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Abstract. Nearly all verifiable e-voting schemes require trusted tally-
ing authorities to guarantee voter privacy. An exception is the DRE-i
system which removes this requirement by pre-computing all encrypted
ballots before the election using related random factors that will later
cancel out and allow the public to verify the tally after the election.
While the removal of tallying authorities significantly simplifies election
management, the pre-computation of ballots necessitates secure ballot
storage, as leakage of precomputed ballots endangers voter privacy. In
this paper, we address this problem and propose DRE-ip (DRE-i with
enhanced privacy). Adopting a different design strategy, DRE-ip is able
to encrypt ballots in real time in such a way that the election tally can be
publicly verified without decrypting the cast ballots. As a result, DRE-ip
achieves end-to-end verifiability without tallying authorities, similar to
DRE-i, but with a significantly stronger guarantee on voter privacy. In
the event that the voting machine is fully compromised, the assurance on
tallying integrity remains intact and the information leakage is limited to
the minimum: only the partial tally at the time of compromise is leaked.

1 Introduction

Direct-recording electronic (DRE) machines have been extensively used for vot-
ing at polling stations around the world. In a typical process, a registered voter
obtains a token after being authenticated at the polling station. She then en-
ters a private booth and presents the token to a DRE machine. The token is
for one-time use and allows the voter to cast only one vote. Usually, the DRE
machine has a touch screen to record the vote directly from the voter (hence the
name DRE). The machine may tally the votes in real time, or store the votes
and tally later. In either case, the machine works like a black box: if an attacker
maliciously changes the votes (or the tally thereof), this is likely to go unnoticed.

Lack of assurance on tallying integrity is commonly regarded as a critical
weakness of such DRE machines. To address this problem, several cryptographic
protocols are proposed in the literature. The seminal work by Chaum in 2004 [16]
involves using visual cryptography to allow voters to verify the integrity of an
election. The assurance on the integrity includes guarantees that the votes are
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cast as intended, recorded as cast, and tallied as recorded. The fulfilment of all
three constitutes the widely-accepted notion of end-to-end (E2E) verifiability.

Chaum’s solution inspired a class of voting systems providing E2E verifia-
bility. Prominent examples include MarkPledge [30], Prêt à Voter [31], Scant-
egrity [14] (and its predecessor PunchScan [21]), Helios [1], and STAR-Vote [4].
These systems are based on different voting media including physical ballots, op-
tical scanners, DREs and web browsers. They use different tallying techniques,
based on mix-nets or homomorphic encryption. But all these schemes allow in-
dividual voters to verify if their votes have been cast as intended and recorded
as cast, and any observer to verify if all votes have been tallied as recorded.

In this paper we limit our attention to DRE-based elections. We focus on
DRE as it has already been widely deployed for national elections worldwide.
Today, nearly all of the deployed DRE systems work like a black box and offer
no guarantee on integrity; consequently, their use has been abandoned in several
countries such as the Netherlands, Germany and Ireland. However, in many other
countries, these (unverifiable) DRE machines continue to be extensively used.
We believe there is an urgent need to address this real-world problem.

Apart from Chaum’s system, other existing E2E verifiable schemes for DRE-
based elections include MarkPledge [30], VoteBox [33], and STAR-Vote [4]. These
systems may differ significantly in details, but they share some common features.
They all offer integrity assurance by introducing a set of trustworthy tallying
authorities (TAs). Instead of the DRE directly recording the vote, the machine
encrypts the vote on the fly under the joint public key of the TAs. Each TA
is responsible for safeguarding a share of the decryption key. When the voting
is closed, a quorum of TAs jointly perform the tallying process which involves
decryption of the ballots (or tally thereof) in a publicly-verifiable manner.

The addition of external TAs however introduces difficulties in the imple-
mentation. In theory, the TAs should be selected from parties with conflicting
interests. They should have the expertise to be able to independently manage
their own key shares and perform cryptographic operations – if they delegate
their key management tasks, the delegates need to be trusted as well. A com-
paratively high level of cryptographic and computing skills is expected from the
TAs. Furthermore, the quorum should be set sufficiently large such that collusion
among TAs is infeasible, but at the same time, sufficiently small such that the
process is error-tolerant, since non-availability of TA keys will render the elec-
tion result non-computable. Reconciling the two is not an easy task. As reported
by real-world experience of building E2E verifiable voting based on Helios, the
implementation of the TAs proved to be “one particularly difficult issue” [2].

Hao et al. investigated if it was possible to achieve E2E verifiability for a
DRE-based election without involving any TAs [24]. They proposed a TA-free
E2E voting system, called DRE-i (DRE with integrity). In DRE-i, the machine
directly records the voter’s choice as in the existing practice of current DRE-
based elections. However, the machine is required to publish additional audit
data on a public bulletin board, to enable every voter to verify the integrity of
the voting process. In DRE-i, the encryption of votes is based on a variant of
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the ElGamal encryption scheme: instead of using a fixed public key for encryp-
tion as in classic ElGamal, DRE-i uses a dynamically constructed public key
for encrypting ballots. The system removes the need for TAs by pre-computing
encrypted ballots in a structured manner such that after the election, multipli-
cation of all the published ciphertexts cancels out the random factors that were
introduced during the encryption process, and permits anyone to verify the tally.

DRE-i demonstrates that the role of the TAs is not indispensable in achieving
E2E verifiability in a DRE-based election. However, its pre-computation strategy
inevitably introduces the requirement of ensuring that the pre-computed data
is securely stored and accessed during the voting phase. Furthermore, it means
that it is possible for an adversary that breaks into the secure storage module
to potentially compromise the privacy of all ballots. The authors of DRE-i [24]
suggest to use tamper-resistant hardware to protect the pre-computed data in
sensitive elections. However, the use of tamper-resistant hardware may signifi-
cantly drive up the cost for each DRE machine. Furthermore, designing secure
API for tamper-resistant hardware is a challenging problem on its own.

It remains an open problem as whether it is possible to achieve the best of
both worlds, i.e., strong assurance on the integrity of a DRE-based election with-
out involving any TAs, and simultaneously, a strong guarantee on the privacy of
votes without depending on tamper-resistant hardware.

In this paper, we provide a positive answer to this question and present a
new E2E voting system, which we call DRE-ip (DRE-i with enhanced privacy).
Instead of pre-computing ciphertexts, DRE-ip adopts a more conventional ap-
proach, as in other existing DRE-based verifiable systems, to encrypt the vote
on the fly during voting. DRE-ip achieves E2E verifiability without TAs, but at
the same time provides a significantly stronger privacy guarantee than DRE-i.

Our Contributions. We present DRE-ip, an end-to-end verifiable DRE-based
voting system that encrypts ballots in real-time, but requires no TAs to decrypt
ballots in the tallying phase. We consider two types of attacks, which we call
non-intrusive and intrusive, based on whether the adversary can compromise
the DRE machine or not. We prove that DRE-ip provides indistinguishability
of elections with the same tally against non-intrusive attacks based on the de-
cision Diffie-Hellman assumption. In the event of an intrusive attack, we prove
that only the privacy of the ballots cast during the attack period is lost – a loss
which is inevitable – and the ballots cast outside the attack period are guar-
anteed to remain private under the Square Diffie-Hellman assumption. Thus,
DRE-ip constitutes the first verifiable DRE-based system that removes the need
for tallying authorities without introducing new assumptions.

Related Work. In his seminal work on anonymous communications, Chaum put
forward e-voting as an application of his technique [15]. This prompted consid-
erable research on e-voting, among which is the work of Benaloh [10] that pro-
posed a formal definition of ballot secrecy. Later, Benaloh and Tuinstra argued
for receipt-freeness [9], and Juels, Catalano, and Jakobsson put forward coercion-
resistance [25] as progressively stronger notions of privacy. On the other hand,
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verifiability has evolved as a property guaranteeing the integrity of e-voting sys-
tems. Earlier works considered individual verifiability. The notion of universal
verifiability emerged in later works and Sako and Kilian explicitly formalized
it [32]. Finally, through the works of Chaum [16] and Neff [30], the notions of
verifiability were refined into the now widely-accepted notion of end-to-end veri-
fiability, which includes guarantees that the votes are cast as intended, recorded
as cast, and tallied as recorded. End-to-end verifiability has become a de facto
standard for any e-voting scheme. Accordingly, in this paper, we limit our at-
tention to end-to-end verifiable voting schemes.

There has been a renewed interest in academic research on e-voting in the past
fifteen years and a number of end-to-end verifiable schemes have been designed
and used in practice. Among the more influential schemes are Votegrity, proposed
by Chaum [16], and MarkPledge, proposed by Neff [30], which are the first
end-to-end verifiable schemes. Many other schemes follow similar approaches,
including Prêt à Voter [31], a tailored variant of which has been recently used in
state elections in Victoria, Australia [18], Scantegrity [14], which was trialled in
local elections in Takoma Park, Maryland, USA [13], and STAR-Vote [4], which is
scheduled for deployment in elections in Travis County, Texas, USA [27]. Other
schemes that have been used in internal university or party elections include
PunchScan [21], Bingo Voting [11], Helios [1], Wombat [7], and DRE-i [24].

2 Preliminaries

In this section, we review the preliminaries required for the description of DRE-ip,
including the notation, the cryptographic setting, and the DRE-i system.

Notation. Following the notation introduced by Camenisch and Stadler [12], we
use Pk{λ : Γ = γλ} to denote a non-interactive proof of knowledge of (a secret)
λ such that (for publicly-known Γ and γ): Γ = γλ. Where the context is clear,
we shorten the notation to Pk{λ}. We use Pwf{A : X,Y, Z} to denote a proof of
well-formedness of A with respect to X, Y , and Z. Where the context is clear,
we shorten the notation to Pwf{A}.

2.1 Cryptographic Setting

We assume a DSA-like multiplicative cyclic group setting, where p and q are large
primes that satisfy q | p−1. We work in the subgroup Gq of order q of the group
Z?p and assume that g is a generator of Gq. Alternatively, our proposed system
can be implemented over an elliptic curve in an ECDSA-like group setting.

The decision Diffie-Hellman (DDH) assumption [19] is defined as follows:

Assumption 1. (DDH) For randomly chosen a, b ∈ Z?q and R ∈ Gq, given

(g, ga, gb, Ω) where Ω ∈ {gab, R}, it is hard to decide whether Ω = gab or
Ω = R.

The Square DDH assumption [28] is defined as follows:
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Assumption 2. (Square DDH) For randomly chosen a ∈ Z?q and R ∈ Gq,
given (g, ga, Ω) where Ω ∈ {ga2 , R}, it is hard to decide whether Ω = ga

2

or
Ω = R.

Clearly, if one can break DDH, then Square DDH can be broken as well.
Hence, Square DDH is a stronger assumption than DDH. Furthermore, there is
evidence that Square DDH is strictly stronger [35, 26].

Zero knowledge proofs, first proposed by Goldwasser, Micali, and Rackoff [22],
prove the truth of a statement without conveying any other information, i.e., they
guarantee that whatever the verifier can feasibly compute after seeing a proof,
they could have computed on their own. Subsequent work by Bellare and Goldre-
ich [5] refined the definition of zero knowledge proofs to distinguish them from
proofs of knowledge. Intuitively speaking, proofs of knowledge are guaranteed to
be generated by a prover with explicit knowledge of a quantity. In our protocol,
the Fiat-Shamir heuristic is employed to construct non-interactive proofs [20].
Consequently, our security proofs are in the Random Oracle Model [6].

3 Our Proposed Solution: DRE-ip

DRE-ip requires a secure and publicly-accessible bulletin board (BB) and incor-
porates voter-initiated auditing to achieve end-to-end verifiability. We assume
the DRE has append-only write access to the BB over an authenticated chan-
nel. We assume voting is conducted in supervised polling stations and there are
procedures in place to ensure the “one person, one vote” principle, including
secure voter registration and authentication. At the time of voting, a voter is
authenticated first and issued a token, unlinked to her identity. She then enters
a private voting booth and authenticates herself to the DRE using the token.
Up to here, the assumptions and mechanisms are similar to those of DRE-i.

We describe DRE-ip for the case where there are only two candidates, i.e.,
for vi representing the vote of the i-th ballot, we have vi ∈ {0, 1}. In DRE-ip
the setup establishes two generators g and g̃, whose logarithmic relationship is
unknown. The DRE keeps track of the running tally t =

∑
vi for the cast votes

vi, and the sum s =
∑
xiyi for random xi and yi generated on the fly.

To achieve individual verifiability, DRE-ip incorporates Benaloh-style voter-
initiated auditing [8], i.e., the voter gets the option to audit the ballot composed
by the DRE to gain confidence in that the DRE is preparing the ballots according
to her choice. If a ballot is audited, it cannot be used to cast a vote. Therefore,
the set of all ballots B at the closing of the voting phase will be comprised of
the audited ballots A and the cast ballots C, i.e., B = A ∪ C.

Voting Phase. This phase involves the voter, the DRE, and the BB:

1. The voter enters the booth, initiates voting, and keys in her vote vi ∈ {0, 1}.
2. The DRE generates random xi, yi ∈ Z?q , calculates

Xi = gxi , Yi = gyi , X̃i = g̃xi , Pwf{X̃i : g,Xi, g̃},
Zi = gxiyigvi , Pwf{Zi : g,Xi, Yi}, Z̃i = g̃xiyi , Pwf{Z̃i : g, Yi, X̃i},
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and provides a signed receipt including the unique ballot index i and the
ballot content Xi, Yi X̃i, Pwf{X̃i}, Zi, Pwf{Zi}, Z̃i, and Pwf{Z̃i} to the voter.

3. The voter observes that the first part of the receipt is provided, and chooses
to either audit the ballot or confirm her vote.

In case of audit:

4. The DRE adds i to A, provides a signed receipt of audit, clearly marked
audited, including xi, yi, and vi to the voter.

5. The voter takes and keeps the receipt, and verifies that vi reflects her choice.
If the verification succeeds, voting continues to Step 1; otherwise, the voter
should raise a dispute immediately.

In case of confirmation:

4. The DRE adds i to C, updates the tally and the sum

t =
∑
j∈C

vj , s =
∑
j∈C

xjyj ,

and provides a signed receipt of confirmation, clearly marked confirmed, to
the voter, and securely deletes xi, yi, and vi.

5. The voter leaves the booth with her receipts.

6. The DRE posts on the BB all the receipts provided to the voter.

7. The voter verifies that her receipts match those on the BB.

Tallying Phase. This phase involves the DRE, the BB, and the public:

1. The DRE calculates

S = gs, Pwf{S : g, g̃,
∏
j∈C

Z̃j},

and posts on the BB the final tally t, as well as S and Pwf{S}.
2. The public:

– verify all the well-formedness proofs on the BB (well-formedness verifi-
cation),

– verify that for all the audited ballots on the BB: Xi, Yi, X̃i, Zi, and Z̃i
included in the first part of the receipt are consistent with xi, yi, and vi
included in the second part (and with the system parameters g and g̃)
(audit consistency verification), and

– verify that the following equation holds (tally verification):∏
j∈C

Zj = Sgt. (1)
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If at any point during the voting or tallying phases, any of the verifications
carried out by the voter or the public does not succeed, the election staff should
be notified and we assume that there are procedures in place dealing with such
verification failures. These include voter verifications in Steps 5 (in case of audit)
and 7 of the voting phase and public verifications in Step 2 of the tallying phase.

Figure 1 shows the DRE-ip bulletin board. An audited receipt (with index
i) and a confirmed receipt (with index j) are shown. Each receipt has two parts:
the first part is provided to the voter before she decides to either audit or confirm
her ballot and includes the same information for all receipts; the second part is
provided after the voter makes her decision and includes different information
based on her choice. Both parts of the receipt are signed by the DRE.

The proofs of well-formedness are realized as follows. Pwf{X̃i : g,Xi, g̃},
Pwf{Z̃i : g, Yi, X̃i}, and Pwf{S : g, g̃,

∏
j∈C Z̃j} are all realized as proofs of knowl-

edge and equality of two discrete logarithms as follows:

Pwf{X̃i} = Pk{ xi : Xi = gxi ∧ X̃i = g̃xi },
Pwf{Z̃i} = Pk{ yi : Yi = gyi ∧ Z̃i = X̃yi

i },

Pwf{S} = Pk{ s : S = gs ∧
∏
j∈C

Z̃j = g̃s }.

Pwf{Zi : g,Xi, Yi} is realized as a proof of knowledge

Pwf{Zi} = Pk{ xi : (Xi = gxi ∧ Zi = Y xi
i ) ∨ (Xi = gxi ∧ Zi/g = Y xi

i ) }.

This proof guarantees that Zi ∈ {gxiyi , gxiyig}, or equivalently vi ∈ {0, 1}.
The well-formedness proofs are based on Schnorr proofs of knowledge of

discrete logarithm [34]. Starting with a Schnorr proof, one can apply techniques
proposed by Cramer, Damg̊ard, and Schoenmakers [17] to construct proofs of
disjunctive knowledge, conjunctive knowledge, and combinations of both. The
Fiat-Shamir heuristic [20] is then applied to make the constructed proofs non-
interactive. The index i of the ballot is embedded in the proof (as an input to
the hash function) to bind the proof to the ballot.

In practice, truncated hash functions may be used to calculate a short digest,
e.g., 4 alphanumeric characters long, of each part of the receipt, so that the voter
can easily compare the digest on their receipts with those on the bulletin board.
In this case, voters are expected to verify the receipts before leaving the polling
station and we assume facilities are provided for them to do so in the station.

Although we described the system for only two candidates, there are straight-
forward methods to extend it to support multiple candidates (see e.g., [24, 3]).

4 Security of DRE-ip

In this section we provide proofs to show that DRE-ip is end-to-end verifiable
and ensures ballot secrecy under both non-intrusive and intrusive attacks.
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Initial: g, g̃

Receipts:
...

i : Xi, Yi, X̃i, Pwf{X̃i}, Zi, Pwf{Zi}, Z̃i, Pwf{Z̃i} audited, xi, yi, vi

...

j : Xj , Yj , X̃j , Pwf{X̃j}, Zj , Pwf{Zj}, Z̃j , Pwf{Z̃j} confirmed

...

Final: t, S, Pwf{S}

Fig. 1. DRE-ip bulletin board

4.1 End-to-End Verifiability

We discuss the integrity (i.e., correctness) of the election tally in DRE-ip and
show how DRE-ip achieves end-to-end verifiability: we prove that votes are tal-
lied as recorded under the assumption that all proofs of well-formedness are
proofs of knowledge; furthermore, we demonstrate how voter-initiated auditing
guarantees that votes are recorded as cast, and cast as intended.

We assume the bulletin board is secure, in particular it is append-only and
publicly accessible. Besides, there should be a mechanism to establish an authen-
ticated channel between authorized DRE(s) and the bulletin board, to ensure
that only an authorized DRE can append new values to the BB, and also that
such values are not modified in transit. This can be achieved using standard
techniques such as digital signatures. Furthermore, we assume that the number
of voters is less than the size of the group q.

Recall that public verification in DRE-ip, i.e., Step 2 of the tallying phase,
includes three types of verification: well-formedness verification, audit consis-
tency verification, and tally verification. The following theorem shows that if
well-formedness and tally verifications succeed, DRE-ip achieves the tallied-as-
recorded property, that is, DRE-ip guarantees that the tally on the bulletin
board is the correct tally of all the confirmed ballots on the bulletin board.

Theorem 1. In DRE-ip, assuming that all proofs of well-formedness are proofs
of knowledge, if the public well-formedness and tally verifications succeed, then
the reported tally t is the correct tally of all the confirmed votes on the BB.

The proof is rather straightforward and hence omitted here due to lack of space.
In short, one can demonstrate how the proofs of well-formedness collectively
guarantee that the tally verification equation (i.e., Equation 1 on page 6) holds
if and only if t =

∑
i∈C vi, where C denotes the set of confirmed votes. Hence, if

well-formedness and tally verifications are carried out successfully, the reported
tally t is guaranteed to be the correct tally of all the confirmed votes on the BB.

The well-formedness dependency graph for X̃i, Z̃i, and S enforced by the
corresponding proofs of well-formedness is given in Figure 2. As the graph shows,
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g

g̃

Xi

Yi

X̃i Z̃i S

Fig. 2. Well-formedness dependency graph for X̃i, Z̃i, and S. The item on the right of
each set of edges is well-formed with respect to the items on the left.

X̃i, Z̃i, and S are all eventually well-formed with respect to four values: g, g̃,
Xi, and Yi. Therefore, given fixed g, g̃, Xi, and Yi, the well-formedness proofs
guarantee that X̃i, Z̃i, and S are fixed.

Voter initiated auditing includes the following checks: first, by observing the
first part of the receipt is provided before deciding to either audit or confirm
a ballot, the voter makes sure that the DRE commits to the first part of the
ballot; second, by checking that the receipts match what is published on the
BB, the voter makes sure that her interaction with the machine is captured
faithfully on the bulletin board. The public verification of the consistency of the
audited ballots, i.e., the audit consistency verification, guarantees that DRE has
been successful in responding to the challenges made by voter initiated auditing.
Hence, the individual verification and the public audit consistency verification
collectively ensure that the votes are cast as intended and recorded as cast.
Theorem 1 ensures that votes are tallied as recorded.

4.2 Ballot Secrecy

Ballot secrecy corresponds to the natural expectation from a voting system to
protect the secrecy of cast ballots. We consider a definition of ballot secrecy
which requires that an adversary controlling the voting behaviour of a group of
dishonest voters should not be able to distinguish between any two elections,
regardless of how honest voters vote, as long as the two elections have the same
sub-tally of honest votes. This definition originates from Benaloh [10, p. 74].

We assume a secure setup phase; that is, we assume that the discrete loga-
rithm of g̃ in base g is either not known to any party or securely deleted after
the two generators are computed. We also assume secure deletion of values xi,
yi, and vi after each vote is cast1.

Ballot Secrecy under Non-Intrusive Attacks. Let us consider an adversary
that does not get access to the voting machine (DRE). The adversary is able
to read the publicly available information on the bulletin board, which includes

1 See, for instance, [23] and the references within for an overview of available solutions
to secure data deletion.
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the total tally. Besides, we assume that the adversary can control an arbitrary
number of voters and in effect cast an arbitrary number of votes. Let us call
the votes cast by the adversary (or more generally known by the adversary) the
adversarial votes. Knowledge of the adversarial votes along with the total tally
enables the adversary to find out the tally of the non-adversarial votes. We prove
that under the DDH assumption, this is the only information the adversary gains
about the non-adversarial votes. In particular, we show that any two elections
with the same non-adversarial tally are indistinguishable to the adversary.

We first consider two elections in which all votes are the same except for two
votes that are swapped. We show that the bulletin boards of these two elections
remain indistinguishable to the adversary even if the adversary controls all the
votes other than the two that are swapped. More formally, we have:

Lemma 1. In DRE-ip, assuming that all proofs of well-formedness are zero
knowledge, if the DDH assumption holds, then an adversary that determines an
arbitrary number of votes cannot distinguish between two bulletin boards in which
two votes are swapped.

The proof comes in Appendix A. We consider an adversary that can deter-
mine an arbitrary number of voter except two votes vi and vj . Assuming that
such an adversary is able to distinguish the bulletin boards in which vi and vj are
swapped, we show how the adversary can be used to break the DDH assumption.

Given Lemma 1, we expand it to prove that any two elections with the same
tally remain indistinguishable to an adversary who controls an arbitrary number
of votes. This shows that the only knowledge the adversary can gain about the
non-adversarial votes is that disclosed by the election tally.

Theorem 2. In DRE-ip, assuming that all proofs of well-formedness are zero
knowledge, if the DDH assumption holds, then an adversary that determines an
arbitrary number of votes cannot gain any knowledge about the non-adversarial
votes other than their tally.

Proof. To prove this theorem, we show that under the DDH assumption, given
any two sets of non-adversarial votes with the same tally, one can simulate two
corresponding bulletin boards that are indistinguishable to an adversary that
chooses an arbitrary number of adversarial votes.

First, note that any two given sets of non-adversarial votes with the same tally
differ on an even number of votes, say 2d. This means that with d “swaps” one set
of these votes can be converted to the other, where in each swap, for some i and j,
the i-th vote is replaced with the j-th one, and vice versa. In Lemma 1 we proved
that the bulletin boards before and after each swap remain indistinguishable
to the adversary under DDH. Consequently, the bulletin boards corresponding
to the two given sets of non-adversarial votes remain indistinguishable to the
adversary and the proof is complete. ut

In comparison with DRE-i, DRE-ip provides essentially the same level of
security against such non-intrusive attacks as both systems guarantee ballot
secrecy under the DDH assumption.
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Ballot Secrecy under Intrusive Attacks. Now let us consider a stronger
adversary that apart from the ability to determine an arbitrary number of votes,
also gets read access to the voting machine (DRE) storage for a period during the
voting phase. Obviously, such an adversary would be able to observe the votes
cast during the access period and hence be able to at least work out the tally
of the non-adversarial votes cast outside the access period. We prove that under
the Square DDH assumption, this is the only information the adversary gains
about the non-adversarial votes. In particular, we show that any two elections in
which the non-adversarial votes cast outside the adversarial access period have
the same tally are indistinguishable to the adversary. Note that in DRE-i, in case
of an adversarial access to the voting machine storage, the privacy of the ballots
cast outside the adversarial access period is also lost. Therefore, while DRE-i
falls victim to such intrusive attacks, DRE-ip guarantees vote privacy under the
Square DDH assumption.

We first prove the following lemma:

Lemma 2. In DRE-ip, assuming that all proofs of well-formedness are zero
knowledge, if the Square DDH assumption holds, then an adversary that deter-
mines an arbitrary number of votes and gets temporary read access to the voting
machine (DRE) storage cannot distinguish between two bulletin boards in which
two votes cast outside the access period are swapped.

The proof of the lemma comes in Appendix B. The proof considers an adver-
sary that not only can determine an arbitrary number of votes except two votes
vi and vj , but gets access to DRE storage for an arbitrary period. Assuming that
such an adversary is able to distinguish the bulletin boards in which vi and vj
are swapped, we show how it can be used to break the Square DDH assumption.
Basically, the proof shows that even if the value of the sum s is leaked to the
adversary, ballot secrecy is still guaranteed, albeit under a stronger assumption.

Lemma 2 can then be similarly expanded to prove our main theorem for ballot
secrecy under intrusive attacks as follows. We omit the proof of this theorem as
it is similar to that of Theorem 2.

Theorem 3. In DRE-ip, assuming that all proofs of well-formedness are zero
knowledge, if the Square DDH assumption holds, then an adversary that deter-
mines an arbitrary number of votes and gets temporary read access to the voting
machine (DRE) storage cannot gain any knowledge about the non-adversarial
votes other than their tally.

The main difference between Theorems 2 and 3 is that the latter depends on
a stronger assumption (i.e., Square DDH) because of the additional data that
becomes accessible to the adversary under an intrusive attack.

5 Comparison

In this section we look at how DRE-ip compares with other DRE-based verifi-
able e-voting systems. In particular, we consider Chaum’s Votegrity [16], Neff’s
MarkPledge [30], VoteBox [33], STAR-Vote [4], and DRE-i [24].
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Table 1. Selected security assumptions for DRE-based verifiable e-voting systems.
TA: tallying authority, VIA: voter-initiated auditing, BB: bulletin board, RNG: random
number generation, �: assumption is required, �: assumption is not required.

Availability Integrity Privacy

System
Reliable
TA(s)

Sufficient
VIA

Secure
BB

Secure
setup

Secure
RNG

Secure
deletion

Secure
ballot

storage

Trust-
worthy
TA(s)

Votegrity � � � � � � � �
MarkPledge � � � � � � � �
VoteBox � � � � � � � �
STAR-Vote � � � � � � � �
DRE-i � � � � � � � �
DRE-ip � � � � � � � �

Votegrity is based on visual cryptography and uses onion encryption. Mark-
Pledge employs a purpose-designed encryption scheme that allows challenge-
response-style individual verifiability. VoteBox and STAR-Vote are both based
on exponential ElGamal encryption which allows homomorphic tallying. DRE-i
and DRE-ip on the other hand use encryption that does not admit to a fixed
decryption key. All these systems consider voter registration and voter authenti-
cation outside their scope and assume they are carried out correctly and securely.

In general, systems that require tallying authorities, i.e. Votegrity, Mark-
Pledge, VoteBox, and STAR-Vote, assume a minimum number of them are avail-
able at the tallying phase to compute the election tally. DRE-i and DRE-ip do
not require such an assumption to guarantee availability.

To guarantee integrity, all these systems rely on a secure bulletin board and
on a sufficient number of voters carrying out individual verification. Systems that
require tallying authorities, i.e. Votegrity, MarkPledge, VoteBox, and STAR-
Vote, also require that the tallying authorities perform the decryption of the
tally correctly. In a verifiable system, this is enforced by requiring the tallying
authorities to produce universally verifiable proofs of correct decryption. Hence,
we consider assumptions underlying all the systems to guarantee integrity to be
comparable, whether the system requires tallying authorities or not.

To guarantee privacy, all these systems assume a secure setup phase to gener-
ate and distribute system parameters and keys, as well as secure random number
generators to produce the randomness required for probabilistic encryption. Fur-
thermore, all systems assume that the captured votes and any ephemeral secrets
generated for the cryptographic operations during the voting phase are securely
erased. Votegrity is based on decryption mix-nets and requires that the tallying
authorities do not collude to compromise voter privacy. MarkPledge employs
a re-encryption mix-net to shuffle encrypted ballots before decryption, and as-
sumes that the tallying authorities do not decrypt ballots before mixing although
they are available on the bulletin board. VoteBox and STAR-Vote require that
the tallying authorities do not collude to decrypt individual ballots. DRE-i does
not require this assumption, but instead relies on a secure ballot storage mech-
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Table 2. Computation complexity of selected DRE-based verifiable e-voting systems.
B, A, C: all, audited, confirmed ballots, exp: exponentiation, mul: multiplication.

System
Ballot

calculation
Well-formedness and

consistency verification
Tally calculation
and verification

VoteBox 6|B| exp ( 7|A| + 5|C| ) exp |C| mul + 5 exp
STAR-Vote 6|B| exp ( 7|A| + 5|C| ) exp |C| mul + 5 exp
DRE-i 11|B| exp ( 10|A| + 5|C| ) exp |B| mul + 1 exp
DRE-ip 13|B| exp ( 15|A| + 10|C| ) exp |C| mul + 1 exp

anism to keep the pre-computed ballots safe after the setup phase. DRE-ip does
not require trust assumptions on tallying authorities or ballot storage.

Table 1 summarizes the main similarities and differences in terms of their
underlying security assumptions between the voting systems we consider.

The computation complexity of DRE-ip is compared with other DRE-based
verifiable e-voting systems in Table 2. We do not consider Votegrity and Mark-
Pledge since they use mix-nets and their computation complexity depend on
how verifiable mix-nets are implemented. All calculations are based on a two-
candidate election, one TA if present, and encryption implemented based on
exponential ElGamal. Note that having multiple TAs increases the complexity
of tally calculation and verification for all the schemes requiring tallying author-
ities. We assume in all systems that the TA, if present, provides proofs of correct
decryption as required by end-to-end verifiability. We assume that the simulta-
neous multiple exponentiation technique [29] is used to optimize computations.
Using this technique, computing Pwf{X̃i}, Pwf{Z̃i}, and Pwf{Zi} require 2, 2,
and (equivalent to) around 4.4 exponentiations, respectively, and verification of
these proofs take (equivalent to) around 2.4, 2.4, and 4.8 exponentiations, re-
spectively. All systems make use of well-formedness proofs similar to these and
we assume the same complexities as above for equivalent proofs in all systems.
All numerical values in the table are rounded to the nearest integer.

6 Concluding Remarks

In this paper we revisited the design of the DRE-i voting system and proposed a
new system: DRE-ip. On the theoretical level, we have shown that it is possible to
have end-to-end verifiable DRE-base voting systems in which the privacy of the
ballots does not rely on trustworthy tallying authorities or trusted hardware. On
the practical level, we have shown that DRE-ip provides an efficient and practical
DRE-based voting solution which is end-to-end verifiable and is able to preserve
the privacy of the ballots even if the adversary gets temporary read access to
the voting machine during the voting phase. Our system is described for two
candidates, and can be extended to support multiple candidates via standard
methods. Designing a system without tallying authorities that can efficiently
support more complex electoral systems such as single transferable vote (STV)
or write-in candidates remains an open problem.
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A Proof of Lemma 1

Proof. First, we consider the following assumption:

Assumption 3. For randomly chosen a, b, c ∈ Z?q , given (g, ga, gb, gc, gac, gbc,

gabc, Ω) where Ω ∈ {gab, gab+1}, it is hard to decide whether Ω = gab or Ω =
gab+1.
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The following lemma is proven in [24]:

Lemma 3. The DDH assumption implies Assumption 3.

In the rest of the proof we show that Lemma 1 holds under Assumption 3.
Let A be an adversary that after determining a number of votes distinguishes

the two bulletin boards. We construct an algorithm D that given g, ga, gb, gc,
gac, gbc, gabc, and a challenge Ω ∈ {gab, gab+1} distinguishes which Ω is given.

Consider an abridged bulletin board resulting from removing the well-formed-
ness proofs. Let us call this the bare bulletin board. Let the adversary determine
any subset of votes other than the swapped votes vi and vj . D simulates the bare
bulletin board as follows. We describe how confirmed ballots are constructed.
Audited ballots can be easily calculated since xk, yk, and vk are known to D for
all k /∈ {i, j}. Note that ballots i and j are confirmed ballots.

D posts g and g̃ = gc as the initial parameters on the bulletin board. For
all k /∈ {i, j}, D simply chooses xk and yk randomly and generates the ballot
according to the protocol. D generates random values αi, βi, αj , and βj and
calculates the i-th and j-th ballots as follows. First, D sets

Xi = gαiga, Yi = gβigb, Zi = gαiβi(ga)βi(gb)αiΩ,

Xj = gαjga, Yj = gβj/gb, Zj = gαjβj+1(ga)βj/((gb)αjΩ),

i.e., we implicitly have xi = αi + a, yi = βi + b, xj = αj + a, and yj = βj − b.
Since αi, βi, αj , and βj are random, Xi, Yi, Xj , and Yj are randomly distributed.
Furthermore, D sets

X̃i = (gc)αigac, Z̃i = (gc)αiβi(gac)βi(gbc)αigabc,

X̃j = (gc)αjgac, Z̃j = (gc)αjβj (gac)βj/((gbc)αjgabc).

X̃i, Z̃i, X̃j , and Z̃j are well-formed since we have:

X̃i = (gc)αigac = (gc)αi+a = g̃xi ,

Z̃i = (gc)αiβi(gac)βi(gbc)αigabc = (gc)(αi+a)(βi+b) = g̃xiyi ,

X̃j = (gc)αjgac = (gc)αj+a = g̃xj ,

Z̃j = (gc)αjβj (gac)βj/((gbc)αjgabc) = (gc)(αj+a)(βj−b) = g̃xjyj .

Now if Ω = gab, then we have

Zi = gαiβi(ga)βi(gb)αiΩ = gαiβigaβigbαigab = g(αi+a)(βi+b) = gxiyi and

Zj = gαjβj+1(ga)βj/((gb)αjΩ) = gαjβj+1gaβj/(gbαjgab) = g(αj+a)(βj−b)g = gxjyjg .

On the other hand, if Ω = gab+1, then we have

Zi = gαiβi(ga)βi(gb)αiΩ = gαiβigaβigbαigab+1 = g(αi+a)(βi+b)g = gxiyig and

Zj = gαjβj+1(ga)βj/((gb)αjΩ) = gαjβj+1gaβj/(gbαjgab+1) = g(αj+a)(βj−b) = gxjyj .
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In other words, Ω = gab corresponds to a bulletin board with vi = 0 and vj = 1,
and Ω = gab+1 corresponds to a bulletin board with vi = 1 and vj = 0, with all
other votes being identical in the two bulletin boards.

Since all the votes other than vi and vj , including the ones chosen by the
adversary, are known to D, it can calculate the partial tally t1 =

∑
∀k/∈{i,j} vk.

Since we have either vi = 0 and vj = 1, or vi = 1 and vj = 0, the total tally can
be calculated as t = t1 + 1. Now note that we implicitly have:

xiyi + xjyj = (αi + a)(βi + b) + (αj + a)(βj − b)
= (βi + βj)a+ (αi − αj)b+ (αiβi + αjβj),

and hence, defining s1 =
∑
∀k/∈{i,j} xkyk, we have:

s =
∑
∀k

xkyk = (βi + βj)a+ (αi − αj)b+ (αiβi + αjβj) + s1.

Therefore, D can calculate a well-formed S = gs as follows:

S = (ga)βi+βj (gb)αi−αjgαiβi+αjβj+s1 .

Thus, D is able to simulate all the elements of a bare bulletin board. Since
the proofs of well-formedness are assumed to be zero knowledge, they can be
simulated in the Random Oracle Model for ballots i and j. The zero knowledge
property ensures that simulated proofs remain indistinguishable from real proofs.
Consequently, D is able to simulate a full bulletin board corresponding to one of
the two cases, with Ω = gab corresponding to the case where vi = 0 and vj = 1,
and Ω = gab+1 corresponding to vi = 1 and vj = 0, with all other votes being
identical in the two bulletin boards. If A is able to distinguish the two cases, so
will be D, and hence the proof is complete. ut

B Proof of Lemma 2

First, we consider the following assumption:

Assumption 4. For randomly chosen a, b, c,m, n ∈ Z?q , given (m,n,ma + nb,

g, ga, gb, gc, gac, gbc, gabc, Ω) where Ω ∈ {gab, gab+1}, it is hard to decide whether
Ω = gab or Ω = gab+1.

In Section B.1 we prove that the Square DDH assumption implies Assump-
tion 4. In Section B.2 we show that the lemma holds under Assumption 4.

B.1 Square DDH Implies Assumption 4

The proof is composed of three parts: Lemma 4 which shows that Square DDH
implies Assumption 5, Lemma 5 which shows that Assumption 5 implies As-
sumption 6, and Lemma 6 which shows that Assumption 6 implies Assumption 4.
Figure 3 summarizes the relations between these assumptions. The definitions
of the assumptions, the lemmas, and their proofs follow.
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Square DDH
Lem4
=⇒ Asm 5

Lem5
=⇒⇐=
Note 2

Asm 6
Lem6
=⇒⇐=
Note 3

Asm 4
Note 1
=⇒ DDH

Fig. 3. Relations between assumptions. Asm: Assumption, Lem: Lemma, =⇒: implies.

Assumption 5. For randomly chosen a, c ∈ Z?q , and R ∈ Gq, given (g, ga, gc,

gac, ga
2c, Ω) where Ω ∈ {ga2 , R}, it is hard to decide whether Ω = ga

2

or Ω = R.

Lemma 4. Square DDH (Assumption 2) implies Assumption 5.

Proof. Considering gc as the new g and c−1 as the new c, it is not hard to
see that Assumption 5 is equivalent to the following assumption: For randomly
chosen a, c ∈ Z?q , and R ∈ Gq, given (g, ga, gc, gac, ga

2

, Ω) where Ω ∈ {ga2c, R},
it is hard to decide whether Ω = ga

2c or Ω = R. To prove this latter assumption
based on Square DDH, consider the following distributions for a random b ∈ Z?q :

D1 = (g, ga, gc, gac, ga
2

, ga
2c), D2 = (g, ga, gc, gac, gb, gbc),

D3 = (g, ga, gc, gac, gb, R), D4 = (g, ga, gc, gac, ga
2

, R).

Let
c
≈ denote computational indistinguishability. We prove in the following that

Square DDH implies D1
c
≈ D2

c
≈ D3

c
≈ D4.

First, we claim that Square DDH implies D1
c
≈ D2. Otherwise, given an

algorithm D that distinguishes between D1 and D2, and given a Square DDH
challenge (g,A = ga, Ω), we choose a random c ∈ Z?q and construct the tuple

τ = (g,A, gc, Ac, Ω,Ωc) and give it as input to D. Note that if Ω = ga
2

, then τ
belongs to D1, and if Ω is random, then τ belongs to D2. Hence, a successful D
can be employed to solve a Square DDH challenge, and the claim is proven.

Second, we claim that DDH implies D2
c
≈ D3. Otherwise, given an algo-

rithm D that distinguishes between D2 and D3, and given a DDH challenge
(g,B = gb, C = gc, Ω), we choose a random a ∈ Z?q and construct the tuple

τ = (g, ga, C, Ca, B,Ω) and give it as input to D. Note that if Ω = gbc, then τ
belongs to D2, and if Ω is random, then τ belongs to D3. Hence, a successful D
can be employed to solve a DDH challenge, and the claim is proven.

Third, we claim that Square DDH implies D3
c
≈ D4. Otherwise, given an

algorithm D that distinguishes between D3 and D4, and given a Square DDH
challenge (g,A = ga, Ω), we choose random c ∈ Z?q and R ∈ Gq and construct
the tuple τ = (g,A, gc, Ac, Ω,R) and give it as input to D. Note that if Ω is

random, then τ belongs to D3, and if Ω = ga
2

, then τ belongs to D4. Hence, a
successful D can be employed to solve a Square DDH challenge, and the claim
is proven.

The three claims above along with the fact that Square DDH implies DDH

together imply that D1
c
≈ D4 and complete the proof. ut
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Note 1. One can show that D1
c
≈ D2, D2

c
≈ D3, and D3

c
≈ D4 each imply DDH

or Square DDH, and hence prove that Assumption 5 implies DDH.

Assumption 6. For randomly chosen a, b, c,m, n ∈ Z?q , and R ∈ Gq, given

(m,n,ma + nb, g, ga, gb, gc, gac, gbc, gabc, Ω) where Ω ∈ {gab, R}, it is hard to
decide whether Ω = gab or Ω = R.

Lemma 5. Assumption 5 implies Assumption 6.

Proof. We show that given an algorithm D that breaks Assumption 6 we can
break Assumption 5. Given (g,A = ga, C = gc, B̄ = gac, Y = ga

2c, Ω1) where

Ω1 is either ga
2

or random, we choose random m,n, ` ∈ Z?q and calculate B =

g`/n/Am/n, Ā = C`/n/B̄m/n, X = B̄`/n/Y m/n, and Ω2 = A`/n/Ω
m/n
1 , and pass

(m,n, `, g, A,B,C, B̄, Ā,X,Ω2) to D. Let us implicitly set b = (` −ma)/n. We
now have ` = ma+ nb, and also

B = g`/n/Am/n = g(`−ma)/n = gb, Ā = C`/n/B̄m/n = gc(`−ma)/n = gbc,

X = B̄`/n/Y m/n = gac(`−ma)/n = gabc,

thus B, Ā, and X are well-formed. Also note that if Ω1 = ga
2

, then

Ω2 = A`/n/Ω
m/n
1 = ga(`−ma)/n = gab,

and if Ω1 is random, then Ω2 is also random. Therefore, a successful D can be
used to distinguish between the two cases for Ω1, and the claim is proven. ut

Note 2. One can also show the reverse of the above lemma holds and hence prove
that Assumptions 5 and 6 are in fact equivalent.

Lemma 6. Assumption 6 implies Assumption 4.

Proof. Let ` = ma + nb. Consider the following distributions for a random
R ∈ Gq:

D1 = (m,n, `, g, ga, gb, gc, gac, gbc, gabc, gab),

D2 = (m,n, `, g, ga, gb, gc, gac, gbc, gabc, R),

D3 = (m,n, `, g, ga, gb, gc, gac, gbc, gabc, Rg),

D4 = (m,n, `, g, ga, gb, gc, gac, gbc, gabc, gab+1).

We have the following: D1
c
≈ D2 is equivalent to Assumption 6; D2

c
≈ D3 always

holds; D3
c
≈ D4 is equivalent to Assumption 6; and finally D1

c
≈ D4 is equivalent

to Assumption 4. Therefore, Assumption 6 implies D1
c
≈ D2 and D3

c
≈ D4, which

together with D2
c
≈ D3 imply D1

c
≈ D4, which in turn implies Assumption 4. ut

Note 3. One can also show the reverse of the above lemma holds and hence prove
that Assumptions 6 and 4 are in fact equivalent.

In summary, Assumptions 4, 5, and 6 are all equivalent; they are all implied
by Square DDH; and they all imply DDH. In other words, they are in between
Square DDH and DDH in terms of hardness.
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B.2 Assumption 4 Implies Lemma 2

Proof. The proof shares some ideas with Lemma 1. Let A be an adversary that
after determining a number of votes and obtaining temporary access to the voting
machine distinguishes the two cases. We construct an algorithm D that given m,
n, ` = ma + nb, g, ga, gb, gc, gac, gbc, gabc, and a challenge Ω ∈ {gab, gab+1}
distinguishes which Ω is given.

Let the adversary determine any subset of votes other than the swapped
votes vi and vj . A has access to the bulletin board similar to the adversary in
Lemma 1. Furthermore, A has temporary access to the voting machine which
enables A to observe some votes and their respective secret values xi and yi, and
also the value of s =

∑
xjyj for j belonging to all the votes or a subset thereof.

Therefore, apart from simulating the values on the bulletin board, D ought to
provide the adversary with the values of xi and yi for a subset of the votes and
the value of s =

∑
xjyj for all the votes or a subset thereof.

D simulates the bare bulletin board broadly analogously to the proof of
Lemma 1, except that it generates αi and βi randomly and sets αj = αi − n
and βj = m − βi, instead of generating all four randomly. Since m and n are
random, αj and βj will still be distributed randomly. The rest of the simu-
lation of the bulletin board is similar to that in the proof of Lemma 1. Let
s1 =

∑
∀k/∈{i,j} xkyk. Similar to the proof of Lemma 1, at the end of the simu-

lation we have s = (βi + βj)a+ (αi − αj)b+ (αiβi + αjβj) + s1. However, since
now m = βi + βj and n = αi − αj , we have:

s = ma+ nb+ (αiβi + αjβj) + s1 = `+ (αiβi + αjβj) + s1

Hence, s can be simulated given `. In addition to the bulletin board, the adver-
sary is then further provided with s and xk and yk for k in the period of access to
the voting machine. Similar to the proof of Lemma 1, a successful adversary can
be used to distinguish the two cases for Ω and hence the proof is complete. ut


