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Abstract. Impossible differential cryptanalysis and zero-correlation lin-
ear cryptanalysis are two of the most useful cryptanalysis methods in the
field of symmetric ciphers. Until now, there are several automatic search
tools for impossible differentials such as U-method and UID-method,
which are all independent of the non-linear S-boxes. Since the differen-
tial and linear properties can also contribute to the search of impossible
differentials and zero-correlation linear approximations respectively, it is
meaningful to study the search with considering the properties of non-
linear components. In this paper, we propose an automatic search tool
for impossible differentials and zero-correlation linear approximations in
both ARX ciphers and ciphers with S-box, which is the first widely appli-
cable one that considers the influence of non-linear operations, especially
in ARX ciphers. What’s more, this tool can be used to prove whether
there are impossible differentials (zero-correlation linear approximations)
in certain rounds of a target cipher, particularly for certain subset of in-
put and output differences (masks) patterns. As applications, we use this
automatic tool on HIGHT and LBlock ciphers. Consequently, we find to-
tal 4 impossible differentials and 4 zero-correlation linear approximations
for 17-round HIGHT which are the longest ones until now, and find six
16-round related-key impossible differentials for LBlock, which are the
best ones up to now.
Keywords: Automatic search tool, (related-key) impossible differential,
zero-correlation linear approximation, HIGHT, LBlock

1 Introduction

Impossible differential cryptanalysis (IDC), introduced by Biham et al. and
Knudsen to attack Skipjack in [2] and DEAL [20] respectively, unlike the dif-
ferential cryptanalysis [3] which aims to find a differential characteristic with
high probability, tries to find the longest impossible differential, i.e., to find the
longest differential with probability 0. It is also a powerful cryptanalysis tool.



Since it was proposed, impossible differential cryptanalysis has been used to lots
of block ciphers such as AES [24], LBlock [12], Camellia [6, 12] and so on. As
the counterpart of impossible differential cryptanalysis, zero-correlation linear
cryptanalysis, a variant of linear cryptanalysis [25], was proposed by Bogdanov
et al. in [7] and improved in [8–11]. Similar to the idea of impossible differential,
its purpose is to find a linear approximation with probability exactly 1/2. In [29],
Sun et al. proposed that in some cases, a zero-correlation linear approximation
was equivalent to an impossible differential.

How to find the best impossible differential for a target cipher is a point of
focus in the field of systemic ciphers. Until now, for the automatic search of im-
possible differentials, several approaches have been proposed such as U-method
[19], UID-method [23] and the extended tool of them generalized by Wu and
Wang in [38] 5. Moreover, it has been proved that WW-method could find all
truncated impossible differentials of a word-orient block cipher which are inde-
pendent of the non-linear components such as S-box. However, the differential
property of S-box is wasted in above-mentioned methods. At Crypto 2016, an
new impossible differential search method by Derbez and Fouque [14] was pro-
posed, which involved the key-recovery phase into the search and could directly
calculate the time and memory complexities, but it still ignore the differential
property of S-box. What’s more, in ARX ciphers there are none of widely ap-
plicable automatic approaches because of the modular addition operation. If we
can exploit the differential property of non-linear parts in the search of impos-
sible differentials, it might be more accurate to evaluate the security of target
block ciphers and more possible to find longer impossible differentials. Inspired
by the automatic search of differentials and linear approximations with MILP
method introduced by [30, 15], we hope to search the impossible differentials and
zero-correlation linear approximations 6 with MILP models as well.

Mixed Integer Linear Programming (MILP) problem is a mathematical op-
timization problem in which only some variables are constrained to be integers
and the goal is to find the minimum or maximum of the objective function,
for instance, covering problem and packing problem. It was introduced into dif-
ferential and linear cryptanalysis by Mouha et al. and Wu et al. in [26] and
[37] respectively, later improved in [31, 30, 15, 32]. According to its applications
on the search of differentials and linear approximations in block ciphers, every
operation in a certain cipher can be exactly described with inequalities sys-
tem including non-linear operations such as S-box and modular addition. By
exploiting mathematical optimization software which can expedite the feasible
and optimized solution, we can search the optimal characteristic for the target
cipher with suitable executable time. Can MILP method be used to the search
of impossible differentials and ZC approximations with suitable time? This is
the motivation for us to do this work.

5 This method is renamed as WW-method through this paper.
6 For the sake of simplicity, zero-correlation linear approximation is renamed as ZC

approximation through this paper.



1.1 Contributions

Propose an automatic search tool for impossible differentials and ZC
approximations in both ARX ciphers and ciphers with S-box. Impos-
sible differential cryptanalysis and zero-correlation linear cryptanalysis are two
efficient cryptanalysis methods in the field of symmetric ciphers. Up to now, sev-
eral existed automatic search approaches such as U-method, UID-method and
WW-method, have all been independent of the non-linear components such as S-
box and modulo addition. In fact, differential and linear properties of non-linear
operations are conducive to the search of longer impossible differentials and ZC
approximations. In this paper, combined the properties of non-linear operations,
we propose a new automatic search tool for ARX ciphers and ciphers with S-
box based on [15] and [30]. With this new tool, all operations are considered
including the non-linear operations, so we can not only find the previous results,
but also may find longer impossible differentials and ZC approximations. In ad-
dition, by traversing a special subset of input and output differences depending
on the actual cipher, this method can prove whether there is an impossible dif-
ferential or ZC approximation in certain rounds of target cipher or not in this
subset. As far as we know, this method is the first automatic search tool which
takes the properties of non-linear components into consideration for both ARX
ciphers and ciphers with S-box. With this tool, it is more likely to find the best
impossible differential or ZC approximation.

Application to HIGHT Cipher. HIGHT cipher, introduced by Hong et al.
at CHES 2006 [16], is an ISO standard lightweight block cipher. Its block size
and key size are 64 bits and 128 bits respectively, and it totally has 32 rounds.
The longest previous impossible differential and ZC approximation are both 16
rounds, which are introduced in [22, 13, 28] and by Wen et al. in [34] respec-
tively. In our work, we use the proposed automatic tool to search all cases of 17-
round impossible differentials (ZC approximations) that both hamming weights
of input and output differences (masks) are one. As a result, we totally find 4
impossible differentials and 4 ZC approximations for 17-round HIGHT, which
are the longest ones until now. The results of impossible differentials and ZC
approximations on HIGHT are summarized in Table 1.

Table 1. Summary of impossible differentials and ZC approximations on HIGHT

Type Round Resource

Impossible differential 16 [22]

Impossible differential 16 [13]

Impossible differential 16 [28]

Impossible differential 17 Sec. 4.2

ZC approximation 16 [34]

ZC approximation 17 Sec.4.3



Application to LBlock Cipher. LBlock cipher, designed by Wu and Zhang in
[39], is an efficient lightweight block cipher. Its block size and key size are 64 bits
and 80 bits. It applies a 32-round modified Feistel structure. Under the related-
key setting, Minier and Naya-Plasencia found a 15-round related-key impossible
differential in [36], then Wen et al. found two 16-round related-key impossible
differentials in [35]. But Wen et al.’s two differentials are right only under part
of master key pairs which satisfy one of the given two key differences. With our
new search tool, we build a MILP model for LBlock and only search the cases
that the difference of master key has only one nonzero bit and the input and
output differences both have no more than one nonzero bit. In the end, we find
six 16-round related-key impossible differentials. As long as the master key pair
satisfies one of the given differences, such related-key impossible differential is
right in our work. The results of related-key impossible differentials for LBlock
are summarized in Table 2.

Table 2. Summary of related-key impossible differentials on LBlock

Type Round Number of Keys Resource

Related-key imp. diff. 15 2 [36]

Related-key imp. diff. * 16 4 [35]

Related-key imp. diff. 16 2 Sec.5.2
1 Related-key imp. diff.: Related-key impossible differential.
2 *: This related-key impossible differential is right only for

part of master key pairs which satisfied the given difference
of master key. When such related-key impossible differentials
are used to attack target cipher, it is necessary to use four
master keys (two related-key impossible differentials).

1.2 Outline

This paper is organized as follows. In section 2, we propose an automatic tool for
search of impossible differentials and ZC approximations in both ARX ciphers
and ciphers with S-box. Then in section 3, a verification algorithm is presented.
As applications, we use this tool to search longer impossible differentials and ZC
approximations for HIGHT in section 4 and improved related-key impossible
differentials for LBlock in section 5. Finally, section 6 concludes this paper.

2 Automatic Tool for Search of Impossible Differentials
and ZC Approximations

In this section, we propose an automatic tool for search of impossible differentials
in both ARX ciphers and ciphers with S-box. Like the idea of MILP models for
differential cryptanalysis in previous work, we firstly utilize linear inequalities to



exactly describe every component in target cipher as well. But we are indifferent
to the objective function, and only interested in whether there is a solution for
the whole inequalities system with fixed input and output differences or not. If
not, the fixed input and output differences can lead to an impossible differential,
which is expected. In section 2.1 and 2.2, we will build the models for search of
impossible differentials in ARX ciphers and ciphers with S-box respectively.

2.1 Impossible Differential Model for ARX Ciphers

ARX ciphers are designed by combining modular addition, bit rotation and XOR
operations. For each operation, there is a set of inequalities to exactly depict it.

Constraints for XOR and Bit Rotation XOR and bit rotation are both
the linear operations. For every XOR operation with bit-level input and output
differences a, b and c, the constraints below can perfectly describe it, according
to Sun et al.’s work in [30].

a+ b+ c ≤ 2

a+ b+ c ≥ 2d⊕

d⊕ ≥ a, d⊕ ≥ b, d⊕ ≥ c
(1)

where d⊕ is a dummy bit variable.
Actually we can simply use one equation below to exactly describe the XOR

operation, because all variables in the model are 0− 1 variables.

a+ b+ c = 2d⊕ (2)

For the case of circular shift, since it only transforms the position of its input
bits, so we can easily build linear equations for the related bits.

Constraints for Modular Addition In [21], Lipmaa and Moriai proposed a
method to verify whether a given differential characteristic is possible or not.
For sake of simplicity, Fu et al. summarized this method into a theorem in [15]
as follows:

Theorem 1 (see [21, 15]). The differential (α, β → γ) satisfies γ = α + β iff
(α[0]⊕β[0]⊕γ[0]) = 0 and α[i−1] = β[i−1] = γ[i−1] = α[i]⊕β[i]⊕γ[i] when
α[i− 1] = β[i− 1] = γ[i− 1], i ∈ [1, n− 1].

In order to describe the first condition α[0] ⊕ β[0] ⊕ γ[0] = 0 in Theorem 1, we
can utilize one equality to satisfy it as follows:

α[0] + β[0] + γ[0] = 2d⊕ (3)

where d⊕ is a dummy bit variable.



When i ∈ [1, n − 1], there are 56 possible patterns for (α[i], β[i], γ[i], α[i +
1], β[i+1], γ[i+1],¬eq(α[i], β[i], γ[i])) to meet the second condition in Theorem 1,
where ¬eq(α[i], β[i], γ[i]) = 1, if α[i] = β[i] = γ[i], otherwise, is zero. In [15], Fu
et al. used 13 inequalities to exactly describe these 56 possible patterns for each
i ∈ [1, n− 1] as follows.

β[i] −γ[i] + (¬eq(α[i], β[i], γ[i])) ≥ 0,

α[i] −β[i] + (¬eq(α[i], β[i], γ[i])) ≥ 0,

−α[i] +γ[i] + (¬eq(α[i], β[i], γ[i])) ≥ 0,

−α[i] −β[i]− γ[i]− (¬eq(α[i], β[i], γ[i])) ≥ −3,

α[i] +β[i] + γ[i]− (¬eq(α[i], β[i], γ[i])) ≥ 0,

−β[i] +α[i+ 1] + β[i+ 1] + γ[i+ 1] + (¬eq(α[i], β[i], γ[i])) ≥ 0,

β[i] +α[i+ 1]− β[i+ 1] + γ[i+ 1] + (¬eq(α[i], β[i], γ[i])) ≥ 0, (4)

β[i] −α[i+ 1] + β[i+ 1] + γ[i+ 1] + (¬eq(α[i], β[i], γ[i])) ≥ 0,

α[i] +α[i+ 1] + β[i+ 1]− γ[i+ 1] + (¬eq(α[i], β[i], γ[i])) ≥ 0,

γ[i] −α[i+ 1]− β[i+ 1]− γ[i+ 1] + (¬eq(α[i], β[i], γ[i])) ≥ −2,

−β[i] +α[i+ 1]− β[i+ 1]− γ[i+ 1] + (¬eq(α[i], β[i], γ[i])) ≥ −2,

−β[i] −α[i+ 1] + β[i+ 1]− γ[i+ 1] + (¬eq(α[i], β[i], γ[i])) ≥ −2,

−β[i] −α[i+ 1]− β[i+ 1] + γ[i+ 1] + (¬eq(α[i], β[i], γ[i])) ≥ −2.

Note that this model for differential characteristic of modular addtion is
suitable for cases that only two independent inputs are involved.

Up to now, every operation in ARX cipher has been exactly described with a
set of inequalities. By combining all inequalities for every operation in the target
ARX cipher, the whole inequalities system can perfectly describe this cipher, and
each solution is a differential characteristic. When we fixed the input and output
differences, if the inequalities system is infeasible, it means this is an impossible
differential. By traversing a special subset of (input, output) differences in the
MILP model, we confirm whether there exists an impossible differential or not
for a certain reduced-round ARX cipher in this subset. Usually, this subset is
decided according to the feature of the given cipher. Without loss of generality,
we denote such subset as (∆→ Γ ), where ∆ and Γ are the sets of possible input
and output differences respectively. In Algorithm 1, we explain how to implement
the search of impossible differentials with Gurobi Optimization, when the MILP
model file “model.lp” is already produced just as those in [32, 15].

2.2 Impossible Differential Model for Ciphers with S-box

Comparing with ARX ciphers, lots of block ciphers use S-box layer as the non-
linear operations rather than modular addition, and linear operations maybe
more complicated with combining many XOR, rotation operations and simple
permutations. For the sake of simplicity, we don’t depict the linear operations
in detail as they have been exactly described in section 2.1.



Algorithm 1: General search process for impossible differentials

// Assume the block size is n.
1 def mycallback(model,where):
2 if where == GRB.Callback.MIP:
3 best = model.cbGet(GRB.Callback.MIP OBJBST)
4 if best ≥ 0:
5 m.terminate()

// mycallback function is to terminate the optimization if a

solution is already appeared.

6 for All input differences ∆xi ∈ ∆ do
7 for All output differences ∆yj ∈ Γ do
8 if i = 0 and j = 0 then
9 Add all constraints about the fixed input and output differences into

“model.lp”;

10 else
11 Change all constraints about the fixed input and output differences

in “model.lp”;

12 m=read(‘model.lp’);
13 m.optimize(mycallback);
14 if m.status=3 then

// The current input and output differences constitute an

impossible differential.

15 Store current input and output differences;

Constraints for S-box operation Assume S is an arbitrary m × l bits S-
box that (y0, y1, . . . , yl−1) = S(x0, x1, . . . , xm−1), the set of all its differential

patterns is DT = {(∆x0, . . . ,∆xm−1, ∆y0, . . . ,∆yl−1)|Pr[(∆x0, . . . ,∆xm−1)
S−→

(∆y0, . . . ,∆yl−1)] > 0}. According to Sun et al.’s work in [30], we can build
linear inequalities system to exactly depict DT , i.e., all possible differentials of
S, with the help of the software SAGE 7 and the greed algorithm in [32]. For
more details, please refer to [32].

Just similar to MILP models in ARX ciphers, we combine all inequalities
for each operation in a certain reduced-round cipher and traverse all input and
output differences to judge whether the whole inequalities system has solutions
or not under each case. If there is a combination of input and output differences
that the MILP model is infeasible, then this is an impossible differential. The
search process is as same as Algorithm 1.

7 Inequality generator() function in the sage.geometry.polyhedron class of SAGE. The
website of SAGE is: http://www.sagemath.org/.



2.3 ZC Approximation Model for ARX Ciphers and Ciphers with
S-box

As the counterpart of impossible differential cryptanalysis, zero-correlation linear
cryptanalysis is a powerful analysis method as well. The search method is similar
to that for impossible differentials except that the inequalities corresponding
to each operation is different, which is referred from [15] and [32]. We briefly
describe this model for ZC approximations as well in Support material A.

3 Algorithm to Verify the Impossible Differentials and
ZC Approximations

In this section, we propose an algorithm to verify impossible differentials and
zero-correlation linear approximations searched by our new tools.

As we know, both U-method and UID-method use the miss-in-the-middle
technique [5]. They need to firstly construct two characteristic matrices for one
round encryption and one round decryption, then calculate the difference state
after r1 rounds from the given input difference and calculate the difference state
before r2 round from the given output difference with probability one, if there is
a contradiction bertween some bits of these two states, this is a r1 + r2 rounds
impossible differential.

Inspired by the methods above, we propose an algorithm to find the con-
tradictions of impossible differentials and ZC approximations found by MILP
method. Taking the impossible differential as an example, we illustrate our idea,
so does the process for ZC approximation. Assume that we already found out
a R-round impossible differential ∆in 9 ∆out of a cipher with block size n,
which means the corresponding MILP model has no solution. Just like the left
part of Figure 1, the target cipher is divided into two parts, Part I and Part
II, from a suitable middle state. Generally this suitable state is decided at the
output of round dR2 e because of the fast propagation of difference. Accordingly,
the inequalities system (including equalities) in MILP model can be divided into
three parts — Part I (rounds 1 ∼ dR2 e), Part II (rounds dR2 e+ 1 ∼ R) and Part

III (equalities linking the output difference of round dR2 e and input difference

of round dR2 e + 1) shown in the right part of Figure 1. If inequalities in Part
III are all removed from the MILP model, then the remained model must have
solutions, which means the two solution sets on the n-bit output of round dR2 e
computed from ∆in and ∆out respectively have no intersection. However, n is
usually so large that the two sets are hard to get with limited computing re-
source, so the contradiction is expected to happen on a small set, such as t bits,
where t << n. This means when n − t equalities in Part III are removed, the
model is still infeasible. Once the position of such t-bit contradiction is found,
a model exactly describing rounds 1 ∼ dR2 e with fixed input difference ∆in and

a model exactly describing rounds dR2 e + 1 ∼ R with fixed output difference
∆out can be produced, then two solution sets on this t bits according to the two
corresponding models can be calculated. These two sets should be contradictory,



and they never have intersection. Now we can intuitively verify the impossible
differential. The whole verification process is summarized in Algorithm 2.

For the search of related-key impossible differentials for a target cipher, the
set of inequalities for key schedule and constraints on master key is regarded as
the Part IV. In the verification process, Part IV should be put into Part I and
Part II simultaneously. The remained process is as same as Algorithm 2.

Part I Part II Part I Part II

Part III

t-bit
n-bit n-bit

Fig. 1. Brief description to find the contradiction. The left of this figure means a cipher
is divided into two parts from a suitable middle state. The right one, which exactly
describe the left cipher, indicates the inequalities system are correspondingly divided
into three parts. Usually Part III involves equalities.

Algorithm 2: Verification proccess of an impossible differential

Require:
R-round impossible differential ∆in9 ∆out;

Ensure:
Position of t-bit contradiction and two contradictory sets there;

1: Decide the suitable middle state to observe the contradiction;
2: Try to remove as many as equalities in Part III of MILP model but the model is

still infeasible, assume t equalities are remained;
3: Produce a model from round 1 to dR

2
e with fixed input difference ∆in;

4: Produce a model from round dR
2
e+ 1 to R with fixed output difference ∆out;

5: Traverse all differences on the t bits in the first model, and put the t-bit
differences making the model to have solution into a given list;

6: Handle the second model similarly to step 5, but put the possible t-bit differences
into another given list;

7: Judge if the two lists have intersection or not.
8: return Position of the t bits contradiction and two lists;



4 Application to HIGHT Block Cipher

4.1 Brief Description of HIGHT

HIGHT, introduced by Hong et al. at CHES 2006 [16], is a lightweight block
cipher approved by Korea Information Security Agency (KISA) and is adopted
as an International Standard by ISO/IEC 18033-3 [17]. Its block size and key size
are 64 bits and 128 bits respectively. HIGHT employs the Type-II generalized
Feistel network consisting of 32 rounds with four parallel Feistel functions in
each round. Whitening keys are applied before the first round and after the last
round. The round function is shown in Figure 2, where (Xi

7|Xi
6, . . . , |Xi

0) and
(SK4i+3|SK4i+2|SK4i+1|SK4i) indicate the 64 bits input and 32 bits subkey of
the i-th round respectively.

F0 F0F1 F1

Xi
7 Xi

6 Xi
5 Xi

4 Xi
3 Xi

2 Xi
1 Xi

0

Xi+1
7 Xi+1

6 Xi+1
5 Xi+1

4 Xi+1
3 Xi+1

2 Xi+1
1 Xi+1

0

SK4i+3 SK4i+2 SK4i+1 SK4i+0

Fig. 2. Round function of HIGHT cipher

Denote exclusive-or, addition modulo 232 and left rotation operations as ⊕,
� and ≪ respectively. F0 and F1, used in the round function, are defined as
follows:

F0(x) = (x≪ 1)⊕ (x≪ 2)⊕ (x≪ 7),

F1(x) = (x≪ 3)⊕ (x≪ 4)⊕ (x≪ 6).

Since the key schedule is not related to the search of impossible differentials
and zero-correlation linear approximations, we omit it in this paper. For further
details, please refer to [16].

4.2 17-Round Impossible Differentials of HIGHT

For HIGHT block cipher, the longest impossible differential, firstly proposed
by Lu in [22], is 16 rounds. Based on the property that the modular addition
� operation definitely preserves the least significant difference in the original
positions, he exploited the miss-in-the-middle manner [5] to find two impossible
differentials for 16 rounds HIGHT cipher as follows.

(ej,∼, 0
8, 08, 08, 08, 08, 08, 08) 9 (e0,3,5,6,7, 0

8, 08, 08, 08, 08, 08, e7)

(e7, e0,3,5,6,7, 0
8, 08, 08, 08, 08, 08) 9 (08, ej,∼, 0

8, 08, 08, 08, 08, 08)



Where ej denotes a byte with zeros in all positions except bit j, ei1,...,ij denotes
ei1 ⊕ . . . ⊕ eij , ej,∼ denotes a byte that has zeros on bits 0 to j − 1, 1 on bit j
and indeterminate values on bits (j + 1) to 7, 08 denotes a zero byte.

In this part, we use the form of inequalities system described exactly for
modular addition, XOR and bit rotation operations in section 2 to build a MILP
model for 17-round HIGHT cipher. Since traversing all input and output differ-
ences is impossible due to the time complexity, we only try the cases that the
hamming weights of both input and output differences are exactly one, we find
four 17-round impossible differentials as follows.

(10000000, 08, 08, 08, 08, 08, 08, 08) 9 (08, 08, 08, 08, 08, 08, 08, 10000000),

(08, 08, 10000000, 08, 08, 08, 08, 08) 9 (08, 10000000, 08, 08, 08, 08, 08, 08),

(08, 08, 08, 08, 10000000, 08, 08, 08) 9 (08, 08, 08, 10000000, 08, 08, 08, 08),

(08, 08, 08, 08, 08, 08, 10000000, 08) 9 (08, 08, 08, 08, 08, 10000000, 08, 08).

These impossible differentials are searched out with Gurobi 6.0.4. on a server
using 12 threads Intel(R) Xeon(R) CPU E5-2620(2.00GHz, 47GB RAM, Ubuntu
14.04.3 LTS). Totally it costs 4445 seconds (about 74 minutes). The code can be
obtained from: https://github.com/csy1234/NewAutomaticSearchTool/tree/ma
ster/HIGHT-IDC/FindTrail.

Taking the first impossible differential as an example, we verify it by using
the algorithm in section 3. One contradiction is found on the last output byte
of round 9 (input of round 10). The first solution set on this 8-bit contradic-
tion calculated with model for round 1 ∼ 9 includes 255 possible values except
10000000, and the second solution set on this 8-bit contradiction calculated with
model for round 10 ∼ 17 only have the value 10000000. This means these two
sets have no intersection, further means this 17-round impossible differential is
right.

4.3 17-Round ZC Approximations of HIGHT

Until now, for the HIGHT block cipher, the longest ZC approximation is 16
rounds presented by Wen et al. in [34], which utilized the mask property of
addition that the correlation is not zero if and only if two input masks and
output mask have the same high non-zero bit position in [11]. They tried to set
the non-zero bits of mask on the highest position of each branch of input and
output, and found 128 zero approximations, see Theorem 1 in [34].

In this part we utilize the MILP model proposed in section A to search longer
ZC approximations for HIGHT cipher. In this model, the masks of all subkeys
are set as free variables. Because of the time complexity as well, we only try the
cases that the hamming weights of both input and output masks are exactly one,
and we found four 17-round zero-correlation linear approximations as follows.

(08, 00000001, 08, 08, 08, 08, 08, 08) 9 (00000001, 08, 08, 08, 08, 08, 08, 08),



(08, 08, 08, 00000001, 08, 08, 08, 08) 9 (08, 08, 00000001, 08, 08, 08, 08, 08),

(08, 08, 08, 08, 08, 00000001, 08, 08) 9 (08, 08, 08, 08, 00000001, 08, 08, 08),

(08, 08, 08, 08, 08, 08, 08, 00000001) 9 (08, 08, 08, 08, 08, 08, 00000001, 08).

These ZC approximations are found with Gurobi 6.0.4. on a server using 12
threads Intel(R) Xeon(R) CPU E5-2620(2.00GHz, 47GB RAM, Ubuntu 14.04.3
LTS). Totally it costs 4786 seconds( about 80 minutes). The code can be obtained
from website: https://github.com/csy1234/NewAutomaticSearchTool/tree/mas
ter/HIGHT-ZC/FindTrail.

Taking the second ZC approximation as example, one contradiction is found
on the first output byte of round 9 (input of round 10). The first solution set
on this 8-bit contradiction calculated from the fixed input mask involves 255
values except 00000001, and the set solution set on this 8-bit contradiction cal-
culated from the fixed output mask only has one 00000001. This means such
approximation is really a zero-correlation linear approximation.

5 Application to LBlock Cipher

5.1 Brief Description of LBlock

LBlock, designed by Wu and Zhang at ACNS in [39], is a lightweight block
cipher. On account of its excellent hardware performance, software performance
and security, it is widely focused on by the cryptanalysts in the field of symmetric
cryptography. Its block size and key size are 64 bits and 80 bits respectively.
LBlock cipher adopts a 32-round modified Feistel network which adds an extra
left rotation operation on one branch of general Feistel network. The round
function is shown in Figure 3, where (Xi

1, X
i
0) and ski denote 64 bits input and

32 bits subkey of the i-th round respectively.

S 7

S6

S5

S4

S3

S2

S1

S0

ski

32 32
4

<<<8

X i
1 X i

0

X i+1
1 X i+1

0

Fig. 3. Round function of LBlock cipher



In the round function, there are a xor operation with subkey, a nonlinear layer
and a simple permutation that the second component involves 8 parallel different
S-boxes S0, S1, S2, S3, S4, S5, S6, S7 and the last component only changes the
byte order of its input. It is worth noting that an 8-bit left rotation operation
happens on the right branch in Figure 3.

Key Schedule The master key of LBlock cipher is 80 bits, denoted by K =
k79, k78, . . . , k0. All subkeys ski, i = 0, 1, . . . , 31 are produced by utilizing a 80-bit
register. The process is illustrated in Algorithm 3.

Algorithm 3: Key schedule of LBlock cipher

1 sk0 = K79∼48;
2 for 1 ≤ r ≤ 31 do
3 k79∼0 ← k79∼0 ≪ 29;
4 k79∼76 ← S9(k79∼76);
5 k75∼72 ← S8(k75∼72);
6 k50∼47 ← k50∼47 ⊕ [i]2;
7 skr ← k79∼48

In Algorithm 3, ka∼b denoted all key bits from ka to kb, S8 and S9 are two
different 4× 4 S-boxes. For more details about LBlock, please refer to [39].

5.2 16-Round Related-Key Impossible Differentials of LBlock

Differential cryptanalysis and impossible differential cryptanalysis are both im-
plemented under the single-key setting, i.e., all plaintexts are encrypted with
one master key. In [1] and [18], related-key differential and related-key impossi-
ble differential cryptanalysis are proposed respectively, which exploit the relation
of two master keys to recover the secret keys.

For LBlock cipher, Minier and Naya-Plasencia found a 15-round related-key
impossible differential and attacked 22-round LBlock with it in [36]. In [35], Wen
et al. designed a specialized algorithm to search longer related-key impossible
differentials with some observations on key schedule and structure of the cipher.
They totally found two 16-round related-key impossible differentials. However,
Wen et al.’s two impossible differentials are right only under part of master key
pairs which satisfy one of the given two key differences.

In our work, we use the method in Section 2 to build the MILP model for
LBlock cipher including the key schedule and search the related-key impossible
differentials. Considering the key schedule, LBlock is a bit-level cipher. We only
search the cases that the difference of master key has only one nonzero bit (80
cases) and the input and output differences both have no more than one nonzero
bit (65 × 65 = 4225 cases ), so in total we search 338000 cases. In the end, we



search out six 16-round related-key impossible differentials, whose forms are as
follows:

0
16r,∆K−−−−−→ 0,

where the input and output differences are both zero and the difference of master
key ∆K has only one nonzero bit difference among k0, k1, k2, k6, k10, k11 (six
cases). Unlike Wen et al.’s work, as long as the master key pair satisfies one of
the six differences above, the related-key impossible differential is right in our
work.

These six related-key impossible differential are found with Gurobi 6.0.4. on
a server using 12 threads Intel(R) Xeon(R) CPU E5-2620(2.00GHz, 47GB RAM,
Ubuntu 14.04.3 LTS). It costs several hours.

Taking the related-key impossible differential with k0 as example, one con-
tradiction is found on the sixth most significant output nibble of round 8 (input
of round 9). The first solution set on this 4-bit contradiction calculated from the
fixed input difference involves only one values 0000, and the set solution set on
this 4-bit contradiction calculated from the fixed output difference only has 11
values: 1000, 0100, 1100, 1010, 0110, 1110, 0001, 0101, 0011, 1011, 1111. This
means such approximation is really a related-key impossible differential.

6 Conclusion

In this paper, we propose an automatic search tool for impossible differentials
and ZC approximations based on MILP method. In this tool, the differential and
linear properties of non-linear components are taken into consideration, so we
can not only find the previous impossible differentials and ZC approximations,
but also may find longer ones for a target cipher. As applications, we apply this
tool on HIGHT and LBlock ciphers. As a result, we find 4 impossible differentials
and 4 ZC approximations for 17-round HIGHT, which are the longest ones for
HIGHT cipher until now, and find six 16-round related-key impossible differen-
tials for LBlock. There is a problem as well. Since 8× 8 S-box cannot be exactly
described with a set of inequalities in MILP model, which is a limitation of our
automatic search tool, in the further we will go on researching how to apply this
tool on ciphers with large size of S-box.
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A Appendix

A.1 Zero-Correlation Linear Model for ARX Cipher

In order to search ZC approximations in ARX ciphers, it is necessary to consider
about the linear approximations of basic operations such as XOR, branching, bit
rotation and modular addition operations. Before studying the construction of
MILP model for search of ZC approximations, we introduce the linear approxi-
mations over XOR and branching operations proposed by Biham in [4] as follows,
where “·” means the scalar product of binary vectors.

Lemma 1 (XOR operation [4]). Let h(x1, x2) = x1 ⊕ x2, α1, α2 are the
input masks of x1 and x2 respectively, β is the output mask, then the correlation
C(β · h(x1, x2), α1 · x1 ⊕ α2 · x2) 6= 0 if and only if β = α1 = α2.

Lemma 2 (Branching operation [4]). Let h(x) = (x, x), α is the input mask,
β1, β2 are the output masks of h(x), then the correlation C((β1, β2)·h(x), α·x) 6=
0 if and only if α = β1 ⊕ β2.

Following the Lemma 1 and 2, we start to construct the MILP model for search
of ZC approximations in ARX ciphers.

Constraints for Branching, XOR and Bit Rotation Assumed that the
input mask of braching operation is α, the output masks are β1 and β2. According
to Lemma 2, α = β1 ⊕ β2, so similar to (2) in section 2.1, we have the following
equality to exactly describe its each bit operation.

α[i] + β1[i] + β2[i] = 2d⊕ (5)

where d⊕ is a dummy bit variable.

In the light of Lemma 1, some linear equations between input masks and
output mask can perfectly describe the linear approximation of XOR operation.
Besides, the bit rotation operation is a simple permutation that we can list some
equations for the related bits.

Constraints for Modular Addition In [33, 27], a method to calculate the
correlation of modular addition is given as follows.



Theorem 2 ([33, 27]). For the linear approximation of addition modulo 2n, let
the input masks and output mask be α1 = (α1[n − 1], . . . , α1[0]), α2 = (α2[n −
1], . . . , α2[0]) and β = (β[n−1], . . . , β[0]) respectively, where α1, α2, β ∈ Fn2 , and
let the vector u = (u[n − 1], . . . , u[0]) satisfy u[i] = 4β[i] + 2α1 + α2, 0 ≤ u[i] <
8, 0 ≤ i < n. Then the correlation can be computed as follows:

cor�(β, α1, α2) = LAu[n−1]Au[n−2] . . . Au[0]C, (6)

where Ar, 0 ≤ r < 7, is 2× 2 matrice,

A0 =
1

2

[
2 0
0 1

]
, A1 = A2 = −A4 =

1

2

[
0 0
1 0

]
,

A7 =
1

2

[
0 2
1 0

]
−A3 = A5 = −A6 =

1

2

[
0 0
0 1

]
,

L is a row vector L = (1, 0), and C is a column vector C = (1, 1)T .

In order to quickly calculate the correlation shown in Theorem 2, Nyberg
and Wellén utilized the automaton to calculate (6) by multiplication from left
to right [27]. They let e0 = L = (1, 0) and e1 = (0, 1), then the state transitions
for addition modulo 2n is as follows:

εn = e0
u[n−1]−−−−→ εn−1

u[n−2]−−−−→ εn−2 → . . .→ ε1
u[0]−−→ ε0.

Where εj ∈ {e0, e1}, 0 ≤ j < n. For more details, please refer to [27].
Based on the work above, Fu et al. in [15] set a 0 − 1 variable si = 0 if

εi = e0, otherwise si = 1, then utilized (si+1, β[i], α1[i], α2[i], si) to describe the
state transition from εi+1 to εi, namely esi+1Au[i] = esi . They found that there
are 10 possible transitions for the vector (si+1, β[i], α1[i], α2[i], si), and listed
eight linear inequalities exactly satisfying these 10 possible transitions with the
help of SAGE and the greedy algorithm in [32], which are shown as follows:

si+1 − β[i]− α1[i] + α2[i] + si ≥ 0, si+1 + β[i] + α1[i]− α2[i]− si ≥ 0,

si+1 + β[i]− α1[i]− α2[i] + si ≥ 0, si+1 − β[i] + α1[i]− α2[i] + si ≥ 0,

si+1 + β[i]− α1[i] + α2[i]− si ≥ 0, si+1 − β[i] + α1[i] + α2[i]− si ≥ 0,

−si+1 + β[i] + α1[i] + α2[i] + si ≥ 0, si+1 + β[i] + α1[i] + α2[i] + si ≥ 0.

Note that there is an additional constraint εn = e0, hence, the constraints include
8× n+ 1 linear inequalities for linear approximation of addition modulo 2n.

Until now, every operation in a certain reduced-round ARX cipher is de-
scribed with inequalities. The corresponding MILP model for search of ZC ap-
proximations is built by combining the whole inequalities system of all opera-
tions, and it is as same as the building process for search of impossible differ-
entials. If we already have the MILP model file “model.lp” for a target cipher,
the general search process is similar to the Algorithm 1 when we use Gurobi
as the optimization except that we use mask in ZC approximations instead of
difference in impossible differentials.



A.2 Zero-Correlation Linear Model for Ciphers with S-box

Since the linear operations used in ciphers with S-box are as same as those in
ARX ciphers, for the sake of simplicity, we omit them in this subsection.

Constraints for S-box operation Assume S is an arbitrary m × l bits S-
box that (y0, y1, . . . , yl−1) = S(x0, x1, . . . , xm−1), and α, β are input and output
masks respectively, then the set of all its meaningful linear approximations is

LT = {(α, β)|Pr[α S−→ β] 6= 1
2}. Similar to the construction of constraints for

S-box in impossible differential cryptanalysis in section 2.2, we can build linear
inequalities system to exactly depict the set of LT , with the help of SAGE and
Greedy algorithm in [32].

Next, we still combine all inequalities for each operation in a certain reduced-
round cipher with S-box. Then the search process is as same as that for ARX
ciphers.


