
Gate-scrambling Revisited - or: The TinyTable
protocol for 2-Party Secure Computation

Ivan Damg̊ard, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci

Department of Computer Science, Aarhus University

Abstract. We propose a new protocol, nicknamed TinyTable, for ma-
liciously secure 2-party computation in the preprocessing model. One
version of the protocol is useful in practice and allows, for instance, se-
cure AES encryption with latency about 1ms and amortized time about
0.5 µs per AES block on a fast cloud set-up. Another version is inter-
esting from a theoretical point of view: we achieve a maliciously and
unconditionally secure 2-party protocol in the preprocessing model for
computing a Boolean circuit, where both the communication complexity
and preprocessed data size needed is O(s) where s is the circuit size,
while the computational complexity is O(kεs) where k is the statistical
security parameter and ε < 1 is a constant. For general circuits with no
assumption on their structure, this is the best asymptotic performance
achieved so far in this model.

1 Introduction

In 2-party secure computation, two parties A and B want to compute an agreed
function securely on privately held inputs, and we want to construct protocols
ensuring that the only new information a party learns is the intended output.

In this paper we will focus on malicious security: one of the parties is under
control of an adversary and may behave arbitrarily. As is well known, this means
that we cannot guarantee that the protocol always gives output to the honest
party, but we can make sure that the output, if delivered, is correct. It is also
well known that we cannot accomplish this task without using a computational
assumption, and in fact heavy public-key machinery must be used to some extent.

However, as observed in several works[BDOZ11,DPSZ12,NNOB12,DZ13], one
can confine the use of cryptography to a preprocessing phase where the inputs
need not be known and can therefore be done at any time prior to the actual com-
putation. The preprocessing produces “raw material” for the on-line phase which
is executed once the inputs are known, and this phase can be information the-
oretically secure, and usually has very small computational and communication
complexity, but round complexity proportional to the depth of the computation
in question. An incomparable alternative (which is not our focus here) is to use
Yao-garbled circuits. This approach gives constant round complexity but has
inherently larger communication complexity and seems to be harder to make
maliciously secure.



We will focus on the case where the desired computation is specified as a
Boolean circuit. The case of arithmetic circuits over large fields was handled
in [DPSZ12] which gave a solution where communication and computational
complexities as well as the size of the preprocessed data (called data complexity
in the following) are proportional to the circuit size. The requirement is that the
field has 2Ω(k) elements where k is the security parameter and the allowed error
probability is 2−Ω(k).

On the other hand, for Boolean circuits, state of the art is the protocol from
[DZ13], nick-named MiniMac which achieves data and communication complex-
ity O(s) where s is the circuit size, and computational complexity O(kεs), where
ε < 1 is a constant. For an alternative variant of the protocol, all complexities
are O(polylog(k)s). However, the construction only works for circuits with a
sufficiently nice structure, called “well formed” circuits in [DZ13]. Informally,
a well-formed circuit allows a modest amount of parallelization throughout the
computation – for instance, very tall and skinny circuits are not allowed.

On the practical side, many of the protocols in the preprocessing model are
potentially practical and several of them have been implemented. In particu-
lar, implementations of the the MiniMac protocol were reported in [DLT14] and
[DZ16]. In [DLT14], MiniMac was optimised and used for computing many in-
stances of the same Boolean circuit in parallel, while in [DZ16] the protocol was
adapted specifically for computing the AES circuit, which resulted in an imple-
mentation with latency about 6 ms and an amortised time of 0,4 ms per AES
block.

Our Contribution In this paper, we introduce a new protocol for the preprocess-
ing model, nick-named TinyTable. The idea is to implement each (non-linear)
gate by a scrambled version of its truthtable. Players will do look-ups in the
tables using bits that are masked by uniformly random bits that are chosen in
the preprocessing phase together with the tables. This approach is related to
the protocol from [DZ16] where (a different form of) table look-up was used to
implement the AES S-boxes. However, the idea of gate-scrambling goes back at
least to [CDvdG87] where a (much less efficient) protocol based on quadratic
residuosity was proposed. What we do here is to observe that the idea of scram-
bled truth tables makes sense also in the more recent preprocessing model and,
more importantly, if we combine this with the ”right” authentication scheme, we
get an extremely practical and maliciously secure protocol. This first version of
our protocol has data and communication complexity O(s) and computational
complexity O(ks). Although this is asymptotically inferior to previous protocols
when counting elementary bit operations, it works much better in practice: XOR
and NOT gates require no communication, and for each non-linear gate, each
player sends and receives 1 bit and XORs 1 word from memory into a register.
This means that TinyTable saves a factor of at least 2 in communication in com-
parison to standard passively secure protocols in the preprocessing model, such
as GMW with precomputed OT’s or the protocol using circuit randomization
via Beaver-triples.

2



We implemented a version of this protocol that was optimised for AES com-
putation, by using tables for each S-box. This is more costly in preprocessing
but, compared to a Boolean circuit implementation, it reduces the round com-
plexity of the on-line phase dramatically (to about 10). On a fast cloud set-up,
we obtain on-line latency of 1ms and a time of about 0.5 µs per AES block. To
the best of our knowledge, this is the fastest on-line time obtained for secure
AES.

We describe how one can do the preprocessing we require based on the prepro-
cessing phase of the TinyOT protocol from [NNOB12]. This protocol is basically
maliciously secure OT extension with some extra processing on top. In the case
of Boolean circuits, the work needed per AND gate roughly equals the work
needed per AND gate in TinyOT. For the case of AES S-box tables, we show
how to use a method from [DK10] to preprocess such tables. This requires 7
binary multiplications per table entry and local computation.

As for the speeds of preprocessing one can obtain, the best approaches and
implementations of this type of protocol are from [FKOS15]. They do not have
an implementation of the exact case we need here (2-party TinyOT) but they
estimate that one can obtain certainly more than 10.000 AND gates per second
and most likely up to 100.000 per second [Kel].

Our final contribution is a version of our protocol that has better asymptotic
performance. We get data and communication complexity O(s), and computa-
tional complexity O(kεs), where ε < 1 is a constant. Alternatively we can also
have all complexities be O(polylog(k)s). While this is the same result that was
obtained for the original MiniMac protocol, note that we get this for any circuit,
not just for well-formed ones. Roughly speaking, the idea is to use the MiniMac
protocol to authenticate the bits that players send during the on-line phase.
This task is very simple: it parallelizes easily and can be done in constant depth.
Therefore we get a better result than if we had used MiniMac directly on the
circuit in question.

2 Construction

We show a 2PC protocol for securely computing a Boolean circuit C for two
players A and B. The circuit may contain arbitrary gates taking two inputs
and giving one output. We let G1, . . . , GN be the gates of the circuit, and let
w1, . . . , wW be the wires. We note that arbitrary fan-out is allowed, and we
do not assume special fan-out gates for this, we simply allow that an arbitrary
number of copies of a wire leave a gate, and all these copies are assigned the
same wire index. We assume for simplicity that both parties are to learn the
output.

We will fix some arbitrary order in which the circuit can be evaluated gate by
gate, such that the output gates come last, and such that when we are about to
evaluate gate i, its inputs have already been computed. We assume throughout
that the indexing of the gates satisfy this constraint. We call the wires coming
out of the output gates the output wires.

3



We first specify a functionality for preparing preprocessing material that will
allow computation of the circuit with semi-honest security, see Figure 11.

Preprocessing Functionality F presem.

1. On input C from both players, do the following: For each wire wu, choose a
random masking bit ru. This bit will be used to mask the bit bu that will
actually be on wu when we do the computation, i.e., eu = bu ⊕ ru will become
known to the players. If wu is an input wire, give ru to the player who owns
wu.

2. For each gate Gi, with input wires wu, wv and output wire wo, we will construct
two tables Ai, Bi each with 4 entries, indexed by bits (c, d). This is done as
follows: for each of the 4 possible values of bits (c, d), do:
(a) If both player are honest, choose a random bit sc,d. Otherwise take sc,d

as input from the adversary. Let Gi(·, ·) denotes the function computed by
gate Gi.

(b) If both parties are honest, or if A is corrupt, set
Ai[c, d] = sc,d and Bi[c, d] = sc,d ⊕ (ro ⊕Gi(c⊕ ru, d⊕ rv)).

(c) If B is corrupt, set
Bi[c, d] = sc,d and Ai[c, d] = sc,d ⊕ (ro ⊕Gi(c⊕ ru, d⊕ rv)).

3. For each gate Gi, hand Ai to player A and Bi to player B. For each output
wire wu, send ru to both players.

Fig. 1. Functionality for preprocessing, semi-honest security.

The idea behind the construction of the tables is that when the time comes
to compute gate Gi, both players will know “encrypted bits” eu = bu ⊕ ru and
ev = bv⊕rv, for the input wires, where bu, bv are the actual “cleartext” bits going
into Gi, and ru, rv are random masking bits that are chosen in the preprocessing.
In addition, the preprocessing sets up two tables Ai, Bi for each gate, one held by
A and one held by B. These tables are used to get hold of a similar encrypted bit
for the output wire: eo = bo ⊕ ro, where bo = Gi(bu, bv). This works because the
tables are set up such that Ai[eu, ev], Bi[eu, ev] is an additive sharing of bo ⊕ ro,
i.e.,

Ai[bu ⊕ ru, bv ⊕ rv]⊕Bi[bu ⊕ ru, bv ⊕ rv] = bo ⊕ ro .

1 For this functionality as well as for the other preprocessing functionalities we define,
whenever players are to receive shares of a secret value, the functionality lets the
adversary choose shares for the corrupt player. This is a standard trick to make sure
that the functionality is easier to implement: the simulator can simply run a fake
instance of the protocol with the adversary and give to the functionality the shares
that the corrupt player gets out of this. If we had let the functionality make all the
choices, the simulator would have to force the protocol into producing the shares
that the functionality wants. This weaker functionality is still useful: as long as the
shared secret is safe, we don’t care which shares the corrupt player gets.

4



These considerations lead naturally to the protocol for computing C securely
shown in Figure 2. For the security of this construction, note that since the
masking bits for the wires are uniformly random, each bit eu is random as well
(except when wu is an output wire), and so the positions in which we look up
in the tables are also random. With these observations, it is easy to see that we
have:

Protocol πsem.

1. A and B send C as input to F and get a set of tables {Ai, Bi| i = 1 . . . N}, as
well as a bit bu for each input wire wu.

2. For each input wire wu, if A holds input xu for this wire, send eu = xu ⊕ bu to
B. If B holds input xu, send eu = xu ⊕ bu to A.

3. For i = 1 to N , do: Let Gi have input wires wu, wv and output wire wo (so that
eu, ev have been computed). A sends Ai[eu, ev] to B, and B sends Bi[eu, ev] to
A. Set eo = Ai[eu, ev]⊕Bi[eu, ev].

4. The parties output the bits {eo ⊕ ro| wo is an output wire}.

Fig. 2. Protocol for semi-honest security.

Proposition 1. F presem composed with πsem implements with semi-honest secu-
rity the ideal functionality FSFE for secure function evaluation.

Functionality F premal.

1. On input C from both players, execute the same algorithm as F presem would on
input C.

2. In addition, for i = 1, . . . , N and for all 4 values of (c, d), do:
If both players are honest, select random k-bit strings a0i,c,d, a

1
i,c,d, b

0
i,c,d, b

1
i,c,d.

If player A is corrupt, take b0i,c,d, b
1
i,c,d as input from the adversary and choose

a0i,c,d, a
1
i,c,d at random.

If player B is corrupt, take a0i,c,d, a
1
i,c,d as input from from the adversary and

choose b0i,c,d, b
1
i,c,d at random.

3. Hand a0i,c,d, a
1
i,c,d to B and b0i,c,d, b

1
i,c,d to A.

Hand a
Ai[c,d]
i,c,d to A, and b

Bi[c,d]
i,c,d to B.

Fig. 3. Preprocessing functionality, malicious security.

Here, FSFE is a standard functionality that accepts C as input from both
parties, then gets x from A, y from B and finally outputs C(x, y) to both parties,
in case of semi-honest corruption. In case of malicious corruption, it will send

5



the output to the corrupted party and let the adversary decide whether to abort
or not. Only in the latter case will it send the output to the honest party.

It is also very natural that we can get malicious security if we assume instead
a functionality that commits A and B to the tables. We can get this effect by
letting the functionality also store the tables and outputting bits from them to
the other party on request. In other words, what we need is a functionality that
allows us to commit players to correlated bit strings such that they can later
open a subset of the bits. Note that the subset cannot be known in advance,
which makes it more difficult to implement efficiently. Indeed, if we go for an
efficient information theoretically secure solution in the OT-hybrid model, the
storage requirement will be `k bits where ` is the string length and k is the
security parameter. This is easily achieved, essentially by committing to each
bit individually. In contrast, if we just need to open the entire string or nothing,
` + k bits is sufficient using a number of standard techniques. This difference
seems to be inherent as we discuss in more detail in Section 6.

In Figure 3, we show a functionality that does preprocessing as in the semi-
honest case, but in addition commits players bit by bit to the content of the
tables. The idea is that, for entry Ai[c, d] in a table, A is also given a random

string a
Ai[c,d]
i,c,d which serves as an authentication code that A can use to show

that he sends the correct value of Ai[c, d], while B is given the pair a0i,c,d, a
1
i,c,d

serving as a key that B can use to verify that he gets the correct value. Of
course, using the authentication codes directly in this way, we would have to
send k bits to open each bit. However, in our application, we can bring down
the communication needed to (essentially) ` + k bits, because we can delay
verification of most of the bits opened. The idea is that, instead of sending the
authentication codes, players will accumulate the XOR of all of them and check
for equality later at the end. The protocol shown in Figure 4 uses this idea to
implement maliciously secure computation.

Theorem 1. F premal composed with πmal implements FSFE with malicious and
statistical security.

This theorem follows easily from the observation that if a corrupt party, say A,
sends an incorrect bit, he has no information about the authentication code that
goes with this value. If this happens in Step 5, B will catch the error except
with probability 2−k. If it happens in Step 3 it will imply that the adversary
has no information on the final value of tB and then the check in Step 5 will
fail except with probability 2−k. On the other hand, if all bits sent are correct,
security follows in the same way as for the semi-honest case.

2.1 Free XOR

It is easy to modify our construction to allow non-interactive processing of XOR
gates. For simplicity, we only show how this works for the case of semi-honest
security, malicious security is obtained in exactly the same way as in the previous
section.

6



Protocol πmal.

1. A and B send C as input to F premal and get a set of tables {Ai, Bi| i = 1 . . . N},
as well as masking bits for input and output wires. In addition, for all values
of (i, c, d), A receives strings b0i,c,d, b

1
i,c,d and a

Ai[c,d]
i,c,d . These are stored for later.

(Symmetrically, B gets and stores a corresponding set of strings.)
2. Initialize variables: A sets mA = tA = 0k, and B sets mB = tB = 0k. Here mA

is an accumulative MAC on the values that A sends and tB is the value that
mA should have if A was honest, and symmetrically for mB and tA.

3. For each input wire wu, if A holds input xu for this wire, send eu = xu ⊕ bu to
B. If B holds input xu, send eu = xu ⊕ bu to A.

4. Define M such that the last N −M gates are output gates. For i = 1 to M do:
(a) Let Gi have input wires wu, wv and output wire wo (so that eu, ev have

been computed).
(b) A sends eA = Ai[eu, ev] to B, and sets mA = mA ⊕ aeAi,eu,ev . B sets tB =

tB⊕aeAi,eu,ev . Note that B can do this, as he has both strings a0i,eu,ev , a
1
i,eu,ev .

(c) B sends eB = Bi[eu, ev] to A, and sets mB = mB ⊕ beBi,eu,ev . A sets tA =
tA ⊕ beBi,eu,ev .

(d) Both parties set eo = eA ⊕ eB .
Check if all bits opened until now were correct: A sends mA to B and B sends
mB to A. A verify that tA = mB and B verify that tB = mA. The parties abort
if not the case.

5.6. Reveal the outputs. For i = M + 1 to N do:
(a) Let Gi have input wires wu, wv and output wire wo (so that eu, ev have

been computed).
(b) A sends eA = Ai[eu, ev] and aeAi,eu,ev to B. B checks that aeAi,eu,ev is correct.

Note that B can do this, as he has both strings a0i,eu,ev , a
1
i,eu,ev .

(c) B sends eB = Bi[eu, ev] and beBi,eu,ev to A. A checks that beBi,eu,ev is correct.
(d) Both parties set eo = eA ⊕ eB .
The correctness of the sent information is checked via an accumulative MAC
as in Step 3

7. The parties output the bits {eo ⊕ ro| wo is an output wire}.

Fig. 4. Protocol for malicious security.

The idea is to select the wire masks in a different way, exploiting the ho-
momorphic properties of XOR gates. Basically, if we encounter a NOT gate, we
make sure the output wire mask is equal the input wire mask. For XOR gates
we set the output wire mask to the XOR of the input wires masks. We ensure
this invariant by traversing the circuit, since the wire masks can no longer be
sampled independently at random. One could set the output wire mask to zero
for all output gates and traverse the gates backwards GN , . . . , G1 ensuring the
invariant on the wire masks. Another approach, which is the one we use in the
the following, is to traverse the gates forwardly G1, . . . , GN ensuring the invari-
ants and then give output wire masks to the parties, who will then remove the
mask before returning the actual output. In the online phase, we can now pro-

7



cess XOR and NOT gates locally by computing the respective function directly
on masked values. The resulting protocol is shown in Figure 6.

Preprocessing Functionality F prefreeXOR,sem.

1. On input C from both players, for each input wire wu, choose a random bit ru,
and if wu is an input wire, give ru to the player who owns that wire.
For i = 1 to N , do: Let wu, wv be the input wires of Gi and wo the output
wire. Note that we have already chosen masking bits ru, rv for wu, wv. If Gi is
an XOR gate, set ro = ru ⊕ rv. If Gi is a NOT gate (so that wu is the only
input wire), set ro = rv If Gi is any other gate, choose ro at random.

2. For each gate Gi which is not an XOR or NOT gate, with input wires wu, wv
and output wire wo, we will construct two tables Ai, Bi each with 4 entries,
indexed by bits (c, d). This is done as follows: for each of the 4 possible values
of bits (c, d), do:
(a) If both player are honest, choose a random bit sc,d. Otherwise take sc,d

as input from the adversary. Let Gi(·, ·) denote the function computed by
gate Gi.

(b) If both parties are honest, or if A is corrupt, set
Ai[c, d] = sc,d and Bi[c, d] = sc,d ⊕ (ro ⊕Gi(c⊕ ru, d⊕ rv)).

(c) If B is corrupt, set
Bi[c, d] = sc,d and Ai[c, d] = sc,d ⊕ (ro ⊕Gi(c⊕ ru, d⊕ rv)).

3. For each gate Gi, where we built tables, hand Ai to player A and Bi to player
B. Send wire masks for the output wires to both players.

Fig. 5. Functionality for preprocessing, semi-honest security with free XOR.

Protocol πsem.

1. A and B send C as input to F and get a set of tables {Ai, Bi| i = 1 . . . N}, as
well as a bit bu for each input wire wu.

2. For each input wire wu, if A holds input xu for this wire, send eu = xu ⊕ bu to
B. If B holds input xu, send eu = xu ⊕ bu to A.

3. For i = 1 to N , do: Let Gi have input wires wu, wv and output wire wo (so
that eu, ev have been computed). If Gi is an XOR gate, set eo = eu ⊕ ev. If Gi
is a NOT gate (so that wu is the only input wire), set eo = 1− eu. Otherwise
(we have tables for this gate): A sends Ai[eu, ev] to B, and B sends Bi[eu, ev]
to A. Both set eo = Ai[eu, ev]⊕Bi[eu, ev].

4. The parties output the bits {eo ⊕ ro| wo is an output wire}.

Fig. 6. Protocol for semi-honest security, free XOR.

8



2.2 Generalisation to Bigger Tables

If the circuit contains a part that evaluates a non-linear function f on a small
input, it is natural to implement computation of this function as a table. If the
input is small, such a table is not prohibitively large. Suppose, for instance, that
the input and output is 8 bits, as is the case for the AES S-Box. Then we will
store tables Af , Bf each indexed by 8-bit value M such that Af [M ]⊕Bf [M ] =
f(x⊕M)⊕O, where O is an 8-bit output mask chosen in the preprocessing. We
make sure in the preprocessing that the i’th bit of B denoted B[i] equals the
wire mask for the i’th wire going into the evaluation of f , whereas O[i] equals
the wire mask for the i’th wire receiving output from f . We can then use the
table for f exactly as we use the tables for the AND gates.

To get malicious security we must note that the simple authentication scheme
we used in the binary case will be less practical here: as we have 256 possible
output values, each party would need to store 256 strings per table entry. It turns
out this can be optimized considerable, as described in the following section.

3 The Linear MAC Scheme

There is a committer C, a verifier V and a preprocessor P. There is a security
parameter k. Some of the computations are done over the finite field F = GF(2k).
Let p(X) be the irreducible polynomial of degree k used to do the computation in
F = GF(2k), i.e, elements x, y ∈ F are polynomials of degree at most k − 1 and
multiplication is computed as z = xy mod p. We will also be doing computations
in the finite field G = GF(22k−1). Let q(X) be the irreducible polynomial of
degree 2k − 1 used to do the computation in G. Notice that elements x, y ∈ F
are polynomials of degree at most k− 1, so xy is a polynomial of degree at most
2k− 2. We can therefore think of xy as an element of G. Note in particular that
xy mod q = xy when x, y ∈ F.

3.1 Basic Version

The MAC scheme has message space F. We denote a generic message by x ∈ F.
The MAC scheme has key space F×G. We denote a generic key by K = (α, β) ∈
F×G. The tag space is G. We denote a generic tag by y ∈ G. The tag is computed
as y = macK(x) = αx+ β. Note that α ∈ F and x ∈ F, so αx ∈ G as described
above and hence can be added to β in G. We use this particular scheme because
it can be computed very efficiently using the PCLMULQDQ instruction on modern
Intel processors. With one PCLMULQDQ instruction we can compute αx from which
we can compute αx+ β using one additional XOR.

The intended use of the MAC scheme is as follows. The preprocessor samples
a message x and a uniformly random key K and computes y = macK(x). It
gives K to V and gives (x, y) to C. To reveal the message C sends (x, y) to V
who accepts if and only if y = macK(x). Since K is sampled independently of x,
the scheme is clearly hiding in the sense that V gets no information on x before
receiving the opening information. We now show that the scheme is binding.

9



Let A be an unbounded adversary. Run A to get a message x ∈ F. Sample
a uniformly random key (α, β) ∈ F × G and compute y = αx + β. Given y to
A. Run A to get an output (y′, x′) ∈ G × F. We say that A wins if x′ 6= x and
y′ = macK(x′). We can show that no A wins with probability better than 2−k.
To see this, notice that if A wins then he knows x, y, x′, y′ such that y = αx+ β
and y′ = αx′+β. This implies that y′−y = α(x′−x), from which it follows that
α = (y′ − y)(x′ − x)−1. This means that if A can win with probability r then
A can guess α with probability at least r. It is then sufficient to prove that no
adversary can guess α with probability better than 2−k. This follows from the
fact that α is uniformly random given αx+ β, because αx is some element of G
and β is a uniformly random element of G independent of αx.

3.2 The Homomorphic Vector Version

We now describe a vector version of the scheme which allows to commit to
multiple message using a single key.

The MAC scheme has message space F`. We denote a generic message by
x ∈ F`. The MAC scheme has key space F × G`. We denote a generic key by
K = (α,β) ∈ F×G`. The tag space is G`. We denote a generic tag by y ∈ G`.
The tag is computed as y = macK(x) = αx + β, i.e., yi = αxi + βi. Note that
α ∈ F and xi ∈ F, so αxi ∈ G.

The intended use of the MAC scheme is as follows. The preprocessor samples
a message x and a uniformly random key K and computes y = macK(x). It
gives K to V and gives (x,y) to C. To reveal the message xi the comitter C
sends (xi, yi) to V, who accepts if and only if yi = αxi + βi.

The preprocessed information also allows to open to any sum of a subset
of the xi’s. Let λ ∈ F` with λi ∈ {0, 1}. Let xλ =

∑
i λixi (mod F), let yλ =∑

i λiyi (mod G), and let let βλ =
∑
i λiβi (mod G). To reveal xλ the committer

C sends (xλ, yλ) and the verifier V checks that yλ = αxλ + βλ. If both players
are honest, this is clearly the case. The only non-trivial thing to notice is that
since

∑
i λixi (mod F) does not involve any reduction modulo p we have that∑

i λixi (mod F) =
∑
i λixi =

∑
i λixi (mod G).

The scheme is hiding in the sense that after a number of openings to ele-
ments xλ the verifier learns nothing more than what can be computed from the
received values xλ. To see this notice that K is independent of x and hence
could be simulated by V. Also the openings can be simulated. Namely, whenever
V received an opening (xλ, yλ) from an honest C, we know that yλ = αxλ + βλ,
so V could have computed yλ itself from xλ and K. Hence no information extra
to xλ is transmitted by transmitting (xλ, yλ).

We then prove that the scheme is binding. Let A be an unbounded adversary.
Run A to get a message x ∈ F`. Sample a uniformly random key (α,β) ∈ F×G`
and compute yi = αxi+βi for i = 1, . . . , `. Give y to A. Run A to get an output
(y′, x′,λ) ∈ G×F×{0, 1}`. We say that A wins if x′ 6= xλ and y′ = αx′+βλ. We
can show that no A wins with probability better than 2−k. To see this, notice
that if A wins then he knows x′ and y′ such that y′ = αx′ + βλ. He also knows
xλ and yλ as these can be computed from x, y and λ, which he knows already.

10



And, it holds that yλ = αxλ +βλ. Therefore y′− yλ = α(x′−xλ), and it follows
as above that A can compute α. Since no information is leaked on α by the value
αx+ β given to A it follows that it is uniform in F in the view of A. Therefore
A can compute α with probability at most 2−k.

We note for completeness that the scheme could be extended to arbitrary
linear combinations. In that case one would however have to send xλ =

∑
i λixi

(mod F) and yλ =
∑
i λixi (mod F) which would involve doing reductions mod-

ulo p. The advantage of the above scheme where λi ∈ {0, 1} is that no polynomial
reductions are needed, allowing full use of the efficiency of the PCLMULQDQ in-
struction.

3.3 Batched Opening

We now describe a technique to opening a large number of commitments by
sending only k bits. For notational simplicity we assume that C wants to reveal
the values (x1, . . . , xn), but the scheme trivially extends to opening arbitrary
subsets and linear combinations. To reveal (x1, . . . , xn) as described above, C
would send Y C = (y1, . . . , yn) and V would compute yVi = αxi+β for i = 1, . . . , n
and Y V = (yV1 , . . . , y

V
n) and check that Y V = Y C. Consider now the following

optimization where C and V is given a hash function H from P. They could then
compare Y C and Y V by sending hC = H(Y C) and checking that hC = H(Y V).

We saw above that if C sends (x′1, . . . , x
′
n) and (y′1, . . . , y

′
n) where x′i 6= xi for

some i, then the probability that y′i = yVi is at most 2−k.
The optimization would therefore be secure if H is secure in the following

game. Sample a random H and give it to a poly-time adversary A which will
then submit a value h and distribution D over Gn and an index i ∈ {1, . . . , n}
with the property that if we sample (d1, . . . , dn) from D, then the min-entropy
of di in the view of A is k. The adversary wins if h = H(d1, . . . , dn). We say that
H is secure if no poly-time A wins with better than negligible probability.

Any collision resistant hash function has this property as we can do a re-
duction by simply sampling D multiple times to get different (d1, . . . , dn) and
(d′1, . . . , d

′
n) such that h = H(d1, . . . , dn) and h = H(d′1, . . . , d

′
n) for the h

given by A. It is easy to see that if P is a uniformly random permutation then
H(d1, . . . , dn) =

⊕n
i=1 P (i‖idi) is collision resistant, which gives a construction

in the ideal permutation model.

4 Preprocessing

In this section we show how to securely implement the preprocessing. The idea
is to generate the tables by a computation on linear secret shared values, which
in case of malicious security also include MACs. We will consider additive secret
sharing of x where A hold xA ∈ {0, 1} and B hold xB ∈ {0, 1} such that
x = xA + xB .

In the case of malicious security the MACs takes place over a field F of
characteristic 2 and of size at least 2k where k is the security parameter. Here

11



A hold a key αA ∈ F and B a key αB ∈ F. We denote a secret shared value
with MACs [[x]] where A hold (xA, yA, βA) and B hold (xB , yB , βB) such that
yA = αBxA + βB and yB = αAxB + βA. If a value is to be opened the MAC
is checked, e.g. if x is opened to A she receives xB and yB and checks that
indeed yB = αAxB + βA or abort otherwise. This is also the format used in
the TinyOT protocol [NNOB12], so we can use the preprocessing protocol from
there to produce single values [[a]] for random a and triples of form [[x]], [[y]], [[z]]
where x, y are random bits and z = xy.

Note that, by standard protocol, we can use one triple to produce from
any [[a]], [[b]] the product [[ab]], this just requires opening a + x, b + y and local
computation. Also, we can compute the sum [[a+ b]] by only local computation.

In Figure 7, we describe a protocol that implements the preprocessing func-
tionality F premal assuming a secure source of triples and single random values as
described here, and also assuming that the circuit contains only AND, XOR and
NOT gates. We use a permutation P that we model (for simplicity) as a ran-
dom permutation. It is sufficient that H(x1, . . . , xn) =

⊕
i P (i‖xi) is collision

resistant as discussed in the previous section.

For simplicity the protocol is phrased as a loop that runs through all gates
of the circuit, but we stress that it can be executed in constant round: we can
execute step 3 in the protocol by first doing all the XOR and NOT gates, using
only local operations. At this point wire masks have been chosen for all input
and output wires of all AND gates, and they can now all be done in parallel.

Preprocessing for AES To preprocess an AES Sbox table, we can again make
use of the TinyOT preprocessing. This can be combined with a method from
[DK10]. Here, it is shown how to compute the Sbox function securely using 7
binary multiplications and local operations. We can then make the table by
simply computing each entry (in parallel). It is also possible to compute the
Sbox using arithmetic in F256, but if we have to build such multiplications from
binary ones, as we would if using TinyOT, this most likely does not pay off.

5 Implementation

We implement two clients, Alice and Bob, securely evaluating the AES-128 en-
cryption function E. Alice inputs the message and Bob inputs the key. Note
that Bob locally computes the key schedule and inputs the expanded key to the
protocol. The encryption function E contains several operations where all oper-
ations except SubBytes are linear. The parties compute the linear operations
locally on masked values. We are left with replacing every S-box (lookup) with
a tiny table (lookup and opening). For a passively secure evaluation we need
40kB of preprocessing data (160 tiny tables with 28 entries of one byte each).
For malicious security we add MACs to obtain statistical security 2−k. We test
the simple lookup MAC scheme where we use k+ 256k bits extra per entry. For
the linear MAC scheme we use a k bit key (reused) and 2k per entry.

12



Protocol πpremal.

1. Invoke the TinyOT preprocessing such that for each AND gate we have a triple
secret of shared values [[x]], [[y]] and [[z]] such that xy = z.

2. Also using the TinyOT preprocessing, for each wire wi that is an input wire,
or an output wire from an AND gate, the players assign a random [[ri]] to wi,
ri will serve as the masking bit for wi.

3. For each gate Gi with where masking bits [[ru]], [[rv]] have been assigned to the
input wires wu, wv the players do as follows, depending on the type of gate:
NOT: Set the output wire mask [[ro]] = [[ru]]
XOR: Set the output wire mask [[ro]] = [[ru]] + [[rv]]
AND:

– Compute [[rurv]] from [[ru]] and [[rv]] using the triple assigned to this
AND gate, using the protocol from [Bea91].

– For all c, d ∈ {0, 1} define tc,d = (ru + c)(rv + d) + ro and compute a
secret sharing of it as follows: [[tc,d]] = [[rurv]]+c[[rv]]+d[[ru]]+[[cd]]+[[ro]].
This requires only local computation.

Note that tc,d is the bit that needs to be additively secret shared for entry
(c, d) in the table for gate Gi.
A sets Ai[c, d] to be his share of tc,d (which he knows from [[tc,d]]), B defines
Bi[c, d] similarly.
Note further that from his part of [[tc,d]], A can compute valid MACs
mac0i,c,d,mac

1
i,c,d for both possible values of B’s additive share in tc,d.

A sets a0i,c,d = P (i‖mac0i,c,d), a1i,c,d = P (i‖mac1i,c,d), while B defines
b0i,c,d, b

1
i,c,d similarlya.

4. For each output gate open the wire mask ro to both players. For each input
wire wi, open ri to the player who owns that wire.

5. The parties return the opened input masks, output masks as well as tables
Ai, Bi and verifications strings a0i,c,d, a

1
i,c,d, b

0
i,c,d, b

1
i,c,d for each AND gate.

a We need to apply P because we want the verification strings to be independent,
and this is not the case if we use the macs directly.

Fig. 7. Protocol for preprocessing with malicious security

In the test setups the parties receive preprocessed data generated by a trusted
party. They proceed to compute E on a set of test vectors and verify correct-
ness. We test the implementation on two setups: a basic LAN setup and on
a cloud. The LAN setup consist of two PCs connected via 1GbE, where each
machine has 8 CPU cores at 3.5GHz. For our cloud setup we use Amazon EC2
with two c4.8xlarge instances connected via 10GbE with 36 vCPUs (hyper-
threads). We utilize the Intel SSE and AES instruction set for local operations
and communicate over the TCP protocol.

The results are measured as the average over 30 seconds. On each setup we
test different MAC schemes: the linear scheme, the simple lookup scheme and a
passive scheme. We test the linear scheme with security k = 64, the lookup with
k = 64 and k = 32 and the passive where k = 0. For the sequential tests the

13



network delay is the bottleneck for timings as we communicate over 11 rounds
for passive security and 13 rounds for malicious security. For the parallel tests
the bandwidth is the bottleneck on the LAN setup, while computation begins
to be the bottleneck on the cloud setup as we raise the security parameter. The
results are summarized in Table 1.

Table 1. Execution times

LAN Cloud

Sequential Parallel Sequential Parallel

Linear-64 1.03ms 3.15µs 1.09ms 0.47µs

Lookup-64 1.03ms 3.01µs 1.05ms 0.45µs

Lookup-32 1.02ms 2.95µs 1.05ms 0.32µs

Passive 0.88ms 2.89µs 0.97ms 0.29µs

6 An asymptotically better solution

Recall that the main problem we have with obtaining malicious security is that
we must make sure that players reveal correct bits from the tables they are given,
but on the other hand only the relevant bits should be revealed.

In this section we show an asymptotically better technique for committing
players to their tables such that we can open only the relevant bits.

The idea is as follows: if player A is to commit to string s, that is known at
preprocessing time, then the preprocessing protocol will establish a (verifiable)
secret sharing of s among the players. Concretely, we will use the representation
introduced for the so-called MiniMac protocol in [DZ13]: we choose an appropri-
ate linear error correcting (binary) code C. This code should be able to encode
strings of length k bits, and have length and minimum distance linear in k.2 The
preprocessing additively secret shares the encoding C(s) among the players. s
has length ` which is comparable to the circuit size which we assume is much
larger than k. So C(s) is computed by splitting s in k-bit blocks, encoding each
block in C and concatenating the encodings.

The preprocessing also chooses a random string a, unknown to both players,
and both a and a∗C(s) are additively secret shared. Here ∗ denotes the bitwise
(Schur) product. We will use the notation [s] as shorthand for all the additive
shares held by the players relevant to s. The idea is that a ∗ C(s) serves as a
message authentication code for authenticating s, where a is the key. We note
that, as in [DZ13], a is in fact a global key that is also used for other data
represented in this same format.

2 Furthermore its Schur transform should also have minimum distance linear in k. The
Schur transform is the code obtained as the linear span of of all vectors in the set
{c ∗ d| c,d ∈ C}. See [DZ13] for further details on existence of such codes.

14



Functionality F preMiniMac.

1. On input C from both players, execute the same algorithm as F presem would on
input C.

2. Let sA be the string obtained by concatenating all tables {Ai} created for A.
Similarly sB contains all B’s tables. Create MiniMac representations [sA], [sB ]
and give the resulting additive shares to A and B.

3. Create correlated random strings dataA, dataB for the MiniMac protocol to do
d`/ke multiplications of blocks, and hand dataA to A and dataB to B.

Fig. 8. Preprocessing functionality using the MiniMac protocol

Later, when it is known (to both players) which substring A needs to open,
we let I denote the characteristic vector of the substring, i.e., it is an ` bit string
where the i’th bit is 1 if A is to reveal the i’th bit of s and 0 otherwise.

Functionality FTable.

1. On input C from both players, execute the same algorithm as F presem would on
input C.

2. Let sA be the string obtained by concatenating all tables {Ai} created for A.
Similarly sB contains all B’s tables. At any later point, whenever both players
input an index set pointing to a substring of sA or sB , output the substring to
both players.

Fig. 9. Functionality giving on-line access to tables

We then compute a representation [I] (which is trivial using the additive
shares of a), use the MiniMac protocol to compute [I ∗ s] and then open this
representation to reveal I ∗ s which gives B the string he needs to know and
nothing more. This is possible if we let the preprocessing supply appropriate
correlated randomness for the multiplication of I and s.

As for the on-line efficiency of this protocol, note that in [DZ13] the MiniMac
protocol is claimed to be efficient only for so-called well-formed circuits, but this
is not a problem here since the circuit we need to compute is a completely
regular depth 1 circuit. Indeed, bit-wise multiplication of strings is exactly the
operation MiniMac was designed to do efficiently. Therefore, simple inspection
of [DZ13] shows that the preprocessing data we need will be of size O(`) = O(s),
where s is the circuit size, and this is also the communication complexity. The
computational complexity is dominated by the time spent on encoding in C.
Unfortunately, we do not know codes with the right algebraic properties that
also have smart encoding algorithms, so the only approach known is to simply
multiply by the generator matrix. We can optimize by noting that if ` > k2 we
will always be doing many encodings in parallel, so we can collect all vectors to

15



Protocol πtablemal .

1. A and B send C as input to Ftable and get a set of tables {Ai, Bi| i = 1 . . . N},
as well as a bit bu for each input wire wu.

2. For each input wire wu, if A holds input xu for this wire, send eu = xu ⊕ bu to
B. If B holds input xu, send eu = xu ⊕ bu to A.

3. Define M such that the last N −M gates are output gates. For i = 1 to M do:
(a) Let Gi have input wires wu, wv and output wire wo (so that eu, ev have

been computed).
(b) A sends eA = Ai[eu, ev] to B.
(c) B sends eB = Bi[eu, ev] to A.
(d) Both parties set eo = eA ⊕ eB .
Check if all bits opened until now were correct: A and B both ask Ftable for the
substring of A’s tables that she was supposed to reveal in the previous steps.
B checks against what he received from A and aborts if there is a mismatch.
Symmetrically, A and B also ask Ftable for the substring of B’s tables that she
was supposed to reveal in the previous steps. A checks against what he received
from B and aborts if there is a mismatch.

4.5. Reveal the outputs. For i = M + 1 to N do:
(a) Let Gi have input wires wu, wv and output wire wo (so that eu, ev have

been computed).
(b) A sends eA = Ai[eu, ev] to B.
(c) B sends eB = Bi[eu, ev] to A.
(d) Both parties set eo = eA ⊕ eB .

6. The parties use Ftable to confirm that the bits sent in the previous step were
correct, in the same way as in Step 4. If there was no abort, the parties output
the bits {eo| Go is an output gate}.

Fig. 10. Simple protocol for malicious security.

encode in a matrix and use fast matrix multiplication. With current state of the
art, this leads to computational complexity O(skε) where ε ≈ 0.3727.

Alternatively, we can let C be a Reed-Solomon code over an extension field
with Ω(k) elements. We can then use FFT algorithms for encoding and then all
complexities will be O(polylog(k)s).

In Figure 8 we specify the preprocessing functionality F preMiniMac we assumed
here, i.e., it outputs the tables as well as MiniMac representations of them. Let
πMiniMac denote the protocol we just sketched here, and consider the function-
ality Ftable from Figure 9 that simply stores the tables and outputs bits from
them on request. Now, by trivial modification of the security proof for MiniMac,
we have

Lemma 1. The protocol πMiniMac composed with F preMiniMac implements Ftable
with statistical security against a malicious adversary.

Finally, consider the protocol πtablemal from Figure 10. By trivial adaptation of the
proof for semi-honest security, we get that

16



Lemma 2. The protocol πtablemal composed with Ftable implements FSFE with ma-
licious and statistical security.

We can then combine the two lemmas to get a protocol for FSFE in the
preprocessing model, and we then have:

Theorem 2. There exists 2-party protocol in the preprocessing model (using
F preMiniMac) for computing any Boolean circuit of size s with malicious and sta-
tistical security, where the preprocessed data size and communication complexity
are O(s) and the computational complexity is O(kεs) where k is the security pa-
rameter and ε < 1. There also exists a protocol for which all complexities are
O(polylog(k)s).

References

BDOZ11. Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic Encryption and Multiparty Computation. In Proceedings of
EuroCrypt, pages 169–188, Springer Verlag 2011.

Bea91. Donald Beaver. Efficient Multiparty Protocols Using Circuit Randomiza-
tion. In Proceedings of Crypto, pages 420–432, Springer Verlag 1991.

CDvdG87. David Chaum, Ivan Damg̊ard, and Jeroen van de Graaf. Multiparty com-
putations ensuring privacy of each party’s input and correctness of the
result. In CRYPTO, volume 293 of Lecture Notes in Computer Science,
pages 87–119. Springer, 1987.

DK10. Ivan Damg̊ard and Marcel Keller. Secure multiparty AES. In Financial
Cryptography, volume 6052 of Lecture Notes in Computer Science, pages
367–374. Springer, 2010.

DLT14. Ivan Damg̊ard, Rasmus Lauritsen, and Tomas Toft. An empirical study
and some improvements of the minimac protocol for secure computation.
In SCN, volume 8642 of Lecture Notes in Computer Science, pages 398–415.
Springer, 2014.

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Mul-
tiparty Computation from Somewhat Homomorphic Encryption. In Pro-
ceedings of Crypto, pages 643–662, Springer Verlag 2012.

DZ13. Ivan Damg̊ard and Sarah Zakarias. Constant-Overhead secure computation
of boolean circuits using preprocessing. In Theory of Cryptography, pages
621–641. Springer, 2013.

DZ16. Ivan Damg̊ard and Rasmus Winther Zakarias. Fast oblivious AES A ded-
icated application of the minimac protocol. In AFRICACRYPT, volume
9646 of Lecture Notes in Computer Science, pages 245–264. Springer, 2016.

FKOS15. Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter
Scholl. A unified approach to MPC with preprocessing using OT. In ASI-
ACRYPT (1), volume 9452 of Lecture Notes in Computer Science, pages
711–735. Springer, 2015.

Kel. Marcel Keller. private communication.
NNOB12. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and

Sai Sheshank Burra. A New Approach to Practical Active-Secure Two-
Party Computation. In Proceedings of Crypto, pages 681–700, Springer
Verlag 2012.

17


	Gate-scrambling Revisited - or: The TinyTable protocol for 2-Party Secure Computation

