
1

Mastrovito Form of Non-recursive Karatsuba
Multiplier for All Trinomials

Yin Li, Xingpo Ma, Yu Zhang and Chuanda Qi

Abstract—We present a new type of bit-parallel non-recursive Karatsuba multiplier over GF (2m) generated by an arbitrary irreducible
trinomial. This design effectively exploits Mastrovito approach and shifted polynomial basis (SPB) to reduce the time complexity and
Karatsuba algorithm to reduce its space complexity. We show that this type of multiplier is only one TX slower than the fastest bit-
parallel multiplier for all trinomials, where TX is the delay of one 2-input XOR gate. Meanwhile, its space complexity is roughly 3/4 of
those multipliers. To the best of our knowledge, it is the first time that our scheme has reached such a time delay bound. This result
outperforms previously proposed non-recursive Karatsuba multipliers.

Index Terms—Mastrovito multiplier, Karatsuba, shifted polynomial basis, trinomials.

F

1 INTRODUCTION

Efficient hardware implementation of multiplication
over GF (2m) is one of the main topics studied in recent
years, as it is frequently required in many areas such
as coding theory and public key cryptography [1], [2].
A number of algorithms for efficient GF (2m) multipli-
cation have been proposed, one of the most attractive
approaches is the Karatsuba algorithm (KA) [3]. The KA
was originally applied in the digit number multiplication
and can be directly shifted to polynomial multiplication
[4]. It is a divide-and-conquer algorithm which works
by recursively breaking down a problem into two or
more sub-problems. For polynomial multiplication, the
key idea of the KA saves coefficient multiplications at the
cost of extra coefficient additions. When using polynomi-
al basis (PB) representation, the GF (2m) multiplication
consists of a polynomial multiplication and a modular
reduction. Let f(x) be the irreducible polynomial that
defines GF (2m), A(x), B(x) be two arbitrary elements
of GF (2m). Then the field multiplication is defined as
C(x) = A(x) ·B(x) mod f(x). Since the KA can optimize
polynomial multiplication A(x) · B(x), it can be easily
adopted to design efficient GF (2m) multipliers, either
for sub-quadratic complexity multipliers (apply KA re-
cursively and cost O(mδ) circuit gates with 1 < δ < 2)
[5], [6] or hybrid multipliers [10], [11].

Generally, the hybrid multipliers [10], [11] firstly per-
form a few iterations of KA to reduce the whole space
complexities, and then perform school-book multipli-
cation algorithm over the smaller input operands to
achieve relatively higher speed. Therefore, this kind of
multipliers provided a trade-off between the space and
time complexities. Specially, there is another type of
hybrid multiplier [14] which only apply KA once in the

• Yin Li, Xingpo Ma, Yu Zhang and Chuanda Qi are with Department of
Computer Science and Technology, Xinyang Normal University, Henan,
P.R.China, 464000. email: yunfeiyangli@gmail.com (Yin Li).

polynomial multiplication. We name this type of multi-
plier as non-recursive Karatsuba multiplier. Compared
with the bit-parallel multipliers without using divide-
and-conquer algorithms [16], [17], [24], [25], the space
complexity of this multiplier is roughly reduced by 1/4,
with time complexity increased by a small number of TX ,
where TX is the delay of one 2-input XOR gate. For ex-
ample, the classic scheme [14] is at least 2 TX slower than
the fastest bit-parallel multiplier [16], [17]. During recent
years, several schemes [12], [13], [18], [23] have been
proposed to accelerate this multiplier, some of which
have their time complexities close to the fastest ones.
However, these schemes work by using either specific
irreducible polynomials (e.g, all-one polynomial (AOP),
equally-spaced trinomial (EST)) which are quite rare or
a modified KA that increased the space complexity.

Mastrovito [7] provided a novel way that transforms
the GF (2m) multiplication into a matrix-vector multipli-
cation. A product matrix M is introduced to combine
the polynomial multiplication and modular reduction
together. Thus, the field multiplication is carried out by
c = M · b, where c, b are the coefficient vectors of C(x)
and B(x) and M is constructed from A(x) and f(x)
presented previously. Empirically, the Mastrovito mul-
tiplier is generally faster than other type of multipliers,
but the organization of M is always its implementation
bottleneck. In [16], Fan and Hasan proposed a new
Mastrovito multiplier based on shifted polynomial basis
(SPB) which can simplify M. This type of multiplier is
considered as the fastest bit-parallel multiplier so far.
More explicitly, this architecture contains m2 AND and
m2−1 XOR gates with time delay of TA+(1+dlog2me)TX
(for good field it is equal to TA+ dlog2meTX), where TA
is the delay of one 2-input AND gate.

In this paper, we apply the idea of Mastrovito to
KA and describe a new architecture for non-recursive
Karatsuba multiplier for all irreducible trinomials. Field
multiplication is firstly partitioned into two parts accord-
ing to KA, then each of which is formulize by a Mas-

2

trovito matrix-vector multiplication. Explicit formulae of
related product matrices using SPB are studied. Our
scheme fully takes advantage of Mastrovito algorithm
and SPB and achieves faster implementation speed. It is
argued that this new multiplier is only one TX slower
than the fastest multipliers for trinomials. Meanwhile,
by applying KA and exploiting the overlapped entries
of different Mastrovito matrices, the space complexity
of the proposed multiplier is still roughly 3/4 of those
multipliers. To the best of our knowledge, it is the first
time our scheme has achieved such a time delay bound
compared with previously proposed bit-parallel non-
recursive Karatsuba multipliers for trinomials.

The remainder of this paper is organized as follows: In
section 2, we first briefly introduce some basic concepts
and recall the Karatsuba and Mastrovito algorithms.
Then, based on combination of these two algorithm-
s, a new type of bit-parallel multiplier architecture is
proposed in the following section. Section 4 presents
the comparison between the proposed multiplier and
some others. The last section summarizes the results and
draws some conclusions.

2 NOTATION AND PRELIMINARY

In this section, we briefly review some notations and
algorithms used throughout this paper.

Consider a binary extension field generated with an
irreducible trinomial GF (2m) ∼= F2[x]/(f(x)) where
f(x) = xm + xk + 1. Let x be a root of f(x), and then
the set M = {xm−1, · · · , x, 1} constitutes a polynomial
basis (PB). The shifted polynomial basis (SPB) proposed
by Fan and Dai [15] was derived from polynomial basis.
It can be obtained by multiplying the set M by a certain
exponentiation of x:

Definition 1 [15] Let v be an integer and the ordered set
M = {xm−1, · · · , x, 1} be a polynomial basis of GF (2m) over
F2. The ordered set x−vM := {xi−v|0 ≤ i ≤ m−1} is called
the shifted polynomial basis(SPB) with respect to M .

It is easy to check that the field multiplication using
SPB is nearly the same as that using PB except a certain
parameter:

C(x)x−v = A(x)x−v ·B(x)x−v mod f(x).

The advantage of SPB over PB is that it can simplify the
modular reduction if v is properly chosen. For trinomial
xm + xk + 1, it has been proved that the optimal value
of v here is k or k− 1 [15]. In this study, we choose that
v equals k and use this denotation thereafter.

The Karatsuba algorithm (KA) optimized the polyno-
mial multiplication D(x) = A(x) · B(x) by partitioning
each polynomial into two halves.

AB =(AHx
n +AL) · (BHxn +BL)

=AHBHx
2n + [(AH +AL)(BH +BL)

+AHBH +ALBL]x
n +ALBL,

(1)

where n = m/2, AH , AL and BH , BL are two halves of
A(x) and B(x), respectively. When m is odd, the formula
is almost the same as (1). We note that the addition
and subtraction are the same in GF (2m). The above
expression saves one partial multiplication at the cost of
three extra partial additions. For VLSI implementation
of expression (1), it leads to more XOR gate delay than
the ordinary polynomial multiplication.

Polynomial multiplication D(x) = A(x) · B(x) can be
implemented as a matrix-vector multiplication

d = A · b,

where b = [b0, b1, · · · , bm−1]T and d = [d0, d1, · · · , dm−1]T
are the coefficient vectors of B(x) and D(x), respectively.
The matrix A is given by

A =

a0 0 0 · · · 0 0
a1 a0 0 · · · 0 0
a2 a1 a0 · · · 0 0
...

...
...

. . .
...

...
am−2 am−3 am−4 · · · a0 0
am−1 am−2 am−3 · · · a1 a0
0 am−1 am−2 · · · a2 a1
0 0 am−1 · · · a3 a2
...

...
...

. . .
...

...
0 0 0 · · · am−1 am−2
0 0 0 · · · 0 am−1

. (2)

Then, we can perform the modular reduction C(x) =
D(x) mod f(x). The Mastrovito algorithm [7] provides
a way to combine the polynomial multiplication and
modular reduction into a matrix-vector multiplication,
i.e.,

c = M · b.

The matrix M is called product matrix which is con-
structed from A and f(x), and c = [c0, c1, · · · , cm−1]T
is the coefficient vector of C(x). The main problem of
Mastrovito algorithm is that its implementation relies on
the organization of M. Several algorithms are given to
construct M efficiently or make it simpler, some of them
are presented in the literature [15], [16], [24], [25], [26],
[27].

In the following section, we will use Mastrovito ap-
proach to speed up KA and describe a new architecture
for bit-parallel non-recursive Karatsuba multiplier. We
first introduce some notations pertaining to matrices and
vectors which are already presented in [26]: Z(i, :),Z(:, j)
and Z(i, j) represent the ith row vector, jth column
vector, and the entry with position (i, j) in matrix Z,
respectively. Z[↑ i],Z[↓ i] represent up and down shift of
matrix Z by i rows and feeding the vacancies with zero.

Besides, two extra types of operations are also intro-
duced: Z[i] represents cyclic shift of Z by upper i rows.
Z[� i] and Z[� i] represent appending i zero vectors
to the top and bottom of Z, respectively. For example,

3

Z[2], Z[� 1] and Z[� 2] are given by

Z[2] = [Z(3, :)T , · · · ,Z(m, :)T ,Z(1, :)T ,Z(2, :)T]T ,
Z[� 1] = [Z(1, :)T , · · · ,Z(m, :)T , 0]T ,
Z[� 2] = [0, 0,Z(1, :)T , · · · ,Z(m, :)T]T .

3 MASTROVITO FORM OF KARATSUBA MULTI-
PLIER

In this section, we firstly introduce a matrix form of
Karatsuba algorithm for GF (2m) multiplication using
SPB representation. Then, we develop an efficient ap-
proach to calculate the product matrix, based on mod-
ified sub-expression sharing [7]. Accordingly, a fast bit-
parallel Karatsuba multiplier architecture is proposed.

3.1 Matrix form of Karatsuba algorithm

Let f(x) = xm + xk + 1 be an irreducible trinomial
generating the finite field GF (2m). Provided that A,B ∈
GF (2m) are two arbitrary elements in SPB representa-
tion, namely,

A = x−k
m−1∑
i=0

aix
i, B = x−k

m−1∑
i=0

bix
i.

The field multiplication consists of performing polyno-
mial multiplication with parameter x−k and then reduc-
ing the product modulo f(x), i.e.,

C =A ·B mod f(x)

=x−2k ·

(
m−1∑
i=0

aix
i

)
·

(
m−1∑
i=0

bix
i

)
mod f(x)

=x−k
m−1∑
i=0

cix
i.

We partition A and B into two halves and apply KA to
the field multiplication. Two cases are considered:

Case 1, m is even. Let m = 2n and

A = (A2x
n +A1)x

−k, B = (B2x
n +B1)x

−k,

where A1 =
∑n−1
i=0 aix

i, A2 =
∑n−1
i=0 ai+nx

i, B1 =∑n−1
i=0 bix

i, B2 =
∑n−1
i=0 bi+nx

i. Then,

C =A ·B mod f(x)

=(A2x
n +A1)x

−k · (B2x
n +B1)x

−k mod f(x)

=
(
A2B2x

2n+(A2B1+A1B2)x
n+A1B1

)
x−2kmodf(x)

=
[
A2B2x

2n +A1B1 + (A2B2 +A1B1)x
n

+(A1 +A2)(B1 +B2)x
n]x−2k mod f(x)

=
[
(A2x

2n +A2x
n)B2 + (A1x

n +A1)B1

+(A1 +A2)(B1 +B2)x
n]x−2k mod f(x)

(3)
Case 2, m is odd. Let m = 2n+1 and

A = (A2x
n +A1)x

−k, B = (B2x
n+1+B1)x

−k,

where A1 =
∑n−1
i=0 aix

i, A2 =
∑n
i=0 ai+nx

i, B1 =∑n
i=0 bix

i, B2 =
∑n−1
i=0 bi+n+1x

i. Then,

C =A ·B mod f(x)

=(A2x
n +A1) · (B2x

n+1 +B1)x
−2k mod f(x)

=
(
A2B2x

2n+1+(A2B1+A1B2x)x
n+A1B1

)
x−2kmodf(x)

=
[
A2B2x

2n+1 +A1B1 + (A2B2x+A1B1)x
n

+(A1 +A2)(B1 +B2x)x
n]x−2k mod f(x)

=
[
(A2x

n +A2)B2x
n+1 + (A1x

n +A1)B1

+(A1 +A2)(B1 +B2x)x
n]x−2k mod f(x)

(4)
In order to compute (3) and (4), we use following

notations:
S1 ={
(A2x

n+A2)B2x
n+(A1x

n+A1)B1, (m is even),
(A2x

n+A2)B2x
n+1+(A1x

n+A1)B1, (m is odd),

S2 =

{
(A1 +A2)(B1 +B2), (m is even),
(A1 +A2)(B1 +B2x), (m is odd).

Therefore, the field multiplication is given by

C = S1x
−2k + S2x

n−2k mod f(x).

Let U =
∑n−1
i=0 uix

i and V =
∑n−1
i=0 vix

i be the results of
A1 + A2 and B1 + B2, respectively1. According to pre-
vious description presented in Section 2, we know that
polynomial multiplication (A2x

n+A2)B2x
i(i = n, n+1),

(A1x
n+A1)B1 and S2 = UV can be rewritten as matrix-

vector multiplication form. In addition, multiplying by
x−2k or xn−2k only affects the products degree and does
not change their coefficients. Thus, we write S2x

n−2k =
U’·v where U’ is slightly different from the multiplicative
matrix with respect to S2. For example, if m is even, the
form of U’ is as follows:

U’ =

n−2k
n−2k+1
n−2k+2

...
2n−2k−2
2n−2k−1
2n−2k

2n−2k+1
...

3n−2k−3
3n−2k−2

u0 0 · · · 0 0
u1 u0 · · · 0 0
u2 u1 · · · 0 0
...

...
. . .

...
...

un−2 un−3 · · · u0 0
un−1 un−2 · · · u1 u0

0 un−1 · · · u2 u1

0 0 · · · u3 u2

...
...

. . .
...

...
0 0 · · · un−1 un−2

0 0 · · · 0 un−1

.

Different from the matrix in (2), there are labels in the
left side that indicate the exponent of indeterminate
x for each line. Notice that S1x

−2k consists of two
sub-polynomial multiplications which correspond two
matrix-vector multiplications. However, these multipli-
cations can be implemented using only one matrix-
vector multiplication. More explicitly, S1x

−2k = A’ · b,
where A’ is constructed from A2x

n+A2, A1x
n+A1 and

labeled by {−2k,−2k+ 1, · · · , 2m− 2− 2k} for the coef-
ficients degree. The organization of A’ varies according
to the parity of m. Two cases are considered:

1. when m is odd, U = A1+A2 =
∑n

i=0 uix
i and V = B1+B2x =∑n

i=0 vix
i

4

Case 1: m is even.

S1x
−2k = A’ · b

=

AL1, 0n×n
AL1 + AL2, AH1

AL2, AH1 + AH2

0n×n, AH2

 · [b1

b2

]
.

(5)

where b1,b2 represent the coefficient vectors of B1, B2,
0n×n is a n × n zero matrix, AL1 and AH1 are n × n
lower-triangular Toeplitz matrices, AL2 and AH2 are n×
n upper-triangular Toeplitz matrices2.

AL1 =

a0 0 · · · 0
a1 a0 · · · 0
...

...
. . .

...
an−1 an−2 · · · a0

 ,

AL2 =

0 an−1 · · · a2 a1
0 0 · · · a3 a2
...

...
. . .

...
...

0 0 · · · 0 an−1
0 0 · · · 0 0

 ,

AH1 =

an 0 · · · 0
an+1 an · · · 0

...
...

. . .
...

am−1 am−2 · · · an

 ,

AH2 =

0 am−1 · · · an+2 an+1

0 0 · · · an+3 an+2

...
...

. . .
...

...
0 0 · · · 0 am−1
0 0 · · · 0 0

 .

Case 2: m is odd.

S1x
−2k = A’ · b

=

AL1, 0(n+1)×n
AL1 + AL2, AH1

AL2, AH1 + AH2

0(n+1)×(n+1), AH2

 · [b1

b2

]
.

(6)

where 0(n+1)×n and 0(n+1)×(n+1) represent a (n+ 1)× n
zero matrix and a (n+1)×(n+1) zero matrix, respective-
ly. AL1 is a n× (n+ 1) lower-triangular Toeplitz matrix,
AH1 is a n × n lower-triangular Toeplitz matrix, AL2 is
a n× (n+ 1) upper-triangular Toeplitz matrix and AH2

is a n× n upper-triangular Toeplitz matrix.

AL1 =

a0 0 · · · 0 0
a1 a0 · · · 0 0
...

...
. . .

...
...

an−1 an−2 · · · a0 0

 ,
2. Please note that the matrix in the right side actually contains 4n =

2m rows, but the last row is 0, which does not affect the result.

AL2 =

0 an−1 · · · a1 a0
0 0 · · · a2 a1
...

...
. . .

...
...

0 0 · · · 0 an−1

 ,

AH1 =

an 0 · · · 0
an+1 an · · · 0

...
...

. . .
...

am−2 am−3 · · · an

 ,

AH2 =

am−1 · · · an+2 an+1

0 · · · an+3 an+2

...
. . .

...
...

0 · · · 0 am−1

 .
Similarly, the organization of U’ is easier than that of

A’, i.e., U’ = [UT
1 ,U

T
2]
T , where

U1 =

u0 0 · · · 0
u1 u0 · · · 0
...

...
. . .

...
ut−1 ut−2 · · · u0

 ,
and

U2 =

0 ut−1 · · · u2 u1
0 0 · · · u3 u2
...

...
. . .

...
...

0 0 · · · 0 ut−1

 .
Here, if m is even, t = n = m

2 , else if m is odd, t =
n+ 1 = m+1

2 .
Example 3.1. Consider the field multiplication using
SPB representation over GF (25) with the underlying
irreducible trinomial x5 + x2 + 1. The parameter k = 2
and SPB is defined as {x−2, x−1, 1, x, x2}. Assume that
A =

∑4
i=0 aix

i−2 and B =
∑4
i=0 bix

i−2 are two elements
in GF (25), we partition A,B as A = A2 + A1x

−2, B =
B2 +B1x

−2, where

A1 = a1x+ a0, A2 = a4x
2 + a3x+ a2,

B1 = b2x
2 + b1x+ b0, B2 = b4x+ b3.

According to equation (4), then

A ·B = [(A2x
2 +A2)B2x

3 + (A1x
2 +A1)B1

+ (A2 +A1)(B2x+B1)x
2]x−4

= S1x
−4 + S2x

−2.

Therefore, the matrices A′ and U′ are given by

A′ =

−4
−3
−2
−1
0
1
2
3
4

a0 0 0 0 0
a1 a0 0 0 0
a0 a1 a0 0 0
a1 a0 a1 a2 0
0 a1 a0 a3 a2
0 0 a1 a2+a4 a3
0 0 0 a3 a2+a4
0 0 0 a4 a3
0 0 0 0 a4

, (7)

5

and

U′ =

−2
−1
0
1
2

u0 0 0
u1 u0 0
u2 u1 u0
0 u2 u1
0 0 u2

 , (8)

where u2 = a4, u1 = a3 + a1, u0 = a0 + a2. We have
S1x

−4 = A′ · b, S2x
−2 = U′ · v.

3.2 Reduction process
It is easy to check that the products S1x

−2k, S2x
n−2k con-

tain the terms of degrees out of the range [−k,m−k−1].
To compute the field multiplication, we have to perfor-
m the reduction operation for these two expressions.
According to Mastrovito scheme, the reduction can be
regarded as the construction of product matrices from
A’ and U’ using the equation xm = xk + 1. Denoted by
MA and MU the product matrices of S1x

−2k mod f(x)
and S2x

n−2k mod f(x), respectively. In the following,
we investigate the construction details for these two
matrices.

3.2.1 Construction of MA

Note that the matrix A’ contains 2m − 1 rows, each
of which corresponds to the polynomial degree from
−2k to 2m− 2− 2k, we can reduce the rows labeled
by {−2k,−2k + 1, · · · ,−k − 1} (the first k rows), and by
{m− k,m− k + 1, · · · , 2m− 2− k} (the last m − k − 1
rows) of the matrix A’ to obtain MA. According to the
form of f(x) = xm + xk + 1 and the SPB definition, we
mainly utilize following equations:

xi = xm+i + xi+k, for i = −2k, · · · ,−k − 1;

xi = xi−m+k + xi−m, for i = m−k,m−k+1,

· · · , 2m− 2k − 2.

(9)

Corresponding to (9), the computation of MA consists of
adding the rows of A’ labeled by i to those rows labeled
by m+ i, i+ k (or i−m+ k, i−m). More explicitly, we
eliminate the row −2k,−2k + 1, · · · ,−k − 1 by adding
them to the row −k, · · · ,−1 and m− 2k, · · · ,m− k − 1,
and eliminate the row m− k, · · · , 2m− 2k − 2 by adding
them to the row 0, · · · ,m−k−2 and −k, · · · ,m−2k−2.
These operations can be implemented by matrix addi-
tions. We will utilize following three m×m matrices:

AU =[A’(1, :)T , · · · ,A’(k, :)T ,0, · · · ,0︸ ︷︷ ︸
m−k

]T ,

AM =[A’(k + 1, :)T , · · · ,A’(k +m, :)T]T ,

AL =[0, · · · ,0︸ ︷︷ ︸
k

,A’(k+m+1, :)T , · · · ,A’(2m− 1, :)T ,0]T.

Obviously, the nonzero parts of AU , AL are the rows of
A’ whose labels are out of the range [−k,m−k−1]. Then,
the product matrix MA is obtained as follows:

MA =AM + AU + AU [↓ (m− k)]
+ AL + AL[↑ k].

(10)

Since the structure of MA highly influences the effi-
ciency of our multiplier, we make two important obser-
vations about the construction of MA.
Observation 3.1. If m is even, AM+AU [↓ (m−k)]+AL[↑
k] is [

AL1 + AL2, AH1 + AH2

AL1 + AL2, AH1 + AH2

]
[k]. (11)

If m is odd, this expression can be rewritten as[(
A’L1+A’L2

AL1+AL2

)
[1],

AH1+AH2

A’H1+A’H2

]
[k]. (12)

where A’L1 = AL1[� 1], A’H1 = AH1[� 1] and A’L2 =
AL2[� 1], A’H2 = AH2[� 1].

Proof According to the definitions of AU ,AM and AL,
we have

AU [↓ (m− k)] = [0, · · · ,0︸ ︷︷ ︸
m−k

,A’(1, :)T , · · · ,A’(k, :)T]T ,

AM = [A’(k + 1, :)T , · · · ,A’(k +m, :)T]T ,

AL[↑ k] = [A’(k+m+1, :)T , · · · ,A’(2m− 1, :)T ,0, · · · ,0︸ ︷︷ ︸
k+1

]T .

Then
AU [↓ (m−k)]+AL[↑ k]=[A’(k+m+1, :)T , · · · ,A’(2m−1, :)T,

0,A’(1, :)T , · · · ,A’(k, :)T]T .

Thus, AM + AU [↓ (m− k)] + AL[↑ k] is given by

[A’(k+m+1, :)T +A’(k+1, :)T , · · · ,A’(2m−1, :)T +A’(m−1, :)T ,
A’(m, :)T ,A’(1, :)T +A’(m+1, :)T · · · ,A’(k, :)T + A’(k+m, :)T].

In addition, above matrix can also be rewritten as E[k],
where
E = [A’(1, :)T + A’(m+1, :)T · · · ,A’(k, :)T + A’(k+m, :)T ,

A’(k+1, :)T +A’(k+m+1, :)T , · · · ,A’(m−1, :)T +A’(2m−1, :)T ,
A’(m, :)T].

It is clear that E is equal to the upper m rows of A’
plus its lower m − 1 rows. According to the form of A’
presented in (5) and (6), we can obtain that the explicit
formula of E. If m is even,

E =

[
AL1 + AL2, AH1 + AH2

AL1 + AL2, AH1 + AH2

]
.

If m is odd, the organization of E is a little complicated:

E =

 (A’L1+A’L2)(2 ∼ n+1, :), AH1 + AH2

AL1+AL2

(A’L1+A’L2)(1, :)
, A’H1+A’H2

 ,
where (A’L1+A’L2)(2 ∼ n+1, :) represents the lower n
row vectors of A’L1+A’L2. The above expression can also
be rewritten as:

E =

[(
A’L1+A’L2

AL1+AL2

)
[1],

AH1+AH2

A’H1+A’H2

]
.

We then obtain the formulae (11) and (12) immediately.�

Observation 3.2. Matrix-vector multiplication M[i] · b
costs the same logic gates as M · b, where M is a m×m
matrix and b is a 1×m vector.

6

Proof Note that M[i] · b = (M · b)[i]. So the
computation of (M · b)[i] can be obtained by cyclic
shift of M · b. Then, the conclusion is direct. �

Furthermore, it is also clear that

AU + AL =[A’(1, :)T , · · · ,A’(k, :)T ,A’(k+m+1, :)T ,

· · · ,A’(2m− 1, :)T , 0]
(13)

Denoted by MA,1 the matrix presented either in (11) or
(12), and by MA,2 the matrix presented in (13). Combined
with Observation 3.1, (10) can be simplified as:

MA = MA,1 + MA,2.

Therefore, we can utilize the same strategy presented in
[21], where S1x

−2k mod f(x) can be implemented as:

S1x
−2k mod f(x) =

∑m−1
i=0 six

i

= MA · b
= MA,1 · b + MA,2 · b
= [MA,1,MA,2] · [b,b]T .

(14)

We implement the above expression by following steps:

• Perform row-vector products

[MA,1(i, 1) · b0, · · · ,MA,1(i,m) · bm−1,
MA,2(i, 1) · b0, · · · ,MA,2(i,m) · bm−1],

(15)

i = 1, 2, · · · ,m in parallel.
• Sum up all the 2m entries of each row using binary

XOR tree, i.e.,

si−1 =

m∑
j=1

MA,1(i, j)·bj−1+
m∑
j=1

MA,2(i, j)·bj−1, (16)

i = 1, 2, · · · ,m.

Special case m = 2k. When m is even and m = 2k (k =
n), we can obtain the simplest form of MA,1 and MA,2,
where

MA,1 =

[
AL1 + AL2, AH1 + AH2

AL1 + AL2, AH1 + AH2

]
,

and

MA,2 =

[
AL1, 0n×n
0n×n, AH2

]
.

By swapping and combining some overlapped entries,
expression (14) now can be rewritten as:

MA,1 · b + MA,2 · b =

[
AL2, AH1

AL2, AH1

]
· b

+

[
0n×n, AH2

AL1, 0n×n

]
· b.

(17)

In this case, we just compute two submatrix-vector mul-
tiplications and add them up to obtain S1x

−2k mod f(x).

3.2.2 Construction of MU

Analogous with the construction procedure of MA, the
reduction of U’ can also be obtained by shifting of U’
and adding specific rows of U’ to itself. The form of MU

varies according to the values of m and k. There are six
cases need to be considered:

1) m even, m > 2k + 2;
2) m even, m = 2k or m = 2k + 2;
3) m even, m < 2k;
4) m odd, m > 2k + 1;
5) m odd, m = 2k + 1;
6) m odd, m < 2k + 1.

Case 1 and 4: Note that the following equation holds
with respect to these two cases:

n− 2k > −k + 1, m is even and m > 2k + 2,
n− 2k > −k, m is odd and m > 2k + 1.

We only need to reduce the rows which are labeled with
xm−k, · · · , xm+n−2k−2(xm+n−2k−1 for odd m) of U′. The
equation xi = xi−m+k+xi−m, i = m−k, · · · ,m+n−2k−2
is used for reduction. Then, the product matrix MU is
partitioned as MU = MU,1 + MU,2, where

MU,1 =

[U2(k + 1, :)T , · · · ,U2(n− 1, :)T ,0,U1(1, :)
T , · · · ,

U1(n, :)
T ,U2(1, :)

T , · · · ,U2(k, :)
T]T , (m even),

[U2(k + 1, :)T , · · · ,U2(n, :)
T ,U1(1, :)

T , · · · ,
U1(n+ 1, :)T ,U2(1, :)

T , · · · ,U2(k, :)
T]T , (m odd),

and

MU,2 =

[0, · · · ,0︸ ︷︷ ︸
k

,U2(k+1, :)T , · · · ,U2(n−1, :)T ,0, · · · ,0︸ ︷︷ ︸
n+1

]T , (m even),

[0, · · · ,0︸ ︷︷ ︸
k

,U2(k+1, :)T , · · · ,U2(n, :)
T ,0, · · · ,0︸ ︷︷ ︸

n+1

]T , (m odd).

Case 2 and Case 5: In these two case, one can check
that S2x

n−2k mod f(x) = S2x
n−2k, thus requiring no

reduction for the matrix U’ and the product matrix MU

is equal to U’ itself.
Case 3 and Case 6: Since m < 2k (or m < 2k + 1), we
have n < k for both even and odd m. The following
formula holds:

m+ n− 2k − 2 < m− k − 2, m is even and m < 2k,
m+ n− 2k − 1 < m− k − 1, m is odd and m < 2k + 1.

Therefore, we only need to reduce the rows which are
labeled with xn−2k, · · · , x−k−1 of U′. The equation xi =
xm+i+xk+i, i = n−2k, · · · ,−k−1 is used for reduction.
Analogous to Case 1 and 4, the product matrix MU =

7

MU,1 + MU,2, where

MU,1 =

[U1(k − n+ 1, :)T , · · · ,U1(n, :)
T ,U2(1, :)

T , · · · ,
U2(n− 1, :)T ,0,U1(1, :)

T , · · · ,U1(k − n, :)T]T , (m even),

[U1(k − n+ 1, :)T , · · · ,U1(n+ 1, :)T ,U2(1, :)
T , · · · ,

U2(n+ 1, :)T ,U1(1, :)
T , · · · ,U1(k − n, :)T]T , (m odd),

and

MU,2 = [0, · · · ,0︸ ︷︷ ︸
n

,U1(1, :)
T , · · · ,U1(k − n, :)T ,0, · · · ,0︸ ︷︷ ︸

m−k

]T .

3.3 Complexity Analysis

3.3.1 Complexity analysis for S1x
−2k mod f(x)

Applying Observation 3.1 and 3.2, we have the following
theorem.

Theorem 1 The m row-vector products of (15) only requires
m2

2 AND gates for even m and m2−1
2 AND gates for odd m.

Proof According to (10), (11), (12), (13) and the organiza-
tion of A’, it is clear that all the non-zero entries of MA,1

and MA,2 are included in four sub-matrices AL1,AL2,
AH1,AH2. Applying observation 3.1 and 3.2, we know
the partial row-vector products are sufficient to obtain all
the row-vector products for MA·b. More explicitly, if m is
even, the row-vector products of [AL1+AL2,AH1+AH2]·b
is sufficient. It requires only n2 + n2 = m2

2 AND gates
to compute these products. If m is odd, the row-vector
products of [AL1+AL2] · b1 and [A’H1+A’H2] · b2 are
sufficient, which requires (n+ 1) · n+ (n+ 1) · n = m2−1

2
AND gates. �

Next, we investigate the number of XOR gates needed
in (16). Notice that MA,1 and MA,2 share some common
entries. If these common entries multiply the same vector
entries during the computation of row-vector products
presented in (15), the results stay the same. When adding
up all the products of each row, some XOR gates can be
saved by sharing the common items. This technique is
so called sub-expression sharing [9]. However, when we
use binary XOR tree to sum up the products of each
row, the common items between two binary trees should
be utilized carefully. For example, two expressions c1 =
z0 + z1 + z2 + z3 and c2 = z0 + z2 + z3 + z4 share three
common items, but only one XOR will be saved when
using binary tree. The computation details are as follows:

c1 = [[z0 + z2]︸ ︷︷ ︸
I

+ [z1 + z3]︸ ︷︷ ︸
I

]

︸ ︷︷ ︸
II

, c2 = [[z0 + z2]︸ ︷︷ ︸
I

+ [z3 + z4]︸ ︷︷ ︸
I

]

︸ ︷︷ ︸
II

.

The sub-expressions labeled by the same Roman number
are calculated simultaneously. It is clear that the common
item z3 cannot save one more XOR gate unless the binary
tree is not used.

In [8], [20], the authors have shown that if two binary
XOR trees share k common items, only k −W (k) XOR

gates can be saved, where W (k) is the Hamming weight
of the binary representation of k. Obviously, one can
check that c1, c2 of above expression can save only
3 − W (3) = 1 XOR gate. Thus, we use the similar
trick to save XOR gates in the accumulating process-
es in (16). Firstly, we consider n intermediate values
P0, P1, · · · , Pn−1 (n+ 1 values for odd m), where

[P0, · · · , Pn−1]T = [AL1 + AL2,AH1 + AH2] · b,

if m is even, or

[P0, · · · , Pn]T =
[

AL1+AL2

(A’L1+A’L2)(1, :)
,A’H1+A’H2

]
· b,

if m is odd. Please note that the matrices appeared
in above formulae contain all the entries of MA,1 and
MA,2. Then, we compute the accumulations of the bit-
wise products related to these n (or n+ 1) intermediate
values using binary XOR tree in parallel. At the same
time, the accumulations presented in (16) are also cal-
culated by sharing common items with P0, P1, · · · , Pn−1
(P0, P1, · · · , Pn for odd m).

For example, note that s1 = MA,1(2, :)·b+MA,2(2, :)·b.
If m is even and 0 < k < n, MA,1(2, :) · b has m items
overlapped with Pk+1 and MA,2(2, :) · b has 2 terms
overlapped with P1. According to previous assertion,
the computation of s1 totally can reuse m − W (m)
and 2 −W (2) XOR gates from Pk and P1, respectively.
Also notice that s1 only has m + 2 nonzero entries, so
we only need m + 1 − (m − W (m)) − (2 − W (2)) =
W (m) + W (2) − 1 = W (m) XOR gates to implement
s1. Table 1 indicates the explicit number of XOR gates
which can be saved using the binary tree based sub-
expression sharing trick, if m is even and 0 < k < n. For
simplicity purpose, we divide each coefficient si into two
parts, i.e., MA,1(i+1, :) · b, MA,2(i+1, :) · b, and indicate
their overlapped values and the number of saved XOR
gates, independently. One can find more details in the
appendix.

Moreover, in this case, the number of XOR gates need-
ed by (16) without optimization is 3m2−m

2 −km+k2+k.
Also notice that the computation of the intermediate
values P0, P1, · · ·Pn−1 requires (m − 1)n = m2−m

2 XOR
gates. Adding up these two formulae and subtracting
the number of saved XOR gates presented in Table 1, we
can obtain the explicit number of XOR gates required by
S1x

−2k mod f(x):

#XOR:
m2 − 3m

2
+

k∑
i=1

W (i) +

m−k−1∑
i=1

W (i) +mW (m).

The circuit delay of S1x
−2k mod f(x) equals the depth

of the biggest XOR tree. According to (11), (13) and (14),
it is easy to check that

Delay: TA + dlog2(2m− k − 1)eTX .

Note that the number of #AND gates for S1x
−2k mod

f(x) is already given by theorem 1. The space and time
complexity of other cases are summarized in Table 2.

8

TABLE 1
The overlapped values and saved #XOR, if m even, 0 < k < n

First part Overlapped Saved #XOR Second part Overlapped Saved #XOR
MA,1(1, :) · b Pk m−W (m) MA,2(1, :) · b P0 1−W (1)

MA,1(2, :) · b Pk+1 m−W (m) MA,2(2, :) · b P1 2−W (2)

...
...

...
...

...
...

MA,1(n− k, :) · b Pn−1 m−W (m) MA,2(k, :) · b Pk−1 k −W (k)

MA,1(n−k+1, :) · b P0 m−W (m) MA,2(k + 1, :) · b Pk+1 m−k−1−W (m−k−1)

...
...

...
...

...
...

MA,1(m− k, :) · b Pn−1 m−W (m) MA,2(n− 1, :) · b Pn−1 n + 1−W (n + 1)

MA,1(m−k+1, :) · b P0 m−W (m) MA,2(n, :) · b P0 n−W (n)

...
...

...
...

...
...

MA,1(m, :) · b Pk−1 m−W (m) MA,2(m− 1, :) · b Pn−1 1−W (1)

TABLE 2
The space and time complexity of S1x

−2k mod f(x)

case #AND #XOR Delay

m even, m < 2k m2

2
m2−3m

2
+
∑k

i=1 W (i) +
∑m−k−1

i=1 W (i) + mW (m) TA + (dlog2(m + k)e)TX

m even, m = 2k m2

2
m2−m

2
TA + (1 + dlog2(m

2
)e)TX

m odd, m ≥ 2k + 1
m2−1

2

m2−2m−1
2

+ (n+1)W (m) + nW (n+1) + (m−k−1)W (n)
TA + dlog2(2m− k − 1)e)TX

n = m−1
2

∑k
i=1 W (i) +

∑n
i=1 W (i) +

∑n−k
i=1 W (i)

m odd, m < 2k + 1
m2−1

2

m2−2m−1
2

+ (n+1)W (m) + nW (n+1) + kW (n)
TA + (dlog2(m + k)e)TX

n = m−1
2

∑m−k−1
i=1 W (i) +

∑n
i=1 W (i) +

∑k−n
i=1 W (i)

Special case m = 2k. According to (17), the first sub-
matrix has its upper m

2 rows equal to its lower m
2

rows. Thus, we only need to compute [AL2,AH1] · b.
In addition, both AL2 and AH1 are triangular matrices,
one can easily check that each row of [AL2,AH1] consists
of at most m

2 nonzero entries. Hence, the corresponding
submatrix-vector multiplication cost m2

4 AND gates and
m2−2m

4 XOR gates with delay of TA + dlog2(m2)eTX . The
computation of the second submatrix-vector multiplica-
tion is similar. It totally requires m2

4 AND gates and
m2

4 −m+ 1 XOR gates with delay of TA + dlog2(m2)eTX .
Finally, m − 1 XOR gates are needed to add these two
results up, which lead to one more TX delay.
Example 3.2. Consider the reduction of A′ presented in
Example 3.1. The construction of MA is based on the
following equation:{

xi = x5+i + xi+2, for i = −4,−3;
xi = xi−3 + xi−5, for i = 3, 4.

Then MA = MA,1 + MA,2 where

MA,1 =

−2
−1
0
1
2

a0 a1 a0 a4 a3
a1 a0 a1 a2 a4
0 a1 a0 a3 a2
a0 0 a1 a2+a4 a3
a1 a0 0 a3 a2+a4

 ,

and

MA,2 =

−2
−1
0
1
2

a0 0 0 0 0
a1 a0 0 0 0
0 0 0 a4 a3
0 0 0 0 a4
0 0 0 0 0

 .
Hence, S1x

−4 mod x5 + x2 + 1 = [MA,1,MA,2] · [b,b]T .
Firstly, it is easy to see that 52−1

2 = 12 AND gates are
needed for the bitwise multiplication. We then evaluate
the number of required XOR gates. According to the
description of Subsection 3.3, we use three intermediate
values:

P0 =[a1b1 + a0b2] + [a4b3 + a3b4] + a0b0,

P1 =[a1b2 + a2b3] + a4b4 + [a1b0 + a0b1],

P2 =[a1b1 + a0b2] + [a3b3 + a2b4].

To sum up the row entries with respect to [MA,1 ·b,MA,2 ·
b], we have the binary tree of each row as follows:

Row 1: [a1b1 + a0b2] + [a4b3 + a3b4] + [a0b0︸ ︷︷ ︸
P0

+a0b0]︸ ︷︷ ︸
P0

,

Row 2: [a1b2 + a2b3] + a4b4 + [a1b0 + a0b1]︸ ︷︷ ︸
P1

+[a1b0 + a0b1]︸ ︷︷ ︸
P1

,

Row 3: [a1b1 + a0b2] + [a3b3 + a2b4]︸ ︷︷ ︸
P2

+[a4b3 + a3b4]︸ ︷︷ ︸
P0

,

9

Row 4: [a1b2 + a2b3]︸ ︷︷ ︸
P1

+[a4b4︸︷︷︸
P1

+ a0b0] + [a4b3 + a3b4]︸ ︷︷ ︸
P0

,

Row 5: [a3b3 + a2b4]︸ ︷︷ ︸
P2

+ a4b4 + [a1b0 + a0b1]︸ ︷︷ ︸
P1

.

Additions in the square brackets of the above ex-
pressions are firstly computed in parallel, and the un-
derlined ones can be saved as we compute them in
P0, P1, P2. One can check that Row 4 and Row 5 require
5 − (5 − W (3) − W (2)) − (1 − W (1)) = 5 − 2 = 3 and
4− (3−W (3))− (2−W (2)) = 2 XOR gates, respectively.
Similarly, the binary trees of Row 1-3 cost 5 XOR gates
in all. Plus 11 XOR gates needed in computation of
P0, P1, P2, we totally need 21 3 XOR gates for S1x

−4 mod
x5 + x2 + 1 with delay TA + (dlog2 7eTX) = TA + 3TX .

3.3.2 Complexity analysis for S2x
n−2k mod f(x)

Apparently, we compute S2x
n−2k mod f(x) as follows:

S2x
n−2k mod f(x) = MU · v

= MU,1 · v + MU,2 · v
= [MU,1,MU,2] · [v,v]T

(18)

The computation of S2x
n−2k mod f(x) consists of the

precomputation of U, V and matrix-vector multiplication
presented as above. Firstly, 2n XOR gates are needed
for precomputation of U, V which cost one TX in par-
allel. Then, note that there are some common items
between MU,1 and MU,2. So the matrix-vector multi-
plication [MU,1,MU,2] · [v,v]T can follow the same line
of the computing strategy presented in subsection 3.3.1.
One TA is needed for bitwise parallel multiplication and
the required number of TX is equal to the depth of the
biggest binary trees related to non-zero entries of each
row of [MU,1 · v,MU,2 · v], which varies according to m
and k. For simplicity, we only evaluate the upper bound
of the number of TX for some cases. The space and time
complexities of (18) are summarized in Table 3.
Example 3.3. Consider the reduction of U′ in Example
3.1. Since 5 = 2 ·2+1, there is no reduction needed here.
We have MU = U′. We note that the computation of
U, V requires 4 XOR. Plus 4 XOR gates used in MU · v,
it totally costs 8 XOR gates for S2x

−2 mod x5 + x2 + 1.
In addition, the delay of MU · v is TA + dlog2 3eTX =
TA + 2TX . Plus one TX for computation U, V , the delay
of S2x

−2 mod x5 + x2 + 1 is TA + 3TX which is equal to
that of S1x

−4 mod x5 + x2 + 1.

4 COMPLEXITY AND COMPARISON

4.1 Theoretic complexity
Based on the delay of the two expressions presented
in Table 2 and 3, we immediately have the following
proposition.

3. Apparently, more XOR gates can be saved in this example, but
we prefer to use the general formulae presented in Table 2.

Proposition 1 Let Ts1 and Ts2 denote the delay of S1x
−2k

and S2x
n−2k modulo f(x), respectively. Then Ts2 is no

greater than Ts1 .

Proof According to circuit delay expressions in Table 2
and 3, it is clear that both Ts1 and Ts2 contain 1 TA.
We only need to compare the coefficients of TX in these
tables. Still consider the six cases indicated in subsection
3.2.2. We have

Case 1: 1 + dlog2(m− k − 1)e ≤ dlog2(2m− k − 1)e,

Case 2: 1 + dlog2(
m

2
)e ≤ dlog2 me,

Case 3: 1 + dlog2(k)e ≤ dlog2(m+ k)e,
Case 4: 1 + dlog2(m− k)e ≤ dlog2(2m− k)e,

Case 5: 1 + dlog2(
m− 1

2
)e ≤ dlog2(m+ k)e,

Case 6: 1 + dlog2(k + 1)e ≤ dlog2(m+ k)e.

One can directly check that Ts2 is smaller or at most
equal to Ts1 , which conclude the proposition. �

Proposition 1 ensure that S1x
−2k mod f(x) and

S2x
n−2k mod f(x) can be implemented simultaneously,

and the time delay is Ts1 . Finally, we add up these
values to obtain the ultimate result which requires m
XOR gates and one TX in parallel. As a result, we obtain
the total space complexity of the proposed multiplier by
summing up all these related expressions.

If m is even:

#AND : 3m2

4
,

#XOR : 3m2

4
−m

2
+O(m log2 m)∗,

Delay :

 TA + (1 + dlog2(2m−k−1)e)TX , (m>2k),

TA + (1 + dlog2(m+k)e)TX , (m<2k).

(19)
If m is odd:

#AND : 3m2+2m−1
4

,

#XOR : 3m2

4
+m

2
+O(m log2 m)∗,

Delay :

 TA + (1 + dlog2(2m−k−1)e)TX , (m≥2k+1),

TA + (1 + dlog2(m+k)e)TX , (m<2k+1).

(20)
We note that the formulae for the counts of XOR gates
in Table 2 and 3 contain the sum of hamming weights
related to certain integers, denoted by σ. The expres-
sion

∑σ
i=1W (i) can be roughly written as σ

2 log2 σ [8],
[20]. Notice that σ ≤ m, so we use the expression
O(m log2m)∗ instead to make the complexity formulae
simpler. For the special case, i.e, m is even and m = 2k,
the explicit formulae with respect to the space and time
complexities are given in Table 5.

4.2 Comparison

As the most important contribution of this study, the
time delay of our multiplier is summarized in Table 5.
Compared with the fastest bit-parallel multiplier [16],
[17], our proposal only requires one more TX . In addi-
tion, it is especially attractive if the corresponding circuit

10

TABLE 3
The space and time complexity of S2x

n−2k mod f(x)

Case #AND #XOR Delay

m even, m > 2k + 2 m2

4
m2

4
+
∑m

2
−k−1

i=1 W (i) + 1 < TA + (1 + dlog2(m− k − 1)e)TX

m even, m = 2k, 2k + 2 m2

4
m2

4
+ 1 TA + (1 + dlog2(m

2
)e)TX

m even, m < 2k m2

4
m2

4
+
∑k−m

2
i=1 W (i) + 1 < TA + (1 + dlog2 ke)TX

m odd, m > 2k + 1 m2+2m+1
4

m2+2m−3
4

+
∑m−1

2
−k

i=1 W (i) < TA + (1 + dlog2(m− k)e)TX

m odd, m = 2k + 1 m2+2m+1
4

m2+2m−3
4

TA + (1 + dlog2(m−1
2

)e)TX

m odd, m < 2k + 1 m2+2m+1
4

m2+2m−3
4

+
∑k−m−1

2
i=1 W (i) < TA + (1 + dlog2(k + 1)e)TX

TABLE 4
Time delay for SPB multiplier using f(x) = xm + xk + 1

m < 2k TA + (1 + dlog2(m+k)e)TX

m = 2k TA + (1 + dlog2 me)TX

2k ≤ m− 1 TA + (1 + dlog2(2m−k−1)e)TX

delay is TA + (1 + dlog2me)TX , this happens frequently
if m, k satisfy:

dlog2(m+ k)e = dlog2me, m < 2k,

dlog2(2m−k−1)e = dlog2me, 2k ≤ m− 1.

In fact, for the range 100 ≤ m ≤ 1023 with cryptographic
interests, there exist 1405 irreducible trinomials and 457
trinomials satisfying the above condition.

In Table 5, we give a comparison of several differen-
t bit-parallel multipliers for irreducible trinomials. All
these multipliers are using PB representations except
particular description. It is clear that our scheme is
faster than other Karatsuba-based multiplier and still
has roughly 25% logic gates gain. In [13], [18], [23], the
authors investigated the speedup of Karatsuba multi-
plier independently. None of them had given such a
precise time bound for all the trinomials. This is the first
time for us to show that Karatsuba-based multiplier can
always be only 1TX slower than the fastest bit-parallel
multipliers so far.

5 CONCLUSION

In this paper, we have constructed a matrix-vector form
of Karatsuba algorithm and proposed a novel bit-parallel
GF (2m) multiplier based on this approach. Mastrovito
scheme and shifted polynomial basis are combined to-
gether to reduce the gate delay. A binary tree based sub-
expression sharing approach is utilized to exploit common
items sharing efficiently. As a result, it is argued that our
proposal matches the fastest non-recursive Karatsuba
multipliers and is only one TX slower than the fastest
bit-parallel multipliers where no divide-and-conquer al-
gorithm is applied.

Furthermore, we note that, based on the similari-
ty between SPB and Montgomery multiplier, the pro-
posed scheme can be easily moved to design bit-parallel
GF (2m) Montgomery multiplier. Finally, the space and
time trade-off enables our scheme to apply in accelera-
tion of scalar multiplication under some area constraint
platforms. We next work on Mastrovito-Karatsuba mul-
tiplier for pentanomials.

APPENDIX
THE OVERLAPPED VALUES FOR THE COMPUTA-
TION OF si, i = 0, · · · ,m− 1

Table 6-10 give the overlapped values and number of
saved XOR gates for S1x

−2k mod f(x) of other cases.

ACKNOWLEDGMENTS

The authors thank the reviewers for their valuable com-
ments and suggestions. This work is supported by the
National Natural Science Foundation of China (Grant
no. 61402393, 61601396).

REFERENCES
[1] Rudolf Lidl and Harald Niederreiter. Introduction to finite fields

and their applications. Cambridge University Press, New York, NY,
USA, 1994.

[2] Rudolf Lidl and Harald Niederreiter. Finite Fields. Cambridge
University Press, New York, NY, USA, 1996.

[3] A. Karatsuba and Yu. Ofman. ”Multiplication of Multidigit Num-
bers on Automata,” Soviet Physics-Doklady (English translation),
vol. 7, no. 7, pp. 595–596, 1963.

[4] J. Von Zur Gathen and J. Gerhard. 2003. Modern Computer Algebra
(2 ed.). Cambridge University Press, New York, NY, USA.

[5] H. Fan, J. Sun, M. Gu, and K.-Y. Lam. ”Overlap-free Karatsuba-
Ofman polynomial multiplication algorithms,” Information Secu-
rity, IET, vol. 4, no. 1, pp. 8–14, March 2010.

[6] A. Weimerskirch, and C. Paar, ”Generalizations of the Karatsu-
ba Algorithm for Efficient Implementations,” Cryptology ePrint
Archive, Report 2006/224, http://eprint.iacr.org/

[7] E.D. Mastrovito. ”VLSI Architectures for Computation in Galois
Fields,” PhD thesis, Linköping University, Department of Electri-
cal Engineering, Linköping, Sweden, 1991.

[8] Yiyang Chen. ”On Space-Time Trade-Off for Montgomery Multi-
pliers over Finite Fields,” MD thesis, Department of Computer
Science and operational Research, Montreal University, Mon-
treal, Canada. 2015. https://papyrus.bib.umontreal.ca/xmlui/
bitstream/handle/1866/12571/Chen Yiyang 2015 memoire.pdf

[9] K.K. Parhi, VLSI Digital Signal Processing Systems: Design and
Implementation. John Wiley & Sons, 1999.

11

TABLE 5
Comparison of Some Bit-Parallel Multipliers for Irreducible Trinomials

Multiplier # AND # XOR Time delay

xm + xk + 1, 1 < k ≤ m−1
2

Montgomery [29], school-book [28] m2 m2 − 1 TA + (2 + dlog2 me)TX

Mastrovito [24] [25] [26] m2 m2 − 1 TA + (2 + dlog2 me)TX

Mastrovito [27] m2 m2 − 1 TA + (dlog2(2m + 2k − 3)e)TX

SPB Mastrovito [16] m2 m2 − 1 TA + dlog2(2m− k − 1)eTX

Montgomery [17] m2 m2 − 1 TA + dlog2(2m− k − 1)eTX

Karatsuba [14]
3m2+2m−1

4
3m2

4
+ 4m + k − 23

4
(m odd)

TA + (3 + dlog2(m− 1)e)TX
3m2

4
3m2

4
+ 5m

2
+ k − 4 (m even)

Modified Karatsuba [18] m2

2
+ (m− k)2 m2

2
+ (m− k)2 + 2k TA + (2 + dlog2(m− 1)e)TX

Modified Karatsuba [13] m2 − k2
m2 + k − k2 − 1(1 < k < m

3
)

≤ TA + (2 + dlog2 me)TXm2 + 4k − k2 −m− 1(m
3
≤ k < m−1

2
)

m2 + 2k − k2(k = m−1
2

)

Montgomery squaring [20]
3m2+2m−1

4
3m2

4
+ O(m log2 m) (m odd) ≤ TA + (3 + dlog2 me)TX

3m2

4
3m2

4
+ O(m log2 m) (m even) TA + (2 + dlog2 me)TX

Chinese Remainder Theorem [31]
∆ ∆ + 3k −m (Type-A) TA + dlog2(Θ)eTX

∆ ∆ + 2k −m + kW (k) (Type-B) TA + dlog2(3m− 3k − 1)eTX

SPB Mastrovito-Karatsuba
3m2+2m−1

4
3m2

4
+ m

2
+O(m log2 m) (m odd)

TA + (1 + dlog2(2m− k − 1)e)TX
3m2

4
3m2

4
−m

2
+O(m log2 m) (m even)

where ∆ = m2 +
(m−k)(m−1−3k)

2
(m−1

3
≤ k < m

2
, 2v−1 < k ≤ 2v), Θ = max(3m−3k−1, 2m−2k+2v)

xm + xk + 1,m = 2k

Mastrovito [24] [26] m2 m2 − m
2

TA + (1 + dlog2(m− 1)e)TX

Montgomery [29], school-book [28] m2 m2 − m
2

TA + (1 + dlog2(m− 1)e)TX

Mastrovito [27] m2 m2 − m
2

TA + (dlog2(3m
2

)e)TX

SPB Mastrovito [16] m2 m2 − m
2

TA + dlog2(3m
2

)eTX

SPB Karatsuba [23] 3m2

4
3m2

4
+ m + 1 TA + (1 + dlog2(m− 1)e)TX

Modified Karatsuba [13] 3m2

4
3m2

4
+ m− 1 TA + (1 + dlog2(m + 2)e)TX

Chinese Remainder Theorem [31]
7m2−2m

8
7m2+2m

8
(Type-A) TA + dlog2(2m)eTX

7m2−2m
8

7m2−2m
8

+ kW (k) (Type-B) TA + dlog2(3m
2

)eTX

SPB Mastrovito-Karatsuba 3m2

4
3m2

4
+ m

2
+1 TA + (1 + dlog2 me)TX

xm + xk + 1,m < 2k

Mastrovito [24] [26] m2 m2 − 1 TA + (dlog2(2rm)e)TX

Mastrovito [27] m2 m2 − 1 TA + (dlog2(Θ)e)TX

SPB Mastrovito [16] m2 m2 − 1 TA + dlog2(m + k)eTX

Montgomery [17] m2 m2 − 1 TA + dlog2(m + k)eTX

SPB Mastrovito-Karatsuba
3m2+2m−1

4
3m2

4
+ m

2
+O(m log2 m) (m odd)

TA + (1 + dlog2(m + k)e)TX
3m2

4
3m2

4
−m

2
+O(m log2 m) (m even)

where r = dm−1
m−k

e, Θ = 2r
(
m−1−(r−2)(m−k)

)
− 2(m−k) + 1

12

TABLE 6
The overlapped values and saved #XOR, if m even, n < k ≤ m− 1

First part Overlapped Saved #XOR Second part Overlapped Saved #XOR
MA,1(1, :) · b Pk−n m−W (m) MA,2(1 :) · b P0 1−W (1)

MA,1(2, :) · b Pk−n+1 m−W (m) MA,2(2, :) · b P1 2−W (2)

...
...

...
...

...
...

MA,1(m− k, :) · b Pn−1 m−W (m) MA,2(n, :) · b Pn−1 n−W (n)

MA,1(m− k + 1, :) · b P0 m−W (m) MA,2(n+1, :) · b P0 n + 1−W (n+1)

...
...

...
...

...
...

MA,1(m + n− k, :) · b Pn−1 m−W (m) MA,2(k, :) · b Pk−n−1 k −W (k)

MA,1(m+n−k+1, :) · b P0 m−W (m) MA,2(k+1, :) · b Pk−n+1 m−k−1−W (m−k−1)

...
...

...
...

...
...

MA,1(m, :) · b Pk−n−1 m−W (m) MA,2(m−1, :) · b Pn−1 1−W (1)

TABLE 7
The overlapped values and saved #XOR, if m odd, 0 < k ≤ n− 1

first part Overlapped Saved #XOR second part Overlapped Saved #XOR
MA,1(1, :) · b Pk, Pk+1 m−W (n+1)−W (n) MA,2(1, :) · b P0 1−W (1)

MA,1(2, :) · b Pk+1, Pk+2 m−W (n+1)−W (n) MA,2(2, :) · b P1 2−W (2)

...
...

...
...

...
...

MA,1(n− k, :) · b Pn−1, Pn m−W (n+1)−W (n) MA,2(k, :) · b Pk−1 k −W (k)

MA,1(n− k + 1, :) · b P0 m−W (m) MA,2(k + 1, :) · b Pk, Pk+1 2n−k−W (n−k)−W (n)

...
...

...
...

...
...

MA,1(m− k, :) · b Pn−1 m−W (m) MA,2(n, :) · b Pn−1, Pn n + 1−W (1)−W (n)

MA,1(m− k + 1, :) · b P0, P1 m−W (n+1)−W (n) MA,2(n + 1,) · b P0 n−W (n)

...
...

...
...

...
...

MA,1(m, :) · b Pk−1, Pk m−W (n+1)−W (n) MA,2(m− 1, :) · b Pn 1−W (1)

TABLE 8
The overlapped values and saved #XOR, if m odd, n < k ≤ m− 1

first part Overlapped Saved #XOR second part Overlapped Saved #XOR
MA,1(1, :) · b Pk−n m−W (m) MA,2(1, :) · b P0 1−W (1)

MA,1(2, :) · b Pk−n+1 m−W (m) MA,2(2, :) · b P1 1−W (2)

...
...

...
...

...
...

MA,1(m− k, :) · b Pn m−W (m) MA,2(n, :) · b Pn−1 n−W (n)

MA,1(m− k + 1, :) · b P0, P1 m−W (n+1)−W (n) MA,2(n + 1, :) · b P ∗
0 n+1−W (n)−W (1)

...
...

...
...

...
...

MA,1(m + n− k, :) · b Pn−1, Pn m−W (n+1)−W (n) MA,2(k, :) · b P ∗
k−n−1 k−W (n)−W (k−n)

MA,1(m+n−k+1, :) · b P0 m−W (m) MA,2(k + 1, :) · b Pk−n+1 m−k−1−W (m−k−1)

...
...

...
...

...
...

MA,1(m, :) · b Pk−n−1 m−W (m) MA,2(m− 1, :) · b Pn W (1)
∗ represent that one intermediate value contains two separate parts of items overlapped with MA,2(i, :) · b, i = n + 1, · · · , k

13

TABLE 9
The overlapped values and saved #XOR, if m odd, k = n

first part Overlapped Saved #XOR second part Overlapped Saved #XOR
MA,1(1, :) · b P0 m−W (m) MA,2(1, :) · b P0 1−W (1)

MA,1(2, :) · b P1 m−W (m) MA,2(2, :) · b P1 2−W (2)

...
...

...
...

...
...

MA,1(n + 1, :) · b Pn m−W (m) MA,2(n, :) · b Pn−1 n−W (n)

MA,1(n + 2, :) · b P0, P1 m−W (n + 1) + W (n) MA,2(n + 1, :) · b P0 n−W (n)

...
...

...
...

...
...

MA,1(m− 1, :) · b Pn−2, Pn−1 m−W (n + 1) + W (n) MA,2(m− 2, :) · b Pn−2 2−W (2)

MA,1(m, :) · b Pn−1, Pn m−W (n + 1) + W (n) MA,2(m− 1, :) · b Pn−1 1−W (1)

[10] F. Rodrı́guez-Henrı́quez and Ç.K. Koç, ”On fully parallel Karat-
suba multipler for GF (2m),” in Proc. Int. Conf. Computer Science
and Technology (CST 2003), ATA Press, 2003, pp. 405–410.

[11] J. Von Zur Gathen and J. Shokrollahi, ”Efficient FPGA-based
Karatsuba multipliers for polynomial over F2,” in Proc 12th
Workshop on Selected Areas in Cryptography (SAC 2005), Springer
2006, pp. 359–359.

[12] Ku-Young Chang, Dowon Hong and Hyun-Sook Cho. ”Low
complexity bit-parallel multiplier for GF (2m) defined by all-
one polynomials using redundant representation,” IEEE Trans.
Comput., vol. 54, no. 12, pp. 1628–1630, 2005.

[13] Young In Cho, Nam Su Chang, Chang Han Kim, Young-Ho Park
and Seokhie Hong. ”New bit parallel multiplier with low space
complexity for all irreducible trinomials over GF (2n),” Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 20,
no. 10, pp. 1903–1908, Oct 2012.

[14] M. Elia, M. Leone and C. Visentin. ”Low complexity bit-parallel
multipliers for GF (2m) with generator polynomial xm +xk +1,”
Electronic Letters, vol. 35, no. 7, pp. 551–552, 1999.

[15] Haining Fan and Yiqi Dai. ”Fast bit-parallel GF (2n) multiplier
for all trinomials,” IEEE Trans. Comput., vol. 54, no. 4, pp. 485–490,
2005.

[16] Haining Fan and M.A. Hasan. ”Fast bit parallel-shifted polyno-
mial basis multipliers in GF (2n),” Circuits and Systems I: Regular
Papers, IEEE Transactions on, vol. 53, no. 12, pp. 2606–2615, Dec
2006.

[17] A. Hariri and A. Reyhani-Masoleh, ”Bit-serial and bit-parallel
montgomery multiplication and squaring over GF (2m),” IEEE
Transactions on Computers, vol. 58, no. 10, pp. 1332–1345, 2009.

[18] Yin Li, Gong liang Chen, and Jian hua Li. ”Speedup of bit-parallel
karatsuba multiplier in GF (2m) generated by trinomials,” Infor-
mation Processing Letters, vol. 111, no. 8, pp. 390–394, 2011.

[19] H. Fan and M.A. Hasan, ”A survey of some recent bit-parallel
multipliers,” Finite Fields and Their Applications, vol. 32, pp. 5–43,
2015.

[20] Yin Li, Yiyang Chen. ”New bit-parallel Montgomery multiplier
for trinomials using squaring operation,” Integration, the VLSI
Journal, vol. 52, pp.142–155, January 2016.

[21] Christophe Negre. ”Efficient parallel multiplier in shifted poly-
nomial basis,” J. Syst. Archit., vol. 53, no. 2-3, pp. 109–116, 2007.

[22] Francisco Rodrı́guez-Henrı́quez and Çetin Kaya Koç. ”Parallel
multipliers based on special irreducible pentanomials,” IEEE
Trans. Comput., vol. 52, no. 12, pp. 1535–1542, 2003.

[23] Haibin Shen and Yier Jin. ”Low complexity bit parallel multiplier
for GF (2m) generated by equally-spaced trinomials,” Inf. Process.
Lett., vol. 107, no. 6, pp. 211–215, 2008.

[24] B. Sunar and Ç.K. Koç, ”Mastrovito multiplier for all trinomials,”
IEEE Trans. Comput., vol. 48,no. 5, pp. 522–527, 1999.

[25] A. Halbutogullari and Ç.K. Koç, ”Mastrovito multiplier for
general irreducible polynomials,” IEEE Trans. Comput., vol. 49,
no. 5, pp. 503–518, May 2000.

[26] T. Zhang and K.K. Parhi, ”Systematic design of original and mod-
ified mastrovito multipliers for general irreducible polynomials,”
IEEE Trans. Comput., vol. 50, no. 7, pp. 734–749, July 2001.

[27] N. Petra, D. De Caro, and A.G.M. Strollo, “A novel architecture for
galois fields GF (2m) multipliers based on mastrovito scheme,”
IEEE Trans. Computers, vol. 56, no. 11, pp. 1470–1483, November
2007.

[28] Huapeng Wu. ”Bit-parallel finite field multiplier and squarer
using polynomial basis,” IEEE Trans. Comput., vol. 51, no. 7,
pp. 750–758, 2002.

[29] Huapeng Wu. ”Montgomery multiplier and squarer for a class
of finite fields,” IEEE Trans. Comput., vol. 51, no. 5, pp. 521–529,
2002.

[30] H. Fan and M.A. Hasan, ”A survey of some recent bit-parallel
multipliers,” Finite Fields and Their Applications, vol. 32, pp.5–43,
2015.

[31] H. Fan, ”A Chinese Remainder Theorem Approach to Bit-Parallel
GF (2n) Polynomial Basis Multipliers for Irreducible Trinomials”,
IEEE Trans. Comput., vol. 65, no. 2, pp. 343–352, February 2016.

