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Abstract. Midori is a hardware-oriented lightweight block cipher de-

signed by Banik et al. in ASIACRYPT 2015. It has two versions according

to the state sizes, i.e. Midori64 and Midori128. In this paper, we explore

the security of Midori64 against truncated differential and related-key d-

ifferential attacks. By studying the compact representation of Midori64,

we get the branching distribution properties of almost MDS matrix used

by Midori64. By applying an automatic truncated differential search al-

gorithm developed by Moriai et al. in SAC 1999, we get 3137 4-round

truncated differentials of Midori64. In addition, we find some 2-round

iterative differential patterns for Midori64. By searching the differential

characteristics matching the differential pattern, we find some iterative

2-round differentials with probability of 2−24, based on these differential-

s, a 11-round related-key differential characteristic is constructed. Then

we mount a 14-round(out of 16 full rounds) related-key differential attack

on Midori64. As far as we know, this is the first related-key differential

attack on Midori64.
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1 Introduction

Midori block cipher is designed by Banik et al. in ASIACRYPT 2015. It has two

versions, Midori64 and Midori128, which aim to reduce the energy consumption

when implemented in hardware. Midori has attracted many cryptographers since

born. Lin and Wu [15] gave a Meet-in-the-Middle attack on 12-round reduced

Midori64. Guo et al. [11] introduced an invariant subspace attack against full

Midori64 in weak key setting. Chen and Wang [21] gave a impossible attack on

10-round reduced Midori64. In this paper, we focus on the truncated differential

and related-key differential attack on Midori64 block cipher.

Differential cryptanalysis is one of the principal attack methods on mod-

ern symmetric-key ciphers, which was firstly introduced by Biham and Shamir

[3,4] to analyze DES block cipher [19] in 1990. Based on the differential attack,



many methods have been developed to evaluate the security of block cipher-

s, such truncated differential attack [13], related-key differential attack [5,7,6],

high-order differential attack [13], impossible differential attack [12,2], multiple

differential attack [10] and so forth.

The truncated differential cryptanalysis was proposed by Knudsen in 1994

[13]. Different from the differential characteristic whose difference values are fully

specified, the truncated differential is regarded as a set of differential characteris-

tics that only parts of the difference values are specified. In [14], Li et al. proposed

a meet-in-the-middle method to find truncated differential. Related-key attack

[5], allow the cryptanalyst to choose appropriate relation between keys and then

to predict the encryptions under these keys. The combination of the related-key

attack and differential attack is called related-key differential attack [5,7,6]. The

key point of these above methods is to find a (truncated/related-key) differential

characteristic with high probability which covers as many rounds as possible. In

[16], Matsui et al. introduced an approach for finding good differential and linear

characteristic in DES. It finds the best n-round characteristic by first finding the

best 1,2,...,n− 1 round characteristics.

Matsui’s method requires building all one round characteristics whose num-

ber depends on the size of the search space. However, it is infeasible for many

modern word-oriented block ciphers, due to the state size is too large. To solve

this problem, many prior works, such as [17,18,8], adopt the so-called compact

representation, where each word1 is replaced by a single bit: a word with a

nonzero difference, also called an active word, is replaced by 1, else, by 0. Then

a n-word cipher is represented as n-bit vector.

Many word-oriented ciphers are designed as substitution-permutation(SP)

networks(SPN) or Feistel stucture with SP function, including the standard ci-

pher AES, newly proposed cipher Midori [1] and E2 block cipher [20]. The SPN

ciphers or SP functions have a layer of S-boxes(S-layer) and a linear diffusion

layer(P-layer), usually the linear-layer is composed of a word rearrangement

and a multiplication by a matrix A, for examples, the ShiftRow and MixCol-

umn constitute the P-layer of AES, and the ShuffleCell and MixColumn form

the P-layer of Midori. When the S-boxes are bijective(a property common to

most ciphers developed in the past decades), then an active word remains ac-

tive(and vice-versa) before and after the S-box. Hence, the S-layer does not

change the compact representation. On the other hand, the P-layer can change

the number of the active words as well as their positions, and therefore the

branches are introduced here. For example, for XOR operation, if the two dif-

ferences (0,0,0,0,0,0,1,0) and (0,0,0,0,0,0,1,0) were XORed, the result could be

(0,0,0,0,0,0,1,0) or (0,0,0,0,0,0,0,0), i.e. two branches are introduced by XOR.

Moreover, in a byre-oriented cipher, the output (0,0,0,0,0,0,0,0) is obtained only

1 Usually, a word is a byte or nibble.

2



when the two active input byte differences are equal, this happens with prob-

ability of about 2−8(the 8 corresponding bits of the two bytes are all equal).

On the other hand, the output (0,0,0,0,0,0,0,0) is obtained with probability of

1 − 2−8. In [18], by the evaluating branches and their corresponding probabili-

ties introduced by P-layer, Moriai et al. developed a truncated differential search

algorithm, and found some truncated differentials for round-reduced E2 block

cipher.

Our contributions.

In this paper, we apply Moriai et al.’s truncated differential search algorithm

to the newly proposed Midori64 block cipher. We explore the branching property

of Mixcolumn of Midori64 block cipher. The branches with different probabilities

are computed and listed in a distribution table. We find many 4-round truncated

differentials for Midori64, whose probabilities are higher than the average prob-

ability. By exhaustive search, we claim that there are no truncated differentials

with more rounds for Midori64 block ciphers. As the Mixcolumn matrix are also

used in Midori128, we also conclude there are no truncated differentials with

more than 4 rounds for Midori128.

Moreover, for Midori64 block cipher, we find some 2-round iterative truncated

differential pattern. Then, by searching the differential characteristics matching

these truncated differential patterns, we find some iterative 2-round differentials

with probability of 2−24. Based on these differentials, 11-round related-key dif-

ferential characteristics are constructed. Then we mount a 14-round related-key

differential attack on Midori64. As far as we know, this is the best attack on

Midori64 in respect of the attacked rounds (excluding the weak-key attack). All

the results are summarized in Tab. 1.

Table 1. Summary of the Attacks on Midori64

Rounds Attack Type Data Time Memory Source

Single-key Attack (full key space)

10 Impossible Differential Attack 262.4CP 280.81Enc 265.13 [21]

10 Meet-in-the-Middle Attack 261.5CP 299.5Enc 292.7 [15]

11 Meet-in-the-Middle Attack 253CP 2122Enc 289.2 [15]

12 Meet-in-the-Middle Attack 255.5CP 2125.5Enc 2106 [15]

Related-key Attack (full key space)

14 Related-key Differential Attack 259CP 2116Enc 2112 Sec. 6

Weak-key Attack (232 weak keys)

16(full) Invariant Subspace Attack 2CP 216Enc – [11]

CP: chosen-plaintext; Enc: encryption

Outline of the paper.
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The rest of the paper is organized as follows: Sec. 2 gives a brief description of

Midori block cipher. In Sec. 3, some related works are listed. In Sec. 4, we present

the branching property of almost MDS matrix in compact representation. In Sec.

5, Moriai et al.’s algorithm is applied to Midori64 block cipher. Then 14-round

related-key differential attack on Midori64 is introduced in Sec. 6. At last, Sec.

7 concludes this paper.

2 Brief Description of Midori

Midori [1] is a lightweight block cipher designed by Banik et al. at AISACRYP-

T 2015. It is of the Substitution-Permutation Network(SPN). There are two

versions of Midori with state sizes of 64-bit and 128-bit, denoted as Midori64

and Midori128, respectively. They are designed to reduce energy consumption

when implemented in hardware. Midori64 has 64-bit state size and its key size

is 128-bit. It uses the following 4× 4 array as a data expression:

S =


s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15


where the size of each cell is 4-bit. Please note, S[i] = si, i = 0, 1, ..., 15, which

is used in Sec. 6.

The round function F of Midori64 is composed of the following 4 operations:

– SubCell(SC): Apply the non-linear 4× 4 S-box in parallel on each nibble

of the state.

Table 2. SubCell

x 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

Sb(x) 0xc 0xa 0xd 0x3 0xe 0xb 0xf 0x7 0x8 0x9 0x1 0x5 0x0 0x2 0x4 0x6

– ShuffleCell(ShC): Each nibble of the state is performed as follows:

(s0, s1, . . . , s15) ← (s0, s10, s5, s4, s11, s1, s9, s3, s12, s6, s7, s13, s2, s8).

– MixColumn(MC): Midori64 utilizes an almost MDS matrix M defined as

follows:

M =


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0


M is applied to every 4-nibble column of the state S, i.e. t(si, si+1, si+2, si+3)←
M ·t (si, si+1, si+2, si+3) and i = 0, 4, 8, 12.
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– KeyAdd(AK): The ith 64-bit round key rki is XORed to the state S.

Before the first round, an additional KeyAdd operation is applied, and in the

last round, the ShuffleCell and MixColumn operations are omitted. The total

round number of Midori64 is 16. The key-schedule of Midori64 is quite simple.

A 128-bit key K is denoted as two 64-bit keys k0 and k1, K = k0||k1. The

whitening key and the last sub-key are rk−1 = rkR−1 = k0⊕k1, and the sub-key

for round i is rki = k(imod2) ⊕ αi, where 0 ≤ i ≤ R− 2 and αi is constant.

3 Related works

The truncated differential cryptanalysis was proposed by Knudsen in 1994 [13].

Different from the differential characteristic whose difference values are fully

specified, the truncated differential is regarded as a set of differential character-

istics that only part of the difference values are specified.

Definition 1. [9] For the block cipher E with a parameter key K, the truncated

differential (Γin
E−→ Γout) is a set of differential characteristics, where Γin is

a set of input differences, and Γout is a set of output differences. The expected

probability of such truncated differential (Γin
E−→ Γout) is defined by

Pr(Γin
E−→ Γout) =

1

|Γin|
∑
a∈Γin

Pr((EK(X)⊕ EK(X ⊕ a)) ∈ Γout) (1)

=
1

|Γin|
∑
a∈Γin

Pr(a→ Γout). (2)

The average probability of the truncated differential characteristic for a ran-

dom permutation is Pr(Γin
E−→ Γout) = |Γout|

2n , where n is the block size. So what

we have to find is a truncated differential with probability bigger than |Γout|
2n .

At FSE 1999, Matsui and Tokita [17] used the compact representation to

find a 7-round truncated differential of E2 block cipher without IT-Function and

FT-Function. In SAC 1999, Moriai et al. [18] developed a truncated differential

search algorithm. The algorithm is shown in Alg. 1. Let ∆X → ∆Y be one

round truncated differential pattern, where ∆X and ∆Y are input and output

difference in compact representation. Let W (∆X → ∆Y ) be the weight function

of the differential pattern, it corresponds to the probability cost required to

produce a pair that follows the differential pattern, e.g. if Pr(∆X → ∆Y ) = 2−x,

then W (∆X → ∆Y ) = x. W (∆Y ) and W (∆Z) are number of bits of all active

words. W̄ is the bit number of the state in a block cipher, e.g. W̄ of Midori64 is

64. TDn is n-round truncated differential (not necessarily optimal).
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Algorithm 1 Search for n-round Truncated Differential

1: for all {∆X → ∆Y |W (∆X → ∆Y ) +W (∆Y ) < W̄} do

2: Call NextRound(∆Y,W (∆X → ∆Y ), 2)

3: end for

4:

5: NextRound(∆Y,w, r)

6: for all {∆Z|∆Y → ∆Z and w +W (∆Y → ∆Z) +W (∆Z) < W̄} do

7: if r = n and w +W (∆Y → ∆Z) +W (∆Z) < W̄ then

8: Update TDn

9: else

10: Call NextRound(∆Z,w +W (∆Y → ∆Z), r + 1)

11: end if

12: end for

4 Branching Property of Almost MDS Matrix M in

Compact Representation

In this section, we investigate the branching property of the involutive almost

MDS matrix M showed in Equ. (3), which is used by Midori64 block cipher in

the MixColumn(MC) operation. The input of MC is x = (x0, x1, x2, x3)T

and output is y = (y0, y1, y2, y3)T , xi, yi ∈ F c2 .

M · x = y ⇒


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

 ·

x0
x1
x2
x3

 =


y0
y1
y2
y3

 (3)

We calculate all the possible outputs y for different input x, and classify them

as the following four cases:

1. case 1: if there is only one active nibble in the input, e.g. x0 6= 0 and

x1 = x2 = x3 = 0, then the output vector (y0, y1, y2, y3) = (0, x0, x0, x0).

2. case 2: if there are two active nibbles, e.g. x0 6= 0, x2 6= 0, and x1 = x3 = 0,

then,

(a) when x0 = x2, (y0, y1, y2, y3) = (x0, 0, x0, 0),

(b) when x0 6= x2, (y0, y1, y2, y3) = (x2, x0 ⊕ x2, x0, x0 ⊕ x2).

3. case 3: if there are three active nibbles, e.g. x0 6= 0, x1 6= 0, x2 6= 0 and

x3 = 0, then,

(a) when x0 = x1 = x2, (y0, y1, y2, y3) = (0, 0, 0, x0),

(b) when x0 = x1 6= x2, (y0, y1, y2, y3) = (x0 ⊕ x2, x0 ⊕ x2, 0, x2),

(c) when x0 = x2 6= x1, (y0, y1, y2, y3) = (x1 ⊕ x2, 0, x1 ⊕ x2, x1),

(d) when x1 = x2 6= x0, (y0, y1, y2, y3) = (0, x0 ⊕ x1, x0 ⊕ x1, x0),

(e) when x0 6= x1, x0 6= x2 and x1 6= x2,
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i. x0⊕ x1⊕ x2 = 0, then (y0, y1, y2, y3) = (x1⊕ x2, x0⊕ x2, x0⊕ x1, 0),

ii. x0⊕x1⊕x2 6= 0, then (y0, y1, y2, y3) = (x1⊕x2, x0⊕x2, x0⊕x1, x0⊕
x1 ⊕ x2).

4. case 4: if there are four active nibbles,

(a) when x0 ⊕ x1 ⊕ x2 = 0, and

i. x3 6= x0,x3 6= x1 and x3 6= x2, then (y0, y1, y2, y3) = (x0 ⊕ x3, x1 ⊕
x3, x2 ⊕ x3, 0),

ii. x3 = x0,x3 6= x1 and x3 6= x2, then (y0, y1, y2, y3) = (0, x1⊕ x3, x2⊕
x3, 0),

iii. x3 6= x0,x3 = x1 and x3 6= x2, then (y0, y1, y2, y3) = (x0⊕ x3, 0, x2⊕
x3, 0),

iv. x3 6= x0,x3 6= x1 and x3 = x2, then (y0, y1, y2, y3) = (x0 ⊕ x3, x1 ⊕
x3, 0, 0),

(b) when x0 ⊕ x1 ⊕ x3 = 0,

i. x2 6= x0,x2 6= x1 and x2 6= x3, then (y0, y1, y2, y3) = (x0 ⊕ x2, x1 ⊕
x2, 0, x3 ⊕ x2),

ii. x2 = x0,x2 6= x1 and x2 6= x3, then (y0, y1, y2, y3) = (0, x1 ⊕
x2, 0, x3 ⊕ x2),

iii. x2 6= x0,x2 = x1 and x2 6= x3, then (y0, y1, y2, y3) = (x0⊕x2, 0, 0, x3⊕
x2),

iv. x2 6= x0,x2 6= x1 and x2 = x3, then (y0, y1, y2, y3) = (x0 ⊕ x2, x1 ⊕
x2, 0, 0),

(c) when x0 ⊕ x2 ⊕ x3 = 0,

i. x1 6= x0,x1 6= x2 and x1 6= x3, then (y0, y1, y2, y3) = (x0⊕ x1, 0, x2⊕
x1, x3 ⊕ x1),

ii. x1 = x0,x1 6= x2 and x1 6= x3, then (y0, y1, y2, y3) = (0, 0, x2 ⊕
x1, x3 ⊕ x1),

iii. x1 6= x0,x1 = x2 and x1 6= x3, then (y0, y1, y2, y3) = (x0⊕x1, 0, 0, x3⊕
x1),

iv. x1 6= x0,x1 6= x2 and x1 = x3, then (y0, y1, y2, y3) = (x0⊕ x1, 0, x2⊕
x1, 0),

(d) when x1 ⊕ x2 ⊕ x3 = 0,

i. x0 6= x1,x0 6= x2 and x0 6= x3, then (y0, y1, y2, y3) = (0, x0⊕ x1, x0⊕
x2, x0 ⊕ x3),

ii. x0 = x1,x0 6= x2 and x0 6= x3, then (y0, y1, y2, y3) = (0, 0, x0 ⊕
x2, x0 ⊕ x3),

iii. x0 6= x1,x0 = x2 and x0 6= x3, then (y0, y1, y2, y3) = (0, x0 ⊕
x1, 0, x0 ⊕ x3),

iv. x0 6= x1,x0 6= x2 and x0 = x3, then (y0, y1, y2, y3) = (0, x0⊕ x1, x0⊕
x2, 0),

(e) else then, (y0, y1, y2, y3) = (x1⊕ x2⊕ x3, x0⊕ x2⊕ x3, x0⊕ x1⊕ x3, x0⊕
x1 ⊕ x2).
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In the compact representation, the input and output of MC are described as

4-bit vectors, i.e. the active nibble is replaced by 1, else by 0. For example, the

input vector and output vector in case 1 are (1,0,0,0) and (0,1,1,1) in compact

representation. In case 2 (a), when the input vector is (1,0,1,0), the output vector

is (1,0,1,0) with one equality condition of x0 = x2 whose probability is 2−4. In

the above 4 cases, one equality condition means the probability is 2−4, and for

two equality conditions, the probability is 2−8 and so on. Besides, if there are

no equality conditions, we denote the probability as 1 − ε. To be simple, we

represent the 4-bit vector compact representation with a hexadecimal number,

called simplified compact representation. For example, (1,0,0,0) is denoted as

0x8 and (1,0,1,0) as 0xa in simplified compact representation. Then we get the

following branching property table in Tab. 3 with probability distribution for

MC, where the row is input vector, and column is output vector, and the units

store the probabilities. 4 represents 2−4, 8 represents 2−8 and 1 represents 1− ε.
For example, if the input of MC is 0x7 in simplified compact representation,

then the possible outputs of MC are 0x7,0x8,0xb,0xd,0xe,0xf with probabilities

2−4,2−8,2−4,2−4,2−4 and 1− ε, where ε = 2−4 + 2−8 + 2−4 + 2−4 + 2−4.

Table 3. Branching Property Table with Probability Distribution for MC

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0x2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0x3 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 1

0x4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0x5 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 1

0x6 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 1

0x7 0 0 0 0 0 0 0 4 8 0 0 4 0 4 4 1

0x8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0x9 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 1

0xa 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 1

0xb 0 0 0 0 8 0 0 4 0 0 0 4 0 4 4 1

0xc 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 1

0xd 0 0 8 0 0 0 0 4 0 0 0 4 0 4 4 1

0xe 0 8 0 0 0 0 0 4 0 0 0 4 0 4 4 1

0xf 0 0 0 8 0 8 8 4 0 8 8 4 8 4 4 1
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5 Truncated Differential Search for Midori64

In the compact representation, the 16 nibbles of the state of Midori64 are

replaced by a 16-bit vector, if the nibble is active, then the corresponding

bit is 1, else 0. Moreover, the compact representation of the state is simpli-

fied to be four hexadecimal numbers. For example, the compact representation

(0111000000100000) is simplified as 0x7020. Obviously, in the compact repre-

sentation the SC and ShC operations do not introduce branches, the branch-

ing occurs only because of the MC operation. When applying Alg. 1 to find

truncated differential, we use Tab. 3 to calculate the branches and the weight

function of the differential pattern W (∆X → ∆Y ), i.e. for a given input ∆X of

MC, a possible output ∆Y , W (∆X → ∆Y ) = −log2(Pr(∆X
MC−−→ ∆Y ))(when

Pr(∆X
MC−−→ ∆Y ) = 1− ε, W (∆X → ∆Y ) = 0). For example in Fig. 1, in the

compact representation, if the input difference pattern of MC is ∆X =0x7020,

then there are 6 possible output ∆Y s after MC, the weight function of the differ-

ential pattern W (∆X → ∆Y ) is 4,8,4,4,4,0 for different branches, respectively.

W (∆Y ) and W (∆Z) are calculated by multiplying the number of active

nibbles with 4. W̄ is 64. We find 3137 4-round truncated differentials. Fig. 2

shows one of them whose probability is 2−44, where the average probability is
|Γout|
2n−1 = 2−48. By exhaustive search, we claim that there are no such truncated

differentials with more than 4 rounds for Midori64. The truncated differential is

so short that we remove the corresponding attacks.

0x7020

Y

0x70d0

0x80d0

0xb0d0

0xd0d0

0xe0d0

0xf0d0

X

2-4

2-8

2-4

2-4

2-4

Pr( )X Y  

1 

4

8

4

4

4

( )W X Y  

0

Fig. 1. Branch Weight on Midori64
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Fig. 2. 4-Round Truncated Differential of Midori

6 14-Round Related-Key Differential Attack on Midori64

During the truncated differential search phase, we find many iterative 2-round

truncated differentials, including four 2-round differentials of 4 → 12 → 4 such

as Equ. 4 in compact representation, 24 2-round differentials of 6→ 10→ 6 such

as Equ. 5, 12 2-round differentials of 5→ 13→ 5 such as Equ. 6.
0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0

 F−→


1 1 1 0

0 1 1 1

1 1 0 1

1 0 1 1

 F−→


0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0

 . (4)


1 0 1 1

1 0 0 0

0 1 0 0

1 0 0 0

 F−→


0 1 1 1

1 1 0 1

1 1 0 1

1 0 0 0

 F−→


1 0 1 1

1 0 0 0

0 1 0 0

1 0 0 0

 . (5)


0 0 0 1

1 0 0 0

0 0 1 0

1 1 0 0

 F−→


1 1 1 0

0 1 1 1

1 1 1 1

1 0 1 1

 F−→


0 0 0 1

1 0 0 0

0 0 1 0

1 1 0 0

 . (6)

iterative of S-box in Tab. 4 shows the probabilities of (0x2→0x1, 0x1→0x2,

0x2→0x4, 0x4→0x2, 0x2→0x9, 0x9→0x2,0x2→0xc, 0xc→0x2) are all 2−2. We

find 256 2-round differential characteristics with probability 2−32, which are all

match the differential pattern of Equ. (4) and all the 256 characteristics have

the same input and output difference of (0x0,0x2,0x0,0x0,0x0,0x0,0x0,0x2,

0x0,0x0,0x2,0x0,0x2,0x0,0x0,0x0), such as Equ. (7). So we add all the 256 char-

acteristics to obtain a differential with probability of 2−32 × 256 = 2−24, shown

in Equ. (8).


0x0 0x0 0x0 0x2

0x2 0x0 0x0 0x0

0x0 0x0 0x2 0x0

0x0 0x2 0x0 0x0

 F−→


0x9 0x1 0x4 0x0

0x0 0x1 0x4 0xc

0x9 0x1 0x0 0xc

0x9 0x0 0x4 0xc

 F−→


0x0 0x0 0x0 0x2

0x2 0x0 0x0 0x0

0x0 0x0 0x2 0x0

0x0 0x2 0x0 0x0

 . (7)
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Table 4. iterative of Sbox

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1 0 2 4 0 2 2 2 0 2 0 0 0 0 0 2 0

0x2 0 4 0 0 4 0 0 0 0 4 0 0 4 0 0 0

0x3 0 0 0 0 2 0 4 2 2 2 0 0 0 2 0 2

0x4 0 2 4 2 2 2 0 0 2 0 0 2 0 0 0 0

0x5 0 2 0 0 2 0 0 4 0 2 4 0 2 0 0 0

0x6 0 2 0 4 0 0 0 2 2 0 0 0 2 2 0 2

0x7 0 0 0 2 0 4 2 0 0 0 0 2 0 4 2 0

0x8 0 2 0 2 2 0 2 0 0 2 0 2 2 0 2 0

0x9 0 0 4 2 0 2 0 0 2 2 0 2 2 0 0 0

0xa 0 0 0 0 0 4 0 0 0 0 4 0 0 4 0 4

0xb 0 0 0 0 2 0 0 2 2 2 0 4 0 2 0 2

0xc 0 0 4 0 0 2 2 0 2 2 0 0 2 0 2 0

0xd 0 0 0 2 0 0 2 4 0 0 4 2 0 0 2 0

0xe 0 2 0 0 0 0 0 2 2 0 0 0 2 2 4 2

0xf 0 0 0 2 0 0 2 0 0 0 4 2 0 0 2 4


0x0 0x0 0x0 0x2

0x2 0x0 0x0 0x0

0x0 0x0 0x2 0x0

0x0 0x2 0x0 0x0

 two rounds−−−−−−−→
Pr=2−24


0x0 0x0 0x0 0x2

0x2 0x0 0x0 0x0

0x0 0x0 0x2 0x0

0x0 0x2 0x0 0x0

 . (8)

Taking advantage of the 2-round differential, a 11-round related-key differen-

tial characteristic of Midori64 is constructed, showed in Fig. 3 whose probability

is 2−56. The key difference is (∆k0||∆k1) = (0200000200202000||0000000000000000).

Then add 1 round on the top and two rounds at the bottom to attack 14-

round reduced Midori64, shown in Fig. 4. The attack procedures are as follows.

1. Structures. Choose 2x pairs of structures. In the paired structures, there are

248 plaintexts in one structure with P = (x0, α0, x1, x2, x3, x4, x5, α1, x6, x7, α2,

x8, α3, x9, x10, x11), and 248 plaintexts in its paired one with P = (x12, α0 ⊕
0x2, x13, x14, x15, x16, x17, α1⊕0x2, x18, x19, α2⊕0x2, x20, α3⊕0x2, x21, x22, x23),

where xi takes all the possible values and αj are fixed constant. For one pair

of structures, we pick one plaintext in one structure and one in the other

structure to construct a pair. Totally, 296+x pairs are obtained.

2. Attack. Guess k0 ⊕ k1[0], encrypt a nibble of the pairs to state Y1 and use

the difference 0x2 to filter pairs. There are 292+x pairs left.

3. Similar to step 2, we repeat the guess and filter procedure for k0⊕k1[2, 3, 4, 5, 6,

8, 9, 11, 13, 14, 15] one nibble by one nibble. There are 248+x pairs left at last.
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Fig. 3. 11-round Related-key Differential Characteristic of Midori64

4. Guess k0⊕k1[1, 7, 10, 12] one by one, decrypt the left pairs to state W ′13 and

use the difference ∆W ′13[1, 7, 10, 12] = 0 to filter pairs. There are 232+x pairs

left.

5. Guess MC−1(k0)[0, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15] one by one, decrypt to the

state X13 and use the difference 0x1 to filter pairs. There are 2−16+x pairs

left on average.

Choose x = 10, there are 2−16+10 = 2−6 pairs left for a random key. However, For

the right key there are 248+10−56 = 4 pairs expected to left. The data complexity

is 248+10+1 = 259 chosen plaintexts. The time complexity of step 1 is 259 14-round

encryptions; step 2 costs about 2116+4 × 1
14 ×

1
16 = 2120−3.8−4 = 2111.2 14-round

encryptions; The total time complexity of step 2-step 3 is 2111.2 = 2114.7 14-

round encryptions. Step 4 costs 2111.2 = 2113.7 14-round encryptions. Step 5

costs 2111.2 = 2114.7 14-round encryptions. So the total time complexity is about

259 + 2114.7 + 2113.7 + 2114.7 = 2116 14-round encryptions. The memory cost is

2112 112-bit words to store the counters and keys.

7 Conclusion

In this paper, we explore the security of Midori64 against truncated differential

and related-key differential attacks. By studying the compact representation of

Midori64, we get the branching distribution properties of almost MDS matrix

used by Midori64. By applying an automatic truncated differential search algo-

rithm developed by Moriai et al. in SAC 1999, we get many 4-round truncated

differentials of Midori64. Moreover, we find some 2-round iterative differential

patterns for Midori64. By searching the differential characteristics matching the

12
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Fig. 4. 14-round Related-Key Differential Attack on Midori64

differential pattern, we find some iterative 2-round differentials with probability

of 2−24, based on these differentials, a 11-round related-key differential character-

istic is constructed. Then we mount a 14-round(out of 16 full rounds) related-key

differential attack on Midori64. As far as we know, this is the first related-key

differential attack on Midori64. For Midori128, there are similar 2-round differ-

entials, however, its round key equals to the master key, we can not connect

them to get a long related-key differential characteristic.
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