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Abstract

Ideas from Fourier analysis have been used in cryptography for the last three decades. Akavia,
Goldwasser and Safra unified some of these ideas to give a complete algorithm that finds significant
Fourier coefficients of functions on any finite abelian group. Their algorithm stimulated a lot of
interest in the cryptography community, especially in the context of “bit security”. This paper
attempts to be a friendly and comprehensive guide to the tools and results in this field. The intended
readership is cryptographers who have heard about these tools and seek an understanding of their
mechanics, and their usefulness and limitations. A compact overview of the algorithm is presented
with emphasis on the ideas behind it. We survey some applications of this algorithm, and explain
that several results should be taken in the right context. We point out that some of the most important
bit security problems are still open. Our original contributions include: an approach to the subject
based on modulus switching; a discussion of the limitations on the usefulness of these tools; an
answer to an open question about the modular inversion hidden number problem.

Keywords: Significant Fourier transform, Goldreich–Levin algorithm, Kushilevitz–Mansour algo-
rithm, bit security of Diffie–Hellman.
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1. INTRODUCTION

Let G be a finite abelian group. Fourier analysis provides a convenient basis for the space of functions

G→ C, namely the characters χ : G→ C. It follows that any function f : G→ C can be represented

as a linear combination f(x) =
∑

α∈G f̂(α)χα(x), where f̂ is the discrete Fourier transform of f . A

standard problem is to approximate a function, up to any error term, using a linear combination of a

small number of characters. This is not always possible, but for certain functions (which are called

concentrated) it is possible. The coefficients in such an approximation are called significant Fourier

coefficients, as their size is large relative to the function’s norm. The simplest example of a concentrated

function is a character itself.

A natural computational problem is to compute such an approximation. When doing this one might

have a complete description of the function or, as will be the case in this paper, just a small set of

values f(xi). The ability to choose specific xi’s plays a crucial role in the ability to approximate f .

Indeed, the main result in this subject is an algorithm that efficiently computes a sparse approximation

for any concentrated function on any abelian group G, by computing all its significant coefficients

(assuming one is able to choose the inputs xi). Algorithms that compute significant coefficients first

appear explicitly in the works of Goldreich–Levin [18] and Kushilevitz–Mansour [26], though some of

the main ideas already appear in earlier works. We use the general term significant Fourier transform

(SFT) to refer to algorithms of this type. The main aim of our paper is to survey some SFT algorithms

and their applications in cryptography.

One simple application is the problem of computing a secret vector s ∈ Zm2 when given access to a

function f(x) on Zm2 that computes 〈s,x〉+ e where e ∈ {0, 1} is a noise that is zero with probability

p > 1/2 (this is the original application studied by Goldreich and Levin). There are many approaches to

solving this noisy linear algebra problem; one is to define the function g(x) = (−1)f(x) and to consider

Fourier analysis on the additive groupG = Zm2 . One can show (see Example 5) that the coefficient ĝ(s)

corresponding to the character χs(x) = (−1)〈s,x〉 is a significant Fourier coefficient. Hence, computing

the significant Fourier coefficients for this function gives an algorithm to compute the secret vector s.

We emphasize that in order to efficiently compute the significant coefficients it is important to be able

to choose the queries x to the function, otherwise this problem is the learning parity with noise (LPN)

problem (also closely related to decoding a random binary linear code) which is believed to be hard.

In some other applications one is given the functions f and fs := f ◦ ϕs, for some function ϕ pa-

rameterized by an unknown value s, and is asked to compute s. If f has a significant Fourier coefficient,

and if there is some relation between the Fourier transforms f̂ , f̂s of f and fs, then one could hope that

this relation would disclose some information on s. For example, taking G to be the additive group Zp
and ϕs(x) = sx (mod p), the scaling property is f̂s(α) = f̂(αs−1) for every α ∈ G. It follows that f
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and fs share the same coefficients in different order. If α is a significant Fourier coefficient of f and β

is a significant Fourier coefficient of fs then αβ−1 is a candidate value for s. This idea has been used

by Akavia, Goldwasser and Safra [3] to give a new approach for the chosen-multiplier hidden num-

ber problem in Z∗p, which subsequently led to a new approach in study the security of Diffie–Hellman

schemes.

This paper is aimed at the cryptographer who has heard about these tools and seeks a clear under-

standing of their mechanics, and a framework for their usefulness and their limitations. We describe

the SFT algorithm from a high-level point of view, stressing the mathematical ideas behind it and the

situations in which it can be applied. We study, from the Fourier analysis point of view, different ap-

proaches for applying these tools and of proving results in this area. We also show some limitations on

applications that use these tools. Moreover, we survey some of the recent results and applications using

these tools.

The SFT algorithm and variants have received great attention in the literature outside the regime

of cryptography. The Kushilevitz–Mansour algorithm [26] is a cornerstone in this research field, and

serves as a basis for most algorithms, including the one we present in this paper. Researchers in en-

gineering, concerned with practical applications in signal processing, have developed algorithms with

greater efficiency (with respect to various metrics); for a recent survey on these algorithms see Gilbert,

Indyk, Iwen and Schmidt [17].

Previous work

The Goldreich–Levin (GL) algorithm [18] is considered to be the first algorithm that finds significant

Fourier coefficients. The algorithm approximates noisy inner-product functions over Zn2 , as already

mentioned above. An application is a hardcore function (known as the GL hardcore bit) for every one-

way function. There are two formulations of the GL algorithm. One formulation is due to Rackoff and

is based on ideas that were used in earlier work on hardcore bits [4]. The other formulation uses the

language of Fourier analysis and was developed in the work of Kushilevitz and Mansour (KM) [26],

who extended the ideas to give an algorithm that approximates any real-valued function over Zn2 . Man-

sour [33] gave a very similar algorithm for complex-valued functions over Z2n . All these works rely

heavily on the fact that the domain is a group of order 2n (though this point is not made explicitly in

their papers).

For functions on ZN , Bleichenbacher [8] developed an algorithm very similar in nature to GL and

showed how to approximate functions that are a noisy product in Z∗N , i.e. fs(x) = sx + e. Using this

algorithm, Bleichenbacher gave an attack on DSA signatures. Bleichenbacher’s work has been used re-

cently to give an attack on nonce leaks in ECDSA [13] and to show some nice results on decomposition

techniques in elliptic curves [5].

Akavia, Goldwasser and Safra (AGS) [3] gave a complete algorithm for all complex-valued func-
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tions over ZN , from which it was naturally generalized to all finite abelian groups. Their algorithm can

be seen as a generalization of Bleichenbacher’s with ideas from KM and Mansour. All these algorithms

require the ability to access the function on any requested value, that is, to ask f(x) for any x. We

overview them in Section 3.

Applications

Akavia, Goldwasser and Safra [3] showed that a number of bit security results (for RSA, Rabin,

and discrete logs) can be re-proved using these tools. A classic result of this type, from Alexi, Chor,

Goldreich and Schnorr (ACGS) [4], is that if one has an oracle that on input xe (mod N) (where

(N, e) is an RSA public key) returns the least significant bit of x with probability noticeably better than
1
2 , then one can compute e-th roots modulo N . Håstad and Näslund [23] generalized this result for an

oracle that returns any single bit of x (see also [19, Section 4.1]), but their method is very complex and

requires complicated and adaptive manipulations of the bits. On the other hand, the algorithm given

by AGS, which applies to functions with significant Fourier coefficients, is much clearer and is not

adaptive. Similar to Håstad and Näslund, Morillo and Ràfols [38] extended the AGS results to all single

bit functions, by showing they have a significant Fourier coefficient (in particular, one can obtain the

ACGS result for any bit). Subsequently, a number of papers [14, 15, 16, 49] have proved (or re-proved)

various results on bit security in the context of Diffie–Hellman keys on elliptic curves and finite fields

Fpn with n > 1, but usually in a model that allows changing the curve or field representation.

We emphasize that the requirement of chosen inputs for the functions restricts these applications.

Indeed, the question of main interest, whether single bits of Diffie–Hellman shared keys are hardcore,

is still open.

The SFT algorithm has also been used to show search-to-decision reductions for the learning with

errors and learning with rounding problems [36, 9]. We elaborate on these applications in Section 5.

Paper organisation and contributions

Section 2 summarises the basic definitions. Section 3 presents the key ideas behind the SFT algorithm,

and deals with some related issues. Specifically, with few examples we explain why being able to choose

the inputs to the functions is essential and why one does not expect to have a similar tool when the inputs

to the functions are chosen at random; We also analyze the case of working with unreliable oracles.

In Section 4 we outline our recent work on applying modulus switching to this subject (namely to

re-cast a function on Zp to a function on Z2n for the nearest power of 2 to p). These ideas are very

similar to the approach taken in Shor’s algorithm [42]. In our opinion this provides a simpler approach

to the results of Akavia–Goldwasser–Safra and Morillo–Ràfols.

Section 5 surveys bit security applications using the language of the hidden number problem: given

f and oracle access to fs := f ◦ ϕs find the value s. In Section 6 we explain a fundamental limitation
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to this approach: we prove that one can only solve the (chosen-multiplier) hidden number problem with

these tools when the function ϕs is linear or affine. Therefore, these tools cannot be directly used to

address the elliptic curve hidden number problem or the modular inversion hidden number problem.

Our work therefore answers a question in [32].

2. PRELIMINARIES

The following gives mathematical background needed to understand the paper and definitions that will

be used throughout the paper. The main definitions and notation appear in the table in Section 2.4.

2.1 Fourier analysis on finite groups

We review basic background on Fourier analysis on discrete domains. Proofs and further details can be

found in Terras [47].

Let (R,+, ·) be a finite ring and denote by G := (R,+) the corresponding additive abelian group.

We are interested in the set of functions L2(R) := {f : R → C}. The set L2(R) is a vector space

over C of dimension|G| = |R|, with the usual pointwise addition and scalar multiplication of functions.

Convolution of two functions f, g ∈ L2(R) is defined by (f ∗ g)(x) = 1
|R|
∑

y∈R f(x − y)g(y). The

expectation of a function f ∈ L2(R) is defined to be E [f ] = 1
|R|
∑

x∈R f(x). The space L2(R) is

equipped with an inner product 〈f, g〉 := E
[
f(x)g(x)

]
= 1
|R|
∑

x∈R f(x)g(x), where z denotes the

complex conjugate of z ∈ C. The inner product induces a norm ‖f‖2 =
√
〈f, f〉. We also define

‖f‖∞ = maxx∈R |f(x)|.
One basis for this vector space is the set of Kronecker delta functions {δi}i∈R

(
δi(j) = 1 if j = i,

otherwise δi(j) = 0
)
. This is an orthogonal basis with respect to the inner product. However, this basis

is not as useful as the Fourier basis, as we will explain later in this section.

A character of a group (G,+) is a group homomorphism taking values in the non-zero complex

numbers, namely χ : G→ C∗ such that χ(x+y) = χ(x)χ(y). Since χ(x)|G| = χ(|G|x) = χ(0G) = 1,

we see that the characters take values in the complex |G|-th roots of unity. The set of characters of G

forms a group (with respect to pointwise multiplication), isomorphic to G, which is often denoted Ĝ.

In general, we fix a choice of isomorphism G → Ĝ and denote it by α 7→ χα. In particular, for

G = ZN the characters are defined by χα(x) := e
2πi
N
αx where α ∈ G. For G = ZN1 × . . . × ZNm ,

let α = (α1, . . . , αm) and x = (x1, . . . , xm); the character χα is given by χα(x) := χα1(x1) · . . . ·
χαm(xm) = e

2πi
N1

α1x1 · . . . · e
2πi
Nm

αmxm and the map α 7→ χα from G to Ĝ is an isomorphism. We

sometimes write ωN := e
2πi
N so that χα(x) = ωαxN .
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The following relations are standard and can be used to show that the characters are orthonormal

∑
x∈G

χ(x) =

|G| if χ is the identity in Ĝ,

0 otherwise,

∑
χ∈Ĝ

χ(x) =

|G| if x = 0,

0 otherwise.

If G = ZN1 × . . .× ZNm then for any H ≤ G we define the orthogonal set

H⊥ := {a ∈ G | χa(h) = 1 for all h ∈ H} . (1)

This set is fundamental for the understanding of the SFT algorithm and appears frequently in Section

3.2. Using the relations above it can be shown that

∑
h∈H

χh(x) =

|H|, if x ∈ H⊥,
0, otherwise.

(2)

The Fourier basis for L2(R) is the set Ĝ consisting of all the characters χ. It is an orthonormal

basis. Therefore, we can represent each function f : R → C uniquely as a linear combination f(x) =∑
α∈G f̂(α)χα(x) of the characters χα. The function f̂ : G → C given by f̂(α) = 〈f, χα〉 is called

the discrete Fourier transform. The map f 7→ f̂(α) is C-linear. Notice that a single Fourier coefficient

encapsulates information about the function on the whole domain, unlike the representation in terms of

Kronecker delta functions where one coefficient only holds information about the function at a single

point.

Parseval’s identity is the following relationship between the norms of f and f̂ :

‖f‖22 =
1

|G|
∑
x∈G
|f(x)|2 = 〈f, f〉 =

∑
α∈G
|f̂(α)|2 = |G| · ‖f̂‖22 .

Adopting signal-processing terminology, when we work with the values f(x) for x ∈ G we say

that x is in the time domain. When we use the values f̂(α) we say α ∈ G is in the frequency domain.

There does not seem to be a rigorous formulation of this terminology and we do not use it much, but the

reader will find it very common in the engineering literature. We signal to the reader whether we are

working in the time domain or frequency domain by using Latin letters x, y for elements in the former

(elements of G), and Greek letters α, β for the latter (corresponding to elements of Ĝ, e.g. χα).

Let R = ZN1 × . . .×ZNm with componentwise addition and multiplication, and let f, g ∈ L2(R).

Basic properties of the Fourier transform include the following (note that the basis of Kronecker delta

functions does not satisfy these properties, which is one reason why it is less useful than the Fourier

basis):

• (time) scaling: if g(x) := f(cx) for c ∈ R∗, then ĝ(α) = f̂(c−1α);
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• (time) shifting: if g(x) := f(c+ x) for c ∈ R, then ĝ(α) = f̂(α)χα(c);

• (frequency) shifting: if g(x) := f(x)χc(x) for c ∈ R, then ĝ(α) = f̂(α− c);

• convolution-multiplication duality: f̂ ∗ g(α) = f̂(α)ĝ(α).

We now recall some definitions from [3, 14, 38]. The same definitions can be made for functions

over rings R where G is their additive group.

Definition 1 (Restriction). Given a function f : G → C and a set of characters Γ, the restriction of f

to Γ is the function f |Γ : G→ C defined by f |Γ :=
∑

χα∈Γ f̂(α)χα.

Definition 2 (ε-Concentration). Let ε > 0 be a real number. A family of functions {fi : Gi → C}i∈N
is Fourier ε-concentrated if there exists a polynomial P and sets of characters Γi ⊆ Ĝi such that

|Γi| ≤ P (log |Gi|) and ‖fi − fi|Γi‖22 ≤ ε for all i ∈ N.

Definition 3 (Concentration). A family of functions {fi : Gi → C}i∈N is Fourier concentrated if there

exists a polynomial P and sets of characters Γi ⊆ Ĝi such that |Γi| ≤ P (log |Gi|/ε) and ‖fi−fi|Γi‖22 ≤
ε for all i ∈ N and for all ε > 0.

Most applications are concerned with a single function that implicitly defines the entire family.

In this case we informally say that the function, instead of the family, is concentrated. Examples of

concentrated functions, and of this terminology, are given in Example 5.

Definition 4 (Heavy coefficient). For a function f : G → C and a threshold τ > 0, we say that a

coefficient f̂(α) (of the character χα) is τ -heavy if |f̂(α)|2 > τ .

The phrases significant coefficient and heavy coefficient are often used interchangeably to mean any

coefficient f̂(α) which is large relative to the norm of the function, but without reference to any specific

value of τ . By Parseval’s identity it is evident that a function cannot have many significant coefficients.

In this paper our convention is to use “heavy” in a formal sense and “significant” in an informal sense.

The relationship between concentrated functions and functions with significant coefficients is subtle.

If a function has a τ -heavy coefficient, then is it (1−τ)-concentrated (with |Γ| = 1). But such a function

is not necessarily ε-concentrated for all ε. The literature has tended to focus on concentrated functions,

but for many of the bit security applications it is sufficient that the function has one or more significant

coefficients. The distinction is important since it is harder to prove that a function is concentrated than

to prove it has a significant coefficient.

Example 5. Here are some examples of functions with significant coefficients, most of which are con-

centrated:
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• A single character is concentrated; that is, the family J = {χα : Zn → C}n>α for some α ∈ N
is concentrated. The case α = 0 corresponds to constant functions, which are concentrated but

will be un-interesting in our applications.

• For the least-significant-bit function LSB(x) on Z2n , which gives the parity of x, the functions

f : Z2n → C given by f(x) := (−1)LSB(x) are concentrated. Indeed, these functions correspond

to the characters f(x) = (−1)x = ω2n−1x
2n = χ2n−1(x).

• The functions half : ZN → {−1, 1}, for which half(x) = 1 if 0 ≤ x < N
2 and half(x) =

−1 otherwise, are concentrated; one has ĥalf(α) = 1
N [
∑

0≤x<N
2
χα(x) −

∑
N
2
≤x<N χα(x)].

Elementary arguments (see Claim 11 below) show that∣∣∣∣∣∣∣
1

N

∑
0≤x<N

2

χα(x)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1

N

∑
0≤x<N

2

ω−αxN

∣∣∣∣∣∣∣ <
1

||α|N |

where |α|N denotes the unique integer in (−N/2, N/2] that is congruent to α modulo N . Simi-

larly
∣∣∣ 1
N

∑
N
2
≤x<N χα(x)

∣∣∣ < 1
||α|N | . These results can be used to show that half is concentrated

on a set of characters α with small ||α|N |. Similar arguments hold for the most-significant-bit

function f(x) := (−1)MSB(x), thus it is also concentrated.

• For primes p, the functions f : Zp → C given by f(x) := (−1)LSB(x) are concentrated. This

follows from f(x) = half(2−1x) and the scaling property.

• The function LPNs : {0, 1}n → {0, 1}, given by LPNs(x) = (−1)〈x,s〉+e(x) for e which is mostly

0 (and otherwise 1), has a significant coefficient and therefore is ε-concentrated (for some large

ε). Let I be the set for which e(x) = 1, then L̂PNs(s) = 1
2n
∑

x/∈I 1 + 1
2n
∑

x∈I(−1) = 1− 2|I|
2n .

Since the size |I| is relatively small, the coefficient L̂PNs(s) is large, that is, the function LPNs

“behaves” like the character χs in {0, 1}n. If |I| is very small, for example |I| = poly(log |G|),

then LPNs is also concentrated. Moreover, one can show that |L̂PNs(v)| ≤ |I|
2n , and on average

is expected to be proportional to
√

2|I|/2n(2n − 1) ≈
√

2|I|/2n.

• ‘Noisy characters’ given by f(x) := ω
αx+e(x)
p for some suitable random functions e have a

significant coefficient f̂(α) as we show in Section 6.1. An example of such a noisy character is

the function LWEs : Znp → Zp, given by LWEs(x) = ω
〈x,s〉+e(x)
p for e(x) drawn from a Gaussian

distribution.

Another example of concentrated functions are the i-th bit functions, see Section 4.1 for details.
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2.2 Learning model

Let f : R → C be a function for which one wants to learn its significant coefficients. The learner gets

access to samples of the form (x, f(x)). In the random access model the learner receives polynomially

many samples for inputs x ∈ R drawn independently and uniformly at random. As opposed to this

model, in the query access model the learner can query the function on any chosen input x ∈ R to

receive the corresponding sample.

An algorithm learns a function f : G → C if it outputs a set containing all its significant Fourier

coefficients. Formally, given a function f and ε, δ > 0, the algorithm outputs a set Γ of size polynomial

in log(|G|) and ε−1, such that ‖f − f |Γ‖22 ≤ ε with probability at least 1− δ.

The main result of this subject (see Theorem 7 below) is that there is a randomised, polynomial-time

algorithm to compute a sparse approximation f |Γ to a concentrated function in the query access model.

In other words, concentrated functions are learnable in polynomial time.

2.3 Probability

The Chernoff bound gives an upper bound on the probability that a sum of independent random vari-

ables deviates from its expected value. One can therefore derive a lower bound for the number of

samples needed to estimate the sum of independent random variables, with any required probability

and error term. For a random variable X on a set A ⊆ C we denote by Ex∈AX(x) the expected value∑
x∈AX(x) Pr(x).

Theorem 6 (Chernoff). Let A be a set of complex numbers such that |x| ≤ M for all x ∈ A. Let

xi ∈ A be chosen independently and uniformly at randomly from A. Then

Pr

∣∣∣∣∣∣ Ex∈A[x]− 1

m

m∑
i=1

xi

∣∣∣∣∣∣ > λ

 ≤ 2e−λ
2m/2M2

.

2.4 Table of notations

We summarize the main notation and definitions in the following table.

Notation/Definition Meaning
χ A character of G.
H⊥ The orthogonal set {α ∈ G | χα(h) = 1 for all h ∈ H}.
f̂ The Fourier transform of f .
Scaling property ĝ(α) = f̂(c−1α) for g(x) := f(cx) and c ∈ R∗.
τ -heavy coefficient A coefficient satisfying |f̂(α)|2 > τ .
Significant coefficient A τ -heavy coefficient, for some τ−1 = poly(log |G|, ‖f‖∞).
Query access The ability to ask for f(x) for any input x.
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3. THE SFT ALGORITHM

This section gives a high-level presentation of the significant Fourier transform (SFT) algorithm in the

query access model. A precise description of the algorithm is given in Theorem 7. The section starts

with simple algorithms for specific functions with only one significant coefficient. This is in order to

show that the general algorithm is a natural extension of these simple algorithms. We then present the

algorithm for domains of size 2n (which is also applicable for other domains with towers of subgroup

of small index), and finally show which modifications should be done for domains of prime order.

Theorem 7 ([1, SFT algorithm][3, Theorem 5]). Let G be an abelian group represented by a set of

generators of known orders. There is a learning algorithm that, given query access to a function

f : G→ C, a threshold τ > 0 and δ > 0, outputs a list L of size at most 2‖f‖22/τ such that

• L contains all the τ -heavy Fourier coefficients of f with probability at least 1− δ;

• L does not contain coefficients that are not (τ/2)-heavy with probability at least 1− δ.

The algorithm runs in polynomial time in log
(
|G|
)
, ‖f‖∞, 1

τ and log
(

1
δ

)
.

3.1 History and special cases

Key ideas behind the SFT algorithm first arose in other settings, and the aim of this section is to put

some of this early work in context.

3.1.1 Goldreich–Levin

Consider a noisy inner product function. That is, fs : {0, 1}n → {0, 1} given by fs(x) = 〈x, s〉+ δ(x)

(addition takes place mod 2) where δ(x) = 1 with some small probability (noticeably smaller than 1
2 )

and otherwise δ(x) = 0. This is the same function as in the learning parity with noise (LPN) problem.

If δ(x) = 0 for all x (or for a negligible set of inputs) then reconstructing fs is an easy linear algebra

problem. The task is to learn s given samples fs(xi). In the simplest setting of Goldreich and Levin [18]

there is a single τ -heavy character χs(x) = (−1)〈x,s〉 for τ > 1/2.

If one can choose the queries for fs then an elementary approach is to query on the unit vectors

e1 := (1, 0, . . . , 0), . . . , en := (0, . . . , 0, 1) to learn s bit-by-bit. However, since the query on ei may

return the incorrect answer 〈ei, s〉+ 1, one would like to generate a small set of independent values of

the form 〈ei, s〉 + δ, and determine si by majority rule. This can simply be achieved by querying on

correlated values x and x + ei to get the results 〈x, s〉 + δ(x) and 〈x, s〉 + 〈ei, s〉 + δ(x + ei). If both

answers are not noisy (or if both are noisy) then by subtracting one from the other we get 〈ei, s〉, which

is the i-th coordinate of s. (For the interested reader: if the noise rate is at least 1
4 , then there may not be
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a unique solution (see Section 3.3); Rackoff suggested to use a trick due to Alexi et al. [4] to deal with

this case.)

The original Goldreich–Levin paper [18] does not give a clear description of the learning algorithm.

A description in the language of Fourier analysis was given in [26] by Kushilevitz and Mansour.

Note that the problem of learning s from noisy inner products 〈x, s〉 can be interpreted as decoding

a binary linear code. Choosing the queries x can be interpreted as designing a generator matrix for the

code. The SFT algorithm can therefore be viewed as a decoding algorithm. In the situation where the

error rate is very high and there is a not a uniquely determined solution then the SFT algorithm can be

viewed as a list-decoding algorithm. More on the relation of these tools to decoding linear codes can be

found in the recent work [24], where an ‘extended KM’ algorithm is presented.

3.1.2 Bleichenbacher

Bleichenbacher [8] seems to have been the first to consider these problems in the case of functions on

ZN where N is not a power of 2. He considers a ‘noisy product’ function fs : ZN → ZN given by

fs(x) = sx + δ(x) where with high probability |δ(x)| < N
2λ

for some real number λ. If δ(x) is very

small then finding s and reconstructing fs is easy.

In Bleichenbacher’s original setting one cannot choose the queries, so he gives a method (not effi-

cient for large domains) to obtain queries that lie in short intervals, and then gives a method to solve the

problem. We explain the latter method. Notice that if one can obtain any query, then this problem can be

solved by successively multiplying by 2 and reading the bits. Since some samples may be erroneous, a

majority rule idea, based on the approach taken in GL above, is used. Here however, one is not assumed

to have exact queries, but only that the queries lie in some interval.

The main idea to solve this problem comes from the fact that if s < N
2η , for some η ≥ 0, then

sy < N for every 0 ≤ y ≤ 2η. In other words, the product sy does not ‘wrap-around’ modulo N , and

this can be used to determine the upper bits of s: given y and fs(y) = sy + δ(y), take bfs(y)/ye =

bs + δ(y)/ye; assuming there is no wrap-around over N in fs(y), we get some upper bits of s. Now

suppose one knows MSBη(s), the η most significant bits of s, then by subtracting it from s we have

s−MSBη(s) < N
2η . One can then query on 2η−1 ≤ y ≤ 2η to determine the next bit.

Notice that this approach requires having multipliers drawn from some interval {0, 1, . . . , 2i − 1}
(specifically small multipliers in the first stages, which are the ‘hardest’ to get). As some samples are

incorrect, we need to generate independent sets of this form. Similar to the approach in GL, this is done

by fixing some z and querying on z + r for r chosen uniformly in {0, 1, . . . , 2η − 1}, then subtracting.

This is a simplification of Bleichenbacher ideas, which actually involve Fourier analysis. For the full

details we refer to Bleichenbacher [8]. This method does not seem to have been used for cryptographic

applications until the recent works [13, 5].
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3.1.3 Following work

The early work did not explicitly mention Fourier coefficients, but it was realised that one can re-phrase

the problems as finding significant Fourier coefficients of these functions. The Goldreich–Levin case

was generalized by Kushilevitz and Mansour [26] to any real-valued function over {0, 1}n and this

work was the first to explicitly treat functions with more than one significant Fourier coefficient.

Subsequently, Mansour [33] gave an algorithm for functions f : Z2n → C. Unlike other works,

Mansour finds the significant coefficients from the least significant bit to the most significant bit (a link

between these works is explained in Remark 9 below). The approach of Mansour was extended, thereby

giving a generalisation of Bleichenbacher’s result, by Akavia, Goldwasser and Safra [3].

Notice that combining the KM and AGS ideas gives an algorithm for all groups ZN1 × · · · × ZNr ,

since one can easily collapse from the latter to ZNj (by choosing appropriate queries). Therefore, the

case of most interest is G = Zp as we present below. As further evidence for the unity of all these

ideas we remark that the KM and AGS algorithms query on exactly the same set of queries as GL and

Bleichenbacher (and subsequently reveal the significant coefficients bit-by-bit from MSB to the LSB).

3.2 The SFT algorithm

Let f : G → C. Given a threshold τ ∈ R, the algorithm outputs all τ -heavy Fourier coefficients of f

(and potentially some other coefficients, which are close in size to τ ) with overwhelming probability.

We first give a high-level view of how the algorithm works. The method is a form of binary search:

the algorithm divides the set of Fourier coefficients into two (disjoint) sets, and check each set separately

to determine whether it potentially contains a τ -heavy coefficient. To do this the algorithm defines two

new functions, one for each set of coefficients. A clever use of Parseval’s identity allows the algorithm

to check the size of all coefficients simultaneously given the norm of the functions. Hence, the problem

is to determine the norms of the two new functions, which requires a method to compute their values.

The structure of the sets is important: for some sets we have useful formulas for the functions. Instead of

precisely calculating these values, it is sufficient to have approximations of the outputs of the functions

and to approximate the norm of each function. The Chernoff bound is then used to bound the error term

in the approximations.

Schematically, the algorithm operates as follows, where we initially take D = G:

• Partition D = A ∪· B, and define fA(x) :=
∑

α∈A f̂(α)χα(x) and fB(x) :=
∑

β∈B f̂(β)χβ(x).

• Approximate the values fA(xi) and fB(yj) for polynomially many samples xi, yj , chosen uni-

formly at random. This is done using the fundamental relation in (3) below.

• Using the values from the previous step, approximate the norms ||fA||22 and ||fB||22. See (5).
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• Using Parseval’s identity ||fA||22 =
∑

α∈A |f̂(α)|2, if the approximation of the norm is smaller

than1 τ
2 then with overwhelming probability f does not have a τ -heavy coefficient in A. Hence,

dismiss A. Act similarly for fB .

• Run the algorithm recursively on the remaining sets and stop when it reaches singletons.

As already explained, Parseval’s identity shows that a function can only have polynomially many sig-

nificant coefficients. Hence, by setting a threshold τ such that τ−1 = poly(log |G|, ‖f‖∞), the number

of sets involved in the process (therefore the number of iterations) is polynomial (see [26, Lemma 3.4]

or [34, Lemma 4.8])2.

Remark 8. We emphasize that the algorithm can work with any function f and with any threshold τ .

Specifically, if f does not have any τ -heavy coefficients, then the algorithm will output an empty list.

However, the running time is polynomial in 1/τ so the algorithm will not be efficient if the threshold is

chosen to be too low. Indeed, if τ is small then the algorithm will insist on using many samples to get

sufficiently close approximations to the norms.

To illustrate these points, consider a function that has a coefficient f̂(v) that is relatively large

compared to each of other coefficients but is not significant (for example 10 times larger than each of

the rest), i.e. it is not large relative to the norm. Suppose one tries to find this coefficient by setting a

very low threshold. The running time of the algorithm on this function would not be polynomial as, at

the first stages, the sums of all Fourier coefficients over the sets are roughly the same size. Therefore,

the algorithm would have to keep all the sets until they are sufficiently small. This case corresponds

to a τ -heavy f̂(v) for τ−1 that is not polynomial in log |G|, ‖f‖∞. To get that τ−1 is polynomial in

log |G|, ‖f‖∞, the size of f̂(v) should be comparable with the norm of the function and not just larger

than all the rest.

3.2.1 Domains of size 2n

We now sketch an algorithm that unifies the KM and Mansour algorithms. Our presentation is more

group-theoretic than the original works. We refer to [26] and [34] for exact details and proofs.

Let f : G→ C and τ ∈ R. At each iteration the algorithm takes a set D (starting with D = G) and

proceeds as follows.

Partial functions. Partition D = A ∪· B into two sets that are defined below. Define the function

fA : G → C by fA(x) =
∑

α∈A f̂(α)χα(x). If f has a τ -heavy coefficient α and α ∈ A, then fA has

a τ -heavy coefficient. All arguments hold similarly for the set B.
1A lower threshold τ

2
is needed since the algorithm only approximates the norm. As a consequence, the final list may

contain coefficients that are τ
2

-heavy but not τ -heavy.
2The notion of heavy coefficient in [26, 34] is slightly different from ours. There, a coefficient is τ -heavy if |f̂(α)| > τ .
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Estimating fA. We need a method to estimate values of the function fA using values of the original

function f . We define a filter function hA : G→ C by h(x) =
∑

α∈A χα(x), and then use the property

f̂ ∗ hA = f̂ · ĥA. Since

ĥA(α) =

{
1 α ∈ A,
0 otherwise,

we have

f̂ ∗ hA(α) =

{
f̂(α) α ∈ A,
0 otherwise.

In other words,

f ∗ hA = fA . (3)

Convolution is not a task we have an efficient method to calculate in general, let alone efficiently

calculating hA(x) =
∑

α∈A χα(x). Therefore, the structure of the sets is important and plays a key role

in the ability to apply the algorithm. Notice that if A is an arithmetic progression, then
∑

α∈A χα(x) =∑
j χqj+r(x) = χr(x)

∑
j χq(jx), and so it can be evaluated by the formula for geometric series. More

generally, assume D ≤ G is a subgroup and let H ≤ D be a subgroup (of index 2). We take A to be a

coset A = z +H for some z ∈ G (then B is taken to be the other coset). Then,

hz+H(x) =
∑
h∈H

χz+h(x) =
∑
h∈H

χz(x)χh(x) = χz(x)
∑
h∈H

χh(x) ,

and the latter is zero unless x ∈ H⊥ (H⊥ is defined in (1) above). Thus the function hA is given by

hA(x) = hz+H(x) =

χz(x) · |H|, if x ∈ H⊥,
0, otherwise.

(4)

We therefore get, since |H||H⊥| = |G|,

fA(x) = f ∗ hA(x) = E
y∈G

[
f(x− y)hA(y)

]
=

1

|G|
∑
y∈G

f(x− y)hA(y)

=
1

|G|
|H|

∑
y∈H⊥

f(x− y)χz(y) = E
y∈H⊥

[
f(x− y)χz(y)

]
.

The last term is an expectation over values of size at most ‖f‖∞, and so the Chernoff bound guar-

antees that polynomial (in log(|G|)) many samples (chosen uniformly at random in H⊥) are sufficient

to approximate it with an error term of size at most ‖f‖∞
poly(log(|G|)) with overwhelming probability.

We give concrete examples of this step in Section 3.2.2 below.

Estimating ‖fA‖2. We can now write ‖fA‖2 as

‖fA‖22 = E
x∈G

∣∣(f ∗ hA)(x)
∣∣2 = E

x∈G

∣∣∣∣ Ey∈G [f(x− y)hA(y)
]∣∣∣∣2 = E

x∈G

∣∣∣∣∣ E
y∈H⊥

[
f(x− y)χz(y)

]∣∣∣∣∣
2

.
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Again, an approximation of the norm is sufficient (a consequence of the approximation is that we have

to lower the threshold τ a little bit).

We can therefore approximate ‖fA‖22 by choosing m1,m2 sufficiently large (given by the Chernoff

bound), randomly choosing3 xi ∈ G where 1 ≤ i ≤ m1, randomly choosing yij ∈ H⊥ for each i

where 1 ≤ j ≤ m2 and calculating

1

m1

m1∑
i=1

∣∣∣∣∣∣ 1

m2

m2∑
j=1

f(xi − yij)χz(yij)

∣∣∣∣∣∣
2

≈ ‖fA‖22 =
∑
α∈A
|f̂(α)|2. (5)

One then checks if this value is smaller than τ/2. If so then with overwhelming probability there

is no α ∈ A such that f̂(α) is τ -heavy, and so the set A can be dismissed. Notice that if this value is

greater than τ/2 it does not necessarily mean that A contains a significant coefficient. In this case the

algorithm sets D = A and repeats until all sets are singletons or dismissed. As mentioned above, as

long as the threshold τ satisfies τ−1 = poly(log |G|, ‖f‖∞), it is guaranteed that the number of sets the

algorithm keeps throughout the process is polynomial in log(|G|).

We give the pseudocode of the algorithm. At start, set z = 0 and k = n, so Hk = G.

Algorithm 1: MainProcedure
Input: A coset z +Hk.
if |Hk| = 1 then

if |Est f̂(z)| ≥ τ/2 then
return {z}

else
return ∅

else
Let W be a set of coset representatives for Hk−1 in Hk

Let W ′ = {w ∈W | EstNormSq(f(z+w)+Hk−1
) ≥ τ/2}

return ∪w∈W ′ MainProcedure((z + w) +Hk−1)

Algorithm 2: EstNormSq
Input: fz+H : G→ C.
Choose xi ∈ G where 1 ≤ i ≤ m1

For each i, choose yij ∈ H⊥ where 1 ≤ j ≤ m2

return 1
m1

∑m1
i=1

∣∣∣ 1
m2

∑m2
j=1 f(xi − yij)χz(yij)

∣∣∣2
3Note that as in [26, 33] one can define the function fA over H (and not G), and therefore choose the values xi from H .
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Algorithm 3: Estf̂
Input: z ∈ G.
Choose xi ∈ G where 1 ≤ i ≤ m1

return 1
m1

∑m1
i=1 f(xi)χz(−xi)

3.2.2 Examples

Notice that in (5) above for each xi one needs the samples f(xi− yij). This explains the importance of

having query access to the function. To illustrate this point, we give some concrete examples.

Kushilevitz and Mansour [26] consider a function f : {0, 1}n → R. Write x = x1 . . . xn. At the

first iteration define A to contain all n-bit strings that start with 0 and B to contain all the n-bit strings

that start with 1. Then we have

hA(x) =

2n−1, if x = 0 . . . 0 or x = 10 . . . 0,

0, otherwise,
(6)

and indeed

ĥA(α) =
1

2n

∑
x

hA(x)(−1)〈α,x〉 =
1

2

(
(−1)0 + (−1)α1

)
=

{
1 α ∈ A;

0 otherwise.

One can only evaluate f ∗ hA(x) if one has the values f(x) and f(x + e1). This shows that the KM

approach requires (in the first iteration) queries on pairs of vectors that differ by a unit vector, exactly

as in the elementary approach to the GL theorem as sketched in Section 3.1.1.

Mansour [33] considers a function f : Z2n → C. At the first iteration define A to contain all the

even numbers in Z2n and B to contain all the odd numbers. Then, we have

hA(x) =

2n−1, if x = 0 or x = 2n−1,

0, otherwise,
(7)

and indeed

ĥA(α) =
1

2n

∑
x

hA(x)ωαx2n =
1

2

(
1 + (−1)α

)
=

{
1 α ∈ A;

0 otherwise.

One can only evaluate f ∗ hA(x) if one has f(x) and f(x+ 2n−1).

The analysis of this algorithm is useful for the prime case below, and so we present its later stages.

In stage l of this algorithm, one defines the subgroup H to contain all multiples of 2l in Z2n . Hence

the cosets in a partition contain all numbers that agree on their remainder modulo 2l, and H⊥ = {x ∈
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Z2n | x2l ≡ 0 (mod 2n)} = {0, 2n−l, 2 · 2n−l, 3 · 2n−l, . . . , (2l − 1)2n−l}. Define A = Ar = {x ∈
Z2n | x ≡ r (mod 2l)} = H + r. Then, the filter function hA satisfies

hA(x) =

χr(x) · 2n−l, if x ∈ H⊥,
0, otherwise.

(8)

Again, to approximate f ∗ hA(x), one needs enough samples f(xi) for xi ∈ H⊥.

Remark 9. Readers familiar with lattice cryptography may be interested to know that the idea that

underlies the modulus-dimension tradeoff [29] already appears in the relationship between the KM [26]

algorithm on {0, 1}n and the Mansour [33] algorithm on Z2n . We briefly sketch this idea. Let a =

(a0, . . . , an−1) ∈ Znp , s = (s0, . . . , sn−1) ∈ {0, 1}n, and suppose

b ≡ a · s + e ≡
n−1∑
i=0

aisi + e (mod p) .

Writing a = a0p
n−1 +a1p

n−2 + · · ·+an−2p+an−1 and s = s0 + s1p+ · · ·+ s+n− 1pn−1 we have

as ≡ (a0s0 + · · ·+ an−1sn−1)pn−1 + lower term (mod pn)

and some of its MSBs agree with the MSBs of bpn−1, when p is large.

As shown in equation (6) above, at the first iteration over {0, 1}n the filter function is nonzero on

the inputs 0 and a = (1, 0, . . . , 0) in Zn2 . These vectors correspond to the values a = 0 and a = 2n−1

in Z2n , which are exactly the values appearing in equation (7). Since the lower terms of a · s are zero,

when a = 0, pn−1, the MSB of as and bpn−1 agree even for p = 2. In both domains, we use these

values to recover s0. The generalization to all inputs a arising in the algorithms is straightforward.

3.2.3 Domains of prime order

The algorithm presented above is suitable for domains whose order can be factored as a product of

small primes (especially for powers of 2, as been shown for {0, 1}n in [26] and for Z2n in [33]). A

case of interest, from the theoretical and practical sides, is domains of (large) prime order. Since each

additive group ZN can be decomposed into Zp1×· · ·×Zpn , and since we have query access (so naively

we can query on x = (0, . . . , 0, x, 0, . . . , 0) to ‘filter’ all other subgroups),4 being able to find heavy

coefficients for functions over Zp will allow us to find heavy coefficients for functions over any ZN .

One cannot apply directly the algorithm presented above as Zp does not have any proper subgroups,

specifically not those of small index. The importance of the subgroups is in the evaluation of exponential

sums (such as equation (2) above), which subsequently allows us to have useful formulas for the filter
4Since deterministic queries are not desirable, additional randomization is used in practice.
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functions (such as equation (4)). We now show that one can still follow the steps in the algorithm above.

Natural candidates for the partitioning sets are intervals (of similar size) of consecutive numbers or

classes of numbers with the same remainder modulo 2l (where l represents the stage we work at), which

is similar to the approach taken over Z2n (see Section 3.2.2).5 In fact, using the frequency-shifting and

scaling properties of the Fourier transform, one can show that these two partitions are equivalent (where

there is a correspondence between the size of the intervals and the size of the classes), in the sense that

one can transform the coefficients in an interval to coefficients of the same class modulo 2l and vice

versa.

The algorithm over Zp works in the same steps as explained in Section 3.2. The main obstacle is

to show how to efficiently calculate the function fA, for some appropriate set A (one should also make

sure that one can have a good approximation of ‖fA‖2, but this does not turn out to be an issue). We

therefore focus on this step. The other steps are similar to the algorithm for domains of size 2n.

Working in the ‘frequency domain’. In order to show the difficulty working in a domain of prime

size, we start with a naive imitation of the approach taken in the algorithm for domains of size 2n. LetA

be an arithmetic progression in Zp, and define fA =
∑

α∈A f̂(α)χα(x) and hA(x) =
∑

α∈A χα(x) as

above. Then fA(x) = f ∗hA(x) = Ey∈G
[
f(x− y)hA(y)

]
= Ey∈G

[
f(x− y)

∑
α∈A χα(y)

]
. SinceA

is an arithmetic progression,
∑

α∈A χα(x) is a geometric progression for which we have a formula. We

get that fA(x) is an expectation over values each of which we can calculate exactly. Moreover, unlike in

the algorithm above, the filter function here is nonzero over a very large set, and therefore one can hope

that specific queries are not needed in this case. This turns out to be a downside. Indeed, in order to

determine fA(x) in polynomial time, we can only approximate this expectation, but as the values of this

geometric progression can be as large as |A|, one derives from the Chernoff bound that the number of

samples needed to have a good approximation of fA(x) is roughly |A|, which is exponential in log(p)

in the first stages of the algorithm. Hence this approach is not practical.

Working in the ‘time domain’. Instead of working in the ‘frequency domain’, we can work in the

‘time domain’. In this case we define A to be a class of numbers with the same remainder mod 2l.

We adapt the filter function in (8) to the Zp case. As in Section 3.2.2, let H be the set containing all

multiples of 2l in Zp. Define H⊥ := {0, 2−l, 2 · 2−l, . . . , (2l − 1)2−l}. Notice that while H⊥ is not

orthogonal to H , it contains all numbers that give small remainder (mod p) when multiplied by 2l. Let

z ∈ Zp such that z ≡ r (mod 2l) and define A = Ar = {x ∈ Zp | x ≡ r (mod 2l)} to be the class in

Zp for which the remainder mod 2l is r. We define

hA(x) = hz+H(x) =

 p
2l
χz(x), if x ∈ H⊥,

0, otherwise.

5Note that both are arithmetic progressions, which allow evaluating hA.
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It turns out that this function, which is a simple adaptation of (8) to Zp, is a ‘noisy’ version of a ‘pure’

filter function: the size of the coefficients |ĥA(α)| is close to 1 for α ∈ A and close to 0 for α /∈ A.

Indeed,

ĥA(α) =
1

p

∑
x∈Zp

hA(x)χα(x) =
1

2l

∑
x∈H⊥

χz−α(x) .

Write α = 2lk + j, z = 2lq + r and x = d2−l for 0 ≤ j, r < 2l and 0 ≤ d ≤ b p
2l
c. Then,

ĥA(α) =
1

2l

∑
0≤d≤b p

2l
c

χ2lq+r−2lk−j(d2−l) =
1

2l

∑
0≤d≤b p

2l
c

χq−k(d)χr−j(2
−ld) .

One can show that the last sum is large if and only if j = r as χr−j ≡ 1 – that is, if and only if α ∈ A –

and so that |ĥA(α)| ≈ 1, and otherwise it is close to 0. More precisely, for α = z we have |ĥA(α)| = 1

and as k gets further away from q, the size of ĥA(2lk+r) slowly decays (follows from Claim 11 below).

The function hA is said to be “centered around” z.

As mentioned above, using the scaling and frequency-shifting properties one can transform from

the set A to an interval I of the same size. That is, define hI(x) := hA(2−lx), then ĥI(α) = ĥA(2lα).

This is a permutation of the coefficients of hA. If A = {r, 2l + r, . . . , t2l + r}, then I = {r2−l, r2−l +

1, . . . , r2−l + t}, and the coefficients which were large on A and small outside A are now large over I

and small outside it. The approach taken in [3, 1] is to work over intervals. For an interval [a, b] of size

b p
2l
c, for which c = ba+b

2 c is a middle point, one defines

ha,b(x) =

 p
2l
χc(x), if 0 ≤ x < 2l,

0, otherwise.

A direct calculation using the definition of ĥa,b(α) shows that

ĥa,b(α) = E
0≤x<2l

[
χc(x)χα(x)

]
= E

0≤x<2l

[
χc−α(x)

]
.

Again, one can show that |ĥa,b(α)| ≈ 1 if a ≤ α ≤ b and |ĥa,b(α)| ≈ 0 for α outside this interval (see,

for example, Claim 11). For further details see [3, 1]. This function is “centered around” c, that is, for

α = c we have |ĥA(α)| = 1 and while α gets further away from c, the size of ĥA(α) slowly decays.

Remark 10. There is a technical issue which we ignore in this description. As the size of ĥA(α) slowly

decays while α moving away from c, when α reaches the end of the interval [a, b] the size of ĥA(α) is

close to the size of ĥA(β) for β just outside this interval. This imposes some complexities in the filtering

process; specifically one should take overlapping intervals, so the sets A,B are not distinct as in the

case of domains of size 2n. Moreover, the choice of the point c (therefore the choice of the interval) also

affects the filtering process. We refer to Sections 7.2.3 and 7.2.4 in [3] and to [1, Section 3] for the

technical details.
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With this filter function (either hA or ha,b) fA can be approximated efficiently, as shown in the

previous section. The algorithm now proceeds as the algorithm for domains of size 2n.

3.3 Working with unreliable oracles

It is sometimes desirable to describe access to the function f as querying an oracle. The oracle can be

perfect – always provides the correct value f(x) – or imperfect. Working with unreliable oracles is of

importance in several applications. This section is dedicated to analyzing these cases.

Sometimes the samples f(xi) are given by an unreliable oracle O. By this we mean the oracle

satisfies O(x) = f(x) only with high probability. One can think of O as a ‘noisy version’ of f . A

common approach to this situation is to generate several independent values, each of which gives the

value f(x) with good probability; then, by applying majority rule, one can obtain the correct value f(x)

with overwhelming probability. Examples of this approach are presented in Section 3.1.

We show how the language of Fourier analysis gives a very general approach to analyze situations

for working with unreliable oracles. The main idea is that if a function f has a significant Fourier coef-

ficient, then its noisy version also has a significant coefficient. Note however that if f is concentrated,

then its ‘noisy’ version is not necessarily concentrated.

To be precise, let f : G → C. We describe the oracle as a function O : G → C such that

O(x) = f(x) on the majority of x ∈ G. We assume that ‖O‖∞ ≤ ‖f‖∞. Define R : G → C by

R(x) = O(x) − f(x) and let I = {x ∈ G : R(x) 6= 0}. We want to show that if f̂(α) is τ -heavy,

then Ô(α) is τ ′-heavy, for some τ ′ relatively large (its precise size depends on the success rate of the

oracle).

Since O = f +R, then Ô(α) = f̂(α) + R̂(α). Note that ‖R‖∞ ≤ 2‖f‖∞. Hence

∣∣∣Ô(α)
∣∣∣ ≥ ∣∣∣f̂(α)

∣∣∣−
∣∣∣∣∣∣ 1

|G|
∑
x∈I

R(x)χα(x)

∣∣∣∣∣∣ ≥
∣∣∣f̂(α)

∣∣∣− 2|I|
|G|
‖f‖∞ .

As I is small, if f̂(α) is significant then so is Ô(α). Note that as the reliability rate of the oracle

decreases, so does the size of Ô(α), while the other coefficients increase in size. One can see that,

similarly to majority rule, more samples are needed when the reliability rate of the oracle decreases.

It is well-known that the GL theorem finds the unique function in case of low noise rate, namely

if the the noise rate is smaller than 1
4 − ε. One immediately sees this from our analysis: the original

function satisfies |f̂(s)| = 1, for the secret vector s, and so only one Fourier coefficient of O is larger

than 1
2 .

21



3.4 Hardness of finding significant coefficients in the random access model

The SFT algorithm requires chosen queries. The aim of this section is to explain that one does not

expect a general learning algorithm for problems where the function values cannot be chosen. Indeed,

we will show that if such a learning algorithm existed then the learning parity with noise (LPN) and

learning with errors (LWE) problems would be easy.

Recall the LPN problem: an instance is a list of samples (a, b = 〈a, s〉+ e(a)) ∈ Zn2 ×Z2 for some

secret value s and a function e : {0, 1}n → {0, 1}which determines the noise. Define LPN : {0, 1}n →
{0, 1} by LPN(a) := (−1)b. This is a ‘noisy version’ of the function f(x) := (−1)〈a,s〉 for which f̂(s)

is the only non-zero Fourier coefficient. For a small noise rate (as in LPN), as shown in Section 3.3,

the coefficient L̂PN(s) is a significant coefficient for this function. Hence, if one could find significant

coefficients in {0, 1}n on random samples, then one could solve LPN given the samples (a, b). Since

LPN is believed to be hard, one does not expect such a variant of the SFT algorithm to exist. Further

evidence for the hardness of this problem in the random access model is that it is related to the problem

of decoding a random binary linear code.

The same argument holds for LWE in Znp . In LWE one has samples a ∈ Znp and b = 〈a, s〉 + e(a)

(mod p) where e(a) is “small” relative to p. Defining LWE(a) := ωbp one can show that the coefficient

of the character χs(x) = ω
〈x,s〉
p is significant. Hence, if one could find the significant coefficients

when given random samples, then one could solve LWE given the samples (a, b). Since we have good

evidence that LWE is a hard problem, this shows that we do not expect to be able to learn significant

Fourier coefficients in the random access model.

The modulus-dimension tradeoff for LWE [29] shows how to transform LWE in Znp to LWE in Zn/d
pd

(albeit with a different error distribution), and so one can conclude that finding significant coefficients

in Zpn on random samples is at least as hard as solving LWE in Znp with binary secrets. This is an

example of the connection between Zn2 and Z2n as explained in Remark 9.

4. MODULUS SWITCHING

The SFT algorithm is considerably simpler to understand and implement for Zn2 or Z2n than for Zp.
Furthermore, for domains of size 2n, considerable effort has been invested by researchers in the engi-

neering community into making this algorithm more efficient with respect to various measures [17] (see

also Mansour and Sahar [35]). Hence, it is natural to try to work with functions over Z2n instead of

functions over Zp. We now sketch an approach that shows one can transform significant functions on

Zp into significant functions on Z2n where 2n ≈ p. In analogy to similar ideas in lattice cryptography

we call this “modulus switching”.

These ideas are implicit in the work of Shor [42] on factoring with quantum computers. Shor
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extends a periodic function to a larger domain. The core idea is that if a function is periodic, then the

period, which is a feature of the time domain, is preserved over any (large enough) domain. This fact is

exploited by Shor, where his further ideas take place in the frequency domain. Shor’s analysis provides a

clear interaction between the representation of a (periodic) function in the time and frequency domains.

We extend these ideas to show that a much larger class of functions keeps the properties of their fre-

quency domain representation, when extending their time domain. Specifically, significant coefficients

are “preserved” even when the time domain representation of the function is extended (by “preserved”

we mean that there is a clear relation between the coefficients of the functions). We refer to Laity and

Shani [28] for the technical details.

Let N = 2n > p be the smallest power of two greater than p. For a function f : Zp → C, we define

f̃(x) :=

{
f(x) when 0 ≤ x < p,

0 when p ≤ x < N.

Note that the operation f 7→ f̃ is C-linear. The basic observation (see Figure 1) is that for a character

χα on Zp, χ̃α(x) is a function on ZN that is also concentrated.

∣∣∣̂̃χα(z)
∣∣∣2

z ∈ Zn

0.1

0.2

0.3

0 10 20 30 40 50 60

Figure 1: The magnitude of the Fourier coefficients ̂̃χα(z). Here p = 37, n = 64 and α = 5.

To explain this observation we state the following basic fact and sketch a proof of it. It is straight-

forward to turn this result into a rigorous upper bound.

Claim 11. Let N > 1, ωN = e
2πi
N and let α ∈ R, α 6= 0, |α| < N/2 and K ∈ N. Define

Sα,K =

K−1∑
x=0

ωαxN .
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Then

|Sα,K | ≈ N
|1− ωαKN |

2π|α|
.

To see this note that the geometric series sums to (1 − ωαKN )/(1 − ωαN ) and the denominator is

(1 − cos(2πα/N)) − i sin(2πα/N) which has norm squared equal to 2(1 − cos(2πα/N)). Finally,

since (1− cos(x)) ≈ x2/2 (indeed x2

2 (1− x2

12 ) ≤ 1− cos(x) ≤ x2

2 ) the result follows.

We now compute the Fourier transform of χ̃α as a function on ZN where N = 2n. We have

̂̃χα(β) = 〈χ̃α, χβ〉 =
1

N

p−1∑
x=0

exp

(
2πi

(
α
p −

β
N

)
x

)
.

If α
p −

β
N 6= 0, which will be satisfied in general since α, β ∈ Z while gcd(p,N) = 1, then applying

Claim 11 gives the approximation∣∣∣̂̃χα(β)
∣∣∣ ≈ |1− exp(2πi(α/p− β/N))|

2π|α/p− β/N |
.

If β ≈ Nα/p then this coefficient is large and so the function χ̃α has a significant Fourier coefficient at

bNα/pe. Moreover, the size of ̂̃χα(bNα/p± ke), for 0 < k < N/2, is bounded by O(1/k), and so χ̃α
is concentrated in a small set Γ ⊆ ZN of characters represented by values around Nα/p.

Since the maps f 7→ f̃ and g 7→ ĝ are C-linear, for any f(x) =
∑

α∈G f̂(α)χα(x) we have

̂̃
f (β) =

p−1∑
α=0

f̂(α)̂̃χα(β) .

Thus, if f̂(α) is a significant coefficient for f , then one expects that for β = bNα/pe, the coefficient̂̃
f (β) is significant for f̃ . The work of Laity and Shani [28] made these arguments to a precise theorem.

Theorem 12 ([28, Theorem 1.1]). Let {nk}k∈N, {mk}k∈N two sequences of positive integers withmk ≥
nk/2 for every k ∈ N. Let Q ∈ R[x] be a polynomial. Let {fk : Znk → C}k∈N be a concentrated

family of functions such that ‖fk‖22 ≤ Q(log(nk)) for all k ∈ N. Then {f̃k : Zmk → C}k∈N is a

concentrated family of functions.

Specifically, if f(x) is a concentrated function on Zp then f̃(x) is a concentrated function on Z2n .

A similar result holds where f is ε-concentrated. We refer to [28] for the technical details.

As a consequence, one sees that it is not necessary to develop a variant of the SFT algorithm for

the group Zp. Instead one can simply modulus-switch to a power of two and apply the SFT algorithm

for the group Z2n . This is addressed in [28, Section 6.1]. Since the algorithms for Z2n have been

optimised significantly (see [17, 35]) we believe that the resulting algorithms will be no less efficient

than applying the AGS algorithm directly. Moreover, unlike the complexities working directly over Zp
as explained in Remark 10, this technique (although it might introduce new noise) overcomes the need

to take overlapping intervals and is not subject to the choice of the interval.
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4.1 The i-bit function is concentrated

We now explain that modulus switching provides an alternative proof of the Morillo–Ràfols result that

every single-bit functions is concentrated [38].

The above discussion assumed the function f̃ extends f from Zp to Z2n where 2n is slightly larger

than p. As Theorem 12 shows, one can consider modulus switching for domains of any size, including

switching to a smaller domain. The results about concentration hold in this greater generality, and this

provides a new technique to prove concentration of (some) families of functions, by showing that a

subfamily, for domains of specific forms, is concentrated.

Theorem 13 ([28, Theorem 6.1]). Consider a family of functions J = {f2k : Z2k → C}k∈N and

define the family J ′ = {fn : Zn → C}n∈N, where for each 2k−1 < n ≤ 2k we let fn(x) := f2k(x)

for every x ∈ Zn. If J is concentrated then J ′ is concentrated.

As an application, one can prove that the i-th bit function is concentrated by showing that the family

of the i-th bit function on domains Z2k is concentrated, that is, that {biti : Z2k → {−1, 1}}i<k∈N is

concentrated. The latter can be easily proven using the structure of these functions under these domains.

This is summarized in the following lemma, where we define |x|N := min{x,N − x}.

Lemma 14 ([28, Lemma 6.2]). Let k ∈ N and 0 ≤ i < k. Define biti : Z2k → {−1, 1} by biti(x) =

(−1)xi where x =
∑k−1

j=0 xj2
j and xj ∈ {0, 1}. Let α ∈ Z2k . Then b̂iti(α) = 0 unless α is an odd

multiple of 2k−i−1 in which case |b̂iti(α)| = O(2k−i/|α|2k).

The lemma shows that, when i is small there are a few non-zero coefficients (especially for i = 0,

there is only one non-zero coefficient at α = 2k−1). When i is “medium” then there are non-zero

coefficients at all multiples α = j2k−i−1, and they decrease in size with 1/|j|2k . When i is large (e.g.,

i = k − 1) then the significant coefficients are all close to 0 and are spaced at distance 2 · 2k−1−i (i.e.,

when i = k − 1 they are 2 apart; for the second most significant bit they are spaced 4 apart, and so on).

A corollary is that the i-th bit function on Z2k is concentrated.

Having established that the i-th bit function is concentrated on Z2k , our modulus switching approach

shows that the i-th bit function on Zp is concentrated. This general approach gives a new and simpler

proof of the result in [38] (the proof in [38] is very technical; they decompose N = k2i ± m and

consider different cases of m).

5. APPLICATIONS IN CRYPTOGRAPHY

The SFT algorithm has been used to prove results about the hardness of recovering bits of Diffie–

Hellman shared secrets keys in both finite fields and elliptic curves. It has also been used to reprove
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known results on the hardness of recovering bits of the secret values in the discrete logarithm problem

(DLP) and RSA problem, and to prove some reductions for the learning with errors (LWE) [41] and

learning with rounding (LWR) [6] problems. This section surveys how the SFT algorithm is used in

these applications.

5.1 Background and motivation

A one-way function h, if it exists, assures that while given x it is easy to compute h(x), retrieving

x from h(x) is hard. This hardness does not necessarily mean that given h(x) one cannot find some

partial information of x. Naturally, the main interest is in trying to learn some bits of x, but other sorts

of partial information have also been considered. Bits of x that cannot be learnt from h(x) are called

hardcore bits. In other words, a hardcore bit is a bit which is as hard to compute as the entire secret

value. For a historical overview see [19]. To show that a bit (or a set of bits) is hardcore, one usually

tries to construct an algorithm that inverts h, given a target value h(x) and an oracle that takes h(t) and

outputs a bit of t. In order to do so, one first needs to establish a way to query the oracle on values h(t)

such that there is some known relation between t and x, for example t = αx for known α’s.

A useful language to describe these ideas is the hidden number problem, which was introduced by

Boneh and Venkatesan [11] in order to study bit security of secrets keys arising from Diffie–Hellman

key exchange. This problem turned out to be general enough to be applied to other cryptographic

problems like DLP and RSA. In fact, the generality of the problem allows it to be used also outside of

the scope of bit security (see [40, Section 4.4] and references within, also [13, 5]). Therefore, the hidden

number problem is of theoretical interest and is studied today in its own right. It has many extensions

and different variants; see [44] for a comprehensive survey.

Definition 15 (Hidden number problem). Let (G, ·) be a group, let s 6= 0 be a secret element of G and

let f be a function defined over G. Find s using oracle access to the function fs(x) := f(s · x).

We use the term oracle access as a general term for either of the following oracle models: in the

random access model the solver receives polynomial many samples (x, fs(x)) where the values x are

drawn independently and uniformly at random from G; in the query access model the solver can query

the oracle on any input x ⊆ G and receive the answer (x, fs(x)). To emphasize the difference between

these models, we refer to the hidden number problem in the latter model as chosen-multiplier hidden

number problem (CM-HNP). This problem can also be divided into two models, namely adaptive access

where the solver has a continuous access to the oracle and can query it at any time of the recovery

process, and non-adaptive access where the solver is not allowed to query the oracle once the recovery

process has started. Other types of access models could be also considered. For example, the original

work on the hidden number problem [11] considers an oracle for which on the query x ∈ Zp replies
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with (x, f(sgx)).

An interesting case is when the oracle is unreliable. That is, the oracle does not give a correct

answer all the time, but with some probability. It is common to call an oracle that always provides a

correct answer a perfect oracle. An oracle that is correct only with some noticeable advantage is called

an unreliable or imperfect oracle.

The following table summarizes some of the known results on the hidden number problem in dif-

ferent models. Here p is a prime number and ‘imperfect’ under the ‘Oracle’ column refers to an oracle

with any non-negligible advantage over trivial guessing. The starting point of this work is the Boneh–

Venkatesan result [11] which requires a perfect oracle and uses lattice methods rather than Fourier

learning methods; this work was adapted to unreliable oracles by [20], but there is a complex tradeoff

with the number of bits and so we do not include it in our table.

Problem Access Group Bits Oracle Remarks
HNP random Z∗p

√
log p+ log log p MSB6 perfect Given by [11]

CM-HNP adaptive Z∗p LSB imperfect Given by [4]
CM-HNP adaptive Z∗p any single bit imperfect Given by [23]
CM-HNP non-adaptive Z∗N MSB & LSB imperfect Given by [8]
CM-HNP non-adaptive Z∗N each single bit for the outer

log log p bits
imperfect Given by [3]

CM-HNP non-adaptive Z∗N any single bit imperfect Given by [38]

Most early works such as [4, 8, 23] require complicated algebraic manipulations such as tweaking

and untweaking bits. Using the SFT algorithm [3] gives a uniform and clear approach. We present this

solution to CM-HNP, using different terminology than the original one, for functions of norm 1, as the

subsequent applications involve single bit functions (with the convention that biti(x) = (−1)xi where

xi is the i-th bit of x).

Theorem 16 ([3]). Let f : ZN → {−1, 1} be a function with a τ -heavy Fourier coefficient α ∈ Z∗N for

τ−1 = poly(log |G|). Then, the chosen-multiplier hidden number problem in Z∗N with the function f

can be solved in polynomial time.

In particular, the theorem holds for every concentrated function.

Remark 17 (Coding Theory terminology). Theorem 16 rephrases Theorem 2 of [3]. The latter work

gives a polynomial time list-decoding algorithm for concentrated codes with corrupted code words

(Theorem 1) and subsequently a general list-decoding methodology for proving hardcore functions

(Theorem 2). Most subsequent works on hardcore bits adopt this coding-theoretic language. Thus,
6Since one can easily transform HNP with the LSB function to HNP with the MSB function, HNP can also be solved given√

log p + log log p LSB. A generalization of this technique [39, Section 5.1] allows to transform HNP with 2d consecutive
inner bits to HNP with d MSB, hence HNP can also be solved given 2(

√
log p+ log log p) consecutive inner bits.
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in order to apply Theorem 2 of [3], these works use Theorem 1 of [3], which applies to concentrated

codes. This caused these authors to put effort into proving that a particular code is concentrated.

However, we emphasize that to apply the CM-HNP approach of [3] there is no need for the function

to be concentrated. Instead it suffices that the function has a significant Fourier coefficient, and this is

usually much easier to prove. We make this clear in our formulation of Theorem 16. In other words,

while concentration is sufficient for a code to be recoverable it is not a necessary condition. For these

reasons (and others) we find the coding-theoretic language unhelpful and do not use it in this paper.

We now sketch the proof of Theorem 16: run the SFT algorithm on f and fs to get short lists

L,Ls of τ -heavy coefficients for each function, respectively. By the scaling property f̂s(α) = f̂(αs−1)

for every α. Therefore, for every α ∈ Ls for which f̂s(α) is τ -heavy there exists β ∈ L such that

β = αs−1. The secret s can be recovered efficiently. Notice that while the hidden number problem

takes place in a multiplicative group, this solution involves Fourier analysis over an additive group.

A template for algorithms for CM-HNP is the following: show that (i) the “partial information”

function f has a significant coefficient, (ii) the function fs has a significant coefficient, and (iii) some

(recoverable) relation between the coefficients of f and fs exists. If one succeeds in showing these 3

conditions, then using the SFT algorithm one can solve this instance of CM-HNP. This template allows

bit security researchers to look for settings where a solution to CM-HNP is already known (namely,

cases where these 3 conditions are already known to hold, like single-bit functions over ZN ) and try to

convert their problem of interest to this setting.

5.1.1 The multivariate hidden number problem

Another case of interest is the multivariate hidden number problem (MVHNP), which we define as

follows.

Definition 18 (Multivariate hidden number problem). LetR be a ring, let s = (s1, . . . , sm) 6= (0, . . . , 0)

be a secret element inRm and let f be a function defined overR. Find s using oracle access to the func-

tion fs(x) := f(s · x) = f(s1x1 + · · ·+ smxm).

Specific instances of this problem are LWE and LWR.7 This problem is also related to bit security of

Diffie–Hellman keys in (finite) extension fields [16] (and similarly, to the polynomial version of LWE).

Similar to the solution to HNP in Zp, one expects to have a solution in Zpm for the
√

log(pm) =√
m log(p) MSB’s. A result in this fashion is given by Shparlinski in [43] to the polynomial HNP. As

mentioned in the final two sentences of [43], this result also holds for general multivariate polynomials.

However since MVHNP consists of a multivariate polynomials of degree one, it is possible to adjust

this solution even when only
√

log(p) MSB’s are given. This however, requires p not polynomial in m.
7LWR can be interpreted as giving MSB’s of the inner product.
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The resulting algorithm is a rather straightforward lattice attack, very similar to known algorithms

for LWE, that reduces the problem to the closest vector problem in a certain lattice. A related problem

is the trace-HNP [31], which can be interpreted as MVHNP under some basis, due the linearity of trace.

One can also define a chosen-multiplier version of the multivariate hidden number problem (CM-

MVHNP), as done in [16]. By proving an analogue of the Fourier scaling property in higher dimensions

the latter work generalizes Theorem 16 to the case of CM-MVHNP.

5.2 Applications

We present some of the applications in cryptography of the SFT algorithm. They are all based on

reducing some problems to the CM-HNP or CM-MVHNP. In the following we assume to have an

oracle O that solves some problem, and show how to use this oracle to solve a harder problem, thus

establishing the hardness equivalence between the two problems.

5.2.1 Proving known results: bit security of RSA and DLP

The first application of the algorithm was given in [3], where it is shown that the most significant

bit and least significant bit are hardcore for the RSA function RSAN,e(x) := xe (mod N) and for

exponentiation EXPg(x) := gx, where g is an element of prime order ` in some group. The results

hold for imperfect oracles that have noticeable advantage over guessing. These results were already

known, as [4] first shows that the LSB is hardcore for the RSA function and [23] shows that every bit is

hardcore for both functions. Nevertheless, the approach based on SFT is more general (holds for every

function with significant coefficients) and simpler. We explain how to derive these results.

Given an instance RSAN,e(x) = xe (mod N), we want to recover x. Since the values e,N

are public in the RSA setting, for every number r one can calculate RSAN,e(rx (mod N)) by (re

(mod N))(xe (mod N)) = (rx)e (mod N). Hence, given RSAN,e(x) one can query the oracle on

RSAN,e(rx) to get a bit of rx for every chosen r. The problem therefore becomes the CM-HNP in

Z∗N , and this can be solved using the SFT algorithm over the additive group (ZN ,+), which has known

order.

Similarly, given an instance EXPg(x) = gx, since g and ` are public, one can calculate EXPg(rx

(mod `)) for every number r by (gx)r = grx. Thus, given EXPg(x) one can query the oracle on

EXPg(rx) to get a bit of rx for every chosen r. The problem therefore becomes the CM-HNP in Z∗` ,
and this can be solved using the SFT algorithm over the additive group (Z`,+). This proves bit security

results for the DLP in finite fields and elliptic curves.

Applying Theorem 16 we find that all bits for those functions are hardcore. This result also holds

for other functions, as Rabin (see [1, Chapter 7]) and the Paillier trapdoor permutation (see [38, Section

7]).
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5.2.2 Bit security of the Diffie–Hellman protocol and related schemes

An open question is to prove that single bits of Diffie–Hellman keys are hardcore. Here we assume that

we have an oracle O that on g, ga, gb returns a single bit of the Diffie–Hellman key s = gab. To interact

with the oracle, notice that given gb one can calculate gb+r = gbgr for any number r. One can then

query the oracle O with g, ga, gb+r and receive a bit of ga(b+r) = gabgar = st. This is how the hidden

number problem was originally identified. This application does not correspond to the CM-HNP, since

choosing the multiplier t is equivalent to finding discrete logarithms for the base ga in Z∗p.
For related schemes where the exponent is fixed, Akavia [2] followed Boneh–Venkatesen [12] to

get around this problem by assuming an “advice” that provides the discrete logarithms of the chosen

multipliers t to the base ga, but this is not realistic in actual applications (see also our remark in Section

6.2). There is currently no method known to prove the hardness of single bits of Diffie–Hellman keys

in the usual model.

To overcome this problem, Boneh and Shparlinski [10] suggested (in the context of elliptic curves)

a different model where the oracle O takes as input a group homomorphism φ : G → G′, the values

g, ga, gb, and then outputs O(φ(gab)). The approach is then to keep the inputs g, ga, gb fixed and to

use φ as the way to choose multipliers in the hidden number problem. We call this the representation

changing model. This model allows to convert the nonlinear Diffie–Hellman problem to an easier linear

problem.

In this case one can think of s as some secret element (not necessarily a Diffie–Hellman key as

the interaction with the oracle does not come from the key exchange setting), for which one receives

O(φ(s)). Now suppose s = (s1, . . . , sn) and φ(s) = (φ(s)1, . . . , φ(s)n′), such that the oracle O returns

a bit of some component φ(s)i. Write also r = (r1, . . . , rn). In this model, suppose there exists a family

of homomorphisms φr for every8 r such that for some 1 ≤ i ≤ n′ the i-th component of φr satisfies

φr
i(x) :=

∑n
j=1 rjxj . Then, getting a single bit of φr

i(gab) =
∑n

j=1 rj(g
ab)j =

∑
rjsj for chosen r,

gives rise to CM-MVHNP with single-bit functions and the secret s. A common special case is where

r is of the form (0, . . . , 0, rj , 0, . . . , 0). Then φr
i(gab) = rj(g

ab)j = rjsj gives rise to CM-HNP with

single-bit functions and secret sj . Therefore, one can show hardness of single bits in this model, if

one can find a group for which the condition on the functions holds (note that in the latter case one

only recovers a component of s, and therefore needs other methods for recovering the entire value s;

for the case in which s = gab is a Diffie–Hellman key in Fpm that we describe below, one can use the

results involving “summing functions” from [48] and recover the entire secret s from the algorithm that

recovers a single (fixed) component si).

As mentioned above, this idea was introduced by Boneh and Shparlinski [10] for the LSB of (each
8It is sufficient that there is a ‘large enough’ subfamily of homomorphisms.
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coordinate of) Diffie–Hellman keys in elliptic curve groups over prime fields. It is shown that changing

the Weierstrass equation is an isomorphism that gives rise to the desired functions. They then use the

same technique as in [4] to prove hardness of LSB. This approach was then applied by [14] (see also

[25]) to every single bit of a larger class of elliptic curve secrets, that also includes Diffie–Hellman

keys in elliptic curves, using the SFT algorithm (that is, using the solution to CM-HNP for single-bit

functions).

The idea of changing group representations can also be used for finite fields. The works [15, 49]

consider the computational Diffie–Hellman problem in groups F∗pm for m > 1. They show that some

polynomial representations of Fpm give rise to the desired functions, and therefore reduce to CM-HNP.

For a detailed overview of these techniques we refer the reader to the exposition of Sections

5, 5.1, 5.2 and subsections within of [16]. This latter work gives applications of the solution for CM-

MVHNP to show bit security of the computational Diffie–Hellman problem in groups of higher dimen-

sion in models similar to those mentioned above; specifically, for elliptic curves over extension fields,

and for F∗pm with different representations of the field Fpm .

We stress that these models do not tell a lot about the hardness of specific bits in real-life imple-

mentations of Diffie–Hellman key exchange, where the representation of the group is fixed. One should

interpret results in the representation changing model as follows: assuming hardness of CDH in a group

G (where G can be the multiplicative group of a finite extension field or an elliptic curve over a finite

field), there is no algorithm that takes g, ga, gb ∈ G and outputs the i-th bit of gab for many representa-

tions of G (more precisely, for representations corresponding to the specific isomorphisms used in the

reduction). Nevertheless, given an instance ga, gb in a specific representation of G, this result does not

tell us whether it is hard to compute a specific bit of the secret gab. Indeed, this problem is still open.

5.2.3 Sample-preserving search-to-decision reductions for LWE and LWR

We assume the reader is familiar with the search and decision variants of the LWE and LWR problems.

We only focus on the part of the reduction which involves the SFT algorithm; the entire reduction is

more involved. By a “hybrid” argument (see [19, Theorem 1] or [9, Lemma 3]), one can reduce the

decision problem to distinguishing a single LWE sample.9 We therefore consider a single LWE sample.

The standard method to show that the decision problem is as hard as the search problem is as follows.

Suppose one has a perfect decision oracle. Given an LWE sample b = 〈a, s〉+e = a1s1 + . . .+ansn+e

(mod p) one makes a guess s′ for s1 and re-randomises the sample as a′ = (a1 + r, a2, . . . , an), b′ =

b+ rs′ (mod p). If the guess is correct (i.e., if s′ = s1) then (a′, b′) is a valid LWE sample whereas if

the guess is incorrect then b is uniform. Hence the decision oracle determines whether the guess of the

secret is correct. After at most pn queries to the decision oracle one can compute the secret.
9The reduction given in [36] uses the duality of the LWE and knapsack functions.
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When the oracle is not perfect one will have to repeat this procedure with different inputs a and

follow majority rule. When the success rate of the oracle is low, one may not have enough initial

inputs a to satisfactorily apply the majority rule, and therefore would need to draw more samples. A

sample-preserving reduction is a reduction that uses only the initial given samples, and does not ask

for more samples during the procedure. Micciancio and Mol [36] used the SFT algorithm to show a

sample-preserving search-to-decision reduction for the learning with errors problem. We explain this

reduction.

The standard method involves choosing a unit vector u1 = (1, 0, . . . , 0) and guessing 〈u1, s〉. Mic-

ciancio and Mol observe that one can choose any random vector v and guess 〈v, s〉, then let the decision

oracle to advise whether this guess is correct or incorrect. Notice that one can try all possible p guesses

for the same value 〈v, s〉, and store the one on which the oracle replied that the guess is correct, or keep

drawing new vectors v and make only one guess for 〈v, s〉, denoted by bv. The latter approach is taken

in [36], where if the oracle says that the guess for 〈v, s〉 is incorrect (more precisely, that the distribution

is uniform), then one takes bv to be any value from the remaining p− 1 possibilities.

Again, if the oracle is perfect then one determines the correct guesses and eventually obtains n

linear equations in s and hence can solve the problem. However if the oracle is not perfect (but has a

noticeable advantage over a random guess), then for a selection of chosen vectors v we have the values

bv, for which bv = 〈v, s〉 with some noticeable bias from 1
p . In other words, we have query access to

a noisy version of the function f(v) = 〈v, s〉 (mod p). This is an instance of CM-MVHNP with an

unreliable oracle. One runs the SFT algorithm on the function ωbv
p , which is a noisy version of ω〈v,s〉p , to

find the significant coefficient, hence the character, and thus solve this problem.

A very similar approach is taken in [9] for the learning with rounding problem. We remark that the

reduction is an average-case reduction, and does not hold for worst case. A sample-preserving reduction

for the latter is still an open problem.

6. LIMITATIONS

The solution to the CM-HNP in ZN (Theorem 16) is based on Fourier analysis in the additive group

(ZN ,+) and it exploits the scaling property of the Fourier transform for the function fs(x) := f(sx).

In other words, the function fs is the composition of f with a linear map on ZN . It is natural to consider

whether this approach can be used for other algebraic groups (such as elliptic curves and algebraic tori).

The hidden number problem in the case of elliptic curves is to determine a secret point S ∈ E(Fp) given

samples (P, f(S+P )) where a typical choice for the function would be f(Q) = biti(x(Q)). The natural

approach is to still use Fourier analysis in the additive group (Zp,+) but instead of composing with a

linear map, to compose with a rational function (e.g., coming from the translation map tS(P ) = P+S).
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Another generalisation would be Fourier analysis in other groups (G, ·).

If such tools could be developed we might have an approach to the bit security of Diffie–Hellman

key exchange in the group of elliptic curve points in certain models. There are also other interesting

problems that could be approached with Fourier analysis on general groups. For example, the authors

of [32] raise the question whether it is possible to apply these results to the modular inversion hidden

number problem.

Unfortunately, there is a major obstacle to applying the SFT algorithm to these sorts of problems.

Namely, if f is a concentrated function then the composition f ◦ϕ is concentrated only when ϕ is affine.

In fact, f ◦ϕ has significant coefficients only when ϕ is affine. The aim of this section is to explain this

obstacle. Since the translation map for the elliptic curve group law is a non-linear rational function, this

explains why the method cannot be directly applied to the elliptic curve hidden number problem. Our

argument also answers the question of [32] in the negative.

Let f : G → C be a function and let fs(x) = f ◦ ϕs(x), where ϕs : G → G is an efficiently

computable function (that depends on some unknown value s). To generalise the proof of Theorem 16

one needs the following three conditions:

1. the function f has significant coefficients;

2. the function fs has significant coefficients;

3. there exists a relation between the significant coefficients of f and fs that allows to determine s

(or at least a small set of candidates for s).

One special case is when f is a constant function. Then fs is also a constant function and both

conditions 1 and 2 are satisfied. The problem is that a constant function cannot tell us anything about

the secret s, and so condition 3 does not hold. Hence, we need to focus on functions that are far from

constant, which we formalise in our proof by requiring that f̂(0) = 0 (in other words, f is “balanced”).

Having dispensed with this special case we focus on the first two conditions. We first consider the

case when f is concentrated. If ϕs(x) = ax + b is affine then we already know from the scaling and

time-shifting properties that all Fourier coefficients of f are preserved, and so if f is concentrated then

fs is also concentrated. Our aim is to show a converse to this fact: if ϕs is a rational function and if

conditions 1 and 2 both hold then ϕs must be affine. This result is closely related to the Beurling–

Helson Theorem [7] (see [27, 30] for related results in Zp) and the work of Green and Konygin [22] on

the Fourier transform of balanced functions.

For our result we need the following lemma [39, Lemma 7] (a proof, for general fields Fpm , can be

found in [37, Theorem 2]).
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Lemma 19. Let q be prime. For any polynomials f, g ∈ Fq[x] such that the rational function h = f
g is

not constant in Fq, the following bound holds∣∣∣∣∣ ∑
λ∈Fp

∗ωh(λ)
q

∣∣∣∣∣ ≤ (max{deg(f), deg(g)}+ u− 2)
√
q + δ ,

where
∑∗ means that the summation is taken over all λ ∈ Fq which are not poles of h and

(u, δ) =

{
(v, 1) if deg(f) ≤ deg(g),

(v + 1, 0) if deg(f) > deg(g),

and v is the number of distinct zeros of g in the algebraic closure of Fq.

We formulate the following result for functions on Zq for a prime q, but it can be generalised to

finite fields Fpm with m > 1. Let g, h ∈ Zq[x] be polynomials where h is not the constant zero. Let

Zh be the set of zeroes in Zq of h. We define ϕ(x) = g(x)/h(x) for all x ∈ Zq \ Zh and ϕ(x) = 0

otherwise (since we will assume Zh is small compared with q it does not matter how we define ϕ on

Zh).

Recall that the definition of concentration applies to families of functions. To keep the formula-

tion of the following proposition clean, we call a single function concentrated as explained after the

definition above.

Proposition 20. Let q be a sufficiently large prime. Let f be a concentrated function on Zq such that

‖f‖2 = 1 and f̂(0) = 0. Let g, h ∈ Zq[x] be polynomials of degree bounded by poly(log(q)) and

let Zh be the set of zeroes of h. Define ϕ(x) as above and suppose this function is non-constant. Let

τ = 1/poly(log(q)). If f ◦ ϕ has any τ -heavy Fourier coefficients then ϕ(x) = ax + b for some

a, b ∈ Zq.

Proof. Let G = Zq and write f =
∑

α∈G f̂(α)χα. Let d = max{deg(g(x)), deg(h(x))}. Let ε =

τ
32d2

. Since f is concentrated there is a set Γ of size poly(log(|G|)) such that

‖f − f |Γ‖22 ≤ ε =
τ

32d2
.

Since f̂(0) = 0 it follows that Γ does not contain zero.

Now consider fϕ(x) = f(ϕ(x)) =
∑

α∈G f̂(α)χα(ϕ(x)). Assume it has a τ -heavy coefficients;

for contradiction we suppose ϕ(x) 6= ax+ b for any a, b. For every β ∈ G we have

f̂ϕ(β) =
1

|G|
∑
x∈G

fϕ(x)χβ(x) =
1

|G|
∑
x∈G

f(ϕ(x))χβ(x) =

1

|G|
∑
x∈G

∑
α∈G

f̂(α)χα(ϕ(x))χβ(x) =
1

|G|
∑
α∈G

f̂(α)
∑
x∈G

χα(ϕ(x))χβ(x) =

1

|G|
∑
α∈G

f̂(α)
∑
x∈G

χ1(αϕ(x)− βx) =
1

|G|
∑
α∈G

f̂(α)
∑
x∈G

χ1(ψβα(x)) ,
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where we denote ψβα(x) = αϕ(x) − βx. Since f̂(0) = 0 we can ignore the case α = 0 and by our

supposition that ϕ 6= ax+bwe know that there are no α, β such that ψβα is constant. Hence, the last sum

is a character sum satisfying the conditions of Lemma 19. Furthermore, ψβα = (αg(x)−βxh(x))/h(x)

and so the value u in Lemma 19 is bounded by max
{

deg(g), deg(h)
}
≤ d. Applying Lemma 19, we

get that for every α 6= 0 and every β it holds that |
∑

x∈G\Zh χ(ψβα(x))| ≤ C where C = 2d
√
q.

Now note that

f̂ϕ(β) =
1

|G|
∑
α∈G

f̂(α)
∑
x∈Zh

χ1(ψβα(x))+
1

|G|
∑
α∈Γ

f̂(α)
∑

x∈G\Zh

χ1(ψβα(x))+
1

|G|
∑
α/∈Γ

f̂(α)
∑

x∈G\Zh

χ1(ψβα(x)) .

For the first term we note that |
∑

x∈Zh χ1(ψβα(x))| ≤ |Zh| ≤ d and that ‖f‖2 = 1 implies
∑

α∈G |f̂(α)| ≤√
|G| = √q and |f̂(α)| ≤ 1 for all α. Therefore

∣∣∣f̂ϕ(β)
∣∣∣ ≤ d
√
q

+

∣∣∣∣∣∣ 1

|G|
∑
α∈Γ

f̂(α)
∑

x∈G\Zh

χ(ψβα(x))

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

|G|
∑
α/∈Γ

f̂(α)
∑

x∈G\Zh

χ(ψβα(x))

∣∣∣∣∣∣ .
We apply the triangle inequality on the first sum and the Cauchy–Schwarz inequality on the second.

Let k = |Γ| and write Γ = {α1, . . . , αk}. Then using Lemma 19 we get∣∣∣∣∣∣ 1

|G|
∑
α∈Γ

f̂(α)
∑

x∈G\Zh

χ(ψβα(x))

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

|G|

k∑
j=1

f̂(αj)
∑

x∈G\Zh

χ(ψβαj (x))

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣1q

k∑
j=1

f̂(αj) · C

∣∣∣∣∣∣
≤ 1

q

k∑
j=1

∣∣∣f̂(αj)
∣∣∣C =

2kd
√
q
.

Since k = |Γ| = poly(log(q)) we have that this bound (similarly for the earlier bound d/
√
q) is

negligible, so we have for example
d
√
q

+
2kd
√
q
< 2d

√
ε .

From Parseval’s identity
∑

α/∈Γ

∣∣∣f̂(α)
∣∣∣2 = ‖f − f |Γ‖22 ≤ ε. Therefore, by the Cauchy–Schwarz

inequality we have

∣∣∣∣∣∣ 1

|G|
∑
α/∈Γ

f̂(α)
∑

x∈G\Zh

χ(ψβα(x))

∣∣∣∣∣∣ ≤ 1

|G|

∑
α/∈Γ

∣∣∣f̂(α)
∣∣∣2
 1

2

∑
α/∈Γ

∣∣∣∣∣∣
∑

x∈G\Zh

χ(ψβα(x))

∣∣∣∣∣∣
2


1
2

≤ 1

|G|
√
ε

∑
α/∈Γ

C2

 1
2

.

Then ∣∣∣∣∣∣ 1

|G|
∑
α/∈Γ

f̂(α)
∑

x∈G\Zh

χ(ψβα(x))

∣∣∣∣∣∣ ≤
√
ε
√
q − k2d

√
q

q
≤ 2d

√
ε .
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Finally, combining the bounds we get∣∣∣f̂ϕ(β)
∣∣∣2 ≤ ( d

√
q

+
2kd
√
q

+ 2d
√
ε

)2

<
(
4d
√
ε
)2

=

(
4d

√
τ

4d
√

2

)2

=
τ

2
.

Therefore, for every β the coefficient f̂ϕ(β) is not τ -heavy for any noticeable τ . This gives the required

contradiction and so we conclude that ϕ is affine.

6.1 ε-concentrated functions

Proposition 20 shows that if f is concentrated (and far from constant) and f ◦ ϕ has significant coeffi-

cients, then ϕ is affine. It is natural to wonder whether the condition that f is concentrated is necessary.

In fact, the result cannot be weakened in general: if ϕ(x) = g(x)/h(x) is non-affine and invertible

almost everywhere (such as a Möbius function ϕ(x) = (ax + b)/(cx + d) where ad − bc = 1) then

f(x) = χα(x) + χβ(ϕ−1(x)) is such that f(x) has a significant coefficient at α and f ◦ ϕ has a

significant coefficient at β.

However, a version of Proposition 20 is true for some non-concentrated functions of interest. Since

Theorem 16 does not require the function to be concentrated, it is of interest to also show that composing

with non-affine ϕ(x) is an obstruction to the solution to CM-HNP for these functions as well. Hence,

for the rest of this section we consider a ‘noisy character’, f(x) := ω
αx+e(x)
N . We first show that these

functions have a significant coefficient, then we show that f ◦ ϕ does not have a significant coefficient

when ϕ is not affine.

To formalise the problem we think of e(x) as a random variable from some distribution (e.g., a

discrete Gaussian or a uniform distribution on some small interval compared with N ). We treat e(x) as

being independent of x, in which case we can write

f̂(β) = E
(
ω
αx−βx+e(x)
N

)
= E

(
ω

(α−β)x
N ω

e(x)
N

)
= E

(
ω

(α−β)x
N

)
E
(
ω
e(x)
N

)
.

To show that |f̂(α)| is large it suffices to give a lower bound for
∣∣E (ωe(x)

N

)∣∣. We do this by following

an argument due to Bleichenbacher [8].

Bleichenbacher defines the bias of a random variable X on Z as

BN (X) = E
(
exp(2πiX/N)

)
.

Assume X is the uniform distribution in some interval [0, T − 1] for some 0 < T ≤ N . Then

BU
N (X) := BN (X) =

1

T

∑
0≤x<T

exp(2πix/N) .

Some properties of BU
N (X) appear in Lemma 1 of [13]. Since the latter is a geometrical progression,

BU
N (X) =

1

T

sin(πT/N)

sin(πN)
.
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Suppose e(x) follows the uniform distributionX . That is, for each x ∈ ZN the value e(x) is chosen

uniformly and independently at random in [0, T − 1]. From linearity it is easy to see that

E
(
ω
e(x)
N

)
=

1

N

∑
x∈ZN

(
exp(2πie(x)/N)

)
=
N/T

N

∑
0≤t<T

exp(2πit/N) =
1

T

∑
0≤t<T

exp(2πit/N) = BU
N (X) .

It is obvious that if T = N then BU
N (X) = 0. In applications e(x) usually represents some given

bits, and so it is natural to restrict T ≤ N/2 as we do, though the following argument also holds given

a fraction of a bit. For T ≤ N/2 one has10 |BU
N (X)| > 0.5, and so

∣∣E (ωe(x)
N

)∣∣2 = |BU
N (X)|2 > 0.25.

The desired lower bound is provided.

A similar approach holds when e follows a Gaussian distribution. In this case the size of the bias

is even larger, as e(x) = 0 on a large set (and e(x) is small on an even larger set) and so most of the

energy is distributed around zero.

Hence, we have established that a noisy character has a significant coefficient. Finally, we address

the result of Proposition 20 for such a function.

Claim 21. Let ϕ be as in Proposition 20, and let e(x) given by the uniform distribution (over some

interval in ZN ) or by a Gaussian distribution. If fϕ(x) := ω
ϕ(x)+e(x)
N has a significant coefficient then

ϕ(x) = ax+ b for some a, b ∈ ZN .

Proof. We observe that for every β

f̂ϕ(β) = E
(
ω
ϕ(x)−βx+e(x)
N

)
= E

(
ω
ψβ1 (x)
N ω

e(x)
N

)
= E

(
ω
ψβ1 (x)
N

)
E
(
ω
e(x)
N

)
,

where ψβ1 (x) = ϕ(x)− βx. Since
∣∣∣E(ωe(x)

N

) ∣∣∣ ≤ 1, it suffices to upper-bound
∣∣∣E(ωψβ1 (x)

N

) ∣∣∣. Such a

bound follows from Lemma 19 in the same way as in the proof of Proposition 20.

6.2 Hidden number problem in subgroups

Another limitation on the applications of the SFT algorithm is the following. Suppose that the multipli-

ers in the hidden number problem are drawn from some set H ⊆ G. One can consider the multipliers

to be in a proper subgroup H < G, as done in [21, 45]. It is not clear how to apply the SFT algorithm

to solve this variant of the (chosen-multiplier) hidden number problem. Specifically, the chosen queries

in the algorithm have to be correlated, but it is not guaranteed that these correlated queries will all lie in

the same subgroup. If the index [G : H] is small (e.g., [G : H] = 2, as in the case of the set of squares

in F∗p) then the issue can be managed, but if [G : H] is large then no results are known. Therefore,

for results (on Diffie–Hellman related schemes) that rely on advice of the form of discrete logarithms
10See [13, Table 1] for some values |BUN (X)| for different T ≤ N/2.
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to some base g (as in [2, 12, 46]), if g generates a relatively small subgroup, it is not guaranteed that

the desired correlated multipliers are indeed in the group generated by g. This restricts, for example,

the result given in [2, Section 5]. This observation is similar to the one in [44, Section 2.5], and was

handled in [10, Section 5] and [14, 4.1] since the set of squares in F∗p has index 2 in F∗p.
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