encryption primitive is to use lightweight components, but also to ensure
that these components are compact and efficient for all these tradeoffs. This is what SIMON
designers have managed to produce, but sacrificing a few security guarantees. SKINNY offers
similar (sometimes even better) performances than SIMON, while providing much stronger
security arguments with regard to classical differential or linear cryptanalysis.

3.2 General Design and Components Rationale

A first and important decision was to choose between a Substitution-Permutation Network
(SPN), or a Feistel network. We started from a SPN construction as it is generally easier
to provide stronger bounds on the number of active Sboxes. However, we note that
there is a dual bit-sliced view of SKINNY that resembles some generalized Feistel network.
Somehow, one can view the cipher as a primitive in between an SPN and an “AND-
rotation-XOR” function like SIMON. We try to get the best of both worlds by benefiting
the nice implementation tradeoffs of the latter, while organizing the state in an SPN view
so that bounds on the number of active Sboxes can be easily obtained.

The absence of whitening key is justified by the reduction of the control logic: by always
keeping the exact same round during the entire encryption process we avoid the control
logic induced by having a last non-repeating layer at the end of the cipher. Besides, this
simplifies the general description and implementation of the primitive. Obviously, having
no whitening key means that a few operations of the cipher have no impact on the security.
This is actually the case for both the beginning and the end of the ciphering process in
SKINNY since the key addition is done in the middle of the round, with only half of the
state being involved with this key addition every round.

A crucial feature of SKINNY is the easy generation of several block size or tweakey size
versions, while keeping the general structure and most of the security analysis untouched.
Going from the 64-bit block size versions to the 128-bit block size versions is simply done
by using a 8-bit Sbox instead of a 4-bit Sbox, therefore keeping all the structural analysis
identical. Using bigger tweakey material is done by following the STK construction [?],
which allows automated analysis tools to still work even though the input space become
very big (in short, the superposition trick makes the TK2 and TK3 analysis almost as
time consuming as the normal and easy TK1 case). Besides, unlike previous lightweight
block ciphers, this complete analysis of the TK2 and TK3 cases allows us to dedicate a
part of this tweakey material to be potentially some tweak input, therefore making SKINNY

a flexible tweakable block cipher. Also, we directly obtain related-key security proofs using
this general structure.

12

SubCells. The choice of the Sbox is obviously a crucial decision in an SPN cipher and
we have spent a lot of efforts on looking for the best possible candidate. For the 4-bit
case, we have designed a tool that searches for the most compact candidate that provides
some minimal security guarantees. Namely, with the bit operations cost estimations given
previously, for all possible combinations of operations (NAND/NOR/XOR/XNOR) up
to a certain limit cost, our tool checks if certain security criterion of the tested Sbox are
fulfilled. More precisely, we have forced the maximal differential transition probability of
the Sbox to be 2−2 and the maximal absolute linear bias to be 2−2. When both criteria
are satisfied, we have filtered our search for Sbox with high algebraic degree.

Our results is that the Sbox used in the PICCOLO block cipher [?] is close to be the best
one: our 4-bit Sbox candidate S4 is essentially the PICCOLO Sbox with the last NOT gate
at the end being removed (see Figure 2). We believe this extra NOT gate was added by
the PICCOLO designers to avoid fixed points (actually, if fixed points were to be removed
at the Sbox level, the PICCOLO candidate would be the best choice), but in SKINNY the
fixed points are handled with the use of constants to save some extra GE. Yet, omitting
the last bit rotation layer removes already a lot of fixed points (the efficiency cost of this
omission being null).

The Sbox S4 can therefore be implemented with only 4 NOR gates and 4 XOR gates,
the rest being only bit wiring (basically free in hardware). According to our previously
explained estimations, this should cost 14.68 GE, but as remarked in [?], some libraries
provide special gates that further save area. Namely, in our library the 4-input AND-NOR
and 4-input OR-NAND gates with two inputs inverted cost 2 GE and they can be used to
directly compute a XOR or an XNOR. Thus, S4 can be implemented with only 12 GE.
In comparison, the PRESENT Sbox [?] requires 3 AND, 1 OR and 11 XOR gates, which
amounts to 27.32 GE (or 34.69 GE without the special 4-input gates).

All in all, our 4-bit Sbox S4 has the following security properties: maximal differential
transition probability of 2−2, maximal absolute linear bias of 2−2, branching number 2,
algebraic degree 3 and one fixed point S4(0xF) = 0xF.

Regarding the 8-bit Sbox, the search space was too wide for our automated tool.
Therefore, we instead considered a subclass of the entire search space: by reusing the
general structure of S4, we have tested all possible Sboxes built by iterating several times
a NOR/XOR combination and a bit permutation. Our search found that the maximal
differential transition probability and maximal absolute linear bias of the Sboxes are larger
than 2−2 when we have less than 8 iterations of the NOR/XOR combination and bit
permutation. With 8 iterations of the NOR/XOR combination and bit permutation, we
found Sboxes with desired maximal differential transition probability of 2−2 and maximal
absolute linear bias of 2−2 with algebraic degree 6. However, the algebraic degree of the
inverse Sboxes of all these candidates is 5 rather than 6. In addition, having 8 iterations
may result in higher latency when we consider a serial hardware implementation. Therefore,
we considered having 2 NOR/XOR combinations in every iteration and reduce the number
of iteration from 8 to 4. As a result, we found several Sboxes with the desired maximal
differential probability and absolute linear bias, while reaching algebraic degree 6 for
both the Sbox and its inverse (thus better than the 8 iterations case). Although such
Sbox candidates have 3 fixed points when we omit the last bit permutation layer like
the 4-bit case, we can easily reduce the number of fixed points by introducing a different
bit permutation from the intermediate bit permutations to the last layer without any
additional cost.

With 2 NOR/XOR combinations and a bit permutation iterated 4 times, S8 can be
implemented with only 8 NOR gates and 8 XOR gates (see Figure 3), the rest being only
bit wiring (basically free in hardware). The total area cost should be 24 GE according
to our previously explained estimations and using special 4-input AND-NOR and 4-
input OR-NAND gates. In comparison, while ensuring a maximal differential transition

13

probability (resp. maximum absolute linear bias) of 2−6 (resp. 2−4), the AES Sbox requires
32 AND/OR gates and 83 XOR gates to be implemented, which amounts to 198 GE. Even
recent lightweight 8-bit Sbox proposal [?] requires 12 AND/OR gates and 26 XOR gates,
which amounts to 64 GE, for a maximal differential transition probability (resp. maximum
linear bias) of 2−5 (resp. 2−2), but their optimization goal was different from ours.

All in all, we believe our 8-bit Sbox candidate S8 provides a good tradeoff between
security and area cost. It has maximal differential transition probability of 2−2, maximal
absolute linear bias of 2−2, branching number 2, algebraic degree 6 and a single fixed
point S8(0xFF) = 0xFF (for the Sbox we have chosen, swapping two bits in the last bit
permutation was probably the simplest method to achieve only a single fixed point).

Note that both our Sboxes S4 and S8 have the interesting feature that their inverse is
computed almost identically to the forward direction (as they are based on a generalized
Feistel structure) and with exactly the same number of operations. Thus, our design
reasoning also holds when considering the decryption process.

AddConstants. The constants in SKINNY have several goals: differentiate the rounds
(see Section 4.5), differentiate the columns and avoid symmetries, complicate subspace
cryptanalysis (see Section 4.6) and attacks exploiting fixed points from the Sbox. In order
to differentiate the rounds, we simply need a counter, and since the number of rounds
of all SKINNY versions is smaller than 64, the most hardware friendly solution is to use a
very cheap 6-bit affine LFSR (like in LED [?]) that requires only a single XNOR gate per
update. The 6 bits are then dispatched to the two first rows of the first column (this will
maximize the constants spread after the ShiftRows and MixColumns), which will already
break the columns symmetry.

In order to avoid symmetries, fixed points and more generally subspaces to spread,
we need to introduce different constants in several cells of the internal state. The round
counter will already naturally have this goal, yet, in order to increase that effect, we have
added a “1” bit to the third row, which is almost free in terms of implementation cost.
This will ensure that symmetries and subspaces are broken even more quickly, and in
particular independently of the round counter.

AddRoundTweakey. The tweakey schedule of SKINNY follows closely the STK construction
from [?] (that allows to easily get bounds on the number of active Sboxes in the related-
tweakey model). Yet, we have changed a few parts. Firstly, instead of using multiplications
by 2 and 3 in a finite field, we have instead replaced these tweakey cells updates by cheap
4-bit or 8-bit LFSRs (depending on the size of the cell) to minimize the hardware cost.
All our LFSRs require only a single XOR for the update, and we have checked that the
differential cancellation behavior of these interconnected LFSRs is as required by the STK

construction: for a given position, a single cancellation can only happen every 15 rounds
for TK2, and same with two cancellations for TK3.

Another important generalization of the STK construction is the fact that every round
we XOR only half of the internal cipher state with some subtweakey. The goal was clearly
to optimize hardware performances of SKINNY, and it actually saves an important amount
of XORs in a round-based implementation. The potential danger is that the bounds
we obtain would dramatically drop because of this change. Yet, surprisingly, the bounds
remained actually good and this was a good security/performance tradeoff to make. Another
advantage is that we can now update the tweakey cells only before they are incorporated
to the cipher internal state. Thus, half of tweakey cells only will be updated every round
and the period of the cancellations naturally doubles: for a certain cell position, a single
cancellation can only happen every 30 rounds for TK2 and two cancellations can only
happen every 30 rounds for TK3.

14

The tweakey permutation PT has been chosen to maximize the bounds on the number
of active Sboxes that we could obtain in the related-tweakey model (note that it has no
impact in the single-key model). Besides, we have enforced for PT the special property
that all cells located in third and fourth rows are sent to the first and second rows, and
vice-versa. Since only the first and second rows of the tweakey states are XORed to the
internal state of the cipher, this ensures that both halves of the tweakey states will be
equally mixed to the cipher internal state (otherwise, some tweakey bytes might be more
involved in the ciphering process than others). Finally, the cells that will not be directly
XORed to the cipher internal state can be left at the same relative position. On top of
that, we only considered those variants of PT that consist of a single cycle.

We note that since the cells of the first tweakey word TK1 are never updated, they
can be directly hardwired to save some area if the situation allows.

ShiftRows and MixColumns. Competing with SIMON’s impressive hardware performance
required choosing an extremely sparse diffusion layer for SKINNY, which was in direct
contradiction with our original goal of obtaining good security bounds for our primitive.
Note that since our Sboxes S4 and S8 have a branching number of two, we cannot use only
a bit permutation layer as in the PRESENT block cipher: differential characteristics with
only a single active Sbox per round would exist. After several design iterations, we came
to the conclusion that binary matrices were the best choice. More surprisingly, while most
block cipher designs are using very strong diffusion layers (like an MDS matrix), and even
though a 4× 4 binary matrices with branching number four exist, we preferred a much
sparser candidate which we believe offers the best security/performance tradeoff (this can
be measured in terms of Figure Of Adversarial Merit [?]).

Due to its strong sparseness, SKINNY binary diffusion matrix M has only a differential
or linear branching number of two. This seems to be worrisome as it would again mean
that differential characteristics with only a single active Sbox per round would exist (it
would be the same for PRESENT block cipher if its Sbox did not have branching number
three, which is the reason of the relatively high cost of the PRESENT Sbox). However, we
designed M such that when a branching two differential transition occurs, the next round
will likely lead to a much higher branching number. Looking at M, the only way to meet
branching two is to have an input difference in either the second or the fourth input only.
This leads to an input difference in the first or third element for the next round, which
then diffuses to many output elements. The differential characteristic with a single active
Sbox per round is therefore impossible, and actually we will be able to prove at least 96
active Sboxes for 20 rounds. Thus, for the very cheap price of a differential branching
two binary diffusion matrix, we are in fact getting a better security than expected when
looking at the iteration of several rounds. The effect is the same with linear branching (for
which we only need to look at the transpose of the inverse of M, i.e. (M−1)>).

We have considered all possibilites for M that can be implemented with at most three
XOR operations and eventually kept the MixColumns matrices that, in combination with
ShiftRows, guaranteed high diffusion and led to strong bounds on the minimal number of
active Sboxes in the single-key model.

Note that another important criterion came into play regarding the choice of the
diffusion layer of SKINNY: it is important that the key material impacts as fast as possible
the cipher internal state. This is in particular a crucial point for SKINNY as only half of
the state is mixed with some key material every round, and since there is no whitening
keys. Besides, having a fast key diffusion will reduce the impact of meet-in-the-middle
attacks. Once the two first rows of the state were arbitrarily chosen to receive the key
material, given a certain subtweakey, we could check how many rounds were required (in
both encryption and decryption directions) to ensure that the entire cipher state depends

15

Table 4. Proved bounds on the minimal number of differential active Sboxes for
SKINNY-64-128 and various lightweight 64-bit block 128-bit key ciphers. Model SK de-
notes the single-key scenario and model TK2 denotes the related-tweakey scenario where
differences can be inserted in both states TK1 and TK2.

Cipher Model
Rounds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SKINNY SK 1 2 5 8 12 16 26 36 41 46 51 55 58 61 66 75

(36 rounds) TK2 0 0 0 0 1 2 3 6 9 12 16 21 25 31 35 40

LED SK 1 5 9 25 26 30 34 50 51 55 59 75 76 80 84 100

(48 rounds) TK2 0 0 0 0 0 0 0 0 1 5 9 25 26 30 34 50

PICCOLO SK 0 5 9 14 18 27 32 36 41 45 50 54 59 63 68 72

(31 rounds) TK2 0 0 0 0 0 0 0 5 9 14 18 18 23 27 27 32

MIDORI SK 1 3 7 16 23 30 35 38 41 50 57 62 67 72 75 84

(16 rounds) TK2 - - - - - - - - - - - - - - - -

PRESENT SK - - - - 10 - - - - 20 - - - - 30 -

(31 rounds) TK2 - - - - - - - - - - - - - - - -

TWINE SK 0 1 2 3 4 6 8 11 14 18 22 24 27 30 32 -

(36 rounds) TK2 - - - - - - - - - - - - - - - -

on this subtweakey. Our final choice of MixColumns is optimal: only a single round is
required in both forward and backward directions to ensure this diffusion.

3.3 Comparing Differential Bounds

Our entire design has been crafted to allow good provable bounds on the minimal number
of differential or linear active Sboxes, not only for the single-key model, but also in the
related-key model (or more precisely the related-tweakey model in our case). We provide
in Table 4 a comparison of our bounds with the best known proven bounds for other
lightweight block ciphers at the same security level (all the ciphers in the table use 4-bit
Sboxes with a maximal differential probability of 2−2). We give in Section 4 more details
on how the bounds of SKINNY were obtained.

First, we emphasize that most of the bounds we obtained for SKINNY are not tight, and
we can hope for even higher minimal numbers of active Sboxes. This is not the case of LED
or PRESENT for which the bounds are tight.

From the table, we can see that LED obtains better bounds for SK. Yet, the situation is
inverted for TK2: due to a strong plateau effect in the TK2 bounds of LED, it stays at 50
active Sboxes until Round 24, while SKINNY already reaches 72 active Sboxes at Round 24.
Besides, LED performance will be quite bad compared to SKINNY, due to its strong MDS
diffusion layer and strong Sbox.

Regarding PICCOLO, the bounds5 are really similar to SKINNY for SK but worse for
TK2. Yet, our round function is lighter (no use of a MDS layer), see Section 3.4.

No related-key bounds are known for MIDORI, PRESENT or TWINE. Besides, our SK
bounds are better than PRESENT. Regarding MIDORI or TWINE in SK, while our bounds
are slightly worse, we emphasize again that our round function is much lighter and thus
will lead to much better performances.

5We estimate the number of active Sboxes for PICCOLO to d4.5 ·Nfe, where Nf is the number
of active F -functions taken from [?].

16

Table 5. Comparison between AES-128 and SIMON/SKINNY versions for the proportion
of total number of rounds needed to provide a sufficiently good differential characteristic
probability bound according to the cipher block size (i.e. < 2−64 for 64-bit block size and
< 2−128 for 128-bit block size). Results for SIMON are updated results taken from [?].

Cipher Single Key Related Key

SKINNY-64-128 8/36 = 0.22 15/36 = 0.42

SIMON-64-128 19/44 = 0.43 no bound known

SKINNY-128-128 15/40 = 0.37 19/40 = 0.47

SIMON-128-128 41/68 = 0.60 no bound known

AES-128 4/10 = 0.40 6/10 = 0.60

Comparing differential bounds with SIMON is not as simple as with SPN ciphers. Yet,
bounds on the best differential/linear characteristics for SIMON have been provided recently
by [?].6

Assuming (very) pessimistically for SKINNY that a maximum differential transition
probability of 2−2 is always possible for each active Sbox in the differential paths with
the smallest number of active Sboxes, we can directly obtain easy bounds on the best
differential/linear characteristics for SKINNY. We provide in Table 5 a comparison between
SIMON and SKINNY versions for the proportion of total number of rounds needed to provide
a sufficiently good differential characteristic probability bound according to the cipher block
size. One can see that SKINNY needs a much smaller proportion of its total number of rounds
compared to SIMON to ensure enough confidence with regards to simple differential/linear
attacks. Actually the related-key ratios of SKINNY are even smaller than single-key ratios
of SIMON (no related-key bounds are known as of today for SIMON).

Finally, in terms of diffusion, all versions of SKINNY achieve full diffusion after only 6
rounds (forwards or backwards), while SIMON versions with 64-bit block size requires 9
rounds, and even 13 rounds for SIMON versions with 128-bit block size [?] (AES-128 reaches
full diffusion after 2 of its 10 rounds). Again, the diffusion comparison according to the
total number of rounds is at SKINNY’s advantage.

3.4 Comparing Theoretical Performance

After some minimal security guarantee, the second design goal of SKINNY was to minimize
the total number of operations. We provide in Table 6 a comparison of the total number
of operations per bit for SKINNY and for other lightweight block ciphers, as well as some
quality grade regarding its ASIC area in a round-based implementation. We explain in
details in Appendix C how these numbers have been computed.

One can see from the Table 6 that SIMON and SKINNY compare very favorably to
other candidates, both in terms of number of operations and theoretical area grade for
round-based implementations. This seems to confirm that when it comes to lightweight
block ciphers, SIMON is probably the strongest competitor as of today. Besides, SKINNY
has the best theoretical profile among all the candidates presented here, even better than
SIMON for area. For speed efficiency, SKINNY outperforms SIMON when the key schedule is
taken in account. This scenario is arguably the most important in practice: as remarked
in [?], it is likely that lightweight devices will cipher very small messages and thus the
back-end servers communicating with millions of devices will probably have to recompute
the key schedule for every small message received.

6Their article initially contained results only for the smallest versions of SIMON, but the authors
provided us updated results for all versions of SIMON.

17

Table 6. Total number of operations and theoretical performance of SKINNY and various
lightweight block ciphers. N denotes a NOR gate, A denotes a AND gate, X denotes a
XOR gate.

Cipher nb. of gate cost (per bit per round) nb. of op. nb. of op. round-based

rds int. cipher key sch. total w/o key sch. w/ key sch. impl. area

SKINNY
36

1 N 1 N 3.25× 36 3.875× 36 1 + 2.67× 2.875

-64-128 2.25 X 0.625 X 2.875 X = 117 = 139.5 = 8.68

SIMON
44

0.5 A 0.5 A 2× 44 3.5× 44 0.67 + 2.67× 3

-64/128 1.5 X 1.5 X 3.0 X = 88 = 154 = 8.68

PRESENT
31

1 A 0.125 A 1.125 A 4.75× 31 5.22× 31 1.5+ 2.67× 4.094

-128 3.75 X 0.344 X 4.094 X = 147.2 = 161.8 = 12.43

PICCOLO
31

1 N 1 N 5.25× 31 5.25× 31 1 + 2.67× 4.25

-128 4.25 X 4.25 X = 162.75 = 162.75 = 12.35

KATAN
254

0.047 N 0.047 N 0.141× 254 3.141× 254 0.19+2.67×3.094

-64-80 0.094 X 3 X 3.094 X = 35.81 = 797.8 = 8.45

SKINNY
40

1 N 1 N 3.25× 40 3.25× 40 1 + 2.67× 2.25

-128-128 2.25 X 2.25 X = 130 = 130 = 7.01

SIMON
68

0.5 A 0.5 A 2× 68 3× 68 0.67 + 2.67× 2.5

-128/128 1.5 X 1 X 2.5 X = 136 = 204 = 7.34

NOEKEON
16

0.5 (A + N) 0.5 (A + N) 1 (A + N) 6.25× 16 12.5× 16 2.33+ 2.67× 10.5

-128 5.25 X 5.25 X 10.5 X = 100 = 200 = 30.36

AES
10

4.25 A 1.06 A 5.31 A 20.25× 10 24.81× 10 7.06+ 2.67× 19.5

-128 16 X 3.5 X 19.5 X = 202.5 = 248.1 = 59.12

SKINNY
48

1 N 1 N 3.25× 48 3.81× 48 1 + 2.67× 2.81

-128-256 2.25 X 0.56 X 2.81 X = 156 = 183 = 8.5

SIMON
72

0.5 A 0.5 A 2× 72 3.5× 72 0.67 + 2.67× 3

-128/256 1.5 X 1.5 X 3.0 X = 144 = 252 = 8.68

AES
14

4.25 A 2.12 A 6.37 A 20.25× 14 29.37× 14 8.47 + 2.67× 23

-256 16 X 7 X 23 X = 283.5 = 411.2 = 69.88

In addition to its smaller key size, we note that KATAN-64-80 [?] theoretical area grade
is slightly biased here as one round of this cipher is extremely light and such a round-based
implementation would actually look more like a serial implementation and will have a very
low throughput (KATAN-64-80 has 254 rounds in total).

While Table 6 is only a rough indication of the efficiency of the various designs, we
observe that the ratio between the SIMON and SKINNY best software implementations, or
the ratio between the smallest SIMON and SKINNY round-based hardware implementations
actually match the results from the table (See Section 5.3).

4 Security Analysis

In this section, we provide an in-depth analysis of the security of the SKINNY family of block
ciphers. We emphasize that we do not claim any security in the chosen-key or known-key
model, but we do claim security in the related-key model. Moreover, we chose not to use
any constant to differentiate between different block sizes or tweakey sizes versions of
SKINNY, as we believe such a separation should be done at the protocol level, for example
by deriving different keys (note that, if needed, this can easily be done by encoding these
sizes and use them as fixed extra constant material every round).

18

4.1 Differential/Linear Cryptanalysis

In order to argue for the resistance of SKINNY against differential and linear attacks, we
computed lower bounds on the minimal number of active Sboxes, both in the single-key
and related-tweakey model. We recall that, in a differential (resp. linear) characteristic,
an Sbox is called active if it contains a non-zero input difference (resp. input mask). In
contrast to the single-key model, where the round tweakeys are constant and thus do not
influence the activity pattern, an attacker is allowed to introduce differences (resp. masks)
within the tweakey state in the related-tweakey model. For that, we considered the three
cases of choosing input differences in TK1 only, both TK1 and TK2, and in all of the
tweakey states TK1, TK2 and TK3, respectively. Table 7 presents lower bounds on the
number of differential active Sboxes for 1 up to 30 rounds. For computing these bounds, we
generated a Mixed-Integer Linear Programming model following the approach explained
in [?,?]. We refer to Appendix D for more details on how these bounds were computed.

Table 7. Lowerbounds on the number of active Sboxes in SKINNY. Note that the bounds
on the number of linear active Sboxes in the single-key model are also valid in the related-
tweakey model. In case the MILP optimization was too long, we provide upper bounds
between parentheses.

Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SK 1 2 5 8 12 16 26 36 41 46 51 55 58 61 66

TK1 0 0 1 2 3 6 10 13 16 23 32 38 41 45 49

TK2 0 0 0 0 1 2 3 6 9 12 16 21 25 31 35

TK3 0 0 0 0 0 0 1 2 3 6 10 13 16 19 24

SK Lin 1 2 5 8 13 19 25 32 38 43 48 52 55 58 64

Model 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

SK 75 82 88 92 96 102 108 (114) (116) (124) (132) (138) (136) (148) (158)

TK1 54 59 62 66 70 75 79 83 85 88 95 102 (108) (112) (120)

TK2 40 43 47 52 57 59 64 67 72 75 82 85 88 92 96

TK3 27 31 35 43 45 48 51 55 58 60 65 72 77 81 85

SK Lin 70 76 80 85 90 96 102 107 (110) (118) (122) (128) (136) (141) (143)

For lower bounding the number of linear active Sboxes, we used the same approach.
For that, we considered the inverse of the transposed linear transformation M>. However,
for the linear case, we only considered the single-key model. As it is described in [?], there
is no cancellation of active Sboxes in linear characteristics. Thus, the bounds for SK give
valid bounds also for the case where the attacker is allowed to not only control the message
but also the tweakey input.

The above bounds are for single characteristic, thus it will be interesting to take a look
at differentials and linear hulls. Being a rather complex task, we leave this as future work.

4.2 Meet-in-the-Middle Attacks

Meet-in-the-middle attacks have been applied to block ciphers e.g. [?,?]. From its application
to the SPN structure [?], the number of attacked rounds can be evaluated by considering
the maximum length of three features, partial-matching, initial structure and splice-and-cut.
This evaluation approach can be seen in the proposal of MIDORI.

19

Partial-matching cannot work if the number of rounds reaches full diffusion rounds in
each of forward and backward directions. For SKINNY, full diffusion is achieved after 6 rounds
forwards and backwards. Thus, partial-matching can work at most (6− 1) + (6− 1) = 10
rounds. The length of the initial structure can also be bounded by the smaller number
of full diffusion rounds in backwards and forwards and the maximum number that all
tweakey cells impact to an Sbox. As a result, it works up to 6 + 2 − 1 = 7 rounds for
SKINNY. Splice-and-cut may extend the number of attack rounds up to the smaller number
of full diffusion rounds minus one, which is 6− 1 = 5 in SKINNY. In the end, we conclude
that meet-in-the-middle attack may work up to 10 + 7 + 5 = 22 rounds. Consequently, the
32+ rounds of SKINNY provides a reasonable security margin.

Remarks on Biclique Cryptanalysis. Biclique cryptanalysis improves the complexity
of exhaustive search by computing only a part of encryption algorithm. The improved
factor is often evaluated by the ratio of the number of Sboxes involved in the partial
computation to all Sboxes in the cipher. The improved factor can be relatively big when
the number of rounds in the cipher is small, which is not the case in SKINNY. We do not
think improving exhaustive search by a small factor will turn into serious vulnerability
in future. Therefore, SKINNY is not designed to resist biclique cryptanalysis with small
improvement.

4.3 Impossible Differential Attacks

Impossible differential attack [?] finds two internal state differences ∆,∆′ such that ∆ is
never propagated to ∆′. The attacker then finds many pairs of plaintext/ciphertext and
tweakey values leading to (∆,∆′). Those tweakey values are wrong values, thus tweakey
space can be reduced.

We searched for impossible differential characteristics with the miss-in-the-middle
technique. In short, 16 input truncated differentials and 16 output truncated differentials
with single active cell are propagated with encryption function and decryption function,
respectively, until no cell can be inactive or active with probability one. Then, we pick up
the pair contradicting each other in the middle. Consequently, we found that the longest
impossible differential characteristics reach 11 rounds and there are 16 such characteristics
in total. An example of a 11-round impossible differential characteristic is as follows (also
depicted in Figure 5):

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ∆, 0, 0, 0)
12R9 (0, 0, 0, 0, 0, 0, 0, 0, ∆′, 0, 0, 0, 0, 0, 0, 0).

Several rounds can be appended before and after the 11-round impossible differential
characteristic. The number of rounds appended depend on the key size. For example,
when the block size and the key size are the same, two rounds and three rounds can
be appended before and after the characteristic respectively, which makes 16-round key
recovery. The plaintext difference becomes (0, 0, 0, ∗, ∗, ∗, ∗, 0, 0, ∗, 0, ∗, 0, 0, ∗, 0) and the
ciphertext difference becomes (∗, ∗, ∗, ∗, ∗, ∗, ∗, 0, 0, 0, ∗, ∗, ∗, ∗, ∗, 0), where ∗ denotes non-
zero difference. The entire differential characteristic is illustrated in Figure 6.

The analysis is slightly different from standard SPN ciphers due to the lack of whitening
key and unique order of the AddRoundTweakey (ARK) operation. For the first two rounds,
ARK can be moved after the ShiftRows (SR) and MixColumns (MC) operations by applying
the corresponding linear transformation to the tweakey value, which confirms that the
first round acts as a keyless operation. Then, the analysis can start by regarding input
difference to Round 2 as the plaintext difference and this is masked by the equivalent
tweakey for the first round. It also shows that the number of (equivalent) tweakey cells
involved is 3 in the first three rounds and 5 in the last three rounds; hence, 8 cells in total.

20

✓

✓

: inactive : active : unknown ✓ : contradicting cell

Round 10 Round 11

SR MC SR MC

Round 7 Round 8 Round 9

SR MC SR MC SR MC

SR MC SR

Contradiction

MCSR

Round 1 Round 2 Round 3

Round 4 Round 5 Round 6

SR MC SR MC SR MC

MC

Fig. 5. 11-round impossible differential characteristic. SR and MC stand for ShiftRows
and MixColumns, respectively. SubCells, AddConstants and AddTweakey are omitted
since they are not related to the impossible differential characteristic.

The attacker constructs 2x structures at the input to Round 2 and each structure consists
of 23c values, where c is the cell size i.e. 4 bits for SKINNY-64 and 8 bits for SKINNY-128.
In total, 2x+6c−1 pairs can be constructed from those 2x+3c values. All the 2x+3c values are
inverted by one keyless round to obtain the corresponding original plaintexts and further
queried the encryption oracle to obtain their corresponding ciphertexts. The attacker only
picks up the pair which has 9 inactive cells after inverting the last MC operation. 2x−3c−1

pairs are expected to remain after the filtering. For each such pair, the attacker can generate
all tweakey values for 8 cells leading to the impossible differential characteristic by guessing
5 internal state cells, which are 1-cell differences after MC in Round 3 and 4-cell differences
before MC in Round 14 and Round 15. In the end, the attacker obtains 2x−3c−1+5c = 2x+2c−1

wrong key suggestions for 8 tweakey cells, which makes the remaining tweakey space

28c · (1− 2−8c)2
x+2c−1

= 28c · e−2x−6c−1

.

When c = 8, we choose x = 54.5, which makes the remaining key space 264 · 2−65.3 < 1.
When c = 4, we choose x = 29.5, which makes the remaining key space 232 · 2−32.6 < 1.

All in all, the data complexity amounts to 2x+3c chosen plaintexts, and time and memory
complexities are max{2x+3c, 2x+2c−1}. Hence, data, time and memory complexities reach
288.5 for SKINNY-128 with 128-bit key (c = 8) and 241.5 for SKINNY-64 with 64-bit key
(c = 4).

4.4 Integral Attacks

Integral attack [?,?] prepares a set of plaintexts so that particular cells can contain all
the values in the set and the other cells are fixed to a constant value. Then properties

21

: guessed key
nibbles

TK '

TK '

Ciphertext

Round 16

SC
AC

AK
SR MC TK

MC TK

Round 15

SC
AC

AK
SR MC TK

Round 3

11-round Impossible

Differenital Characteristic

Round 14

SC
AC

AK
SR

Round 2

SC
AC

AK
SR MC TK

Round 1

SC
AC

AK
SR MC TK

Fig. 6. 16-round key recovery with impossible differential attack for SKINNY-64 with 64-bit
tweakey and SKINNY-128 with 128-bit tweakey.

of the multiset of internal state values after encrypting several rounds are considered. In
particular, we consider the following four properties.

All (A) : All values in the cell appear exactly the same number.
Balanced (B) : The sum of all values in the multiset is 0.
Constant (C) : The cell value is fixed through the multiset.
Unknown (U) : No particular property exists.

In order to find the maximum number of rounds preserving any non-trivial property,
we follow an experimental approach. One active cell is set to the state, and those are
processed by encryption algorithm until all cells become unknown. This is iterated many
times by using different value of constant cells and tweakey. As a result, we found that an
active cell in any of the third row will yield two cells satisfying the A property after seven
rounds.

The property is then extended to higher-order by propagating the active cell in the
backward direction. The property can be extended by 4 rounds in backwards by activating
12 cells. In the end, 10-round integral distinguishers can be constructed, which is illustrated
in Figure 7.

Note that algebraic degree of the 4-bit Sbox is three (optimal) while algebraic degree
of the 8-bit Sbox is six (not optimal), thus integral property of SKINNY-128 can be longer
than SKINNY-64. We did the experiment for both versions, and found that the integral
property was identical.

22

A A A A A A A A A A
A A A A A A A A A A A A A A A A
A A A A A A A A A A A A

A A A A A A A A A A A A

A A C C C C C C C C C C C C C C C C
A A A C C C C A C C C C C C C C C C

A A C C C C C C C C C A C C C C C A
C C C C C C C C C C C C C C C C

C C C A C C C A C A A A C A A A A A B B A A U U
C C C C C C C C C C C A A C C C C A A A A C A A
C C C A C A C C C A C C C C C A A C C A C A A C
C C C A C C A C C A C A A C A C C A A B A A U C

B B U U U U U U U U U U
A A U U U A A U U U U U
A A B A U A A A U B B U
A B U U U U U A U U U U

Round 10

MC

Round 1 Round 2 Round 3

Round 4 Round 5 Round 6

SB

SR
MC

SB

SR
MC

SB

SR
MC

SC

SR
MC

SC

SR
MC

Round 7 Round 8 Round 9

SC

SR
MC

SC

SR
MC

MC
SC

SR

SC

SR
MC

SC

SR

Fig. 7. 10-round integral distinguisher. Rounds 5 to 10 show the property for 24 internal
state values. Round 1 to 4 show which cells need to be active to extend it to higher-order
integral property.

Key Recovery. One can append 4 rounds after the 10-round integral distinguisher to
make a 14-round key-recovery attack. The 4-round backward computation is depicted in
Figure 8.

Then, the strategy proceeds as follows:

1. The attacker prepares 212c plaintexts to form the integral distinguisher. The attacker
computes inverse MixColumns operation for each of the corresponding ciphertext, and
takes parity of the 4-cell values necessary to proceed the backward computation. This
reduces the remaining text size to 28c.

2. The attacker guesses 4 cells of the last tweakey and further computes inverse SubCells

and inverse MixColumns. Again the attack takes the parity of 5-cell values after the
inverse MixColumns. In the end, this step performs 28c · 24c = 212c computations and
obtain 25c data for each guess of 4 cells of tweakey. Note that guess-and-compress
approach can be performed column-by-column, which can improve the complexity of
this step smaller. However, we omit the very detailed optimization here.

3. Given 25c data, the attacker guesses 2 cells of tweakey in round 13 and computes back
to 2 cells after the inverse MixColumns. The attack takes the parity of 2-cell values. 22c

data are processed for 24c+2c = 26c tweakey guesses, which requires 211c computations
and obtain 22c data for each guess of 6 cells of tweakey.

4. Given 22c data, 1 cell of tweakey in round 12 can be obtained from 4-cell guess for
tweakey in round 14, which allows to compute back to the target cell in the output
of the distinguisher. 22c data are processed for 24c+2c = 26c tweakey guesses, which
requires 28c round function operations.

5. Computed results are tested if the Balanced (B) property is satisfied. The guessed
7-cell key candidates are reduced by a factor of 2−c.

6. By iterating the analysis 5 times more, the 6-cell key candidates will be reduced to 1,
and the other 10-cells can be guessed exhaustively.

23

B B U U U U U U U U U U U U U U
A A U U A A U U A A U U U A A U
A A B A A A U A A A U A U A A A
A B U U A U U U A U U U U U U A

U U U U
U U U U
U B B U
U U U U

ciphertext

Round 14

SC
AC

AK
SR MC TK

Round 13

SC
AC

AK
SR MC TK

Round 12

SC
AC

AK
SR MC TK

TK

Round 11

SC
AC

AK
SR MC TK

10-Round Distinguisher

Round 10

SC
AC

AK
SR MC

Fig. 8. 16-round key recovery with integral attack for SKINNY-64 with 64-bit tweakey and
SKINNY-128 with 128-bit tweakey. The cells that are involved during the last 2.5-round
backward computation are colored in gray.

Data complexity of this attack is 212c chosen plaintexts and memory access to deal with 212c

ciphertext is the bottleneck of the complexity. The bottleneck of the memory complexity
is also for the very first stage, which stores 28c state values after the first parity check.

Remarks on the Division Property. The division property was proposed by Todo [?]
as a generalization of the integral property, which is in particular useful to precisely evaluate
higher-order integral property. However, regarding application to SKINNY, experimental
approach can reach more rounds. This is due to the very light round function, which allows
relatively long integral property with a single active cell. In fact, an evaluation algorithm
against generic SPN ciphers presented in [?, Algorithm 2] only leads to 6-round division
property. Advanced evaluation algorithm needs to be developed to improve integral attack
by division property.

A generalization of [?] described in [?] makes a link between the algebraic normal form
(ANF) on an Sbox, and its resistance to the division property. In particular, for a 4-bit
mapping (x0, x1, x2, x3)→ (y0, y1, y2, y3), they compute all the 16 possible products of yi’s
terms and check which of the 16 possible products of xi’s appears in the resulting ANF.
The result is shown graphically in Table 8. From an attacker point of view, the authors
explain in [?] that the sparse lines can be used to launch an attack. While the resulting

24

table in the case of SKINNY-64 seems sparser than the case of PRESENT for instance (which
can be explained by the design strategy adopted), we are still confident that our proposals
offer a strong security margin regarding this class of attacks.

Table 8. Division Property in the case of SKINNY-64 Sbox (x0, x1, x2, x3)→ (y0, y1, y2, y3).
For a given column α, the binary representation of α = α0α1α2α3 gives the ANF decom-
position of the product of

∏
αi=1 yi in terms of the products of xj ’s. In particular, the four

columns 1, 2, 4, 8 gives the ANF decomposition of the Sbox.

0 1 2 4 8 3 5 9 6 a c 7 b d e f

0 X X X X

1 X X X X X X

2 X X X X

4 X X X X

8 X X X X

3 X X X X

5 X X X X X X

9 X X X X

6 X X X X

a X X X X

c X X X X X

7 X X X X X X

b X X

d X X X

e X X X X X

f X

4.5 Slide Attacks

In SKINNY, the distinction between the rounds of the cipher is ensured by the AddConstants
operation and thus the straightforward slide attacks cannot be applied. However, the affine
LFSR, which is the source of the distinction, has a state size of 6 bits. Hence, it occurs
quite frequently that either rc5‖rc4 or rc3‖rc2‖rc1‖rc0 (the two constants cell values that
depend on the round number) collides in different rounds, which could reduce the power
of the round distinction.

We took into account all possible sliding numbers of rounds and deduced what is the
difference in the constants that is obtained every time. As these constant differences might
impact the best differential characteristic, we experimentally checked the lower bounds on
the number of active Sboxes for all these constant differences by using MILP.

In the single-key setting, by allowing any starting round for each value of the slid
pair, the lower bounds on the number of active Sboxes reach 36 after 11 rounds, and
41 after 12 rounds. All the pairs of starting rounds allowing these bounds are listed in
Table 9. These bounds are not tight. Hence, they do not indicate the existence of exact
differential characteristic matching the bounds. Moreover, in practice, attackers do not
have any control on the input state of the middle rounds. From those reasons, we expect
that slide attacks do not threat the security of SKINNY.

25

Table 9. Slid round numbers achieving the minimal lower bounds. The notation (a, b)
means that the first and second values of the pair start from round a and round b,
respectively. In this table, round numbers start from 0.

36 Sboxes for 11 rounds

(12, 31), (14, 50), (16, 30), (18, 40), (1, 25), (20, 28), (21, 38), (23, 32), (26, 47), (2, 34),

(33, 46), (36, 39), (3, 15), (42, 49), (44, 48), (4, 10), (6, 11), (7, 17), (8, 37), (9, 29)

41 Sboxes for 12 rounds

(0, 15), (10, 45), (11, 13), (12, 37), (16, 42), (17, 18), (19, 43), (21, 33), (22, 28), (24, 29),

(25, 35), (27, 47), (2, 44), (30, 49), (34, 48), (38, 46), (41, 50), (5, 32), (7, 40), (8, 31)

The similar attack can be evaluated in the related-key setting. Considering that the
above discussion already assumes the very optimistic scenario for the attacker, i.e. the
attacker can make reduced-round queries by forcing the oracle to start from any middle
round of her choice, the impact to the real SKINNY seems very limited. We would leave
this evaluation as future work.

4.6 Subspace Cryptanalysis

Invariant subspace cryptanalysis makes use of affine subspaces that are invariant under
the round function. As the round key addition translates this invariant subspace, ciphers
exhibit weak keys when all round-keys are such that the affine subspace stays invariant
including the key-addition. Therefore, those attacks are mainly an issue for block ciphers
that use identical round keys. For SKINNY the non-trivial key-scheduling already provides
a good protection against such attacks for a larger number of rounds. The main concern
that remains are large-dimensional subspaces that propagate invariant through the Sbox.
We checked that no such invariant subspaces exist. Moreover, for the 8-bit Sbox, we
computed all affine subspaces of dimension larger than two that get mapped to (different)
affine subspaces and checked if those can be chained to what could be coined a subspace
characteristic (cf. [?] for a similar approach).

It turns out that those subspaces can be chained only for a very small number of
rounds. Figure 9 shows as an example the affine spaces of dimension five. Thus to conclude,
the non-trivial key-scheduling and the use of round-constants seem to sufficiently protect
SKINNY against those attacks.

4.7 Algebraic Attacks

We argue why, not surprisingly, algebraic attacks do not threaten SKINNY. The Sbox S4
and S8 has algebraic degree a = 3 and a = 6 respectively. We can see from Table 4 that
under the single-key scenario, for any consecutive 7-round differential characteristic of
SKINNY, there are at least 26 active Sboxes. One can easily check that for all SKINNY
variants, we have a · 26 · b r7c≫ n, where r is the number of rounds and n is the block
size. Moreover, S4 is described by e = 21 quadratic equations in the v = 8 input/output
variables over GF (2). The entire system for a fixed-key SKINNY permutation therefore
consists of 16 · r · e quadratic equations in 16 · r · v variables. For example, in the case of
Skinny-64-64, there are 10752 quadratic equations in 4096 variables. In comparison, the
entire system for a fixed-key AES permutation consists of 6400 equations in 2560 variables.
While the applicability of algebraic attacks on AES remains unclear, those numbers tend to
indicate that SKINNY offers a high level of protection.

26

 01, 02, 04, 08, 40

 01, 06, 08, 10, 20 01, 04, 08, 10, 20

 01, 08, 10, 20, 42

 08, 10, 20, 40, 80 09, 10, 20, 40, 80

 02, 04, 10, 40, 80 03, 04, 10, 40, 80

 01, 02, 08, 10, 20

 01, 02, 04, 08, d0 01, 02, 04, 08, 50 01, 02, 04, 08, c0

 02, 05, 10, 40, 80

 0a, 10, 20, 40, 80 0b, 10, 20, 40, 80

Fig. 9. The graph showing all 5-dimensional affine spaces that gets mapped to (different) 5-
dimensional spaces by applying the 8-bit Sbox of SKINNY-128. The nodes are the subspaces
and the edges show which spaces are mapped to which spaces. The affine offset is ignored
in this graph. The main point to make here is that the graph is actually a tree.

5 Implementations, Performance and Comparison

5.1 ASIC Implementations

This section is dedicated to the description of the different hardware implementations of all
variants of SKINNY. We used Synopsys DesignCompiler version A-2007.12-SP1 to synthesize
the designs considering UMCL18G212T3 [?] standard cell library, which is based on the
UMC L180 0.18µm 1P6M logic process with a typical voltage of 1.8 V. For the synthesis,
we advised the compiler to keep the hierarchy and use a clock frequency of 100 KHz, which
allows a fair comparison with the benchmark of other block ciphers reported in literature.

Round-Based Implementation. In a first step, we designed round-based implementa-
tions for all SKINNY variants providing a good trade-off between performance and area.
All implementations compute a single round of SKINNY within a clock cycle. Besides, our
designs take advantage of dedicated scan flip-flops rather than using simple flip-flops and
additional multiplexers placed in front in order to hold round states and keys. Note that
this approach leads to savings of 1 GE per bit to be stored. In order to allow a better and
fairer comparison, we provide both throughput at a maximally achievable frequency and
throughput at a frequency of 100KHz.

Table 10 gives the area breakdown for round-based implementations of all SKINNY
variants, while Table 11 compares our implementations with other round-based implemen-
tations of lightweight ciphers taken from the literature.

In particular, SKINNY-64-128 offers the smallest area footprint compared to other
lightweight ciphers providing the same security level. Note, that even SIMON-64-128

implemented in a round-based fashion cannot compete with our design in terms of area
although it has a smaller critical path, hence can be operated at higher frequencies and
provides better throughput. However, comparing the throughput at a frequency of 100KHz,
SKINNY provides better results since the number of rounds is substantially lower than for
SIMON.

Using block sizes of 128 bits, SKINNY-128-128 is only slightly larger than SIMON-128-128,
while SKINNY-128-256 again has a better area footprint. Besides, the throughput behaves

27

Table 10. Area breakdown for round-based implementations of SKINNY-64 and
SKINNY-128.

64/64 64/128 64/192 128/128 128/256 128/384

GE GE GE GE GE GE

Key Schedule 384 789 1195 768 1557 2347

> Register 384 768 1152 768 1536 2304

> Logic - 21 43 - 21 43

Round Function 839 907 988 1623 1755 1921

> Register 384 384 384 768 768 768

> Constant 42 42 42 42 42 42

> MixColumns 123 123 123 245 245 245

> Substitution 192 192 192 384 384 384

> Logic 98 166 247 184 316 482

Total 1223 1696 2183 2391 3312 4268

in a similar manner as for SKINNY-64, since SIMON-128 still has a smaller critical path
(due to less complex logic functions in terms of hardware gates). Still, it can be stated that
SKINNY outperforms most existing lightweight ciphers, including SIMON, in terms of area
and throughput considering hardware architectures in a round-based style.

Table 11. Round-based implementations of SKINNY-64 and SKINNY-128.

Area Delay Clock Throughput Ref.

Cycles @100KHz @maximum

GE ns # KBit/s MBit/s

SKINNY-64-64 1223 1.77 32 200.00 1130.00 New

SKINNY-64-128 1696 1.87 36 177.78 951.11 New

SKINNY-64-192 2183 2.02 40 160.00 792.00 New

SKINNY-128-128 2391 2.89 40 320.00 1107.20 New

SKINNY-128-256 3312 2.89 48 266.67 922.67 New

SKINNY-128-384 4268 2.89 56 228.57 790.86 New

SIMON-64-128 1751 1.60 46 145.45 870.00 [?]

SIMON-128-128 2342 1.60 70 188.24 1145.00 [?]

SIMON-128-256 3419 1.60 74 177.78 1081.00 [?]

LED-64-64 2695 - 32 198.90 - [?]

LED-64-128 3036 - 48 133.00 - [?]

PRESENT-64-128 1884 - 32 200.00 - [?]

PICCOLO-64-128 1773i - 33 193.94 - [?]

i This number includes 576 GE for key storage that is not considered in the original work.

Unrolled Implementation. For the sake of completeness, we have investigated the area
of SKINNY in a fully unrolled fashion. Unrolled implementations offer the best performance
by computing a single encryption within one clock cycle. Therefore, all rounds are completely

28

unrolled and the entire encryption or decryption function is implemented as combinatorial
circuit at the disadvantage of increasing the critical path. However, this implementation
can refrain from using registers to store intermediate values.

In Table 12, we list results of unrolled implementations for all SKINNY variants and
compare it to appropriate results taken from the literature. Obviously, SKINNY cannot
compete with PRINCE considering fully unrolled implementations while it still has better
area results than LED, PRESENT and PICCOLO (at least for 64-bit block size and 128-bit keys).
Unfortunately, the literature does not provide any numbers for latency and throughput
(except for PRINCE), so we cannot compare our designs in these terms.

Table 12. Unrolled implementations of SKINNY-64 and SKINNY-128.

Area Delay Throughput Ref.

@100KHz @maximum

GE ns KBit/s MBit/s

SKINNY-64-64 13340 44.74 6400.00 1430.49 New

SKINNY-64-128 17454 51.59 6400.00 1240.55 New

SKINNY-64-192 21588 57.56 6400.00 1111.88 New

SKINNY-128-128 32415 97.93 12800.00 1307.06 New

SKINNY-128-256 46014 119.57 12800.00 1070.50 New

SKINNY-128-384 61044 131.96 12800.00 1000.00 New

LED-64-128 111496 - 6400.00 - [?]

PRESENT-64-128 56722 - 6400.00 - [?]

PICCOLO-64-128 25668 - 6400.00 - [?]

PRINCE 8512 13.00 6400.00 4923.08 [?]

Serial Implementation. As a common implementation fashion for lightweight ciphers, we
have also considered byte-, nibble-, and bit-serial architectures to examine the performance
of SKINNY.

Serial implementations have the smallest area footprint for hardware implementations
by updating only a small number of bits per clock cycle. However, the throughput and
performance of such implementations is decreased significantly. Often, only a single instance
of an Sbox is implemented and re-used to update the internal state of the round function
in a serial fashion. Depending on the size of the Sbox, we call these implementations
nibble-serial (4-bit Sbox) or byte-serial (8-bit Sbox), respectively (as an example, see
Figure 10). Besides, we provide bit-serial implementations for SKINNY-64 and SKINNY-128

which update only a single bit of the round state per clock cycle. These implementations
benefit from the iterative structure of both 4- and 8-bit Sboxes of SKINNY allowing to
compute them bit by bit in 4 respectively 8 clock cycles.

In Table 13, we list results for nibble-serial implementations of all SKINNY-64 variants
as well as results for byte-serial implementations of all SKINNY-128 variants. Obviously,
our implementations cannot compete with SIMON considering nibble-serial and byte-serial
implementations while area and performance results still are comparable to results for LED,
PRESENT and PICCOLO found in the literature.

Furthermore, we provide in Table 14 results for bit-serial implementations for all SKINNY
variants. To the best of our knowledge, no bit-serial implementations are available for
LED, PRESENT and PICCOLO so we only can compare our results to SIMON. Still, SIMON
outperforms our implementations in terms of area and performance, but we would like to

29

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

S

RC

P

RK

C MixColumns

4

4

4

4

16

16
4

4

4

4

4

4

Fig. 10. Hardware architecture of SKINNY-64 in a nibble-serial fashion

Table 13. Serial implementations of SKINNY-64 (nibble) and SKINNY-128 (byte).

Area Delay Clock Throughput Ref.

Cycles @100KHz @maximum

GE ns # KBit/s MBit/s

SKINNY-64-64 988 1.03 704 9.09 88.26 New

SKINNY-64-128 1399 0.95 788 8.12 85.49 New

SKINNY-64-192 1806 0.95 872 7.34 77.26 New

SKINNY-128-128 1840 1.03 872 14.68 142.51 New

SKINNY-128-256 2655 0.95 1040 12.31 129.55 New

SKINNY-128-384 3474 0.95 1208 10.60 111.54 New

SIMON-64-128 1000 - 384 16.7 - [?]

SIMON-128-128 1317 - 560 22.9 - [?]

SIMON-128-256 1883 - 608 21.1 - [?]

LED-64-64 966 - 1248 5.1 - [?]

LED-64-128 1265 - 1872 3.4 - [?]

PRESENT-64-128 1391 - 559 11.45 - [?]

PICCOLO-64-128 758i - 528 12.12 - [?]

i This number includes 576 GE for key storage that is not considered in the original work.

emphasize that (so far) the possibility of implementing an SPN cipher in a bit-serial way
is an unique feature of SKINNY.
Threshold Implementation. As a proper side-channel protection scheme for hardware
platforms based on Boolean masking, we have realized first-order Threshold Implementa-
tion [?] of all variants of SKINNY. In short, thanks to the iterative architecture of the Sbox
in SKINNY-128, its threshold implementation, compared to AES with the same Sbox size,
is significantly smaller and faster, and does not need any fresh randomness.

We have designed the 3-share version of Threshold Implementations, where each single
bit – in entire cipher internals – is represented with three shares, i.e., second-order Boolean
masking. Due to the transparency of Boolean masking through linear operations, the

30

Table 14. Bit-serial implementations of SKINNY-64 and SKINNY-128.

Area Delay Clock Throughput Ref.

Cycles @100KHz @maximum

GE ns # KBit/s MBit/s

SKINNY-64-64 839 1.03 2816 2.27 22.06 New

SKINNY-64-128 1172 1.06 3152 2.03 19.15 New

SKINNY-64-192 1505 1.00 3488 1.83 18.35 New

SKINNY-128-128 1481 1.05 6976 1.83 17.47 New

SKINNY-128-256 2125 0.89 8320 1.53 17.29 New

SKINNY-128-384 2761 0.89 9664 1.32 14.88 New

SIMON-64-128 958 - 1524 4.2 - [?]

SIMON-128-128 1234 - 4414 2.9 - [?]

SIMON-128-256 1782 - 4924 2.6 - [?]

3-share representation of AddConstants, AddRoundTweakey, ShiftRows and MixColumns

are easily achievable. However, the most challenging issue is to provide a uniform sharing
of the non-linear functions, i.e., SubCells.

The Sbox S4 used in SKINNY-64 is a cubic bijection which – with respect to the
categories given in [?] – belongs to the class C223, and can be decomposed to quadratic
bijections with uniform sharing. However, considering the iterative construction of S4
(given in Section 2 and Figure 2), we decompose S4 into G4 and F4 in such a way that
∀x,G4 ◦ F4(x) = S4(x). We define

y :< y3, y2, y1, y0 >= F4(x :< x3, x2, x1, x0 >)

as

y0 = x0 ⊕ (x2 ∨ x3)), y1 = x1, y2 = x2, y3 = x3 ⊕ (x1 ∨ x2)),

and thanks to the iterative construction of S4, we can write < y3, y2, y1, y0 >= G4(<
x3, x2, x1, x0 >) as

< y2, y1, y0, y3 >= F4(< x1, x0, x3, x2 >),

which means that an input permutation and an output permutation over F4 realizes G4.
The transformation F4 is affine equivalent to the quadratic class Q294 [?], and its

uniform sharing can be easily achieved by direct sharing. Let us represent xi∈{0,...,3}
with three shares (x1i , x

2
i , x

3
i), where xi = x1i ⊕ x2i ⊕ x3i . We define a component function

y :< y3, y2, y1, y0 >= f4(s, w :< w3, w2, w1, w0 >, x :< x3, x2, x1, x0 >) as

y0 = w0 ⊕ (s ∨ ((x2 ∨ x3)⊕ (w2 ∨ x3))⊕ (x2 ∨ w3)),

y1 = w1, y2 = w2,

y3 = w3 ⊕ (s ∨ ((x1 ∨ x2)⊕ (w1 ∨ x2))⊕ (x1 ∨ w2)),

which is made of only NOR and XOR gates. It is noteworthy that the extra input s controls
the component function f4 to pass the second input w.

A uniform sharing of F4 over 3-share input (x1,x2,x3) can be realized by three
instances of f4 as

y1 = f4(s, x3, x2), y2 = f4(s, x1, x3), y3 = f4(s, x2, x1).

31

The same holds for G4, and by means of an input- and output permutation over f4, we
can realize its uniform sharing.

In Threshold Implementation of other ciphers, e.g., PRESENT [?], an extra register
between the decomposed functions is required. However, in case of SKINNY, SubCells is
performed prior to AddRoundTweakey, which allows us to place the uniform sharing of F4

between the state register (see Figure 11). Integrating the input s into the component
functions f4 turns F4 to operate as pass through which is required during MixColumns.
Table 15 represents the area overhead and performance of Threshold Implementation of
all variants of SKINNY-64 based on a nibble-serial architecture.

RC

P

C
MixColumns

4*
3

4*
3

4*
3

4*
3

16*
3

16*
3

4*
3

4*
3

4*
3

4*
3

4*
3

4*
3

RK

g

131312 131313 131314 131315

13138 13139 131310 131311

13134 13135 13137

13130 13131 13132 13133f

13136

s

Fig. 11. Hardware architecture of Threshold Implementation of SKINNY-64 in a nibble-
serial fashion

We have applied the same concept on the SKINNY-128. In order to share the Sbox, we
decompose S8 as I8 ◦H8 ◦ G8 ◦ F8, each of which is an 8-bit quadratic bijection. We define

y :< y7, y6, y5, y4, y3, y2, y1, y0 >= F8(x :< x7, x6, x5, x4, x3, x2, x1, x0 >)

as

y0 = x0 ⊕ (x2 ∨ x3)), y1 = x1, y2 = x2, y3 = x3,

y4 = x4 ⊕ (x6 ∨ x7)), y5 = x5, y6 = x6, y7 = x7.

Other bijections are also defined over F8 as follows:

G8 : < y2, y1, y7, y6, y4, y0, y3, y5 >= F8(< x2, x1, x7, x6, x4, x0, x3, x5 >)

H8 : < y0, y3, y2, y1, y6, y5, y4, y7 >= F8(< x0, x3, x2, x1, x6, x5, x4, x7 >)

I8 : < y7, y6, y5, y4, y3, y1, y2, y0 >= F8(< x5, x4, x0, x3, x1, x7, x6, x2 >)

For a uniform sharing of each of these 8-bit bijections, we define a component function
y :< y7, y6, y5, y4, y3, y2, y1, y0 >= f8(s, w, x) as

y0 = w0 ⊕ (s ∨ ((x2 ∨ x3)⊕ (w2 ∨ x3))⊕ (x2 ∨ w3)),

y1 = w1, y2 = w2, y3 = w3,

y4 = w4 ⊕ (s ∨ ((x6 ∨ x7)⊕ (w6 ∨ x7))⊕ (x6 ∨ w7)),

y5 = w5, y6 = w6, y7 = w7.

32

Similar to f4, the s input has been integrated in order to control the f8 function to pass
through the w input. Following the same concept as explained above, the 3-share input
(x1,x2,x3) can be given to three instances of f8 to derive a 3-share uniform output of
F8. Therefore, uniform sharing of all aforementioned 8-bit bijections can be achieved by
input- and output permutations over the uniform sharing of F8. Further, we can place
these shared functions between the state register in a serial implementation which avoids
instantiating extra registers between the decomposed functions (see Figure 12).

RC

P

C

8*
3

8*
3

8*
3

8*
3

32*
3

32*
3

8*
3

8*
3

8*
3

8*
3

RK

I

131312 131313 131314 131315

13138 13139 131310 131311

13134 13135 13137

13130 13131H

13136

sH

13132G

sG

13133F

sF

MixColumns

8*
3

8*
3

Fig. 12. Hardware architecture of Threshold Implementation of SKINNY-128 in a byte-serial
fashion

It should be noted that the above explained constructions allow extremely efficient
Threshold Implementations since

• With a few NOR gates the functions are converted to pass through (required for
MixColumns).

• The Sbox is decomposed to smaller functions with shorter critical path leading to
designs with significantly high clock frequencies (see Table 15).

• Extra registers are avoided compared to e.g., [?].
• Our constructions do not need any fresh randomness during the entire operations

of the cipher since we could provide the uniform sharing of the Sboxes compared to
e.g., [?,?]. Only the input (plaintext) should be masked using two random masks, each
with the same length as the input.

In our Threshold Implementations – similar to many other Threshold Implementations
reported in the literature [?,?,?] – only the state is masked, not the key registers, which is
adequate to provide first-order security.

5.2 FPGA Implementations

Today, FPGAs are used more and more for high-performance applications, even in the
field of security and cryptographic applications. Since there are a wealth of different FPGA
vendors available, we decided to implement our designs on Virtex-7 FPGAs provided by
the market leader Xilinx. In this section, we provide detailed results of FPGA-tailored
solutions for high-performance implementations of SKINNY. Note, that it is almost a natural

33

Table 15. Threshold implementations of SKINNY-64 (nibble-serial) and SKINNY-128 (byte-
serial).

Area Delay Clock Throughput Fresh Ref.

Cycles @100KHz @maximum Rand.

GE ns # KBit/s MBit/s bits

SKINNY-64-64 1966 0.95 704 9.09 95.69 0 New

SKINNY-64-128 2372 1.00 788 8.12 81.22 0 New

SKINNY-64-192 2783 1.00 872 7.34 73.39 0 New

SKINNY-128-128 3780 1.63 872 14.68 90.05 0 New

SKINNY-128-256 4713 1.50 1040 12.31 82.05 0 New

SKINNY-128-384 5434 1.54 1208 10.60 68.80 0 New

AES-128 11114 - 266 48.12 - 7680 [?]

AES-128 8119 - 246 52.03 - 5120 [?]

choice to implement high-throughput architectures on FPGAs using pipelining techniques
since logic resources always come in conjunction with succeeding flip-flops. This allows to
efficiently pipeline all computations at nearly no area overhead (in terms of occupied slices
of the FPGA device) while keeping the critical path of the design at a minimum. Hence,
the maximum frequency and finally the throughput of the design can be increased.

A brief summary of implementation results for high-performance architectures on
FPGAs for both, SKINNY-64 and SKINNY-128, can be found in Table 16 providing details
for used resources and achieved performance results. Note, however, that a fair comparison
to existing work is rather difficult since most reference implementations found in the
literature either do not target fully pipelined and unrolled implementations or just provide
results for older FPGA technologies using 4-input LUTs instead of 6-input LUTs found
in modern devices. Still, we would like to highlight the performance figures of all of our
SKINNY implementations for FPGAs allowing to implement high-performance architectures
at a minimum of resource consumption.

Table 16. High-throughput implementations of SKINNY-64 and SKINNY-128. Results are
obtained after place-and-route for Virtex-7 XC7VX330T.

.

Logic Memory Frequency T’put Device Ref.

LUT FF MHz GBit/s Xilinx

SKINNY-64-64 3101 4000 403.88 25.85 Virtex-7 New

SKINNY-64-128 4247 6720 402.41 25.75 Virtex-7 New

SKINNY-64-192 6330 9952 400.48 25.63 Virtex-7 New

SKINNY-128-128 13389 10048 320.10 40.97 Virtex-7 New

SKINNY-128-256 17037 18048 355.62 45.52 Virtex-7 New

SKINNY-128-384 21966 28096 356.51 45.63 Virtex-7 New

ICEBERG-64-128 13616 - 297.00 19.01 Virtex-II [?]

MISTY1-64-128 10920 8480 140.00 8.96 Virtex1000 [?]

KHAZAD-64-128 11072 9600 123.00 7.87 Virtex1000 [?]

34

5.3 Software Implementations

In this section, we detail how the ciphers in the SKINNY family can be implemented
in software. More precisely, we consider four of the latest Intel processors using SIMD
instruction sets to perform efficient parallel computations of several input blocks. We give
in particular the performance figures for a bit-sliced implementations of SKINNY.

Notes on Previous Benchmarks and Comparisons. In most of the previous designs
proposed in academic publications, the designers give the full cost of encryption, including
the costs to convert the data to the required form, the actual encryption, and possibly the
expansion of the master key. This gives a broad overview of how well the cipher would
behave in a more specific context, especially for bit-sliced implementation where packing
and unpacking of the data can represent a non-negligible proportion of the encryption
process.

In comparison, the SIMON implementations from [?] do not include neither the cost
of key expansion nor the cost of packing/unpacking the data, which prevents any mean-
ingful comparison with the other lightweight ciphers having the same level of security
(the argument to drop these costs relies on a strong restriction on the way the cipher
implementations can be used).

In the following, we perform an evaluation of our proposals using four different recent
high-speed platforms (exact setting given in Table 17) at different rates of parallelization.
While we count the costs for packing and unpacking the data, we chose to benchmark
encryption given pre-expanded subkeys. The motivation is twofold: first, many modes of
operation make this assumption practical and second, the key schedules of our proposals
are light and would not induce big differences in the results. At the end of this section,
we also give a comparison of the speed SKINNY-64-128 can achieve in the case where the
data packing is not needed (i.e. in the highly parallel counter mode considered in [?]).

Table 17. Machine used to benchmark the software implementations (Turbo Boost
disabled).

Name Processor Launch date Linux kernel gcc version

Westmere X5650 Q1 2010 3.13.0-34 4.8.2

Ivy Bridge i5-3470 Q2 2012 3.11.0-12 4.8.1

Haswell i7-4770S Q2 2013 4.4.0-22 5.3.1

Skylake i7-6700 Q3 2015 4.2.3-040203 5.2.1

Overall our benchmarking results show that the performance roughly follows what one
would expect from Table 6. There are scenarios in practice for which the costs of the key
schedule play a non-negligible role as pointed out in [?] and we expect the lower costs of
the SKINNY key schedule to provide a good performance.

Bit-Sliced Implementations of SKINNY. Since the design of SKINNY has been made
with hardware implementations in mind, the conversion to bit-sliced implementations seems
natural. In the following, we target different sets of instructions, namely SSE4 and AVX2,
which provide shuffling instructions on byte level, as well as several wide 128-bit resp.
256-bit registers, commonly referred as XMM or YMM registers. From our perspective,
the main differences between SSE4 and AVX2 are the width of the available registers and
the possibility to use 3-operand instructions.

35

In the Table 18, we give the detailed performance figures of our implementations in the
case of SKINNY-64 and compare it with other ciphers. Note that these implementations take
into account all data transformations which are required. The bit-sliced implementations
for SIMON processing 32 resp. 64 blocks have been provided by the designers to allow us a
fair comparison in the same setting.

Table 18. Bit-sliced implementations of SKINNY-64, SKINNY-128 and other 64-bit block
lightweight ciphers. Performances are given in cycles per byte, with pre-expanded subkeys.
For SKINNY-64 and SIMON we encrypted 2000 64-bit blocks to obtain the results. Cells
with dashes (-) represent non-existing implementations to date.

Haswell Skylake Ref.

Parallelization ρ 16 32 64 16 32 64

SKINNY-64-128 - - 2.58 - - 2.48 New

SIMON-64-128 - - 1.58 - - 1.51 [?]

LED-128 22.6 13.7 - 23.1 13.3 - [?]

PRESENT-128 10.8 - - 10.3 - - [?]

Piccolo-128 9.2 - - 9.2 - - [?]

SKINNY-128-128 - - 3.78 - - 3.43 New

SIMON-128-128 - - 2.38 - - 2.21 [?]

Counter Mode Implementations of SKINNY-64-128. As mentioned before, we can
evaluate the speed of SKINNY-64-128 in the same conditions as the benchmarks provided
in [?]. Namely, the goal is to generate the keystream from the counter mode using
SKINNY-64-128 as the underlying block cipher. The main difference to the previous
scenario is that many blocks of a non-repeating value (counter) are encrypted. This allows
to save the costs for data packing, as the values are known in advance and can already be
provided in the correct format. The designers of SIMON achieve very high performances by
taking advantage of this mode in their implementation available on GitHub.7

In our case, we devise a very similar implementation that considers 64 blocks in parallel
and reaches a maximal speed of 2.63 cpb in the same setting on the latest Intel platform
Skylake. We note that the key is pre-expanded prior to encrypting the blocks, and the
64 blocks are stored in 16 registers of 256 bits in a bit-sliced way. In detail, the four first
registers contain the four first bits of each first row of the 64 blocks. The same holds for
the 12 others registers with the remaining three rows of the states.

Then, for all the 36 rounds of SKINNY-64-128, the application of SubCells, AddConstants,
AddRoundTweakey, and MixColumns can be easily done with bit-wise operations on regis-
ters. As for ShiftRows, we implement it as a shuffle on bytes within each register. The
benchmarks conducted on our four platforms are shown in Table 19.

5.4 Micro-Controller Implementations

In this section, we describe the main performance figures when implementing SKINNY on
micro-controllers. We omit details of the implementation and mainly describe the results
of the implementation.

7Available at https://github.com/lrwinge/simon_speck_supercop/.

36

https://github.com/lrwinge/simon_speck_supercop/

Table 19. Counter mode implementations of SKINNY-64-128, SKINNY-128-128,
SIMON-64-128 and SIMON-128-128. Performances are given in cycles per byte, with pre-
expanded subkeys, encrypting 16384 bytes and obtained using SUPERCOP. Details of the
machines are given in Table 17.

Westmere Ivy Bridge Haswell Skylake Ref.

Instruction Set sse4 sse4 sse4 avx2 sse4 avx2

SKINNY-64-128 7.45 5.34 4.69 2.47 4.56 2.37 New

SIMON-64-128 4.28 4.48 3.06 1.58 2.88 1.51 [?]

SKINNY-128-128 - - 6.68 3.66 6.90 3.45 New

SIMON-128-128 6.10 5.16 4.43 2.38 4.28 2.21 [?]

To evaluate the suitability of SKINNY for usage in embedded environments, we im-
plemented SKINNY for the ATmega644 microcontroller (avr5-core). Note that we choose
to exclude the C-interface related overhead since this is often depending on the chosen
environment and compiler.

The three main indicators for performance are:

1. Speed, measured in cycles per byte. The figures given below correspond to the execution
time of the encryption function. It is expected that a pointer to the RAM-residing
preprocessed key is passed to the encryption function.

2. RAM size, measured in bytes. This includes all RAM used for the encryption process.
Especially global data structures like Sboxes or round constants are included if they
are stored in RAM. Also the RAM used to hold the preprocessed key is accounted.

3. ROM size, measured in bytes. This corresponds to the complete footprint of the
algorithm needed to initialize global data structures, preprocess the key and to encrypt
data. Especially also the memory is accounted for data which is only copied into RAM
(known as .data segment).

All our implementations allow changing the key at runtime and some of them require the
initialisation of global data structures.

A lot of different trade-offs can be made, which is a real strength of SKINNY, since
different applications may have very different requirements and total costs would be
computed very differently, sometimes justifying sacrifices which would be unacceptable in
most cases. In Table 20, we provide several of those trade-offs, each optimizing for another
of the three criteria mentioned above.

Table 20. Implementation figures for SKINNY-128-128 on an ATmega644

Cycles per byte 222 257 258 288 297 328

RAM 576 287 576 287 31 31

ROM 676 616 492 436 774 594

To compare, for example, with SIMON-128-128 on the same platform, note that,
according to [?], SIMON-128-128 can be implemented to optimize speed with 510 byte of
ROM and 544 bytes of RAM running at 337 cycles per byte. Thus, it can be seen that
SKINNY-128-128 can be significantly faster (while sacrificing some ROM and RAM size).

37

6 The Low-Latency Tweakable Block Cipher MANTIS

In this section, we present a tweakable block cipher design which is optimized for low-latency
implementations.

The low-latency block cipher PRINCE already provides a very good starting point for
a low-latency design. Its round function basically follows the AES structure, with the
exception of using a MixColumns-like mapping with branch number 4 instead of 5. The
main difference between PRINCE and AES (and actually all other ciphers) is that the design
is symmetric around a linear layer in the middle. This allows to realize what was coined
α-reflection: the decryption for a key K corresponds (basically) to encryption with a
key K ⊕ α where α is a fixed constant. Turning PRINCE into a tweakable block cipher
is (conceptually) well understood when using e.g. the TWEAKEY framework [?]. First,
define a tweakey-schedule and than simply increase the number of rounds until one can
ensure that the cipher is secure against related-tweak attacks.

However, the problem is that the latency of a cipher is directly related to the number
of rounds. Thus, it is crucial to find a design, i.e. a round function and a tweak-scheduling,
that ensures security already with a minimal number of rounds. Here, components of the
recently proposed block ciphers MIDORI [?] turn out to be very beneficial. In MIDORI, again
an AES-like design, one of the key observations was that changing ShiftRows into a more
general permutation allows to significantly improve upon the number of active Sboxes
(in the single key model) while keeping a MixColumns-like layer with branch number 4
only. On top, the designers of MIDORI designed a 4-bit Sbox that was optimized with
respect to circuit-depth. This directly leads to an improved version of PRINCE itself: replace
the PRINCE round function by the MIDORI-round function while keeping the entire design
symmetric around the middle to keep the α-reflection property. This simple change would
result in a cipher with improved latency and improved security (i.e. number of active
Sboxes) compared to PRINCE. It is actually exactly this PRINCE-like MIDORI that we use
as a starting point for designing the low-latency block cipher MANTIS. The final step in
the design of MANTIS was to find a suitable tweak-scheduling that would ensure a high
number of active Sboxes not only in the single-key setting, but also in the setting where
the attacker can control the difference in the tweak. Using, again, the MILP approach, we
are able to demonstrate that a slight increase in the number of rounds (from 12 to 14)
is already sufficient to ensure the resistance of MANTIS to differential (and linear) attacks
in the related-tweak setting. Note that MANTIS is certainly not secure in the related-key
model, as there always exist a probability one distinguisher caused by the α-reflection
property.

MANTISr has a 64-bit block length and works with a 128-bit key and 64-bit tweak. The
parameter r specifies the number of rounds of one half of the cipher. The overall design is
illustrated in Figure 13.

R1 R2 R3 R4 R5 R6 S M S R−1
6 R−1

5 R−1
4 R−1

3 R−1
2 R−1

1

h h h h h h h−1 h−1 h−1 h−1 h−1 h−1

k1k1 k1 k1 k1 k1 k1 k̄1 k̄1 k̄1 k̄1 k̄1 k̄1 k̄1k0

m

T

c

k
′
0

Fig. 13. Illustration of MANTIS6.

We acknowledge the contribution of Roberto Avanzi to the design of MANTIS. He first
suggested us to combine PRINCE with the TWEAKEY framework, and also to modify the
latter by permuting the tweak independently from the key, in order to save on the Galois

38

multiplications of the tweak cells. He then brainstormed with us on early versions of the
design.

6.1 Description of the Cipher

MANTISr is based on the FX-construction [?] and thus applies whitening keys before and
after applying its core components. The 128-bit key is first split into k = k0 || k1 with
64-bit subkeys k0, k1. Then, (k0 || k1) is extended to the 192 bit key

(k0 || k
′
0 || k1) := (k0 || (k0 ≫ 1)⊕ (k0 � 63) || k1),

and k0, k
′
0 are used as whitening keys in an FX-construction. The subkey k1 is used as the

round key for all of the 2r rounds of MANTISr. We decided to stick with the FX construction
for simplicity., even so other options as described in [?].

Initialization. The cipher receives a plaintext m = m0‖m1‖ · · · ‖m14‖m15, where the
mi are 4-bit cells. The initialization of the cipher’s internal state is performed by setting
ISi = mi for 0 ≤ i ≤ 15.

The cipher also receives a tweak input T = t0‖t1‖ · · · ‖t15, where the ti are 4-bit cells.
The initialization of the cipher’s tweak state is performed by setting Ti = ti for 0 ≤ i ≤ 15.
Thus,

IS =

m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15

 T =

t0 t1 t2 t3

t4 t5 t6 t7

t8 t9 t10 t11

t12 t13 t14 t15

The round function. One round Ri(·, tk) of MANTISr operates on the cipher internal
state depending on the round tweakey tk as

MixColumns ◦ PermuteCells ◦ AddTweakeytk ◦ AddConstanti ◦ SubCells.

In the following, we describe the components of the round function.

SubCells. The involutory MIDORI Sbox Sb0 is applied to every cell of the internal state.
A description of the Sbox is given in Table 21. Using the MIDORI Sbox is beneficial as
this Sbox is especially optimized for small area and low circuit depth.

Table 21. 4-bit involutory MIDORI Sbox Sb0 used in MANTIS.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

Sb0[x] c a d 3 e b f 7 8 9 1 5 0 2 4 6

AddConstant. In the i-th round, the round constant RCi is XORed to the internal state.
The round constants are generated in a similar way as for PRINCE, that is we used the
first digits of π to generate those constants (actually the very first digits correspond
to α defined below). The round constants can be found in Table 22. Note that, in
contrast to PRINCE, the constants are added row-wise instead of column-wise.

39

Table 22. Round Constants used in MANTIS.

Round i Round constant RCi

1 0x13198a2e03707344

2 0xa4093822299f31d0

3 0x082efa98ec4e6c89

4 0x452821e638d01377

Round i Round constant RCi

5 0xbe5466cf34e90c6c

6 0xc0ac29b7c97c50dd

7 0x3f84d5b5b5470917

8 0x9216d5d98979fb1b

AddRoundTweakey. In round Ri, the (full) round tweakey state hi(T)⊕ k1 is XORed to
the cipher internal state. In the i-th inverse round R−1i , the tweakey state hi(T)⊕ k̄1 :=
hi(T)⊕ k1 ⊕ α with α = 0x243f6a8885a308d3 is XORed to the internal state. Note
that this α, as the round constants, is chosen as the first digits of π. Thereby, it is
h(T) = th(0)‖th(1) · ‖th(15), where the tweak permutation h is defined as

h = [6, 5, 14, 15, 0, 1, 2, 3, 7, 12, 13, 4, 8, 9, 10, 11].

PermuteCells. The cells of the internal state are permuted according to the MIDORI

permutation

P = [0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2].

Note that the MIDORI permutation ensures a higher number of active Sboxes compared
to the choice made in PRINCE.

MixColumns. Each column of the cipher internal state array is multiplied by the binary
matrix used in MIDORI and shown below.

M =

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

 .

Encryption. In the following, we define Hr as the application of r rounds Ri and one
additional SubCells layer. Similarly, we define H−1r as the application on one inverse
SubCells layer plus r inverse rounds. Thus,

Hr(·, T, k1) = SubCells ◦ Rr(·, hr(T)⊕ k1) ◦ · · · ◦ R1(·, h(T)⊕ k1)

H−1r (·, T, k̄1) = R−11 (·, h(T)⊕ k̄1) ◦ · · · ◦ R−1r (·, hr(T)⊕ k̄1) ◦ SubCells.
With this notation, it is

Enc(k0,k′0,k1)(·, T) = AddTweakeyk′0⊕k1⊕α⊕T ◦H
−1
r (·, T, k1 ⊕ α)

◦ MixColumns ◦Hr(·, T, k1) ◦ AddTweakeyk0⊕k1⊕T

Decryption. It is Enc−1(k0,k′0,k1)
(·, T) = Enc(k′0,k0,k1⊕α)(·, T) because of the α-reflection

property.

6.2 Design Rationale

The goal was to design a cipher which is competitive to PRINCE in terms of latency with
the advantage of being tweakable. In contrast to SKINNY, we distinguish between tweak and
key input. In particular, we allow an attacker to control the tweak but not the key. Thus,
similar to PRINCE, we do not claim related-key security. In order to reach this goal, again,
several components are borrowed from already existing ciphers. In the following, we present
the reasons for our design. Note that, as we aim for an efficient unrolled implementation,
one is not restricted to a classical round-iterated design.

40

α-Reflection Property. MANTISr is designed as a reflection cipher such that encryption
under a key k equals decryption under a related key. This significantly reduces the
implementation overhead for decryption. Therefore, the parameter r denotes only half the
number of rounds, as the second half of the cipher is basically the inverse of the first half.
It is advantageous that the diffusion matrix M is involutory since we need the middle part
of the cipher to be an involution. Unlike in the description of PRINCE, we use the same
round constant for the inverse R−1i of the i-th round and apply the addition of α to the
round key k1.

The Choice of the Diffusion Layer. To achieve low latency in an unrolled implemen-
tation, one is limited in the number rounds to be applied. Therefore, one has to achieve
very fast diffusion while guaranteeing a high number of active Sboxes. To reach these
requirements, we adopted the linear layer of MIDORI. It provides full diffusion only after
three rounds and guarantees a high number of active Sboxes in the single-key setting. We
refer to Table 4 for the bounds.

The Choice of the Sbox. For the Sbox in MANTIS we used the same Sbox as in MIDORI.
The MIDORI Sbox has a significantly smaller latency than the PRINCE Sbox. The maximal
linear bias is 2−2 and the best differential probability is 2−2 as well.

The Choice of the Tweakey Permutation h. Our aim was to choose a tweak permu-
tation h such that five rounds (plus one additional SubCells layer) guarantee at least 16
active Sboxes in the related-tweak setting. This would guarantee at least 32 active Sboxes
for MANTIS5 which is enough to bound the differential probability (resp. linear bias) below
2−2·32. Since there are 16! possibilities for h, which is too much for an exhaustive search,
we restricted ourself on a subclass of 8! tweak permutations. The restriction is that two
complete rows (without changing the position of the cells in those rows) are permuted
to different rows. In our case, the first and third row are permuted to the second and
fourth row, respectively. The bounds were derived using the MILP tool. We tested several
thousand choices for the permutation h and found out that 16 active Sboxes were the best
possible to reach over H5. Out of these optimal choices, we took the permutation that
maximized the bound for MANTIS5, and as a second step for MANTIS6. We refer to Table 23
for the actual bounds.

Table 23. Lower bounds on the number of linear (and differential) active Sboxes in the
single-key model and of differential active Sboxes in the related-tweak model.

MANTIS2 MANTIS3 MANTIS4 MANTIS5 MANTIS6 MANTIS7 MANTIS8

Linear 14 32 46 62 70 76 82

Related Tweak 6 12 20 34 44 50 56

Security Claim. For MANTIS7, we claim that any adversary who in possession of 2n

chosen plain/ciphertext pairs which were obtained under chosen tweaks, but with a fixed
unknown key, needs at least 2126−n calls to the encryption function in order to recover the
secret key. Thus, our security claims are the same as for PRINCE, except that we also claim
related-tweak security. Moreover, already for MANTIS5 we claim security against practical
attacks, similar to what has been considered in the PRINCE challenge. More precisely, we

41

claim that no related-tweak attack (better than the generic claim above) is possible against
MANTIS5 with less than 230 chosen or 240 known plaintext/ciphertext pairs. Note that
because of the α-reflection, there exists a trivial related-key distinguisher with probability
one. We especially encourage further cryptanalysis on the aggressive versions.

6.3 Security Analysis

As one round of MANTIS is almost identical to one round in MIDORI, most of the security
analysis can simply be copied from the latter. This holds in particular for meet-in-the-
middle attacks, integral attacks and slide attacks. We therefore only focus on the attacks
where the changes in round constants and by adding the tweak actually result in different
arguments.

Invariant Subspaces. The most successful attack against MIDORI-64 at the moment
is an invariant subspace attack with a density of 296 weak keys. The main observation
here is that the round constants in MIDORI are too sparse and structured to avoid certain
symmetries. More precisely, the round constants in MIDORI-64 only affect a single bit in
each of the 16 4-bit cells. Together with a property of the Sbox this finally results in
the mentioned attack. For MANTIS, the situation is very different as the round constants
(in each half) are basically random values. This in particular ensures that the invariant
subspace attack on MIDORI does not translate into an attack on MANTIS.

Differential and Linear Related-Tweak Attacks. Using the MILP approach, we
are able to prove strong bounds against related-tweak linear and differential attacks. In
particular, no related tweak linear or differential distinguisher based on a characteristics is
possible for MANTIS5, that is already for 12 layers of Sboxes. As MANTIS7 has four more
rounds, and additional key-whitening, we believe that is provides a small but sufficient
security margin.

6.4 Implementations

In Table 24 and Table 25, we list results of unrolled implementations for MANTIS constrained
for the smallest area and the shortest latency respectively. In particular, it can be seen that
for MANTIS5, the difference in area compared to PRINCE corresponds quite exactly to the
additional costs of the XOR gates needed to add the tweak. However, by constraining the
synthesis to a particular latency, MANTIS5 outperforms PRINCE mainly due to its underlying
MIDORI Sbox. A complete overview of the latency versus delay for all variants of MANTIS
compared to PRINCE is shown in Figure 14.

Table 24. Unrolled implementations of
MANTIS constrained for the smallest area
(both encryption and decryption).

Area Delay Ref.

GE ns

MANTIS5 8544 15.95 New

MANTIS6 9861 17.60 New

MANTIS7 11209 20.50 New

MANTIS8 12533 21.34 New

PRINCE 8344 16.00 [?]

Table 25. Unrolled implementations of
MANTIS constrained for the shortest delay
(both encryption and decryption).

Area Delay Ref.

GE ns

MANTIS5 13424 9.00 New

MANTIS6 18375 10.00 New

MANTIS7 23926 11.00 New

MANTIS8 30252 12.00 New

PRINCE 17693 9.00 [?]

42

10 12 14 16 18 20

1

2

3

·104

latency (ns)

a
re
a
(G

E
)

MANTIS8
MANTIS7
MANTIS6
MANTIS5
PRINCE

Fig. 14. Latency versus area of MANTIS compared to PRINCE.

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments. This
work is partly supported by the Singapore National Research Foundation Fellowship 2012
(NRF-NRFF2012-06), the DFG Research Training Group GRK 1817 Ubicrypt and the
BMBF Project UNIKOPS (01BY1040). We furthermore like to thank Daniel Otto for
providing us with performance figures for SKINNY on micro-controllers.

43

A 8-bit Sbox for SKINNY-128

/* SKINNY-128 Sbox */
uint8_t S8[256] = {
0x65 ,0x4c ,0x6a ,0x42 ,0x4b ,0x63 ,0x43 ,0x6b ,0x55 ,0x75 ,0x5a ,0x7a ,0x53 ,0x73 ,0x5b ,0x7b ,
0x35 ,0x8c ,0x3a ,0x81 ,0x89 ,0x33 ,0x80 ,0x3b ,0x95 ,0x25 ,0x98 ,0x2a ,0x90 ,0x23 ,0x99 ,0x2b ,
0xe5 ,0xcc ,0xe8 ,0xc1 ,0xc9 ,0xe0 ,0xc0 ,0xe9 ,0xd5 ,0xf5 ,0xd8 ,0xf8 ,0xd0 ,0xf0 ,0xd9 ,0xf9 ,
0xa5 ,0x1c ,0xa8 ,0x12 ,0x1b ,0xa0 ,0x13 ,0xa9 ,0x05 ,0xb5 ,0x0a ,0xb8 ,0x03 ,0xb0 ,0x0b ,0xb9 ,
0x32 ,0x88 ,0x3c ,0x85 ,0x8d ,0x34 ,0x84 ,0x3d ,0x91 ,0x22 ,0x9c ,0x2c ,0x94 ,0x24 ,0x9d ,0x2d ,
0x62 ,0x4a ,0x6c ,0x45 ,0x4d ,0x64 ,0x44 ,0x6d ,0x52 ,0x72 ,0x5c ,0x7c ,0x54 ,0x74 ,0x5d ,0x7d ,
0xa1 ,0x1a ,0xac ,0x15 ,0x1d ,0xa4 ,0x14 ,0xad ,0x02 ,0xb1 ,0x0c ,0xbc ,0x04 ,0xb4 ,0x0d ,0xbd ,
0xe1 ,0xc8 ,0xec ,0xc5 ,0xcd ,0xe4 ,0xc4 ,0xed ,0xd1 ,0xf1 ,0xdc ,0xfc ,0xd4 ,0xf4 ,0xdd ,0xfd ,
0x36 ,0x8e ,0x38 ,0x82 ,0x8b ,0x30 ,0x83 ,0x39 ,0x96 ,0x26 ,0x9a ,0x28 ,0x93 ,0x20 ,0x9b ,0x29 ,
0x66 ,0x4e ,0x68 ,0x41 ,0x49 ,0x60 ,0x40 ,0x69 ,0x56 ,0x76 ,0x58 ,0x78 ,0x50 ,0x70 ,0x59 ,0x79 ,
0xa6 ,0x1e ,0xaa ,0x11 ,0x19 ,0xa3 ,0x10 ,0xab ,0x06 ,0xb6 ,0x08 ,0xba ,0x00 ,0xb3 ,0x09 ,0xbb ,
0xe6 ,0xce ,0xea ,0xc2 ,0xcb ,0xe3 ,0xc3 ,0xeb ,0xd6 ,0xf6 ,0xda ,0xfa ,0xd3 ,0xf3 ,0xdb ,0xfb ,
0x31 ,0x8a ,0x3e ,0x86 ,0x8f ,0x37 ,0x87 ,0x3f ,0x92 ,0x21 ,0x9e ,0x2e ,0x97 ,0x27 ,0x9f ,0x2f ,
0x61 ,0x48 ,0x6e ,0x46 ,0x4f ,0x67 ,0x47 ,0x6f ,0x51 ,0x71 ,0x5e ,0x7e ,0x57 ,0x77 ,0x5f ,0x7f ,
0xa2 ,0x18 ,0xae ,0x16 ,0x1f ,0xa7 ,0x17 ,0xaf ,0x01 ,0xb2 ,0x0e ,0xbe ,0x07 ,0xb7 ,0x0f ,0xbf ,
0xe2 ,0xca ,0xee ,0xc6 ,0xcf ,0xe7 ,0xc7 ,0xef ,0xd2 ,0xf2 ,0xde ,0xfe ,0xd7 ,0xf7 ,0xdf ,0xff

};

/* Inverse SKINNY-128 Sbox */
uint8_t S8_inv [256] = {

0xac ,0xe8 ,0x68 ,0x3c ,0x6c ,0x38 ,0xa8 ,0xec ,0xaa ,0xae ,0x3a ,0x3e ,0x6a ,0x6e ,0xea ,0xee ,
0xa6 ,0xa3 ,0x33 ,0x36 ,0x66 ,0x63 ,0xe3 ,0xe6 ,0xe1 ,0xa4 ,0x61 ,0x34 ,0x31 ,0x64 ,0xa1 ,0xe4 ,
0x8d ,0xc9 ,0x49 ,0x1d ,0x4d ,0x19 ,0x89 ,0xcd ,0x8b ,0x8f ,0x1b ,0x1f ,0x4b ,0x4f ,0xcb ,0xcf ,
0x85 ,0xc0 ,0x40 ,0x15 ,0x45 ,0x10 ,0x80 ,0xc5 ,0x82 ,0x87 ,0x12 ,0x17 ,0x42 ,0x47 ,0xc2 ,0xc7 ,
0x96 ,0x93 ,0x03 ,0x06 ,0x56 ,0x53 ,0xd3 ,0xd6 ,0xd1 ,0x94 ,0x51 ,0x04 ,0x01 ,0x54 ,0x91 ,0xd4 ,
0x9c ,0xd8 ,0x58 ,0x0c ,0x5c ,0x08 ,0x98 ,0xdc ,0x9a ,0x9e ,0x0a ,0x0e ,0x5a ,0x5e ,0xda ,0xde ,
0x95 ,0xd0 ,0x50 ,0x05 ,0x55 ,0x00 ,0x90 ,0xd5 ,0x92 ,0x97 ,0x02 ,0x07 ,0x52 ,0x57 ,0xd2 ,0xd7 ,
0x9d ,0xd9 ,0x59 ,0x0d ,0x5d ,0x09 ,0x99 ,0xdd ,0x9b ,0x9f ,0x0b ,0x0f ,0x5b ,0x5f ,0xdb ,0xdf ,
0x16 ,0x13 ,0x83 ,0x86 ,0x46 ,0x43 ,0xc3 ,0xc6 ,0x41 ,0x14 ,0xc1 ,0x84 ,0x11 ,0x44 ,0x81 ,0xc4 ,
0x1c ,0x48 ,0xc8 ,0x8c ,0x4c ,0x18 ,0x88 ,0xcc ,0x1a ,0x1e ,0x8a ,0x8e ,0x4a ,0x4e ,0xca ,0xce ,
0x35 ,0x60 ,0xe0 ,0xa5 ,0x65 ,0x30 ,0xa0 ,0xe5 ,0x32 ,0x37 ,0xa2 ,0xa7 ,0x62 ,0x67 ,0xe2 ,0xe7 ,
0x3d ,0x69 ,0xe9 ,0xad ,0x6d ,0x39 ,0xa9 ,0xed ,0x3b ,0x3f ,0xab ,0xaf ,0x6b ,0x6f ,0xeb ,0xef ,
0x26 ,0x23 ,0xb3 ,0xb6 ,0x76 ,0x73 ,0xf3 ,0xf6 ,0x71 ,0x24 ,0xf1 ,0xb4 ,0x21 ,0x74 ,0xb1 ,0xf4 ,
0x2c ,0x78 ,0xf8 ,0xbc ,0x7c ,0x28 ,0xb8 ,0xfc ,0x2a ,0x2e ,0xba ,0xbe ,0x7a ,0x7e ,0xfa ,0xfe ,
0x25 ,0x70 ,0xf0 ,0xb5 ,0x75 ,0x20 ,0xb0 ,0xf5 ,0x22 ,0x27 ,0xb2 ,0xb7 ,0x72 ,0x77 ,0xf2 ,0xf7 ,
0x2d ,0x79 ,0xf9 ,0xbd ,0x7d ,0x29 ,0xb9 ,0xfd ,0x2b ,0x2f ,0xbb ,0xbf ,0x7b ,0x7f ,0xfb ,0xff

};

B Test Vectors

B.1 Test Vectors for SKINNY

The keys are given as the concatenation of (up to) three tweakey words: TK1, TK1‖TK2,
or TK1‖TK2‖TK3.

/* Skinny -64 -64 */
Key: f5269826fc681238
Plaintext: 06034 f957724d19d
Ciphertext: bb39dfb2429b8ac7

/* Skinny -64 -128 */
Key: 9eb93640d088da63

76 a39d1c8bea71e1
Plaintext: cf16cfe8fd0f98aa
Ciphertext: 6ceda1f43de92b9e

/* Skinny -64 -192 */
Key: ed00c85b120d6861

8753 e24bfd908f60
b2dbb41b422dfcd0

Plaintext: 530 c61d35e8663c3
Ciphertext: dd2cf1a8f330303c

/* Skinny -128 -128 */
Key: 4f55cfb0520cac52fd92c15f37073e93
Plaintext: f20adb0eb08b648a3b2eeed1f0adda14
Ciphertext: 22 ff30d498ea62d7e45b476e33675b74

/* Skinny -128 -256 */
Key: 009 cec81605d4ac1d2ae9e3085d7a1f3

1ac123ebfc00fddcf01046ceeddfcab3
Plaintext: 3a0c47767a26a68dd382a695e7022e25
Ciphertext: b731d98a4bde147a7ed4a6f16b9b587f

/* Skinny -128 -384 */
Key: df889548cfc7ea52d296339301797449

ab588a34a47f1ab2dfe9c8293fbea9a5
ab1afac2611012cd8cef952618c3ebe8

Plaintext: a3994b66ad85a3459f44e92b08f550cb
Ciphertext: 94 ecf589e2017c601b38c6346a10dcfa

44

B.2 Test Vectors for MANTIS

The keys are given as the concatenation k0‖k1.

/* MANTIS5 */
Key: 92 f09952c625e3e9 d7a060f714c0292b
Tweak: ba912e6f1055fed2
Plaintext: 3b5c77a4921f9718
Ciphertext: d6522035c1c0c6c1

/* MANTIS6 */
Key: 92 f09952c625e3e9 d7a060f714c0292b
Tweak: ba912e6f1055fed2
Plaintext: d6522035c1c0c6c1
Ciphertext: 60 e43457311936fd

/* MANTIS7 */
Key: 92 f09952c625e3e9 d7a060f714c0292b
Tweak: ba912e6f1055fed2
Plaintext: 60 e43457311936fd
Ciphertext: 308 e8a07f168f517

/* MANTIS8 */
Key: 92 f09952c625e3e9 d7a060f714c0292b
Tweak: ba912e6f1055fed2
Plaintext: 308 e8a07f168f517
Ciphertext: 971 ea01a86b410bb

C Comparing Theoretical Performance of Lightweight Ciphers

To simplify the analysis, we omitted the constants in all our computations as it has very
little impact on the overall theoretical performance results (only a XOR gate on a few bits
is required). We note anyway that SKINNY compares favourably to its competitors on this
point since it has very lightweight constants: only 7 constants bits are added per round,
and thus only 7 bitwise XORs per round are required.

SKINNY-64-128. The round function first uses an 4-bit Sbox layer, where each Sbox
requires 4 NOR and 4 XOR gates, thus amounting to 1 NOR and 1 XOR per bit of internal
state. Then, the ShiftRows layer is basically free, while the MixColumns layer requires 3
XOR gates to update 4 bits, thus amounting to 0.75 XOR per bit of internal state. Only
32 bits of subtweakey is XORed to the internal state every round, which costs 0.5 XOR
per bit of internal state. In total, the SKINNY-64-128 round function uses 1 NOR gate and
2.25 XOR gates per bit of internal state. Regarding the tweakey schedule, the permutation
PT is basically free, but the LFSR update for the TK2 state requires 1 XOR gate per
4-bit updated cell. Since only half of the cells of TK2 are updated every round, this leads
to 0.125 XOR gate per bit of internal state. Besides, every round two halves of tweakey
words are XORed together to compute the subtweakey value, thus amounting to 0.5 XOR
gate per bit of internal state. In total, the SKINNY-64-128 tweakey schedule uses 0.625
XOR gate per bit of internal state.

SKINNY-128-128 and SKINNY-128-256. The reasoning and the computations are exactly
the same as for SKINNY-64-128, the only difference being that the LFSR update for the
TK2 state in the tweakey schedule now costs 0.5625 XOR gate per bit of internal state for
SKINNY-128-256 (since one needs 1 XOR gate per 8-bit updated cell and since only half of
the cells of TK2 are updated every round) and does not cost anything for SKINNY-128-128.

SIMON-64-128. The round function uses 32 AND gates and 64 XOR gates per round (the
word rotations and the Feistel shift being basically free), which amounts to 0.5 AND and 1
XOR per bit of internal state. Besides, only 32 bits of subkey is XORed to the internal state

45

every round, which costs 0.5 XOR per bit of internal state. In total, the SIMON-64-128

round function uses 0.5 AND gate and 1.5 XOR gate per bit of internal state. Regarding
the key schedule, the word rotations are basically free, but one counts 96 XOR gates in
total. Thus, the SIMON-64-128 key schedule uses 1.5 XOR gate per bit of internal state.

SIMON-128-128 and SIMON-128-256. The reasoning and the computations are exactly
the same as for SIMON-64-128.

KATAN-64-80. The round function simply uses 3 AND gates and 6 XOR gates per round,
thus amounting to 0.047 NOR and 0.094 XOR per bit of internal state. Regarding the key
schedule, each round 3 XOR gates per bit of internal state are required.

PRESENT-128. The round function first uses an 4-bit Sbox layer, where each Sbox requires
3 AND, 1 OR and 11 XOR gates, which amounts to 1 AND and 2.75 XOR per bit of
internal state (we count 3 AND and 1 OR gates to be equivalent to 4 AND gates). The bit
permutation layer basically comes for free, but 64 bits of subkey is XORed to the internal
state every round, which costs 1 XOR per bit of internal state. In total, the PRESENT-128

round function uses 1 AND gate and 3.75 XOR gates per bit of internal state. Regarding
the key schedule, the key state rotation is basically free, but 2 Sboxes are applied to it,
which amounts to 0.125 AND and 0.34 XOR per bit of internal state.

PICCOLO-128. The round function uses an 4-bit Sbox layer, applied twice on half of the
state. Since the Sbox requires 4 NOR and 4 XOR gates, this eventually amounts to 1 NOR
and 1 XOR per bit of internal state. Then, the word permutation is basically free and the
mixing layer applies a diffusion matrix very similar to the AES matrix (except it computes
in GF(24) instead of GF(28)). Computing this matrix requires 72 XOR gates (24 for the
matrix coefficients and 48 for the elements sums). Since this matrix is applied twice to
the state, this amounts to 2.25 XORs per bit of internal state. Moreover, 32 XOR gates
per round are needed for the Feistel construction, which amounts to 0.5 XOR per bit of
internal state. Only 32 bits of subkey is XORed to the internal state every round, which
costs 0.5 XOR per bit of internal state. In total, the PICCOLO-128 round function uses 1
NOR gate and 4.25 XOR gates per bit of internal state. The key schedule of PICCOLO-128
is basically for free as it only consisting in wiring selecting key material.

NOEKEON-128. The Gamma function of NOEKEON requires 0.5 NOR, 0.5 AND and 1.75
XOR gates per bit of internal state, and the Theta function requires 3.5 XOR gates per bit
of internal state. In total, the round function uses 0.5 NOR, 0.5 AND and 5.25 XOR gates
per bit of internal state. The key schedule of the “direct” mode of NOEKEON is basically for
free as the key material is used as is. However, the “indirect” mode of NOEKEON consists in
applying the internal cipher to pre-process the key material, thus leading to also a cost of
0.5 NOR, 0.5 AND and 5.25 XOR gates per bit of internal state.

AES-128. The round function first uses an 8-bit Sbox layer, where each Sbox requires 34
NAND and 80 XOR gates, thus amounting to 4.25 NOR and 10 XOR per bit of internal
state (we count a NAND gate to be equivalent to a NOR gate). Then, the ShiftRows

layer is basically free, while the MixColumns layer requires to apply a diffusion matrix.
Computing this matrix requires 160 XOR gates (64 for the matrix coefficients and 96 for
the elements sums). Since this matrix is applied four times to the state, this amounts
to 5 XORs per bit of internal state. 128 bits of subkey is XORed to the internal state
every round, which costs 1 XOR per bit of internal state. In total, the AES-128 round

46

function uses 4.25 NOR gates and 16 XOR gates per bit of internal state. Regarding the
key schedule, 4 Sboxes are applied, thus amounting to 1.06 NOR and 2.5 XOR per bit of
internal state. Moreover, the linear diffusion in the key schedule requires 1 XOR per bit of
internal state. In total, the AES-128 key schedule uses 1.06 NOR and 3.5 XOR gates per
bit of internal state.

AES-256. The reasoning and the computations are exactly the same as for AES-128, except
that the key schedule is exactly twice more costly.

Estimated Theoretical Throughput Quality Grade and Area Quality Grade.
From these numbers of gates per round per bit, we can simply compute the total number
of gates per bit of internal state (with or without the key schedule). This will give us
some indication on the theoretical ranking of the various functions studied regarding
their throughput. Moreover, by using the estimations from Section 3.1, we can evaluate
the theoretical ranking of the various functions studied regarding their ASIC area in a
round-based implementation.

D Computing Active S-Boxes using MILP and Diffusion Test

To evaluate the resistance of our proposals in terms of differential crpytanalysis, we rely on
mixed-integer linear programming (MILP) to model the cipher operations. The goal of the
MILP problem consists in maximizing the objective function, which counts the number of
active Sboxes in a given number of rounds of the primitive.

To describe the model for SKINNY, we introduce the following binary decision variables:

• {x̄i,j,k | i, j ∈ Z4, k ∈ Zr+1} indicate the activity pattern of the S-boxes. In particular,
it is x̄i,j,k = 1 if and only if the s-box in row i and column j is active in round k.

• {ȳi,j,k | i, j ∈ Z4, k ∈ Zr} indicate the activity pattern after application of the
AddRoundTweakey layer.

• {κ̄i,j | i, j ∈ Z4} indicate the activity pattern of the initial tweakey state.

• We need two sets of auxillary variables, {d⊕i,j,k | i ∈ Z2, j ∈ Z4, k ∈ Zr} for the
AddRoundTweakey layer and {dj,k, d′j,k, d′′j,k | j ∈ Z4, k ∈ Zr} for the MixColumns layer.

As the AddRoundTweakey and MixColumns layers only consist of wordwise XOR opera-
tions, the main building blocks of the model are the particular linear constraints on the
XOR operations. For shorter notations, we define the following sets.

Constraints for XOR. We define by C⊕[i1, i2, o, d] the set of linear constraints

{i1 ≤ d} ∪ {i2 ≤ d} ∪ {o ≤ d} ∪ {i1 + i2 + o ≥ 2d}.

Constraints for Mixing. Similarly, by CM[i1, i2, i3, i4, o1, o2, o3, o4, d1, d2, d3] we define
the set of linear constraints

C⊕[i1, i3, o4, d1] ∪ C⊕[o4, i4, o1, d2] ∪ C⊕[i2, i3, o3, d3] ∪ {o2 = i1}.

For SK, we have to optimize the following MILP model:

47

Minimize ∑
i,j∈Z4

∑
k∈Zr

x̄i,j,k

Subject to:

1. Excluding the trivial solution

{
∑

i,j∈Z4
x̄i,j,0 ≥ 1}

2. Application of the linear layer⋃
k∈Zr

∪j∈Z4 CM[x̄P−1(·,j),k, x̄(·),j,k+1, dj,k, d
′
j,k, d

′′
j,k]

Thereby,

x̄(·),j,k+1 := (x̄0,j,k+1, x̄1,j,k+1, x̄2,j,k+1, x̄3,j,k+1)

x̄P−1(·,j),k :=
(
x̄P−1(0,j),k, x̄P−1(1,j),k, x̄P−1(2,j),k, x̄P−1(3,j),k

)
For TK1, we have to optimize the following MILP model:

Minimize ∑
i,j∈Z4

∑
k∈Zr

x̄i,j,k

Subject to

1. Excluding the trivial solution

{
∑

i,j∈Z4
x̄i,j,0 + κ̄i,j ≥ 1}

2. Application of the TWEAKEY addition to half of the state⋃
k∈Zr

∪i∈{0,1} ∪j∈Z4 C⊕[x̄i,j,k, κ̄Pk
T
(i,j), ȳi,j,k, d

⊕
i,j,k] ∪

∪i∈{2,3} ∪j∈Z4 {ȳi,j,k = x̄i,j,k}

3. Application of the linear layer⋃
k∈Zr

∪j∈Z4 CM[x̄P−1(·,j),k, x̄(·),j,k+1, dj,k, d
′
j,k, d

′′
j,k]

Thereby,

x̄(·),j,k+1 := (x̄0,j,k+1, x̄1,j,k+1, x̄2,j,k+1, x̄3,j,k+1)

x̄P−1(·,j),k :=
(
x̄P−1(0,j),k, x̄P−1(1,j),k, x̄P−1(2,j),k, x̄P−1(3,j),k

)

On The Tightness of the MILP Bounds. The solution of these models determines
a lower bound on the number of differential active Sboxes for any (non-trivial) r-round
characteristic in the SK, resp. TK1 scenario. If we consider the word-wise application of
the Sbox as a black box, all of the computed bounds for SK are tight in the sense that
one can construct a valid differential characteristic for a specific choice of Sboxes. In other
words, the bound is tight if the Sbox can be chosen independently for every cell and every
round. This is less clear in the related-tweakey scenario. So, in this case, we only claim
lower bounds and the actual number of active Sboxes might be even better.

48

Developing New MILP Modeling for TK2 and TK3. For TK2 and TK3, the
model for round function is the same as TK1. The main difference from TK1 is that the
cancellation of difference occurs in active cells in the tweakey words, and this must be
modeled properly. We stress that this is completely non-trivial, and in fact there has not
been proposed any MILP modeling to deal with TK2 and TK3. In this section we, for
the first time in the symmetric-key cryptography community, develop the MILP model to
deal with TK2, TK3, and more generally TKx for an integer x.

The difficulty lies in the property when we simulate the result of XORing each tweakey
state. For example in TK2, the i-th cell of the round tweakey RK[i] is computed by
TK1[i]⊕ TK2[i]. With the standard method, we model this XOR with

{a ≤ d} ∪ {b ≤ d} ∪ {c ≤ d} ∪ {a+ b+ c ≥ 2d},
where a, b, c are binary variables to denote active/inactive of RK[i], TK1[i], TK2[i] and d
is a dummy variable. However, if both of TK1[i] and TK2[i] are active, i.e. their values
are 1, the model allows to cancel the difference, and this continues for the entire rounds.
Namely, as long as the same cell position in TK1 and TK2 are active, difference will never
be propagated into the data processing part.

A bad argument in the above discussion is that it ignores the fact that once TK1[i] =
TK2[i] holds, they never cancel each other for a certain number of rounds because the
value of TK1[i] is not updated while the value of TK2[i] is update by LFSR. This fact
shows that by following the cell-wise method in previous work, MILP cannot return any
meaningful lowerbounds. However, converting the cell-wise model into bit-wise model is
quite costly, and the model quickly reaches infeasible runtime, especially for 128-bit block
version of SKINNY.

Here, our approach is modeling the extracted property of TWEAKEY update instead
of modeling the exact specification. First, we focus on a cell in TK1[i] and a cell in TK2[i]
which are located in the same cell position. Suppose that X and Y are differences of those
two cells. Those cells are XORed to generate a round-key cell in every two rounds. Thus,
the equation for a round-key cell in each round becomes as follows.

Round 1: X ⊕ Y, Round 2: not generated,

Round 3: X ⊕ LFSR(Y), Round 4: not generated,

Round 5: X ⊕ LFSR2(Y), Round 6: not generated,

Round 7: X ⊕ LFSR3(Y), Round 8: not generated,

· · · · · ·
Round 29: X ⊕ LFSR14(Y), Round 30: not generated.

The LFSR has cycle length 15, namely, Y = LFSR15(Y) and LFSRi(Y) 6= LFSRj(Y)
for all 0 ≤ i, j ≤ 14 such that i 6= j. As a result, it is ensured that cancellation between
two tweakey states occurs at most once up to round 30 for each cell.8

To model this property, we first define 16 binary variables LANE0, . . . , LANE15, which
indicates whether the i-th cell in the initial state is active in at least one of the tweakey
states TK1 and TK2. Note that LANEi is 0 only if both of TK1[i] and TK2[i] are 0. We
then also define 16 binary variables representing active/inactive for each round key (results
of XORing TK1 and TK2), i.e.

tk0, tk1, . . . , tk15 for Round 1,

tk16, tk17, . . . , tk31 for Round 2,

· · · · · ·
tk16r−16, tk16r−15, . . . , tk16r−1 for Round r.

8Note that the LFSR is clocked every two rounds.

49

Cell positions will change after the tweakey permutation is applied in each round. For
example, the position of LANE0 corresponds to tk0 for Round 1, tk24 for Round 2, tk34 for
Round 3, tk58 for Round 4, and so on. If LANE0 = 0, all of these tk0, tk24, tk34, . . . , tkr′ must
be 0, where 16r − 16 ≤ r′ ≤ 16r − 1. If LANE0 = 1, at least r − 1 of tk0, tk24, tk34, . . . tkr′

are 1 because number of cancellations is upperbounded by 1 during the first 30 rounds. In
the end, we obtain the following constraints for LANE0;

tk0 − LANE0 ≥ 0,

tk24 − LANE0 ≥ 0,

tk34 − LANE0 ≥ 0,

· · ·
tkr′ − LANE0 ≥ 0,

tk0 + tk24 + tk34 + · · ·+ tkr′ − r · LNAE0 ≤ −1.

By generating the constraints similarly for all the LANEi, one can properly handle the
cancellation of tweakey state cells.

For TK3, the difference in comaparison to TK2 is the number of maximum cancel-
lations within 30 rounds, where a cancellation can occur at most twice for each LANEi.
Thus, TK3 can be modeled by modifying the last inequality by:

tk0 + tk24 + tk34 + · · ·+ tkr′ − r · LNAE0 ≤ −2.

Moreover, the general case TKx can be modeled by replacing the right hand side of the
last inequality by x− 1.

Diffusion Test. The cipher achieves full diffusion after r rounds if every bit of the internal
state after the application of r rounds depends on every input bit. For a word-oriented
SPN like SKINNY, the diffusion properties depend both on the linear layer and on the Sbox.
Let s denote the word length of the Sbox. To compute these properties, we define the
diffusion matrix Ds as described in the following.

Ds is a 16× 16 block matrix which consits of blocks of size s× s with binary entries.
Since SKINNY applies a word-wise binary diffusion matrix and a cell permutation as the
linear layer, one can express the linear layer as a binary 16× 16 matrix L. In particular,

L =

1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

.

Furthermore, for an Sbox S, we define the dependency matrix Dep(S) as

Dep(S)i,j =

{
1 if ∃x : Si(x) 6= Si(x+ ej)

0 else
.

50

Thereby, Si denotes the i-th coordinate function and ej the j-th unit vector. In particular,
for the SKINNY Sboxes we have

Dep(S4) =

 1 1 1 1

1 1 1 1

0 1 1 1

1 0 1 1

, Dep(S8) =

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0 1 1 0 0 0 1 0

1 1 1 1 0 0 0 0

1 0 1 1 1 1 1 1

1 0 1 1 0 0 0 0

0 0 0 0 1 0 1 1

1 0 1 1 1 1 1 1

.

Now, we can define the diffusion matrix Ds for s ∈ {4, 8} as a 16× 16 block matrix
such that

Dsi,j =

{
Dep(Ss) if Li,j = 1

0s if Li,j = 0
,

where 0s denotes the all-zero matrix of dimension s× s.
Now, the cipher achieves full diffusion after r rounds, if Dr

s contains no zero entry when
Ds is interpreted as a 16s × 16s matrix over the integers. In this case, every bit of the
internal state after r rounds will depend on every input bit.

For SKINNY-64 and SKINNY-128, we made sure that full diffusion is achieved after 6
rounds, both in forward direction and for the inverse. Note that the diffusion matrix of
the inverse has to be computed seperately.

51

	Introduction
	Specifications of SKINNY
	Rationale of SKINNY
	Estimating Area and Performances
	General Design and Components Rationale
	Comparing Differential Bounds
	Comparing Theoretical Performance

	Security Analysis
	Differential/Linear Cryptanalysis
	Meet-in-the-Middle Attacks
	Impossible Differential Attacks
	Integral Attacks
	Slide Attacks
	Subspace Cryptanalysis
	Algebraic Attacks

	Implementations, Performance and Comparison
	ASIC Implementations
	FPGA Implementations
	Software Implementations
	Micro-Controller Implementations

	The Low-Latency Tweakable Block Cipher MANTIS
	Description of the Cipher
	Design Rationale
	Security Analysis
	Implementations

	8-bit Sbox for SKINNY-128
	Test Vectors
	Test Vectors for SKINNY
	Test Vectors for MANTIS

	Comparing Theoretical Performance of Lightweight Ciphers
	Computing Active S-Boxes using MILP and Diffusion Test

