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Abstract. Impossible differential cryptanalysis and zero-correlation lin-
ear cryptanalysis are two of the most useful cryptanalysis methods in the
field of symmetric ciphers. Until now, there are several automatic search
tools for impossible differentials such as U-method and UID-method,
which are all independent of the non-linear S-boxes. Since the differ-
ential and linear properties may contribute to the search of impossible
differentials and zero-correlation linear approximations respectively, it is
meaningful to study the search with considering the properties of non-
linear components. In this paper, we propose an automatic search tool
for impossible differentials and zero-correlation linear approximations in
both ARX ciphers and ciphers with S-box, which is the first widely appli-
cable one that considers the influence of non-linear operations, especially
in ARX ciphers. What’s more, this tool can be used to proof whether
there are impossible differentials (zero-correlation linear approximations)
in certain rounds of a target cipher, particularly for certain subset of in-
put and output differences (masks) patterns. As applications, we use the
proposed automatic tool on HIGHT and PRESENT ciphers. As a result,
we find total 4 impossible differentials and 4 zero-correlation linear ap-
proximations for 17-round HIGHT which are the longest ones until now.
In addition, we find 5050 impossible differentials for 6-round PRESENT
cipher, which extend two more rounds than those searched by previous
widely applicable automatic search tools.
Keywords: Automatic search tool, impossible differential, zero-correlation
linear, HIGHT, PRESENT

1 Introduction

Impossible differential cryptanalysis (IDC), introduced by Biham et al. and
Knudsen to attack Skipjack in [1] and DEAL [17] respectively, unlike the dif-
ferential cryptanalysis [2] which goal is to find a differential characteristic with
high probability, is to find the longest impossible differential, i.e., to find the



longest differential with probability 0. It is a powerful cryptanalysis tool. Since
its establishment, lots of block ciphers are encountered with it such as AES [21],
LBlock [12], Camellia [5, 12] and so on. As the counterpart of impossible dif-
ferential cryptanalysis, Zero-correlation linear cryptanalysis, a variant of linear
cryptanalysis [22], is proposed by Bogdanov et al. in [7] and improved in [8–11].
Similar to the idea of impossible differential, its aim is to find a linear approx-
imation with probability exactly 1/2. In [25], Sun et al. proposed that in some
cases, a zero-correlation linear approximations is equivalent to an impossible
differential.

How to find the best impossible differential for a target cipher is a point of
focus in the field of systemic ciphers. Until now, for the automatic search of im-
possible differentials, several approaches have been proposed such as U-method
[16], UID-method [20] and the extended tool of them generalized by Wu et al.
[33]. Moreover, it has been proved that the last method of [33] can find all impos-
sible differentials of a structure in [25], i.e., can find all impossible differentials
of a block cipher which are independent of the non-linear components such as
S-box. However, the differential property in S-box is wasted in above-mentioned
methods. Especially in ARX ciphers, there are none of widely applicable auto-
matic approaches because of the modular addition operation. If we can exploit
the differential property of non-linear parts in the search of impossible differen-
tials, it will be more accurate to evaluate the security of target block ciphers and
more possible to find longer impossible differentials. Inspired by the automatic
search of differentials and linear approximations with MILP method introduced
by [26, 13], we hope to search the impossible differentials with MILP models as
well.

Mixed Integer Linear Programming (MILP) problem is a mathematical op-
timization problem in which only some variables are constrained to be integers
and the goal is to find the minimum or maximum of the objective function, for
instance, covering problem and packing problem. It was introduced into differ-
ential and linear cryptanalysis by Mouha et al. and Wu et al. in [23] and [32]
respectively, later improved in [27, 26, 13, 28]. According to its applications on the
search of differential and linear approximations in block ciphers, every operation
in a certain cipher can be exactly described with inequalities system including
non-linear operations such as S-box and modular addition. By exploiting mathe-
matical optimization software which can fast run out the feasible and optimized
solutions, we can search the optimal characteristic for the target cipher with suit-
able implement time. When traversing all input and output differences (masks
in linear cryptanalysis), can MILP method be used to the search of impossible
differentials with suitable time? This is the motivation for us to do this work.

1.1 Contributions

Propose an automatic search tool for impossible differentials in both
ARX ciphers and ciphers with S-box. Impossible differential cryptanaly-
sis is one of efficient cryptanalysis methods in the field of symmetric ciphers.
Up to now, several automatic search approaches have been proposed for it such



as U-method, UID-method and the improved method in [33], which are all in-
dependent of the non-linear components such as S-box. However, in fact the
differential properties of non-linear operations can also contribute to the search
of longer impossible differentials. In this paper, in order to solve this defect in
above-mentioned methods, we propose a new automatic search tool for impos-
sible differentials in ARX ciphers and ciphers with S-box in [13] and [26]. With
this new tool, all operations are considered including the differential properties of
non-linear operations, so we may find longer impossible differentials comparing
with the previous methods. In addition, by traversing a special subset of input
and output differences depending on the actual cipher, this method can proof
whether there is an impossible differential in certain rounds of target cipher or
not in this subset. As far as we know, this method is the first automatic search
tool which takes the properties of non-linear components into consideration for
both ARX ciphers and ciphers with S-box. With this tool, it is more likely to
find a longer impossible differential.

Propose an automatic search tool for zero-correlation linear approxi-
mations in both ARX ciphers and ciphers with S-box. Zero-correlation
linear cryptanalysis is another useful cryptanalysis method. Very similar to
the automatic search algorithms for impossible differentials, we can also use
U-method, UID-method and the improved method in [33] to search linear ap-
proximations with probability exactly 1/2. However, the same problem handled
for non-linear operations is still existed. Based on the work proposed by Sun et
al. in [26] for cipher Ciphers with S-boxs and Fu et al. in [13] for ARX ciphers,
we also present an automatic tool based for search of zero-correlation linear ap-
proximations. This method is the first widely applicable automatic search tool
with considering the linear properties of non-linear components. With this tool,
it is more possible to find a longer zero-correlation linear approximation. What’s
more, it can be used to proof that whether there is a zero-correlation linear
approximation or not for a special input and output pattern of a given cipher.

Application to HIGHT cipher. HIGHT cipher, introduced by Hong et al. at
CHES 2006 [14], is an ISO standard lightweight block cipher. Its block size and
key size are 64 bits and 128 bits respectively, and it has total of 32 rounds. Until
now, the longest impossible differential and zero-correlation linear approximation
are both 16 rounds, which are introduced by Lu in [19] and Wen et al. in [31]
respectively. In our work, we use the proposed automatic tool to search all cases
of 17-round impossible differentials (zero-correlation linear approximations) that
both hamming weights of input and output differences (masks) are one. As
a result, we find total 4 impossible differentials and 4 zero-correlation linear
approximations for 17-round HIGHT, which are the longest ones until now.

Application to PRESENT cipher. PRESENT cipher, proposed by Bog-
danov et al. at CHES 2007 [6], is a lightweight block cipher designed for hard-
ware constrained environments such as RFID tags and sensor networks. It adopts



SP-network and consists of 31 rounds. Its block size is 64 bits and two key sizes
of 80 and 128 bits are supported. Until now, the longest impossible differential
is proposed by Tezcan in [29]. He found one 6-round impossible differential by
using some special differential property of S-box. But with existing widely appli-
cable automatic search tools such as U-method, UID-method and their improved
method in [33], it is only possible to obtain 4-round impossible differentials for
PRESENT ciphers. In this paper, we use this automatic search tool to find out
5050 impossible differentials for 6 rounds of PRESENT cipher.

Application to the existence proof. With this automatic search tool, we
can proof the existence of impossible differentials and zero-correlation linear
approximations for certain rounds of block ciphers in a special patterns of input
and output differences (masks). Usually, the less hamming weights input and
output differences (mask) have, the more advantage one has to find a better
impossible differential (zero-correlation linear approximation), so we can apply
this tool on existence proof of impossible differentials and zero-correlation linear
approximations under a subset cases, i.e., specially patterns. As applications, we
proof that the longest impossible differentials for LBlock, TWINE and Piccolo
ciphers are really 14, 14 and 7 rounds respectively when we only consider the
patterns that the 8 nibbles of input difference which will enter the first round
function are all zero and within the other 8 nibbles only one is non-zero difference,
meanwhile, the cases on output difference are similar to that on input. By setting
the hamming weights of both input and output differences (masks) are one, we
find the longest impossible differentials (zero-correlation linear approximations)
are 15, 15 rounds for TEA and XTEA and ciphers respectively, and find the
longest zero-correlation linear approximations are all 6 rounds for SPECK-32
and SPECK-48 ciphers.

1.2 Outline

This paper is organized as follows. In section 2 and 3, we propose automatic tools
for search of impossible differentials and zero-correlation linear approximations
in both ARX ciphers and ciphers with S-box. As applications, we use this tool to
search longer impossible differentials and zero-correlation linear approximations
for HIGHT in section 4 and impossible differentials for PRESENT ciphers in
section 5. Then we utilize this tool on the proof existence in section 6. Finally,
section 7 concludes the paper.

2 Automatic Tool for Search of Impossible Differentials

Impossible differential cryptanalysis, unlike the differential cryptanalysis which
goal is to find a differential characteristic with high probability, is to find the
longest differential with probability 0. Until now, there are three widely ap-
plicable methods, U-method, UID-method and the improved one proposed by



Wu et al., to search various impossible differential trails of block cipher struc-
tures. However, all of them are not to consider the differential property of S-box.
Further more, for ARX block ciphers there is no general algorithms to search
impossible differentials.

In this section, we will propose an automatic tool for search of impossible
differentials in both ARX ciphers and ciphers with S-box by utilizing the mixed
integer linear programming. Like the idea of MILP models for differential crypt-
analysis in previous work, for the search of impossible differentials, we firstly
utilize linear inequalities to exactly describe every component in the cipher as
well. But we are indifferent to the objective function, only interested in whether
there is a solution for the whole inequalities system with fixed input and output
differences or not. If not, the fixed input and output differences can lead to an
impossible differential, which is expected.

In section 2.1 and 2.2, we will build the models for search of impossible
differentials in ARX and ciphers with S-box respectively.

2.1 Impossible Differential Model for ARX Ciphers

ARX ciphers are designed by combining modular addition, bit rotation and XOR
operations, and iterating them over multiple rounds. For each component, there
is a set of inequalities to exactly depict it.

Constraints for XOR and Bit Rotation XOR and bit rotation are both
the linear operations. For every XOR operation with bit-level input and output
differences a, b and c, the constraints below can perfectly describe it, according
to Sun et al.’s work in [26].

a+ b+ c ≤ 2

a+ b+ c ≥ 2d⊕

d⊕ ≥ a, d⊕ ≥ b, d⊕ ≥ c
(1)

where d⊕ is a dummy bit variable.
Actually we can simply use one equation below to exactly describe the XOR

operation, because all variables in the model is 0− 1 variables.

a+ b+ c = 2d⊕ (2)

For the case of circular shift, since it only transforms the position of its input
bits, so we can easily build linear equations for the related bits.

Constraints for Modular Addition In [18], Lipmaa and Moriai proposed a
method to verify whether a given differential characteristic is possible or not.
For sake of simplicity Fu et al. summarizes this method into a theorem in [13]
as follows:



Theorem 1 (see [18, 13]). The differential (α, β → γ) is possible iff (α[0] ⊕
β[0]⊕γ[0]) = 0 and α[i−1] = β[i−1] = γ[i−1] = α[i]⊕β[i]⊕γ[i] when α[i−1]
= β[i− 1] = γ[i− 1], i ∈ [1, n− 1].

In order to describe the first condition α[0] ⊕ β[0] ⊕ γ[0] = 0 in Theorem 1, Fu
et al. utilized five inequalities in [13] to satisfy it as follows:

α[0] + β[0] + γ[0] ≤ 2

α[0] + β[0] + γ[0]− 2d⊕ ≥ 0

d⊕ ≥ α[0], d⊕ ≥ β[0], d⊕ ≥ γ[0]

(3)

where d⊕ is a dummy bit variable.
When i ∈ [1, n − 1], there are 56 possible patterns for (α[i], β[i], γ[i], α[i +

1], β[i+1], γ[i+1],¬eq(α[i], β[i], γ[i])) to meet the second condition in Theorem 1,
where ¬eq(α[i], β[i], γ[i]) = 1, if α[i] = β[i] = γ[i], otherwise, is zero. In [13], Fu
et al. used 13 inequalities to exactly describe the 56 possible patterns for each
i ∈ [1, n− 1] as follows.

β[i] −γ[i] + (¬eq(α[i], β[i], γ[i])) ≥ 0,

α[i] −β[i] + (¬eq(α[i], β[i], γ[i])) ≥ 0,

−α[i] +γ[i] + (¬eq(α[i], β[i], γ[i])) ≥ 0,

−α[i] −β[i]− γ[i]− (¬eq(α[i], β[i], γ[i])) ≥ −3,

α[i] +β[i] + γ[i]− (¬eq(α[i], β[i], γ[i])) ≥ 0,

−β[i] +α[i+ 1] + β[i+ 1] + γ[i+ 1] + (¬eq(α[i], β[i], γ[i])) ≥ 0,

β[i] +α[i+ 1]− β[i+ 1] + γ[i+ 1] + (¬eq(α[i], β[i], γ[i])) ≥ 0, (4)

β[i] −α[i+ 1] + β[i+ 1] + γ[i+ 1] + (¬eq(α[i], β[i], γ[i])) ≥ 0,

α[i] +α[i+ 1] + β[i+ 1]− γ[i+ 1] + (¬eq(α[i], β[i], γ[i])) ≥ 0,

γ[i] −α[i+ 1]− β[i+ 1]− γ[i+ 1] + (¬eq(α[i], β[i], γ[i])) ≥ −2,

−β[i] +α[i+ 1]− β[i+ 1]− γ[i+ 1] + (¬eq(α[i], β[i], γ[i])) ≥ −2,

−β[i] −α[i+ 1] + β[i+ 1]− γ[i+ 1] + (¬eq(α[i], β[i], γ[i])) ≥ −2,

−β[i] −α[i+ 1]− β[i+ 1] + γ[i+ 1] + (¬eq(α[i], β[i], γ[i])) ≥ −2.

Note that this model for differential characteristic of modular addtion is
suitable for cases that only two independent inputs are involved.

Up to now, we exactly describe every operation in ARX cipher with set of
inequalities, in which the variables are usually the input and output differences
of corresponding operations. Actually, most variable relates to at least two op-
erations except the input and output differences of the cipher, so if we combine
all inequalities for every operation in the target ARX cipher, the inequalities
system can perfectly depict the whole cipher, its each solution is a differential
characteristic. When we fixed the input and output differences, if the inequal-
ities system is infeasible, it means the probability of current differential is 0,
i.e., this is an impossible differential. By traversing a special subset of input and
output differences in the MILP model, we can confirm whether there exists an



impossible differential or not for a certain reduced-round ARX cipher in this
subset. Usually, this subset is decided according to the feature of the given ci-
pher. For example, we generally set the non-zero bits on the branch which xores
with the output of the first round function in Feistel construction. Without loss
of generality, we denote the subset as (∆ → Γ ), where ∆ and Γ are the sets
on input and output differences respectively. In Algorithm 1, we explain how
to implement the search of impossible differentials with Gurobi Optimization,
when we already have MILP model file “model.lp”, which is produced as same
as that for differential characteristics in [28, 13].

Algorithm 1: General search process for impossible differentials

// Assume the block size is n.
1 def mycallback(model,where):
2 if where == GRB.Callback.MIP:
3 best = model.cbGet(GRB.Callback.MIP OBJBST)
4 if best ≥ 0:
5 m.terminate()

// mycallback function is to terminate the optimization if a

solution is already appeared.

6 for All input differences ∆xi ∈ ∆ do
7 for All output differences ∆yj ∈ Γ do
8 if i = 0 and j = 0 then
9 Add all constraints on the fixed input and output differences into

“model.lp”;

10 else
11 Change all constraints on the fixed input and output differences into

“model.lp”;

12 m=read(‘model.lp’);
13 m.optimize(mycallback);
14 if m.status=3 then

// The current input and output differences constitute an

impossible differential.

15 Store current input and output differences;

2.2 Impossible Differential Model for Ciphers with S-box

Comparing with ARX ciphers, traditional block ciphers use S-box layer as the
non-linear operations rather than modular addition, and linear operations maybe
more complicated with combining many XOR, rotation operations and simple
permutations. For the sake of simplicity, we don’t depict the linear operations
in detail as it has been exactly described in section 2.1.



Constraints for S-box operation Assume S is an arbitrary m× l bits S-box
that (y0, y1, . . . , yl) = S(x0, x1, . . . , xm), the set of all its differential patterns is

DT = {(∆x0, . . . ,∆xm, ∆y0, . . . ,∆yl)|Pr[(∆x0, . . . ,∆xm)
S−→ (∆y0, . . . ,∆yl)] >

0}. According to Sun et al.’s work in [26], we can build linear inequalities system
to exactly depict the set of DT , i.e., all possible differentials of S, with the help
of the software SAGE 5 and the greed algorithm in [28]. For more details, please
refer to [28]. But note that the large S-boxes such as size of 8 × 8 cannot be
dealed with now.

Just similar to MILP model in ARX ciphers, we combine all inequalities
for each operation in a certain reduced-round cipher and traverse all input and
output differences to judge whether the inequalities system has solutions or not
under each case. If there is a combination of input and output differences that
the MILP model is infeasible, then this is an impossible differential. The search
process is as same as Algorithm 1.

3 Automatic Tool for Search of Zero-Correlation Linear
Approximations

Zero-correlation linear cryptanalysis, introduced by Bogdanov and Rijmen in [7],
is an important tool to evaluate the security of block ciphers. Unlike the linear
cryptanalysis, whose aim is to find a linear approximation with high bias, zero-
correlation cryptanalysis is expected to find the longest linear approximation
holding with probability exactly 1/2. For automatic search of zero-correlation
linear approximations, U-method, UID-method and the improved method in [33]
can be utilized as well as for the search of impossible differential. Similarly, all
these methods overlook the linear properties of non-linear operations such as S-
boxes. As far as we know there are also no widely applicable automatic method
for ARX ciphers.

In this section, we will use the MILP method to solve the problem above and
accurately search zero-correlation linear approximations for both ARX ciphers
and ciphers with S-box.

3.1 Zero-Correlation Linear Model for ARX Cipher

In order to search zero-correlation linear approximation in ARX ciphers, it is nec-
essary to consider about the linear approximations of basic operations such as
XOR, branching, bit rotation and modular addition operations. Before studying
the construction of MILP model for search of zero-correlation linear approxima-
tion, we introduce the linear approximations over XOR and branching operations
proposed by Biham in [3] as follows, where “·” means the scalar product of binary
vectors.

5 Inequality generator() function in the sage.geometry.polyhedron class of SAGE. The
website of SAGE is: http://www.sagemath.org/.



Lemma 1 (XOR operation [3]). Let h(x1, x2) = x1 ⊕ x2, α1, α2 are the
input masks of x1 and x2 respectively, β is the output mask, then the correlation
C(β · h(x1, x2), α1 · x1 ⊕ α2 · x2) 6= 0 if and only if β = α1 = α2.

Lemma 2 (Branching operation [3]). Let h(x) = (x, x), α is the input mask,
β1, β2 are the output masks of h(x), then the correlation C((β1, β2)·h(x), α·x) 6=
0 if and only if α = β1 ⊕ β2.

Following the Lemma 1 and 2, we start to construct the MILP model for search
of zero-correlation linear approximations in ARX ciphers.

Constraints for Branching, XOR and Bit Rotation Assumed that the
input mask of braching operation is α, the output masks are β1 and β2. According
to Lemma 2, α = β1 ⊕ β2, so similar to (2) in section 2.1, we have the following
inequalities to exactly describe its each bit operation.

α[i] + β1[i] + β2[i] = 2d⊕ (5)

where d⊕ is a dummy bit variable.
In the light of Lemma 1, some linear equations between input masks and

output mask can perfect describe the linear approximation of XOR operation.
Besides, the bit rotation operation is a simple permutation that we can list some
equations for the related bits.

Constraints for Modular Addition In [30, 24], a method to calculate the
correlation of modular addition is given as follows.

Theorem 2 ([30, 24]). For the linear approximation of addition modulo 2n, let
the input masks and output mask be α1 = (α1[n − 1], . . . , α1[0]), α2 = (α2[n −
1], . . . , α2[0]) and β = (β[n−1], . . . , β[0]) respectively, where α1, α2, β ∈ Fn

2 , and
let the vector u = (u[n − 1], . . . , u[0]) satisfy u[i] = 4β[i] + 2α1 + α2, 0 ≤ u[i] <
8, 0 ≤ i < n. Then the correlation can be computed as follows:

cor�(β, α1, α2) = LAu[n−1]Au[n−2] . . . Au[0]C, (6)

where Ar, 0 ≤ r < 7, is 2× 2 matrice,

A0 =
1

2

[
2 0
0 1

]
, A1 = A2 = −A4 =

1

2

[
0 0
1 0

]
,

A7 =
1

2

[
0 2
1 0

]
−A3 = A5 = −A6 =

1

2

[
0 0
0 1

]
,

L is a row vector L = (1, 0), and C is a column vector C = (1, 1)T .

In order to quickly calculate the correlation shown in Theorem 2, Nyberg
and Wellén utilized the automaton to calculate (6) by multiplication from left



to right [24]. They let e0 = L = (1, 0) and e1 = (0, 1), then the state transitions
for addition modulo 2n is as follows:

εn = e0
u[n−1]−−−−→ εn−1

u[n−2]−−−−→ εn−2 → . . .→ ε1
u[0]−−→ ε0.

Where εj ∈ {e0, e1}, 0 ≤ j < n. For more details, please refer to [24].
Based on the work above, Fu et al. in [13] set a 0 − 1 variable si = 0 if

εi = e0, otherwise si = 1, then utilized (si+1, β[i], α1[i], α2[i], si) to describe the
state transition from εi+1 to εi, namely esi+1

Au[i] = esi . They found that there
are 10 possible transitions for the vector (si+1, β[i], α1[i], α2[i], si), and list eight
linear inequalities exactly satisfying these 10 possible transitions with the help
of SAGE and the greedy algorithm in [28], which are shown as follows:

si+1 − β[i]− α1[i] + α2[i] + si ≥ 0, si+1 + β[i] + α1[i]− α2[i]− si ≥ 0,

si+1 + β[i]− α1[i]− α2[i] + si ≥ 0, si+1 − β[i] + α1[i]− α2[i] + si ≥ 0,

si+1 + β[i]− α1[i] + α2[i]− si ≥ 0, si+1 − β[i] + α1[i] + α2[i]− si ≥ 0,

−si+1 + β[i] + α1[i] + α2[i] + si ≥ 0, si+1 + β[i] + α1[i] + α2[i] + si ≥ 0.

Note that there is an additional constraint εn = e0, hence, the constraints include
8× n+ 1 linear inequalities for linear approximation of addition modulo 2n.

Until now, we can combine all inequalities for every operation in a certain
reduced-round ARX cipher. When we fixed the input and output masks in the
constraints, if the MILP model is infeasible, this is a zero-correlation linear
approximation. By traversing a special subset of input and output masks, we
can find the existed zero-correlation linear approximations or proof there is no
such approximation with probability exactly 1/2 in this subset. Without loss of
generality, we denote the subset as (Λ → Ω), where Λ and Ω are the sets on
input and output masks respectively. If we already have the MILP model file
“model.lp” for a target cipher, the general search process is shown in Algorithm
2, when we use Gurobi as the optimization.

3.2 Zero-Correlation Linear Model for Ciphers with S-box

Since the linear operations used in ciphers with S-box are as same as those in
ARX ciphers, for the sake of simplicity, we omit them in this subsection.

Constraints for S-box operation Assume S is an arbitrary m × l bits S-
box that (y0, y1, . . . , yl) = S(x0, x1, . . . , xm), and α, β are input and output
masks respectively, then the set of all its meaningful linear approximations is

LT = {(α, β)|Pr[α S−→ β] 6= 1
2}. Similar to the construction of constraints for

S-box in impossible differential cryptanalysis in section 2.2, we can build linear
inequalities system to exactly depict the set of LT , i.e., the all possible linear
approximations of S, with the help of SAGE and Greedy algorithm in [28].



Algorithm 2: General search process for zero-correlation linear approxi-
mations

// Assume the block size is n.
1 def mycallback(model,where):
2 if where == GRB.Callback.MIP:
3 best = model.cbGet(GRB.Callback.MIP OBJBST)
4 if best ≥ 0:
5 m.terminate()
6 for All possible input masks αi ∈ Λ do
7 for All possible output masks βj ∈ Ω do
8 if i = 0 and j = 0 then
9 Add all constraints on the fixed input and output masks into

“model.lp”;

10 else
11 Change all constraints on the fixed input and output masks into

“model.lp”;

12 m=read(‘model.lp’);
13 m.optimize(mycallback);
14 if m.status=3 then

// The current input and output masks constitute an

zero-correlation linear approximation.

15 Store current input and output masks;

Next, we still combine all inequalities for each operation in a certain reduced-
round traditional cipher and traverse all input and output masks to find whether
the inequalities system has solutions or not under each case. If there is a case
that the MILP model is infeasible, then this is an zero-correlation linear approx-
imation. This procedure is depicted in Algorithm 2 as well.

4 Application to HIGHT Block Cipher

4.1 Brief Description of HIGHT

HIGHT, introduced by Hong et al. at CHES 2006 [14], is a lightweight block
cipher approved by Korea Information Security Agency (KISA) and is adopted
as an International Standard by ISO/IEC 18033-3 [15]. Its block size and key size
are 64 bits and 128 bits respectively. HIGHT employees the Type-II generalized
Feistel network consisting of 32 rounds with four parallel Feistel functions in
each round. Whitening keys are applied before the first round and after the last
round. The round function is shown in Figure 1, where (Xi

7|Xi
6, . . . , |Xi

0) and
(SK4i+3|SK4i+2|SK4i+1|SK4i) indicate the 64 bits input and 32 bits subkey of
the i-th round respectively.

Denote Exclusive-or, addition modulo 232 and left rotation operations as ⊕,
� and ≪ respectively. F0 and F1, used in the round function, are defined as



F0 F0F1 F1

Xi
7 Xi

6 Xi
5 Xi

4 Xi
3 Xi

2 Xi
1 Xi

0

Xi+1
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Fig. 1. Round function of HIGHT cipher

follows:

F0(x) = (x≪ 1)⊕ (x≪ 2)⊕ (x≪ 7),

F1(x) = (x≪ 3)⊕ (x≪ 4)⊕ (x≪ 6).

Since the key schedule is not related to the search of impossible differentials
and zero-correlation linear approximations, we omit it in this paper. For further
details, please refer to [14].

4.2 17-Round Impossible Differentials of HIGHT

Since in ARX ciphers none of widely applicable search algorithms have been
proposed until now. Up to now, for the HIGHT block cipher, the longest impos-
sible differential, proposed by Lu in [19], is 16 rounds. Based on the property
that the modular addition � operation definitely preserves the least significant
differences in the original positions, he exploited the miss-in-the-middle manner
[4] to find two impossible differentials for 16 rounds HIGHT cipher as follows.

(ej,∼, 0
8, 08, 08, 08, 08, 08, 08) 9 (e0,3,5,6,7, 0

8, 08, 08, 08, 08, 08, e7)

(e7, e0,3,5,6,7, 0
8, 08, 08, 08, 08, 08) 9 (08, ej,∼, 0

8, 08, 08, 08, 08, 08)

Where ej denotes a byte with zeros in all positions but bit j, ei1,...,ij denotes
ei1 ⊕ . . .⊕ eij , ej,∼ denotes a byte that has zeros in bits 0 to j − 1, a one in bit
j and indeterminate values in bits (j + 1) to 7, 08 denotes a byte with zero.

In this part, we use the form of inequalities system described exactly for
modular addition, XOR and bit rotation operations in section 2 to build a MILP
model for 17-round HIGHT cipher. Since traversing all input and output masks
is impossible due to the time complexity, we only try the cases that the hamming
weights of both input and output differences are exactly one, we found four 17-
round impossible differentials as follows.

(10000000, 08, 08, 08, 08, 08, 08, 08) 9 (08, 08, 08, 08, 08, 08, 10000000, 08),

(08, 08, 10000000, 08, 08, 08, 08, 08) 9 (08, 10000000, 08, 08, 08, 08, 08, 08),

(08, 08, 08, 08, 10000000, 08, 08, 08) 9 (08, 08, 08, 10000000, 08, 08, 08, 08),

(08, 08, 08, 08, 08, 08, 10000000, 08) 9 (08, 08, 08, 08, 08, 10000000, 08, 08).



We search these impossible differentials with Gurobi6.0.4. on a server us-
ing 12 threads Intel(R) Xeon(R) CPU E5-2620(2.00GHz, 47GB RAM, Ubuntu
14.04.3 LTS). Totally it costs 4445 seconds (about 74 minutes). Although we can
not figure out the conflicts in these impossible differentials, but they are surely
existed in theory.

4.3 17-Round Zero-Correlation Linear Approximations of HIGHT

Until now, for the HIGHT block cipher, the longest zero-correlation linear ap-
proximation is 16 rounds presented by Wen et al. in [31], which utilized the
mask property of addition that the correlation is not zero if and only if two
input masks and output mask have the same high non-zero bit position in [11].
They tried to set the non-zero bit masks on the highest position of each branch
of input and output, and found 4 × 128 zero-correlation linear approximations
described as follows:

Property 1 (16-round zero-correlation linear trails of HIGHT in [31]). Set the
input mask and output mask after 16 round HIGHT be α = (α7, α6, . . . , α0) and
β = (β7, β6, . . . , β0) respectively. For any αi = 00000001, αj = 0, j 6= i, 0 ≤ i, j ≤
7, βk = 1???????, βl = 0, l 6= k, 0 ≤ l, k ≤ 7, if (i, k) ∈ {(6, 5), (4, 3), (2, 1), (0, 7)},
then the correlation of this linear approximation α

16r−−→ β is zero, and for each
(i, k) ∈ {(6, 5), (4, 3), (2, 1), (0, 7)}, there are 128 such linear approximations.

In this part we utilize the MILP models proposed in section 3 to search longer
zero-correlation linear approximations for HIGHT cipher. Because of the time
complexity as well, we only try the cases that the hamming weights of both input
and output masks are exactly one, and we found four 17-round zero-correlation
linear approximations as follows.

(08, 00000001, 08, 08, 08, 08, 08, 08) 9 (00000001, 08, 08, 08, 08, 08, 08, 08),

(08, 08, 08, 00000001, 08, 08, 08, 08) 9 (08, 08, 00000001, 08, 08, 08, 08, 08),

(08, 08, 08, 08, 08, 00000001, 08, 08) 9 (08, 08, 08, 08, 00000001, 08, 08, 08),

(08, 08, 08, 08, 08, 08, 08, 00000001) 9 (08, 08, 08, 08, 08, 08, 00000001, 08).

We search these zero-correlation linear approximations with Gurobi6.0.4. on
a server using 12 threads Intel(R) Xeon(R) CPU E5-2620(2.00GHz, 47GB RAM,
Ubuntu 14.04.3 LTS). Totally it costs 4786 seconds( about 80 minutes).

5 Application to PRESENT

5.1 Brief Description of PRESENT

PRESENT cipher, proposed by Bogdanov et al. at CHES 2007 [6], is a lightweight
block cipher designed for hardware constrained environments such as RFID tags
and sensor networks. It adopts SP-network and consists of 31 rounds. Its block



size is 64 bits and two key sizes of 80 and 128 bits are supported. The round
function of PRESENT includes three layers. The first layer is a bitwise XOR
operation to introduce a subkey ski, 1 ≤ i ≤ 32 into i-th round, where sk32 is
used for post whitening. The second layer is a non-linear layer which is composed
by 16 parallel 4×4 S-boxes. The third layer is a linear bitwise permutation. This
round function is shown in Figure 2.

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S S

ski

sk i+1

Fig. 2. 2-round PRESENT cipher

Since the key schedule is not related to the search of impossible differentials,
we omit it in this paper. For further details, please refer to [6].

5.2 6-Round Impossible Differentials of PRESENT

Impossible differential cryptanalysis utilizes the differential with probability ex-
actly zero. For PRESENT cipher, the longest impossible differential is proposed
by Tezcan in [29] so far. He used the undisturbed bits, which is defined as a
part bits of output (input) difference that happens with probability one when
the input (output) difference are given, to find out a 6-round impossible differ-
ential. However, with existing widely applicable automatic search tools such as
U-method, UID-method and their improved method in [33], it is only possible
to obtain 4-round impossible differentials for PRESENT ciphers, because they
don’t consider about the differential property of S-box.

In this section, we use the MILP-based automatic tool to search the impos-
sible differentials for PRESENT cipher. Due to the limit of computing resource,
we search the cases that the active bits of input difference and the intermedi-
ate state after the S-box layer of last round both happen only before one of 16
S-boxes, which means we only search 16 × 16 × (24 − 1) × (24 − 1) = 57600
cases. By exploiting this automatic search tool, we total find 5050 impossible
differentials for 6-round PRESENT under the constraints above. We denote



(0, . . . , 0, ci, 0, . . . , 0) 9 (0, . . . , 0, cj , 0, . . . , 0) as a 6-round impossible differen-
tial for PRESENT cipher, where the i-th nibble of input difference is ci, the j
nibble of the state difference after the last S-box layer is cj , the differences on
other nibbles are zero, then we classify all impossible differentials into several
categories which are shown in table 1, each impossible differential belongs to at
least one category.

i ci j cj
∈ (0, 1, . . . , 15) 9 ∈ (1, 3, 5, 7, 9, 11, 13, 15) ∈ (1, 2, . . . , 15)

∈ (0, 1, 2, 3, 12, 13, 14, 15) ∈ (1, 2, . . . , 15) ∈ (0, 1, . . . , 15) 5

∈ (12, 15) ∈ (1, 2, . . . , 15) ∈ (0, 1, 3, 4, 5, 7, 9, 11, 12, 13, 15) ∈ (9, 13)

∈ (12, 15) ∈ (1, 3, 9, 11, 13, 15) 2 ∈ (9, 13)

∈ (12, 15) ∈ (1, 3, 8, 9, 11, 13, 15) ∈ (6, 14) ∈ (9, 13)

∈ (12, 15) ∈ (1, 3, 8, 11, 13) 8 ∈ (9, 13)

∈ (12, 15) ∈ (1, 8, 11, 13) 10 ∈ (9, 13)

∈ (13, 14) ∈ (1, 2, . . . , 15) ∈ (1, 3, 4, 5, 7, 12, 13, 15) ∈ (9, 13)

∈ (13, 14) ∈ (1, 3, 11, 13) 0 ∈ (9, 13)

∈ (13, 14) ∈ (1, 3, 13) 2 ∈ (9, 13)

∈ (13, 14) ∈ (1, 3, 9, 11, 13) ∈ (6, 14) ∈ (9, 13)

15 8 2 ∈ (9, 13)

15 7 8 ∈ (9, 13)

15 3 10 ∈ (9, 13)
Table 1. All impossible differentials for 6-round PRESENT

Taking the first entry of table 1 as an illustration, if the input difference
is zero on most nibbles except the i-th nibble, i ∈ (0, 1, . . . , 15), and the state
difference after the last S-box layer is zero on majority of nibbles except the j-th
nibble, j ∈ (1, 3, 5, 7, 9, 11, 13, 15), (0, . . . , 0, ci, 0, . . . , 0) 9 (0, . . . , 0, cj , 0, . . . , 0)
is an impossible differential when ci is fixed to be 9,and cj belongs to one of the
set (1, 2, . . . , 15). Note that there are some repeated impossible differentials in
different entries.

We search these impossible differentials in table 1 with Gurobi6.0.4. on a
server using 12 threads Intel(R) Xeon(R) CPU E5-2620(2.00GHz, 47GB RAM,
Ubuntu 14.04.3 LTS). Totally it costs 4445 seconds (about 74 minutes).

6 Application to the existence proof

Since our new automatic search tool takes non-linear components such as S-box
and modular addition into consideration, we can use this tool on the existence
proof of impossible differentials and zero-correlation linear approximations for
certain rounds of block ciphers by traversing all input and output differences
(masks). However, the block size of a cipher is usually too large to deal with
due to the time complexity, we generally search impossible differentials (zero-
correlation linear approximations) from a subset of all cases that the input and



output differences (masks) satisfy special patterns. Thus we can proof that in this
particular subset whether there are impossible differentials and zero-correlation
linear approximations or not. As instances, we can proof that the longest im-
possible differentials for LBlock, TWINE and Piccolo ciphers are 14, 14 and
7 rounds respectively when we only consider the patterns that the 8 nibbles
of input difference which will enter the first round function are all zero and
within the other 8 nibbles only one is non-zero difference. The requirement on
the output difference is as same as that on input, which means we only focus on
(8× (24 − 1))2 = 14400 cases that satisfy the special patterns. What’s more, by
setting the hamming weights of both input and output differences (masks) are
one, we find the longest impossible differentials (zero-correlation linear approx-
imations) are 15, 15 rounds for TEA and XTEA ciphers respectively, and find
the longest zero-correlation linear approximations are all 6 rounds for SPECK-32
and SPECK-48 ciphers. We believe that this tool can be used to the existence
proof for most lightweight ciphers with S-box and ARX ciphers under special
patterns.

7 Conclusion

In this paper, we propose an automatic search tool for impossible differentials
and zero-correlation linear approximations based on mixed integer linear pro-
gramming method. In this tool, the differential and linear properties of non-
linear components are taken into consideration, so we can find longer impossible
differentials and zero-correlation linear approximations comparing with previ-
ous search methods for a target cipher. As applications, we apply this tool on
HIGHT, PRESENT and the existence proof. As a result, we find 4 impossible
differentials and 4 zero-correlation linear approximations for 17-round HIGHT,
which are the longest ones for HIGHT cipher. For Sbox-based ciphers, as an
application we find 5050 impossible differentials for 6-round PRESENT cipher.
Actually, since in MILP model, 8 × 8 S-box cannot be exactly described with
a set of inequalities, which is a limitation of our automatic search tool, in the
further we will still research how to apply this tool on ciphers with large size of
S-box.
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