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Abstract

Cryptocurrencies like Bitcoin have proven to be very successful in practice and have gained lots of
attention from the industries and the academia. The security of Bitcoin-like systems is based on the
assumption that the majority of the computing power is under the control of honest players. However, this
assumption has been seriously challenged recently and Bitcoin-like systems will fail when this assumption is
broken.

We propose the first Bitcoin-like protocol that is secure in the presence of a malicious majority of
computing power. On top of Bitcoin’s brilliant ideas of utilizing the power of the honest miners, via their
computing power together with blocks, to secure the blockchain, we further leverage the power of the honest
users, via their coins together with transactions, to achieve this goal. In particular, we propose a novel
strategy for selecting the best blockchain from many competing chains by carefully comparing coins in these
blockchains. In addition, we rigorously prove important security properties of our protocol in an extension of
the blockchain analysis framework by Garay et al [Eurocrypt 2015].
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1 Introduction

Cryptocurrencies like Bitcoin [27] have proven to be very successful in practice. In recent news, dozens of
banks have joined a consortium to explore blockchain technology as a mode of transacting funds [1]. An effort
by industry leaders and the Linux Foundation [37] to advance blockchain technology into a widely available
software development tool is underway. On a national scale, the NSF funds millions in blockchain research [29].

At the heart of the Bitcoin system is a global public distributed ledger, called blockchain, that records all
transactions between users. Bitcoin users create accounts to own bitcoins, and transactions enable a credit for
one account and a corresponding debit to another account (i.e., transferring a certain number of bitcoins from a
debit account to a credit account). The blockchain is established by a chain of cryptographic puzzles (also called
proofs-of-work (PoWs) [6, 15]), solved by a peer-to-peer network of nodes called Bitcoin miners. Each miner
that successfully solves a cryptographic puzzle is allowed to extend the blockchain with a block of transactions,
and at the same time to collect a reward. The more computing power a miner invests, the better his chances are
at solving the puzzle first.

To maintain the security of the Bitcoin blockchain, it requires that the majority of computing power is under
the control of honest miners. Very recently, Garay et al [19] looked into the “core” of the Bitcoin system that
they call the backbone protocol and for the first time introduce a formal framework with a rigorous security
analysis. They showed several security properties of the Bitcoin blockchain assuming the majority of computing
power is honest.

Unfortunately, the majority of honest mining power assumption could be seriously challenged. For example,
the mining process could be dominated by a smaller number of professional miners with customized hardware
making it unprofitable for others to join — this raises the natural concern that a few professional miners might
collude to alter the contents stored in the blockchain [28]. Indeed, the mining pool GHash.io exceeded 50% of
the computational power in Bitcoin in 2014 [20]. Efforts have been made to address this crisis. For example,
memory hard puzzles are developed to curtail specialized hardware production [2–4, 8, 12]. Moreover, new
strategies are designed to discourage the formation of mining pools [26]. Nevertheless, these techniques cannot
help secure the system if the majority of computing power is malicious. We here ask the following question:

Is that possible to design a Bitcoin-like system which is secure against 51% malicious computing
power?

As discussed, this is a very important and challenging question to be answered. Cryptocurrency systems are very
fragile in their early stage, and it will be extremely difficult, if not impossible, to “grow” a stable, Bitcoin-like
blockchain if the adversary controls the majority of computing power at the very beginning. In this work, we
do not offer a complete solution to the above question. Instead, we consider the following scenario where a
cryptocurrency system has “grown up” and then the adversary suddenly controls the majority of computing
power to attack on this already mature system. We argue that this scenario is realistic: it is very possible that the
current Bitcoin system becomes unstable because some miners develop novel mining techniques and dominate
the system for a short time period.

Proof-of-Stake (PoS) Blockchains [23, 24] might be promising approaches to defend against the malicious
computational majority; however, most PoS blockchains suffer from typical “Nothing-at-Stake” attack, or is
based on problematic initialization phase; furthermore, there is no rigorous security analysis to demonstrate
that these systems are secure in this scenario. Nevertheless, jumping ahead, in this work, we answer the posed
question by proposing a PoS-PoW-hybrid blockchain protocol called “modified-backbone protocol”, and then
provide a formal security analysis of it.

1.1 Our Techniques

For starters, we will introduce our design philosophy and some motivation for this work, then we will move into
the fundamental ideas behind our scheme and why it works.
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1.1.1 Basic design principles and our design ideas

Avoiding heavy tools and costly external resources. There are many reasons that Bitcoin has become a
successful system. For example, in the original design of Bitcoin system, heavy cryptographic tools are avoided
— only standard cryptographic primitives such as hash functions and digital signature schemes are utilized. When
we make an effort to design more robust blockchains as in this work, one basic principle that we follow is to use
only lightweight cryptographic tools. The security of Bitcoin has been rigorously analyzed (see [19]) under the
assumption that the majority of computing power is controlled by honest players (along with standard network
assumptions). One may attempt to introduce external trustworthy resources to strengthen the blockchain; but we
have to be very cautious since external resources are often expensive, which will probably lead to impractical
implementations. Therefore, in this work, our second basic principle is to leverage the trustworthy resources
within Bitcoin-like systems, and to avoid any external resources.

Leveraging the power of users, coins, and transactions. With the above basic principles in mind, we first
need to identify certain “additional” resources within the system, to help the honest miners to protect the
blockchain against the adversary who controls the majority of computing power. Where can we obtain such
resources? Recall that in the Bitcoin-like system, two types of players, the users and the miners, are involved.
Intuitively, miners control the computing resources, and users control the second type of resources, coins, in the
system. In Bitcoin, brilliant design ideas enable utilizing honest miners, via their computing power, together
with the blocks they generated, to secure the blockchain system. In this project, on top of the design ideas in
Bitcoin, we will further leverage the power of the users, via their coins, together with transactions they generate,
to achieve this goal. We argue that the second type of resources, coins, can be utilized since rational users are
very willing to join the effort to “protect” the system (and their own coins).

Bootstrapping from certain existing cryptocurrency system. As we discussed above, if we can use suitable
alternative resources in a system, like coins, then it might be possible to achieve our goal of securing the system
against short time period but large-scale computational attacks. However, if the coins are distributed in a bad
fashion, and the adversary is able to control a significant portion of these alternative resources, then it may be
still difficult for us to achieve our goal. Nevertheless, we notice that there are systems (e.g., Bitcoin) which
already “absorbed” a huge amount of honest computing power and distributed coins among lots of good miners.
That huge amount of honest resources could be used as a buffer to defend against an adversary who can collect
lots of computing power in a short time period. Indeed, our goal in this paper is to “bootstrap” from mature
cryptocurrency systems and make them more robust.

1.1.2 High-level idea of our scheme

Again, our goal is to secure an already mature cryptocurrency system (such as nowadays Bitcoin) against the
malicious majority of computing power. In such a mature cryptocurrency system, the majority of coins is
controlled by honest users1. Therefore, we require honest users to utilize their resources (i.e., coins) to help
select the best blockchain. How can honest users utilize their coins to support their best chain? A possible
way for an honest user to go is to include the user’s best available blockchain as part of the transaction; this
transaction is then signed by the user and bound to the user’s current best available blockchain. When this
transaction is broadcast into the network, all miners are informed with the user’s best choice of blockchain. After
collecting all users’ best choices, miners will be able to derive and extend the best blockchain. Jumping ahead,
in section 3.2.1, we slightly modify the Bitcoin transaction format so that the users can support their best chains;
we note that such modification will not increase the effort of users.

The next question is how to use coins to define the best chain. This is a tricky question. Recall that the
adversary may control the majority of computing power; thus, choosing the most difficult chain as the best
blockchain (as in Bitcoin) is not a good strategy anymore. We need to select the best blockchain based on a
different strategy. As we discussed in the previous paragraph, each transaction is bound to a blockchain that
is selected by a user, which allows us to define the balance of the output/credit account in the transaction as

1 For simplicity of our security analysis, we assume that no new coins are generated and all coins originate from a mature blockchain.
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the “supporting coins” to endorse the blockchain. The immediate idea is to compare the supporting coins of
two different blockchains, and then decide which one is better. However, this idea doesn’t work directly: the
adversary is able to create a blockchain with a huge amount of supporting coins by simply spending his coins
repeatedly and frequently along the blockchain. We can avoid this issue by only counting the unspent coins
which have not been transferred to any account in this blockchain. However, this strategy is still problematic, and
we cannot count the unspent supporting coins from the beginning of the blockchain; note that the total number
of supporting coins in each blockchain is the same since the coins are only moved from accounts to accounts. To
address this issue, our final strategy is to compare the unspent supporting coins in two branches from the block
where the chains diverge (divergent position). The branch with more unspent supporting coins is defined as the
better chain. Please see Appendix A.1 and Figure 4 for more explanation. In section 3.3, we carefully define the
best chain selection strategy based on coins in blockchains.

Finally, in section 3.4, we present the details of our protocol. The protocol consists of two types of rounds
executing one by one: miner-round and user-round. In each round, each player (miner or user) first computes its
best valid chain based on the selection strategy described above; then the player attempts to extend the chain via
proof of work (or issues a transaction); finally the player broadcasts its attempt or computed transactions to the
network.

Why the scheme works?2 The desired security properties we want to prove for the scheme are common prefix
and chain quality properties [19]. Basically, the common prefix property means that any two honest parties’ best
blockchains are agreed except the most recent a few blocks. The chain quality property implies that, given any
set of consecutive blocks on the best blockchain of an honest user, the ratio of the blocks that are contributed
by malicious miners is suitably bounded. As in [19], our protocol is carried out in a synchronous3 but not
authenticated network. We assume the honest miners control only a small constant portion of mining power; in
addition, honest users control the majority of coins, and they spend enough number of coins in each round to
provide their support to the best blockchain.

To facilitate the presentation of our proof ideas, we introduce the notion of a pure successful round. We say
a protocol execution round is pure successful if in that round at least one honest miner finds a puzzle solution
and no malicious miner finds any. Since honest miners control a constant ratio of the total mining power, pure
successful rounds can be reached frequently. In the pure successful round, the newly extended blockchain
contains all of the supporting coins collected by an honest miner. Any blockchain that is extended before the
pure successful round cannot contain the coins spent in the current pure successful round. That is, the newly
extended blockchain will have more coins than any “older” blockchain. Then, the best blockchain in the view of
every honest user will align, which is the extended blockchain after a pure successful round. We also note that
when the system reaches an aligned round, the malicious miners cannot fork a valid branch from any position
before the newly extended block. In summary, the adversary can only create divergent views for different miners
between two pure successful rounds. The malicious miners cannot find too many new blocks between two pure
successful rounds. Indeed, this leads to our proof for the common prefix property. The detailed proof can be
found in Section 4.3.

Now we argue how to achieve the chain quality property. As we mentioned in the previous paragraph, in
each pure successful round, an honest miner will contribute a block to the best blockchain. For any consecutive
rounds, the number of pure successful rounds will follow a Binomial distribution. At the same time, the number
of blocks generated by malicious miners will also follow a Binomial distribution. We therefore can have a lower
bound on the number of blocks that are contributed by honest miners, and an upper bound on the number of
blocks that are contributed by malicious miners. This will lead us to show the chain quality property: the ratio
of the blocks that contributed by malicious miners is suitably bounded. The detailed proof can be found in
Section 4.4.

Besides the analysis in our cryptographic analysis framework (see Section 4), it would be desirable to define

2This is the first rigorous cryptographic analysis of Bitcoin-like protocols that are resilient to a malicious majority of computing
power.

3It is nontrivial to get a solution in the synchronous setting. Previously, [5, 21] provided solutions to (non-practical) consensus; the
goal here is to get a practical blockchain against malicious 51%, which is much harder.
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a comprehensive analysis framework in the rational setting. Unfortunately, there is no known analysis framework
capturing comprehensive rational attacks, and this is one of the major open questions in the field. Nevertheless,
in Section 3.5.2, we provide informal arguments that our constructions can defend against typical attacks such as
“Nothing-at-Stake”. Moreover, based on the best chain strategy we defined (see Section 3.3.3), it is easy to see
our protocol is immune to the Sybil Attack [14]. We further note that, given the fact that our best chain is based
on the number of supporting coins, the adversary cannot increase the value of his favorite chain by passing coins
back and forward along that chain.

1.2 Related Work

Anonymous digital currency was introduced by Chaum [10] in early 1980s. The first decentralized currency
system, Bitcoin [27], was launched about 30 years later, by incentivizing a set of players to solve cryptographic
puzzles (also called proofs-of-work puzzles [6, 15]).

It is very difficult to provide rigorous analysis for Bitcoin like protocols. Eyal and Sirer analyze Bitcoin
protocol in the rational setting [18], revealing that Bitcoin falls short of incentivizing correct behavior among
miners. The mining ecosystem has since been extensively studied in [17, 30]. Garay et al. [19] propose the
first comprehensive cryptographic framework and show that, assuming the honest majority of computing
power, Bitcoin achieves certain interesting security notions they defined. Their positive results fall apart if
the adversaries’ computational resources are not suitably bounded (strictly less than half). In fact Eyal and
Sirer show in [18] that rational adversaries require much less for a disproportionate advantage. In this work,
we propose a new protocol which can circumvent the strict honest majority assumption of computing power
by using native system resources (i.e., coins) for making consensus decisions; along the way, we introduce
an extended framework of [19] which allows us to analyze the security of our new protocol. While Garay et
al.’s and our own are in the synchronous setting, we remark that very recently, Pass et al [32] provide the first
cryptographic analysis of the blockchain protocol in the asynchronous setting.

The most related to our design strategy is a class of consensus algorithms generally known as proof-of-stake
(PoS). We note that there is no formal cryptographic analysis that shows PoS can overcome the strict majority
assumption of computing power (even some claimed so). A proof-of-stake is a de facto proof-of-ownership
of an account that controls some assets. These assets are then used for something meaningful, such as adding
or validating blocks. The two PoS variants that are closest to our consensus method are Peercoin [23] and an
(unimplemented) idea contributed on the Bitcoin Wiki [36] by Meni Rosenfeld. Peercoin is the first public
system to implement PoS [23] that leverages a transaction prioritizing feature from Bitcoin called coinage. This
priority value is the product of the number of coins in a transaction and the time elapsed since they were last
transferred. From this, the Peercoin best chain policy is the chain (and all of its transactions) with the most
coinage consumed. Rosenfeld [36] proposes that some blocks in a chain are special signing blocks, where the
owners of coins may sign and broadcast those blocks with proofs that they own some coins. These signatures
count as votes for the blockchains they want to follow. In this way, consensus is based on the chains with the
most votes from the users.

Unfortunately, neither of these strategies work on their own. Peercoin suffers from many issues related to
coinage. Consider a user that owns a small fraction of coins in a few accounts and stores up a lot of coinage.
Then, they can use those accounts to produce multiple blocks in a row and execute a double-spend attack. Several
ad-hoc attempts have been made to improve on the basic PoS technique such as tuning the rate of coinage
accumulation [13, 34], but there has yet to be a formal proof demonstrating that these are effective strategies. On
top of this, Peercoin relies on a centralized check-pointing system4. Rosenfeld’s best chain policy is not clear
enough and this leaves a loophole for an adversary with a majority of computing power and a small fraction of
coins to segment the network and balance the chains, which would violate consensus. Our contribution addresses
the issues that arise from both of these approaches and we supply a formal proof of security. Besides Peercoin
and Rosenfeld’s proposal, there are several proposals solved some of the issues such as Tendermint [24] and

4While this checkpoint system is no longer a critical part of the system, there are still periodic checkpoints introduced by the
development team like in Bitcoin.
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Ethereum’s Casper [38], which can circumvent the nothing at stake problem; however, those constructions
indeed face other obstacles. Please see Section 3.5.4 for detailed discussions.

On another front, attempts to limit a single entity from controlling too much computing resource is being made
through complex, ASIC (Application Specific Integrated Circuits) resistant, and memory hard puzzles [2–4,8,12]
as an alternative to Bitcoin’s SHA-256 proof-of-work puzzle. Other attempts aim to prevent pools from forming
via non-outsource puzzles [26]. In addition, other important approaches [16, 25, 31] have been explored by the
research community.

Organization. In Section 2, we present the framework of Garay et al [19], and then extend it for our purpose.
In Section 3, we present the details of our construction. Then, in Section 4 we analyze the security of our
construction. Finally, additional supporting materials for our construction are provided in Appendix A.

2 Model

2.1 GKL Model

In order to study the security of Bitcoin-like protocols, Garay et al [19] consider a standard multi-player syn-
chronous communication setting (e.g., Canetti’s formulation of the “real world” execution [9]) with the relaxation
that (i) the underlying communication graph is not fully connected, and (ii) the underlying communication
channel is reliable but not authenticated. Note that the adversary is not allowed to stop the messages from being
delivered, but the adversary may “spoof” the source of a message they transmit and impersonate the (honest)
sender of the message. BROADCAST is used to denote the atomic unauthenticated “send-to-all” functionality
in this synchronous communication model; here, an adversarial sender may abuse BROADCAST by sending
inconsistent messages to different honest miners to confuse them. In this model, the adversary is “rushing” in
the sense that in any given round the adversary is allowed to see all honest miners’ messages before deciding his
strategy. We finally note that due to the unauthenticated nature of the communication model, the miners may
never be aware of the exact number of participants in a protocol execution. For simplicity and similar to the
framework by [19], we assume that the number of parties is fixed during the course of the protocol execution.

Miners. The environment Z provides inputs for all miners and receives outputs from them. The environment
may provide input to any miner in any round, and may modify the input from round to round. We denote by
INPUT() the input tape, by OUTPUT() the output tape, and by RECEIVE() the incoming communication tape, of
each miner.

In each round, miners read their input tape INPUT() and communication tape RECEIVE(), then carry
out some computation, and then send out a BROADCAST message which is guaranteed to be delivered to
all miners in the beginning of the next round. Let Π be an n-party protocol among miners P1, . . . , Pn. Let
{VIEW

Pi
Π,A,Z(κ,z)}κ∈N,z∈{0,1}∗ denote the random variable ensemble describing the view of miner Pi after the

completion of an execution with environment Z, running protocol Π, and adversary A, on auxiliary input
z ∈ {0,1}∗, and the security parameter κ. For simplicity, the parameters κ and z are often dropped if the context
is clear, and we describe the ensemble by VIEW

Pi
Π,A,Z(κ,z). The concatenation of the views of all miners

〈VIEW
Pi
Π,A,Z〉i=1,...,n is denoted by VIEWΠ,A,Z .

We note that the protocol’s miners may never be certain about the number of participants in the protocol
execution, given the unauthenticated nature of the communication model. Moreover, for simplicity, only a
standalone static model is considered in this model, and the number of miners is fixed during the course of the
protocol execution.

Bounded computing power. In Bitcoin, the miners have limited ability to produce proofs of work. To capture
this, in [19], all miners are assumed to have access to a random oracleH(·), and each miner is allowed to perform
at most q queries in each round; here, q is a function of the security parameter κ, and we also call such miners
q-bounded. Note that this is an “idealized” interpretation of the setting where all miners have the same amount of
computing power. However, in the reality, each different honest miner may have a different amount of computing
power; nevertheless, this idealized-model does not sacrifice generality since one can imagine that real honest
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miners are simply clusters of some arbitrary number of honest idealized-model miners. The adversary A is
allowed to perform t · q queries per round, where t is the number of corrupted miners.

2.2 Our Extended Model

In this extended model, we use the same model for the communications and the miners. We also use a
synchronous unauthenticated communication system with q-bounded miners. However, we introduce the users
into the model as follows.

Users and Miners. In our extended model, we specify two types of rounds that execute in turn: user-round and
miner-round. In the user-round, the users are able to create accounts and sign transactions using their private
keys. Moreover, they can utilize their coins to help the honest miners secure the system. On the other hand, in
the miner-round, the miners solve PoW puzzles, and append a new block to the best chain on their local views.
The users and miners are playing different roles in our model; however, without the collaboration of these two
types of players, our model cannot be secure in the presence of the malicious majority computing power.

Honest cash flow. The user is another type of players in the system who does not solve the POW to extend
the blockchain, but spending coins in each round by signing transactions. A transaction is a statement to show
that some coins are transferred from a source account to some destination accounts. A continuous transactions
can be viewed as a chain of transactions. We only concern with the coins of destination accounts since the
coins of the source account will become invalid once they are transferred. We assume that there is an initial
blockchain, denoted C∅, which is distributed to all users before running the protocol. All of the legal coins must
be traced back to C∅ by following the reverse order of the corresponding chain. Furthermore, a transaction must
be verifiable and a coin cannot be transferred twice from the same source.

The users adopt the same communication assumption as the miners. For simplicity, we consider the protocol
executes round-by-round. We assume that the malicious users control at most cmalicious coins, and in each round
the honest users transfer cspend =Θ(κ) · cmalicious coins that originate from the blocks which were generated in
Θ(κ) rounds earlier where κ is the security parameter. Note that cspend denotes the cash flow volatility (v for
short) of honest users. An honest user will sign his transaction to show his support to the bestchain on his local
view.

We define a new comparison method for comparing two blockchains. In particular, the best chain is chosen
based on the number of supporting coins. Given two distinct blockchains, the chain with more supporting coins
from users after they are forked is better than the other one. We remark that once a coin is transferred, the
supporting power is also transferred.

We refer to the above restrictions on the environment, the players, and the adversary as the (q,v)-synchronous
setting. The view of a player participating in the protocol is denoted by VIEW

P ,H(·)
Π,A,Z(κ,q,v,z), and the concatena-

tion of all players’ views is denoted by VIEW
H(·)
Π,A,Z(κ,q,v,z). Similar to the framework by Garay et al [19], we

will study security properties (see Section 4) of protocols Π in the (q,v)-synchronous setting. Such properties
will be defined as predictions over the random variable VIEW

H(·)
Π,A,Z(κ,q,v,z) by quantifying over all possible

adversaries A and environments Z.

3 Construction

We start by defining blocks, blockchains, proofs of work, a chain validation algorithm, and other related notations
in Section 3.1; we remark that many of the notations in this section are borrowed from [19]. Then in Section 3.2,
we define transactions in our protocol; here, new transaction format and properties are introduced. In Section 3.3,
we introduce new tools so that coins in a blockchain can be used to protect the blockchain. Finally, we present
our main protocol in Section 3.4.
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3.1 Blocks and Blockchains

3.1.1 Blocks

Let G(·) and H(·) be cryptographic hash functions with output in {0,1}κ. A block B is a quadruple of the
form B = 〈s,X, ctr,w〉 where s ∈ {0,1}κ, X ∈ {0,1}∗, ctr ∈ N, w ∈ {0,1}κ, such that they satisfy the predicate
validblockDq (B), defined as (H(ctr,w,G(s,X)) < D)∧ (ctr ≤ q) where the parameters D ∈ N and q ∈ N. Here,
D denotes the difficulty level of the block, and q denotes the maximum allowed number of hash queries in a
round. We allow the size of q to be arbitrary as per backbone specification, as it bounds any player’s ability to
solve proofs of work in a round. Note that here, s should be the digest of the previous block, and w is a random
nonce. Finally, we call X the payload of a block, and denote it as payload(B) which refers to the information
stored in some block B. Specifically, in our protocol, we are interested in keeping transactions in X.

3.1.2 Blockchains

A blockchain C consists of a sequence of ` concatenated blocks B1‖B2‖ · · · ‖B`, where ` ≥ 0. For each blockchain,
we specify several notations such as head, length, and payload as below: blockchain head, denoted head(C),
refers to the topmost block B` in blockchain C; blockchain length, denoted len(C), is the number of blocks in
blockchain C, and here len(C) = `; finally, blockchain payload, denoted payload(C), refers to the information
we store in C, and we have payload(C) = ||`i=1payload(Bi). For brevity, we use sub blockchain (or subchain) for
referring to segment of a chain. For example, C[1, `] refers to an entire blockchain, whereas C[j,m], with j ≥ 1
and m ≤ ` would refer to a sub blockchain Bj‖ · · · ‖Bm. We use C[i] to denote the i-th block Bi in blockchain C.
If blockchain C is a prefix of another blockchain C′, we write C � C′.

Next, we discuss how to extend a blockchain, and how to validate a blockchain. In subsection 3.3.3, we will
discuss how to compare blockchains.

Chain extension: Proof of work. The pow algorithm attempts to extend a chain via solving a proof of work
(POW). This algorithm is parameterized by two hash functions H(·),G(·) (which in our analysis will be modeled
as random oracles); as well as two positive integers q andD where q represents the number of times the algorithm
is going to attempt to brute-force the hash function inequality (see subsection 3.1.1) that determines the POW
instance, and D determines the “difficulty” of the POW. The algorithm works as follows. Given a chain C, an
initial chain C∅, and a value X to be inserted in the chain C; the POW algorithm samples a random initial string
w of length κ, it then hashes these values to obtain h with a counter ctr. Subsequently, it increments ctr and
checks if H(ctr,w,h) ≤D; if a suitable (ctr,w,h) is found then the algorithm succeeds in solving the POW and
extends chain C by one block. Note that the payload X, the initial string w, and the counter ctr will be inserted to
the new block. If no suitable (ctr,w,h) is found, the algorithm simply returns the chain unaltered. We suppose
that we have an initial blockchain C∅ as the starting point, and C∅ is known to all miners and users. We remark
that, to ensure that each attempt is independent, we explicitly ask each miner to include a random string w in the
proof of work.

Chain validation. The next algorithm, called validate chain, is introduced to verify the structure of an input
chain C. This algorithm is nearly identical to the validate algorithm in [19] except that it only considers the
chain that has a prefix C∅ and a random nonce w is introduced. Algorithm validate chain is parameterized by
values q and D, as well as access to the hash functions H(·) and G(·). It first checks whether the considered
chain C has prefix C∅. If C∅ is the prefix of C, then starting from the head of C, for every block, the algorithm
validate chain ensures that the corresponding proof of work is properly solved where the counter ctr does
not exceed q, a hash pointer s of the previous block is properly referenced, and the proof of work satisfies the
difficult D. If all blocks verify is true then the chain is valid, otherwise it is rejected. Please refer to Algorithm 2
for more details.
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Algorithm 1: The proof of work function, parameterized by q, D and the hash function G(·), H(·). The
input is (X,C,C∅).
1 function pow (X,C,C∅)
2 if C∅ � C then
3 〈s′ ,X′ , ctr ′ ,w′〉 ← head(C)
4 s←H(ctr ′ ,w′ ,G(s′ ,X′))
5 ctr← 1
6 w← {0,1}κ
7 B← ε
8 h← G(s,X)
9 while ctr ≤ q do

10 if H(ctr,w,h) < D then
11 B← 〈s,X, ctr,w〉
12 break
13 ctr← ctr +1
14 C ← C‖B
15 return C
16 else
17 return C∅

Algorithm 2: The chain validation predicate, parameterized by q, D, and the hash functions G(·), H(·).
The input is (C,C∅).
1 function validate chain (C,C∅)
2 b← (C∅ ≺ C)
3 if b = True then
4 〈s,X,ctr,w〉 ← head (C)
5 s′←H(ctr,w,G(s,X))
6 repeat
7 〈s,X,ctr,w〉 ← head (C)
8 if validblockDq (〈s,X,ctr,w〉)

∧
H(ctr,w,G(s,X)) = s′ then

9 s′← s ; /* Retain hash value */
10 C ← C[1, len(C)− 1] ; /* Remove the head from C */

11 else
12 b← False

13 until (C = C∅)
∨
(b = False);

14 return b

3.2 Transactions

In the Bitcoin-like cryptocurrencies, the users transfer their coins via issuing transactions. In this subsection we
focus on transactions: we will describe the new transaction format that we need for our construction, we then
explain how the transactions are generated, and then we will consider how a transaction can be validated in a
blockchain.
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3.2.1 Transaction Basics

Transaction generation and verification. Transactions are datagrams that are produced and consumed by
the users. In a transaction authentication scheme, the users are able to create accounts and sign transactions.
Formally, we define the syntax of transaction authentication scheme as follows:
Definition 3.1. A transactions authentication scheme TxAuth consists of a tuple of algorithms (keygen,sign,verify),
with access to the random oracle G(·), where

• (ain,sk)← keygen(1κ): keygen is a key generation setup algorithm that takes as input 1κ (κ is the
security parameter) and outputs a pair (ain,sk). Here, account ain consists of a verification key vk and
the account address G(vk); that is, ain = (vk,G(vk)). In addition, sk is the corresponding secret key of
ain.

• tx← sign(sk, t̃x): sign is a transaction signing algorithm that takes as input a secret key sk and a message
t̃x in the following format: t̃x =

(
(ain,cin)→ (aout

1 ,cout1 ), . . . , (aout
` ,cout` ),B

)
where ain = (vk,G(vk)) is

the input account to be debited cin coins; aout
i = (vki ,G(vki)) is the output account to be credited couti

coins, for i = 1, . . . , `; and B is a block. For simplicity, we use t̃x.ain to access the input account of t̃x
and we use t̃x.B to access the block B of t̃x. Then sign outputs a message tx = (t̃x,vk,σ ) where σ is the
signature of t̃x. For convenience, we call t̃x unsigned transaction and tx signed transaction.

• b := verify(tx): verify is a transaction verification algorithm that takes as input a message tx = (t̃x,vk,σ )
and returns a bit b ∈ {True,False}. We say a transaction is verifiable if and only if verify returns
True.

The security of the transaction authentication scheme is defined as follows:
Definition 3.2. A transaction authentication scheme Σ = 〈keygen,sign,verify〉 is unforgeable if for all PPT

attackers A,

Pr
[
(ain,sk)← keygen(1κ); (t̃x,σ )←Asign(ain,sk,·)(vk);b← verify(t̃x,vk,σ )

: b = True and A never submitted t̃x to sign(ain,sk, ·) oracle

]
≤ negl(κ)

Remark 3.3. Our transaction authentication scheme is very similar to the digital signature scheme in Bitcoin
except that, the transaction t̃x to be signed here includes an additional field B. This modification is critical in
our protocol construction in Section 3.4: there, we will use the additional field B to bind an unsigned transaction
t̃x to a known block in a blockchain.

Transaction format and data structure. We are now giving more details of our proposed data structures for
account, credit, signed, and unsigned transactions in Figure 1. The account contains a verification key vk, and
its address G(vk). The credit stores an output account and the number of coins cout; thus, cout coins will be
transferred from an input account to aout. The unsigned transaction includes a debited/input account and the
number of debited coins cin from the input account. Especially, this unsigned transaction also stores a field B
to show its support to the corresponding block. The signed transaction consists of the corresponding unsigned
transaction, a verification key, and the signature of this transaction.

+ verification key vk;
+ account address G(vk);

account
+ account aout;
+ coin number cout;

credit

In Figure 2, we present the format of a regular transaction. We employ the “dot” notation to indicate the
access to an element of the data structure. For instance, if we want to access the block B in the data structure
shown in Figure 2, we would refer to it as tx.t̃x.B. The signed transaction tx consists of three fields: a public key
vk, an unsigned transaction t̃x for verification, and the signature σ of t̃x. The unsigned transaction t̃x contains

9



+ account ain;
+ coin number cin;
+ credit Cr;
+ block B;

unsigned tx
+ unsigned tx t̃x;
+ verification key vk;
+ signature σ ;

tx

Figure 1: Data structure

tx

 vk
σ

t̃x


ain

cin

Cr
B

 vk
G(vk)

Debited/input account




Credited/output account(s) & amount(s)

aout
1

cout1




aout
2

cout2
...

aout
`

cout`

vk1

G(vk1)

vk2

G(vk2)

...

vk`

G(vk`)

Figure 2: Transaction Data-structure Hierarchy, where cin =
∑`
i=1 couti .

an input/debited account, the number of debited coins cin, ` credited/output accounts, as well as the supported
block B.

We remark that coinbase transactions are not signed and these unsigned transactions may be included in a
blockchain via proof of work (as in Bitcoin). A pictorial illustration of the format of a coinbase transaction can
be found in the Appendix A.2.

3.2.2 Transactions in a Blockchain

After defining the basics of transactions, we now consider transactions in a blockchain. In this subsection, we
define the transaction well-formedness in a blockchain. Intuitively, a well-formed transaction in a blockchain
should be verifiable (as defined in Definition 3.1 above, i.e., verify predicate returns True), traceable, and not
conflicting. Before giving the detailed definitions for traceable transactions and non-conflicting transactions, we
note that without loss of generality, the initial state of a blockchain C, denoted C∅, consists of multiple coinbase
transactions.
Traceable transactions. Transactions represent the ownership of coins in cryptocurrency systems such as
Bitcoin. In our system, transactions have a one-to-many relationship that represents the transfer of coin(s) from
a single input account to potentially many output accounts. In order to make sure that a new transaction is valid,
we need to ensure that the input account of that transaction has a valid balance (i.e., cin). More precisely, the
balance is from a previous transaction; therefore, we must trace back one step to the previous transaction input.
We do this until a transaction can be traced back to a legal source, specifically, a coinbase transaction in C∅. In
order to simplify our presentation, we assume that all accounts are unique and are used only once. We define a
traceable transaction as follows.
Definition 3.4 (Traceable Transaction). Consider a blockchain C = C∅‖B1‖B2‖ . . .‖Bl where C∅ is the initial
state and l ∈ N, payload(C∅) consists of a set of coinbase transactions, and payload(B1‖B2‖ . . .‖Bl) consists of
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a set of regular transactions {tx1, . . . , txm} where m ∈ N. We say tx is a traceable transaction on C, if there exist
(1) a coinbase transaction tx′0 ∈ payload(C∅), and
(2) a subset of ordered transactions of {tx1, . . . , txm}, denoted as {tx′1, . . . , tx′n}, where n ∈ N and n ≤m,
such that all of the following conditions hold:

tx = tx′n,
∀i ∈ [n], ∃t ∈ [`i], it holds that
(1), tx′i−1.t̃x.Cr.aout

t = tx′i .t̃x.a
in, (2), tx′i−1.t̃x.Cr.coutt = tx′i .t̃x.c

in, and (3), tx′i .t̃x.c
in =

∑`i
j=1 tx

′
i .t̃x.Cr.coutj ,

where `i is the number of output accounts in transaction tx′i .
We define that

trace(C, tx) =
{
True tx is a traceable transaction on C
False otherwise

Non-conflicting transactions. We define what it means for two transactions to be non-conflicting. We remark
that, in our system, the debited accounts need to transfer all coins they have to credited accounts; therefore, those
accounts cannot be debited accounts again in any other transactions. If there is a transactions in C such that its
input account is the same as that in the considered transaction, then the examined transaction is a conflicting
transaction. Otherwise, it is a non-conflicting transaction.
Definition 3.5 (Non-conflicting Transaction). Let C = C∅‖B1‖B2‖ . . .‖Bl be a blockchain where payload(C) =
{tx1, tx2, . . . , txn} where n ∈ N, l ∈ N, and n ≥ l. We say a transaction tx is not conflicting with blockchain C if
and only if predicate nonconflict(C, tx) = True, where

nonconflict(C, tx) =
{
True ∀i ∈ [n], txi .t̃x.ain , tx.t̃x.ain

False otherwise

We are now ready to describe how to validate transactions in a blockchain. Valid transactions in a blockchain
should be well-formed, i.e, the transactions should be verifiable, traceable, and non-conflicting. The validation
of transactions is specified in algorithm validate tx. The algorithm takes as input an initial chain C∅ and a chain
C to be examined. If the chain C does not have the prefix C∅ or C is the same as C∅, then a bit b is set to False;
otherwise, b = True. Next, if b is True, then every transaction in C will be checked by the three predicates:
verify, trace, and nonconflict. If there exists a transaction that is not verifiable, traceable, or non-conflicting;
then the algorithm outputs False; otherwise, it returns True. More details can be found in Algorithm 3.

3.3 Coins in a Blockchain

In the original backbone protocol (as described in [19]), if the computing power of malicious party is more than
50% of the entire computing power, the system can be broken. Our protocol, on the other hand, is preserved in
this scenario by the use of coins. In this subsection, we focus on the role of coins in our system: we will describe
how to bind coins of a transaction to a block; then, how to utilize coins to define the value of a single transaction
and the value of an entire set of transactions; further, we explain how a set of transactions defines the value of a
subchain; after that, we show how to choose the best chain using these values other than by length.

3.3.1 Bound Transactions

As discussed in Section 1, each transaction in our protocol is bound to a certain block. We say that the transaction
is bound to block B if its block section is set to be B. The definition of transaction-block binding is given as
follows:
Definition 3.6 (Transaction-Block Binding). Let tx be a transaction and B̂ be a block. We say transaction tx is
bound to block B̂ if it holds that B̂ = tx.t̃x.B.

Users make use of these bindings to show support for a certain blockchain. When a user signs a new
transaction and broadcasts it to the miners, the support of this transaction is tracked in a transaction appendix of
that chain. The transaction appendix is defined as follows.
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Algorithm 3: The transaction validation predicate. The input is (C,C∅).
1 function validate tx (C,C∅)
2 b← (C∅ ≺ C)
3 if b = True then
4 〈s,X,ctr,w〉 ← head (C)
5 s′←H(ctr,w,G(s,X))
6 repeat
7 〈s,X,ctr,w〉 ← head (C)
8 {tx1, tx2, . . . , tx|X|} ← X
9 for i = 1 to |X| do

10 if verify(txi) = False then
11 b← False
12 break
13 if trace(C, txi) = False then
14 b← False
15 break
16 if nonconflict(C, txi) = False then
17 b← False
18 break
19 C ← C[1, len(C)− 1] ; /* Remove the head from C */

20 until (C = C∅)
∨
(b = False);

21 return (b)

Definition 3.7 (Transaction Appendix). Consider a blockchain C and a set T of unique transactions where
T = {tx1, tx2, . . . , tx|T|} and |T| is the number of transactions in T. We say T is a transaction appendix if it holds
that txi is bound to block head(C), for all i ∈ [|T|]. For convenience, we use C.T to access the transaction
appendix of C. If a subchain includes the head(C) of full chain, then it also includes the C.T, otherwise its T is ε.

We now introduce two algorithms audit and virtualize that support our use of transactions and coins in the
protocol. The audit is a blockchain auditing function (Algorithm 4, below). It appends each valid transaction in
X to the transaction appendix of an input chain if and only if that transaction is bound to the head of the input
chain. The second algorithm, called virtualize, invokes predicate audit over a set of chains, and updates the
transaction appendix of each chain in the set; see Algorithm 5 for more details.

Transaction auditing. The transaction auditing function audit is parameterized by the nonconflict predicate,
the trace predicate, and the TxAuth.verify function. This algorithm accepts a blockchain C and transaction
set X as input. It serves to audit the chain C with the fresh transactions found in X that are bound to the
head of C. In other words, it appends every transaction txi in X to the chain’s transaction appendix C.T if it
satisfies that txi .t̃x.B = head(C), txi does not conflict with C (nonconflict(C, txi) = True), txi is traceable on
C (trace(C, txi) = True), and the authenticity of the signed transaction TxAuth.verify(txi) = True.
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Algorithm 4: The audit function takes a chain C and transaction set X = {tx1, tx2, . . . , tx|X|} as input.

1 Function audit (C,X)
2 B̂← head(C)
3 if X , ∅ then
4 for i = 1 to |X| do
5 if TxAuth.verify(txi) = True

∧
txi .t̃x.B = B̂ then

6 if nonconflict(C, txi) = True
∧

trace(C, txi) = True then
7 C.T←C.T

⋃
{txi}

8 return

Virtual block extension. The virtualize is a chain extension algorithm that applies audit across a set of
blockchains, denoted S, and updating each one in turn. The virtualize algorithm artificially extends each
blockchain Ci stored in a set S = {C1,C2, . . . ,C|S|} for 1 ≤ i ≤ |S| by generating or updating the transaction
appendix Ci .T of each chain Ci in S with the transactions from the input set X. It is parameterized by the previous
algorithm audit. Each candidate chain Ci in S is audited with audit(Ci ,X). This updates each chain’s appendix
with any new binding transactions found in X.

Algorithm 5: The virtualize function takes a set of chains S = {C1,C2, . . . ,C|S|} and a transaction set X as
input.

1 Function virtualize (S, X)
2 {C1, . . . ,C|S|} ← S

3 for i = 1 to |S| do
4 audit(Ci ,X)
5 return

3.3.2 Coins in a Transaction, in a Block, and in a Blockchain

Transactions carry balance from account to account and coins can be transferred between users’ accounts. We
now introduce transaction value which is the total amount of coins that have been transferred from the input
account to the output accounts. Briefly, the balance of the input account being spent is the value of the entire
transaction. This value must be equal to the sum of the balances of the output accounts. For the sake of simplicity
in our presentation, we assume all accounts are unique.
Definition 3.8 (Transaction Value). Let value(tx) be the transaction value for transaction tx. Then we have
value(tx) =

∑`
k=1 tx.t̃x.Cr.coutk where ` is the number of credited accounts in tx and tx.t̃x.Cr.coutk refers to the

amount of coins credited to account aout
k for k ∈ [`].

We extend this definition to encompass the total value of a set of transactions. The naı̈ve approach would
be to sum the transaction value of each member of the set one-by-one. This would cause a serious problem
with frequently or repetitively spent coins, which would be counted again and again. An adversary playing
this strategy could significantly increase the value of his preferred set. Instead, we resolve this issue by only
considering the coins that are not spent in any other transactions in the set. More precisely, if there are no input
accounts in the other transactions that transfer some coins, then the coins will be contributed to the value of the
considered set. The formal definition of value for a set of transactions is given by the following.
Definition 3.9 (Value for a Set of Transactions). Let value(X) be the value for a set X of transactions where
X = {tx1, tx2, . . . , txm} and m ∈ N. Then we have value(X) =

∑m
i=1

∑`i
k=1(txi .t̃x.Cr.coutk ) ·φik where `i is the

number of credited accounts in transaction txi , and φik = 1 if txi .t̃x.Cr.aout
k , txi∗ .t̃x.ain ∀i∗ ∈ [m], otherwise

φik = 0.

In our system, coins are moved from accounts to others and no new coins are generated in our system. This
implies that the value of any blockchain is equal to the value of the initial blockchain C∅. Therefore, in order to
compare two chains, we need to find the divergent position (e.g., j-th block) of the two examined chains, then
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compare the two subchains obtained by truncating all blocks from the initial block to the j-th block. In other
words, we need to calculate and compare the values of the two branches instead of the entire chains. Again, note
that we only consider coins that are not spent when determining the value of a subchain.

We remark that the value of a subchain is essentially based on the value of its payload which is a set of
transactions. Therefore, for a subchain C[j,m], value(C[j,m]) = value(payload(C[j,m])). For simplicity, we
use value(C[j,m]) to indicate the value of the subchain C[j,m].

We further remark that, considering a subchain, coins spent over and over again are no more powerful than
coins being spent once in that subchain. Please see Appendix A.1 and Figure 4 for more explanation.

3.3.3 Chain Comparison

With the definition of subchain value, we can compare the value of two chains as follows. Given two chains C1
of length `1 and C2 of length `2 with fork occurring after the j-th block. Specifically, C1[j +1] and C2[j +1]
are not identical. We say the chain C1 is better than C2 if value(C1[j, `1]) > value(C2[j, `2]). If it happens that
value(C1[j, `1]) = value(C2[j, `2]), we then say C1 is better than C2 if H(head(C1)) < H(head(C2)). We now
provide a comparison algorithm, denoted compare, to implement this intuition.

Comparison. The compare algorithm is introduced to compare blockchains (see Algorithm 6). It enables the
honest players to deterministically select the best chain given any two chains. The bestvalid (Algorithm 7)
invokes the validate and compare functions over a set of chains, then returns the best valid blockchain.

At a high level, compare takes as input two chains C1, C2, and the divergent position j from their respective
roots. We note that the algorithm uses a global public parameter cmalicious which denotes the greatest number
of coins controlled by the adversary, and a function max to find the maximum value of its two input values.
The algorithm compare first computes the subchain values of C1 and C2 from the divergent position j. For
the chain C1, it computes the value of C1[j, len(C1)], then adds the output of the max function on input
(0,value(C1.T) − 1.1cmalicious) where C1.T is the transaction appendix of C1. Note that we need to subtract
1.1cmalicious coins from the appendix value in order to defend against the attack where the adversary adds his
malicious coins to transaction appendix of his preferred chain. The computation of val2 is analogous to val1.
The algorithm next compares the subchain values of each chain from the divergent position j, and then returns
the chain with the greater value. In the event of a tie, the block hashes are used to make a decision by comparing
the integer representation of both block’s hash value. Please see Appendix A.1 and Figure 4 for an illustration of
the algorithm on two chains.

Algorithm 6: The chain compare function takes {C1,C2, j} as input.

1 Function compare (C1,C2, j)
2 temp←C1
3 val1← value (C1[j, len(C1)]) + max(0,value(C1.T)− 1.1cmalicious)
4 val2← value (C2[j, len(C2)]) + max(0,value(C2.T)− 1.1cmalicious)
5 if val1 = val2 then
6 if H(head(C1)) > H(head(C2)) then
7 temp←C2
8 else if val1 < val2 then
9 temp←C2

10 return temp

Best valid chain. We further introduce the bestvalid algorithm that defines our strategy for selecting the best
blockchain over a set of chains. The bestvalid algorithm is parametrized by the compare (Algorithm 6),
validate tx (Algorithm 3), validate chain (Algorithm 2), and maxlen functions where maxlen takes as
input a set of integers (lengths) then outputs the max length. The algorithm bestvalid takes as input a set of
blockchains S and the initial blockchain C∅. It first finds the max length m which is the length of the longest
chain, then creates an array T, and checks the validity of every chain in S. Note that the boolean array T is used
to mark the chains that either have not been compared or the best chain of any pair of chains. The bestvalid
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algorithm next scans every pair of chains in S to find the corresponding divergent position, then uses compare
algorithm to compare the two considered chains from the divergent position. Once a better chain is determined,
it then sets T[removed] = False where Cremoved is the chain has less value so that the algorithm does not need
to compare other chains with this chain later. The algorithm eventually finds the best chain in order from the
newest to oldest forks. Once all chains are examined, the last Cbest is the best chain among all chains in S.

Algorithm 7: The bestvalid function takes (S,C∅) as input.

1 Function bestvalid (S,C∅)
2 Let m = maxlen(len(C1), . . . , len(C|S|))
3 Create array T where T[i] = True for all i ∈ [|S|]
4 for i = 1 to |S| do
5 if validate chain(Ci ,C∅)

∧
validate tx(Ci ,C∅) then

6 Ŝ := Ŝ
⋃
Ci

7 {C1, . . . ,C|Ŝ|} ← Ŝ

8 for j =m to 1 do
9 for i = 1 to |Ŝ| do

10 for k = i +1 to |Ŝ| do
11 if Ci[j] = Ck[j] ,⊥

∧
T[i] = T[k] = True then

12 Cbest← compare(Ci ,Ck , j) ; /* best,removed ∈ {i,k} */
13 T[removed] = False ; /* If best = i then removed = k, and vice

versa */

14 return Cbest

3.4 Our Protocol

As discussed in the introduction, we study a practical scenario where a cryptocurrency system has “grown up”
such as the Bitcoin system, and then the adversary suddenly controls the majority of computing power. More
precisely, the original system has already built a stable blockchain C∅, then the adversary’s computing power
increases and dominates the system. At this point, all users and miners start to switch to a new mode: our
modified-backbone protocol.

The notations and algorithms described in previous subsections lay the foundation for the modified-backbone
protocol that we will describe in this subsection. Our modified-backbone protocol differs from that in [19], in that
we rely on the miners and the users. Our protocol consists of two types of rounds: miner-rounds and user-rounds.
For simplicity of presentation and without lost of generality, we consider an odd round as a miner-round, and an
even round as a user-round; in a miner-round, only the miners are active; and in a user-round, only the users
are active. Please see Figure 3 for a pictorial illustration. All players have access to BROADCAST that delivers
messages to others in the next time step (round). Each player has an INPUT() tape and an OUTPUT() tape which
are used to read from and write to the environment Z, respectively. In our protocol, the players are granted
(bounded) access to the random oracles H(·) and G(·). We now describe the details of our protocol.

Miners and users. The miners are the driving force of the protocol, who build blockchains; while the users are
witnesses, who vote for blockchains by binding their transactions to blockchains in order to show their support.
Clearly, the two roles have an interesting relationship. On one hand, we have the users who produce transactions
with coins in the system; on the other hand, we have the miners who collect these transactions and include them
on a blockchain.

Our protocol in miner-round is described in Algorithm 8. Here, several functions/predicates are used,
including validate, virtualize, bestvalid, and pow. Now each player (i.e., miner) keeps a local storage Ŝ to
store a set of blockchains. Those blockchains are either received from the network via broadcast channels, or are
mined by the miners themselves.

Likewise, our protocol in user-round is described in Algorithm 9. Here, function bestvalid and algorithms
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Figure 3: Round Progression in Our Protocol.

Our protocol consists of two types of rounds: miner-round and user-round. In each round, each player (miner or user) first
computes its best valid chain based on its local state and the received messages from the network; then attempts to extend
the chain via proof of work, or issues a transaction; and then finally broadcast its attempt or computed transactions to the
network.

that related to transaction authentication scheme TxAuth are used. Now, each player (i.e, user) maintains a set
of accounts.

In each miner-round or user-round, the players (both miners and users) carry out three major steps. In the first
step, the miners and users first update their local views by reading the messages they have received. The miners
and users update the chain set Ŝ with any valid chain they find on the communication tapes RECEIVE(). Let’s
consider a miner. If the miner finds a transaction tx in the RECEIVE() tape, then it stores the transaction in a
separate local storage called X. For every chain in Ŝ, the miner first checks whether the chain and all transactions
on this chain are valid by using algorithms validate chain (Algorithm 2) and validate tx (Algorithm 3). If a
chain is not valid or there exists a transaction on this chain that is not valid, then the chain will be removed from Ŝ.
The miner then has an updated set S where all invalid chains are removed. Further, the miner uses the virtualize
algorithm to generate or update the transaction appendix T of each chain in S with the transactions from the
input set X. After that, the miner runs bestvalid algorithm on input (S,C∅) to find the best valid blockchain C.
The computation in this step of each user is similar to that of the miner except that the user does not need to
verify every chain in Ŝ as well as run virtualize since he is only involved in the computation to support for his
best chain. Moreover, the user will find the best chain among all chains in Ŝ along with his local chain.

Each miner invokes the proof of work (see Algorithm 1) with his best chain C, the transaction appendix C.T,
and the initial chain C∅ as input in the second step. On the other hand, each user receives a command from the
environment Z in its INPUT() tape; then executes the instruction. If the command is RegisterAccount, then
the user only needs to create a distinct account in the system, and then outputs it to other participants. If the
command is (Credit,Argument), the user will issue a new transaction. Argument is parsed to obtain accounts
(ain,aout) and the number of coins cin to be debited in the new transaction. The user next binds his transaction
to the head of his best chain from the earlier step, and then signs this transaction.

Finally, the players (both miners and users) share their views with other players by broadcasting their local
views to the network.
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Algorithm 8: Main Protocol: Miner.

1 C ← C∅; S← ε; round← 0;
2 while True do
3 Ŝ← all chains found in RECEIVE()
4 X← all transactions found in RECEIVE()
5 while Ŝ , ∅ do
6 Ĉ ← the first element in Ŝ
7 Ŝ← Ŝ− {Ĉ}
8 if validate chain(Ĉ,C∅)

∧
validate tx(Ĉ,C∅) then

9 S← S∪ {Ĉ}
10 virtualize(S,X)
11 C ← bestvalid(S,C∅)
12 Cnew← pow(C.T,C,C∅)
13 if C , Cnew then
14 S← S∪ {Cnew}
15 round← round +1; BROADCAST(C);

Algorithm 9: Main Protocol: User.

1 C ← C∅; round← 0; Account← ε; command← ε;
2 while True do
3 Ŝ← any chain found in RECEIVE()
4 C ← bestvalid({C}

⋃
Ŝ,C∅)

5 command← INPUT()
6 if command = RegisterAccount then
7 (a,sk)← TxAuth.keygen(1κ)
8 Account← {(a,sk)}

⋃
Account

9 OUTPUT(a)
10 else if command = (Credit,Argument) then
11 (ain,aout,cin)← Argument
12 if (ain,sk) ∈ Account then
13 t̃x←

(
ain,cin, (aout

1 ,cout1 ), . . . , (aout
` ,cout` ),head(C)

)
14 tx← TxAuth.sign(sk, t̃x)
15 round← round +1;
16 BROADCAST(tx); BROADCAST(C);

3.5 Discussions

3.5.1 How to bootstrap from a mature blockchain?

As mentioned in the introduction, we are interested in bootstrapping our system from an existing transaction
ledger recorded on a mature blockchain C∅. A public transaction ledger L is comprised of a set of valid
transactions X with an efficient membership test. The ledger L is one possible application that sits on top of a
backbone protocol by instantiating an appropriate content validation predicate V (·), chain reading function R(·),
and input contribution function I(·). A robust transaction ledger has two essential properties, persistence and
liveness. Informally, transaction persistence describes a transaction’s ability to remain in a ledger indefinitely,
while liveness is the property that describes an honest user’s ability to have his transactions included in a ledger.

Note that our modified-backbone protocol requires a transaction ledger for recording the transfer of coins.
As described in Algorithm 9, the users generate accounts and issue transactions. Then, honest miners collect
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those transactions, validate them, and append them to a transaction appendix (see Algorithm 8). Looking ahead,
in Section 4, we will argue that if honest miners reach a “pure successful round”, then it will inevitably lead to
an “aligned round”. The pure successful round guarantees that only honest miners extend a chain with a block
which includes all of the valid transactions in the block’s transaction appendix. As such, the set of transactions X
in the new block becomes a part of the global transaction ledger L— this achieves liveness for the transactions
in X. Furthermore, the malicious miners cannot always fork the best chains before a pure successful round with
a high probability, that means all of the transactions will be liveness with some probability. An aligned round
guarantees that if a chain C is the best chain acknowledged by all honest users in a user-round, and C′ is the best
chain of an honest user in a later user-round, then C � C′ . In other words, if any transaction is included in a chain
that is selected as the best chain at an aligned round, then it becomes a part of the global ledger indefinitely— it
is persistent.

3.5.2 Enforcing honest users to stick to a single blockchain

Our protocol works because the users are frequently spending coins to support one best chain in their views.
If the users do not transfer enough coins per round or they elect to support multiple chains, then we encounter
some serious problems.

While we hope a user will support only one chain with his coins, doing so limits his ability to have his
transactions included in the best blockchain. This is because transactions which are bound to chains that are
neither extended nor included in the next block on that chain may never be included in the best blockchain.
Transactions of this nature are called orphaned, and the user that issued the transaction must pick a new block to
bind it to and re-broadcast the updated transaction. Users have different views of the best blockchain, and so
they will sometimes have their transactions orphaned. Instead of picking just one blockchain, we expect rational
users to broadcast many transactions of identical content, each with a different binding and digital signature.
Following this strategy, a user increases the probability that his transactions will be included the next block.
Unfortunately, when multiple chains receive the full support of the users— our consensus policy for determining
the best chain breaks down. In the context of blockchains, this type of problem is known as the “nothing at stake
problem”5 because users have nothing to lose since signing transactions and binding them to blockchains are
cheap and unregulated. If every user plays this strategy, then every chain would be equally supported and the
common prefix property cannot be guaranteed.

In light of this, we must introduce incentives for the users to follow the protocol. Two common tactics in
mechanism design come to mind: reward and punishment. Incentivizing honest behavior with rewards would
work; however, our analysis assumes that there are no new coins produced in the system. Therefore, we elect to
design a mechanism which punishes misbehaving parties. This will achieve the same goal without breaking the
assumptions of our analysis.

We tackle this obstacle by punishing users that sign and broadcast transactions bound to different blocks
using the same input account within Θ(κ) rounds of any other use of that input account. Each transaction that is
broadcast and compared to the transaction appendix of each chain in the system; if it turns out that the same
account was used as input more than one transaction within some number of rounds, then that event will be
detected. This is made possible through the miners, who audit each chain during the mining rounds and broadcast
the most recent set of transactions in each chain’s transaction appendix. In this way, a user issuing multiple
transactions from the same account will have his balance garnished by some factor. If for any reason a transaction
broadcast is not confirmed or included in the next block, then the user must wait for some number of rounds
before broadcasting a transaction from the same account to avoid punishment. Because of this punishment
mechanism, rational users that have had their transactions abandoned will only spend their coins again after
some number of rounds, lest they sacrifice utility.

5An instance of the economic tragedy of the commons fallacy, since users seemingly have nothing to lose by deviating from the
protocol. This is a scenario in which each agent acts according to his own self-interest with respect to a shared and unregulated resource.
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3.5.3 Increasing the honest cash flow

At the same time, we do not want users to be lazy or apathetic about the health of the system. Recall the model
requires the transfer of v coins in each round. Since it is a requirement that users should spend their coins
frequently, we propose to punish users that do not spend their coins often enough. This can be enforced in
the same way that we punish accounts that are too active in the previous discussion. First, the activity of each
account broadcasting a transaction is tracked through the miners. When a transaction refers to an account that has
not been in any chain’s transaction appendix for an extended number of rounds, the input account is garnished
before the transaction occurs.

The upper bound and lower bound on the activity of an account frame a window of opportunity for users to
preserve their wealth. This is not an unreasonable request because a user may always opt to transfer a balance
to another account that he controls. Accounts with balances that are not active inside of this window will be
discounted, reducing utility.

3.5.4 Considerations in Stake for Consensus

Our protocol is unique in that we use the coins and transactions of users to guide the direction of a proof of
work blockchain. There are many other considerations in the literature for constructing a secure proof of stake
system. At the time of writing, there is no pure proof of stake schemes that are provably secure; there are many
arguments against it at the moment, many of which are described in [35]. Despite the grim outlook, there are
promising solutions that fall under two categories: delegated proof of stake, where a validator set that builds the
blockchain is selected based on stake, and hybrid protocols with proof of work. Many of these issues address
specific pitfalls of PoS such as the nothing at stake problem, reaching consensus in the presence of prolonged
forks or network segmentation, the initial distribution problem, and precomputing attacks.

We describe the nothing at stake problem above, a quick summary of the issues with forks can be quickly
understood when considering a network split. There must be a deterministic way to select the best chain when
the network recombines, otherwise the network may stay split and new users will be unable to determine the best
chain. This is particularly difficult to define in PoS systems, so developers have called on practical Byzantine
fault tolerant consensus protocols to reach consistency and agreement. And while protocols like Tendermint [24]
have these properties, it suffers from some drawbacks. Namely, who will be in the validator set? New validators
have to be elected to the membership resulting in an elite group. If at any point an honest super majority is lost,
the protocol will halt. Moreover, the coins used for validating a blockchain are bonded and cannot be used freely.
If a validator set is too big then most of the coins are immovable and sadly misses the point of currency, but if the
set is too small, then an adversary with a meager sum of coins could halt consensus. Furthermore, if bonds are
required for creating validators, and validators drive consensus, how is the money for bonds originally distributed
in a fair way to the users? If this is done improperly, then the protocol could be broken before it begins.

Hybrid approaches have the benefit of proofs of work, which ensure that consensus may continue (albeit very
slowly) in the presence of malicious stakeholders. Chains-of-Activity proposed by [7] takes this approach, where
empty proof of work block headers are generated and then a subset of stakeholders selected by the block header
hash sign and pick the transaction set. This makes the signing set random each block, reducing the likelihood
of developing an elite group of validators. There is a real possibility of precomputing which accounts will be
selected for validating, especially because the selection process uses fixed values. Moreover, because there is no
deposit and therefore nothing at stake for the stakeholders, one might sign both blocks in the event of a fork.

Ethereum’s Casper [38], like Tendermint, requires a deposit to participate in the consensus process: “consen-
sus by bet”. Validators become gamblers who propose blocks and bet on how likely a block is to be successful in
being on the consensus branch. Block proposers are selected using an NXT [11] style random number generator.
Because this is an extractor based on the previous state of the blockchain, with entropy sourced from missing
block propositions, it is manipulatable; Please also see [33].

Our protocol sits in-between these proposals and those mentioned in the related work section. One, we do
not tie up coins in “bonds,” making our system more useful. Second, our best chain strategy is well defined.
This means our system is robust against reorganization attempts, forks, and network splits because upon
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resynchronization the system will still reach consensus. Because we still rely on proofs of work, our chain will
still grow at least proportionally to some fraction of the honest computing power [22]. Lastly, we mitigate the
initial distribution problem through bootstrapping off of an initial proof of work chain C∅.

4 Security Analysis

In this section, we are going to give a complete analysis of our modified-backbone protocol. As mentioned in the
introduction and in the previous section, we start with a mature cryptocurrency system where a stable blockchain
C∅ has been established, and then we switch to a new mode in which all players run the modified backbone
protocol (see Section 3.4). As we enter the analysis of this work, it is useful to recollect our assumptions. Recall
that our goal is to defend against the malicious majority of computing power; we therefore assume that only a
small portion of computing power can be controlled by honest miners while the remaining could be malicious.
As briefly discussed in the introduction, it is very difficult to address the issue of the malicious majority of
computing power directly; we here assume that the honest users control a majority of the coins in the system,
and these honest users are willing to spend a significant number of coins in each round. Before a new block
is generated in a round, the users may sign some transactions in the earlier rounds. We assume that these
transactions will be accumulated for the extension of the new block. For simplicity, we expect that, in each
round, the honest users spend Θ(κ) · cmalicious coins that originate from the blocks which were generated in
Θ(κ) rounds earlier where κ is the security parameter and cmalicious is the total number of malicious coins. We
note that the security of our protocol will be analyzed in the (q,v)-synchronous setting (see Section 2).

4.1 Security Properties of Backbone Protocol

In [19], Garay et al introduce two fundamental security properties of the backbone protocol which call common
prefix property and chain quality property, and then show how they can be used as foundation for robust public
transaction ledger protocols. We then follow suit and prove slightly modified definitions that cater to the cash
flow volatility v. The common prefix property is parameterized by a value κ ∈ N. It considers an arbitrary
environment and adversary in the (q,v)-synchronous setting, and it holds as long as any two honest parties’
chains are different only in its most recent κ blocks.
Definition 4.1 (Common Prefix Property). The common prefix property Qcp with parameter κ ∈ N states

that for any two honest users P1, P2 with the best valid chains C1, C2 in VIEW
H(·)
Π,A,Z(κ,q,v,z), it holds that

C1[1, len(C1)−Θ(κ)] � C2 and C2[1, len(C2)−Θ(κ)] � C1.

The second property, which we call the chain quality property, aims at expressing the number of honest-
player contributions that are contained in a sufficiently long and continuous part of an honest player’s chain.
Specifically, for parameters ` ∈ N and µ ∈ (0,1), the rate of adversarial input contributions in a continuous part
of an honest party’s chain is bounded by µ. This is intended to capture that at any moment that an honest player
looks at a sufficiently long part of its blockchain, that part will be of sufficiently “quality,” i.e., the number of
adversarial blocks present in that portion of the chain will be suitably bounded.
Definition 4.2 (Chain Quality Property). The chain quality property Qcq with parameters µ ∈ R and ` ∈ N states

that for any honest miner P with chain C in VIEW
H(·)
Π,A,Z(κ,q,v,z), it holds that for large enough ` consecutive

blocks of C the ratio of adversarial blocks is at most µ.

4.2 Preliminaries

According to the protocol we describe in the previous section, the chain selection policy of honest users and
miners heavily depends on the validation and comparison of blockchains. In our setting, some of the miners
are honest, every transaction generated and broadcast in the user-round by honest users will be collected by the
honest miners in the next round. Thus, the existence of a certain number of honest miners guarantees that the
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best chain will be broadcast to all honest users. In this way, we can be sure that the users are aware of the best
chain and make good choices when binding their transactions in the next user-round.

We expect that the honest miners will generate α solutions and malicious miners will generate β solutions on
average in any given round where 1 > α > 0 and 1 > β > 0. We require the relationship of honest and corrupted
miners to be linear, where α = λβ, with constant λ ∈ (0,∞). This implies that we allow the malicious parties
have more computing power than honest miners since λ could be in (0,1). We assume the collective honest
and corrupted mining power (α + β) < 1. In other words, we expect less than one proof of work solution to be
produced in each round.

With our protocol in a setting with a few honest miners, armed with a shrewd user policy, and accompanied
by a level set of assumptions about proof of work and communication, it is clear that many rounds will be
“boring” in that nothing interesting happens. This is an intentional decision and is pivotal to our analysis of the
protocol. Before moving on, we define the following two types of rounds that we are interested in.
Definition 4.3 (Aligned Round). We say a user-round r is an aligned round, if in this round, all honest users
take the same blockchain as their best blockchains.

Definition 4.4 (Pure Successful Round). We say a miner-round r is a pure successful round, if in this round, at
least one honest miner finds a puzzle solution and no malicious miner is able to find any.

We note that a pure successful round will lead to an aligned round. In next section, we prove that a pure
successful round can be reached in a bounded number of rounds. These help us to show the desired security
properties.

4.3 The Common Prefix Property

We now turn our attention on proving the common prefix property (Definition 4.1) for our modified-backbone
protocol. The concrete statement to prove can be found in Theorem 4.11.

We start with some informal proof ideas. First, we note that a pure successful round can be reached with an
overwhelming probability: though the malicious miners have more computing power, the honest miners can still
be able to find a new puzzle solution before the malicious miners find too many. Then we show that, in the next
round after a pure successful round, all honest users in the system will reach an agreement with an overwhelming
probability. After that, we prove that after a pure successful round r, the best chain among all extended chains is
better than any hidden or public chains. This chain will be chosen as the best chain by all honest users in the
next user-round r +1. We also show that the adversarial miners are only able to find less than κ solutions in s
rounds where s = κ

α . Putting them together, and starting from the initial blockchain C∅ of the protocol execution,
the system will reach a pure successful round in some limited number of rounds. Once a pure successful round
is reached, an aligned round is immediately obtained after it with an overwhelming probability.

We note that when the system reaches an aligned round, all honest users take the same chain as their best
blockchains. We further show that, after an aligned round, any blockchain via forking the best blockchain at a
block that is generated in an earlier round (than the aligned round) will not be accepted by the honest users.

As discussed above, we can reach the conclusion that, at any round, the best blockchain will not be diverged
for too long. When the best blockchains of all users are merged together, they will not be split again. Next, we
thru a sequence of lemmas to demonstrate the above proof ideas in details. We remark that the parameter λ in
our construction is in the range of (0,∞), and this is optimal and is much better than the range in [19]. Note that
in [19], λ ∈ [1,∞) is considered, which implies that α > β; that is, there, the malicious miners collectively have
less computing power than honest miners. In contrast, we can show that, here, even if the adversarial miners
have more than 50% of computing power, the two fundamental properties (common prefix property and chain
quality property) are retained in our protocol. We prove the common prefix property by giving our first lemma
showing that honest miners will often reach pure successful round with an overwhelming probability in s = κ

α
rounds.
Lemma 4.5. Let κ be the security parameter. Let α = λβ, λ ∈ (0,∞), α > 0, β > 0, α + β < 1, and s = κ

α . Let
Y be the number of pure successful rounds in s rounds. We have Pr[Y ≥ 1] ≥ 1− e−Ω(κ).
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Proof. There are s ·α · (1− β) pure successful rounds in s rounds. By applying Chernoff bounds for δ ∈ (0,1),
we obtain

Pr[Y < (1− δ)sα(1− β)] ≤ e−δ
2sα(1−β)/2

Let (1− δ)sα(1− β) = 1, and sα = κ. This implies δ = 1− 1
sα(1−β) = 1− 1

κ(1−β) . It follows that

Pr[Y < 1] ≤ e−(1−
1

κ(1−β) )
2κ(1−β)/2

= e−(κ(1−β)−2+
1

κ(1−β) )/2

≤ e−Ω(κ)

Therefore, we conclude that

Pr[Y ≥ 1] ≥ 1− e−Ω(κ)

We continue the proof by showing that during two pure successful rounds, the malicious miners cannot find
more than κ solutions. This also implies that there are at most d = (1+γ)κλ branches (forks) in the main chain
generated by the adversarial miners between two pure successful rounds, where λ,γ ∈ (0,1).
Lemma 4.6. Let κ be the security parameter. Let α = λβ, λ ∈ (0,∞), α > 0, β > 0, and α + β < 1. Let
γ ∈ (0,1), and s = κ

α . Let Z be the number of solutions that are computed by malicious miners in s rounds. We
have Pr[Z > (1 +γ)κλ ] < e

−Ω(κ).

Proof. Similar to the Lemma 4.5, the honest miners will compute s ·α solutions on average, and the malicious
miners will compute s · β = s · αλ solutions on average in s rounds. By applying Chernoff bounds for δ ∈ (0,1),
we obtain

Pr[Z > (1 + δ)s · β] ≤ e−δ
2sβ/3

Let δ = γ , and sα = κ. This implies s · β = κ
λ . Now we have

Pr[Z > (1 +γ)
κ
λ
] ≤ e−γ

2 κ
λ /3

≤ e−Ω(κ)

We view s = κ
α as a parameter. During s rounds, the system will reach a pure successful round with an

overwhelming probability. Meanwhile, the malicious miners will generate no more than (1+γ)κλ blocks with an
overwhelming probability. We consider that the protocol begins from an aligned round so that the malicious
miners can lead to (1+γ)κλ divergent best chains for the honest users at most. We assume in each user-round the
honest users will spend cspend coins that originate from the blocks which are generated η =Θ(κ) rounds earlier.
We note that there exists a chain C where the value of the head(C) is at least

cspend
d and d = (1 + γ)κλ = O(κ).

Since cspend =Θ(κ)cmalicious, we have
cspend
d > cmalicious.

Next, we will prove an essential lemma that will be helpful in our analysis. The intuition behind this lemma
is that any extended chain in a pure successful round is more valuable than others that are not extended in this
round. More concretely, given a chain C that is extended in a pure successful round r, for any other chain C′ that
is not extended in this round if a fork of C and C′ occurs in η =Θ(κ) recent rounds, then C is better than C′ after
the pure successful round r.
Lemma 4.7. Let κ be the security parameter. Assume that the malicious users control at most cmalicious coins,
and in each user-round the honest users transfer cspend =Θ(κ) · cmalicious coins that originate from the blocks
which were generated in η = Θ(κ) rounds earlier. In each user-round, the honest users are at most split into
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d = O(κ) groups (and therefore they at most follow d different best chains). Let miner-round r be a pure
successful round and chain C be extended in round r by an honest miner. Let C′ be a chain which is not extended
in round r, and let B be the last common block of C and C′, which is extended in an earlier miner-round r ′.

Then we have the following: If r − r ′ < η, then C is better than C′ after the miner-round r.

Proof. Recall that miner-round r is a pure successful round, in which chain C is extended and C′ is not extended.
We can conclude that the last block B in chain C′ is extended no later than miner round r − 2.

Let’s use Ĉ′ to denote the public prefix (with appendix value) of chain C′ at the end of user round r −3. Now
in user-round r − 1, each honest user can find a chain to support which is not worse than Ĉ′.

Note that in each round all honest users spend totally cspend coins that originate from the blocks which were
generated η rounds earlier and those honest users can at most be divided into d groups. This means there is at
least one group of users who spends

cspend
d coins to support their best chain (which will not be worse than Ĉ′). As

the assumption, all of the spent coins in user round r − 1 are from the blocks generated η rounds earlier, the
spent coins in round r − 1 will not decrease value(Ĉ′[j, len(Ĉ′)]).

Since all blockchains and new transactions will be sent to all miners and C is extended in the miner-round r,
after round r (or at the beginning of user-round r +1) we have

value(C[j, len(C)]) ≥ value(Ĉ′[j, len(Ĉ′)]) +
cspend
d

(1)

We also have the following:

• If chain C′ is not a prefix of chain C, i.e., C′ ⊀ C in miner-round r, then the adversary can add at
most cmalicious coins as the virtual block (transaction appendix) of C′. Since value(C′[j, len(C′)]) =
value(Ĉ′[j, len(Ĉ′)]) in the miner-round r − 2 (note that Ĉ′ and C′ are the same except that the rightmost
block of C′ is a fixed block, whereas the topmost block of Ĉ′ is a virtual block); after the miner-round r,
by the Algorithm 6 we have

value(C′[j, len(C′)]) ≤ value(Ĉ′[j, len(Ĉ′)]) +max(0, cmalicious − 1.1cmalicious)

= value(Ĉ′[j, len(Ĉ′)])
(2)

• If chain C′ is a prefix of chain C, i.e., C′ ≺ C after miner-round r, then the adversary can copy the virtual
block of Ĉ and append it into his chain C′ . Therefore, after the miner-round r, by the Algorithm 6 we have

value(C′[j, len(C′)]) ≤ value(Ĉ′[j, len(Ĉ′)]) +max(0,
cspend
d

+ cmalicious − 1.1cmalicious)

≤ value(Ĉ′[j, len(Ĉ′)]) +
cspend
d

+ cmalicious − 1.1cmalicious

= value(Ĉ′[j, len(Ĉ′)]) +
cspend
d
− 0.1cmalicious

(3)

From (1), (2) and (3), we have

value(C′[j, len(C′)]) ≤ value(Ĉ′[j, len(Ĉ′)]) +
cspend
d
− 0.1cmalicious

< value(C[j, len(C)])

We therefore conclude that C is better than C′ after the miner-round r if r − r ′ < η.

The following lemma shows that if the prefix has more value than another chain, then that also applies for
the chain which contains the prefix. The formal is given as follows.
Lemma 4.8. Given blockchains C1, C2, C3. If C2 � C1 and value(C2[j, `2]) > value(C3[j, `3]) at round r where
a fork of C2 and C3 occurs after j-th block, then value(C1[j, `1]) > value(C3[j, `3]) at round r and any following
round.
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Proof. Let len(C1) = `1, len(C2) = `2, and len(C3) = `3. We then consider the following two cases:

• If there are no coins moved from C1[1, j] to C1[`2 +1, `1]. This implies that value(C1[j, `1]) = value(C2[j, `2]).
Since value(C2[j, `2]) > value(C3[j, `3]); thus, value(C1[j, `1]) = value(C2[j, `2]) > value(C3[j, `3]).

• If there are coins moved from C1[1, j] to C1[`2 +1, `1], then value(C1[j, `1]) > value(C2[j, `2]). There-
fore, we have value(C1[j, `1]) > value(C2[j, `2]) > value(C3[j, `3]).

For both cases, we have value(C1[j, `1]) > value(C3[j, `3]) at round r and any following round. This
completes the proof.

Similar to Lemma 4.7, the following lemma considers an extended chain in a pure successful round. This
lemma is different from Lemma 4.7 in the case that the fork of C and C′ occurs before η recent rounds. From
both lemmas, we can see that no matter how far of the round where the fork happens from the current pure
successful round, the extended chains will always be better than those are not extended.
Lemma 4.9. Let κ be the security parameter. Assume that the malicious users control at most cmalicious coins,
and in each user-round the honest users transfer cspend =Θ(κ) · cmalicious coins that originate from the blocks
which were generated in η = Θ(κ) rounds earlier. In each user-round, the honest users are at most split into
d = O(κ) groups (and therefore they at most follow d different best chains). Let miner-round r be a pure
successful round and chain C be extended in round r by an honest miner. Let C′ be a chain which is not extended
in round r, and let B be the last common block of C and C′, which is extended in an earlier miner-round r ′.

Then we have the following: If r − r ′ > η, then C is better than C′ after the miner-round r.

Proof. Since r − r ′ > η, r will not be the next pure successful round after round r ′. We denote r ′′ as the first
pure successful round after round r ′. Let C̄ be the best chain among all new extended chains after miner-round
r ′′. From Lemma 4.7 we know that C̄ is the best chain after miner-round r ′′. That means no honest miner will
work on a chain which is worse than C̄ after miner-round r ′′ . Furthermore, no honest user will support the chain
which is worse than C̄ after round r ′′ . This implies that C̄ is the prefix of C, i.e., C̄ ≺ C in miner-round r. Let the
fork of C and C′ occur after j-th block. From the Lemma 4.8, in round r and any following round we have

value(C[j, len(C)]) > value(C[j, len(C̄)]) (4)

From Lemma 4.7, the value of C′ will not be increased by any honest user. After the miner-round r, we have

value(C[j, len(C̄)]) > value(C′[j, len(C′)]) (5)

From (4) and (5), it follows that

value(C[j, len(C)]) > value(C[j, len(C′)])

Thus, we conclude that C is better then C′ after the miner-round r if r − r ′ > η.

Our main lemma below states the following. Suppose there is an aligned round r ′, and r is the first pure
successful round after r ′ . Then in the next user-round r +1, all honest users will take the same chain as the best
chain with an overwhelming probability. The usefulness of this lemma will be in showing that honest users will
often reach an aligned round in s = κ

d rounds in which all honest users have the same best chain. Moreover, if
all honest users have the same chain C after the aligned round, then all other best chains of honest users in the
further user-rounds will have prefix C. This means if the best blockchains of honest users are aligned/merged
to the same best chain in this user-round, then the merged part of these best blockchains will be the prefix
of all honest users’ best chains in later user-rounds. That is, for any user-round, all honest users will have a
common-prefix with an overwhelming probability.
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Lemma 4.10. Let round r ′ be an aligned round, and let miner-round r be the first pure successful round after
round r ′. Then, we have that the next user-round r +1 is an aligned round with probability at least 1− e−Ω(κ)

where κ is the security parameter. Furthermore, if C is the best chain by all honest users in user-round r +1 and
C′ is the best chain by an honest user in a later user-round, then we have C � C′.

Proof. From Lemma 4.5, after aligned round r ′, the honest miners will reach a pure successful round in s = κ
α

rounds with probability at least 1−e−Ω(κ). At the same time, from Lemma 4.6 the malicious miners find no more
than (1+γ)κλ solutions with probability at least 1−e−Ω(κ) in s rounds. Let Ỹ denote the event where the malicious
miners divide the honest users into d = (1+γ)κλ =O(κ) groups and a pure successful round is reached in s rounds.
We set Ỹ = 1 if both events occur, and Ỹ = 0 otherwise. We then have Pr[Ỹ = 1] ≥ (1− e−Ω(κ))2 ≈ 1− e−Ω(κ).

Therefore, the suppositions of Lemmas 4.7 and 4.9 happen with probability at lease 1 − e−Ω(κ). From
Lemmas 4.7 and 4.9, there exists an extended C contributed by honest miners in round r which is better than any
public and hidden chains. Therefore, C is the best chain after the pure successful round r. This implies at least
one honest miner will broadcast this chain to all other users after the miner-round r, then in the next user-round
r +1 all honest users would take C as their best chains. We then conclude that r is a pure successful round and
the next user-round r +1 would be an aligned round with probability at least 1− e−Ω(κ).

In an aligned round r +1, all honest users have the same best chain C. Assume to the contrary that C � C′,
then there exists another chain C′′ which is the best chain of the honest user (who has C′ as his best chain in the
user-round after r +1) in the last aligned round r +1. Therefore, the honest user did not take C and set another
chain C′′ as his best chain. This contradicts with the supposition that r +1 is an aligned round. This completes
the proof.

We are now ready to prove the main theorem which asserts that our protocol achieves the common-prefix
property with an overwhelming probability. The theorem is formally given as follows.
Theorem 4.11. Let κ be the security parameter. Assume α = λβ, λ ∈ (0,∞), α > 0, β > 0, and α + β < 1.
Assume that malicious users control at most cmalicious coins, and that in each user-round honest users transfer at
least Θ(κ) · cmalicious coins that originate from blocks which were generated in Θ(κ) rounds earlier. Assume the
transaction authentication scheme that used in the modified-backbone protocol is unforgeable. Let S be the set
of the best chains of the honest parties in a round. Then the probability that S does not satisfy the common-prefix
property with parameter κ is at most e−Ω(κ).

Proof. Since all miners work on the same initial blockchain C∅ at the very beginning, the protocol starts from an
aligned round. Let r ′ be the aligned round. Let s = r

α . We suppose r is the first pure successful round after round
r ′.

From Lemma 4.5, we have Pr[Y ≥ 1] ≥ 1 − e−Ω(κ) where Y is the number of pure successful round in s
rounds. This implies the probability the honest miners reach a pure successful round is no less than 1− e−Ω(κ).

From Lemma 4.6, we have Pr[Z > (1 + γ)κλ ] < e
−Ω(κ) where Z denotes the number of solutions that are

computed by malicious miners in s rounds. This implies the probability of the number of solutions that are
computed by malicious miners in s rounds is greater than (1 +γ)κλ is at most e−Ω(κ).

Since the malicious miners will spend at least 1 block in order to fork a branch of the chain, the total number
of the forked branches in s rounds is less than (1 + γ)κλ . From Lemma 4.10, we have that round r + 1 is an
aligned round with probability at least 1− e−Ω(κ).

Therefore, if there are two chains in S, the divergent parts of the two chains are generated by malicious
miners in s rounds. Then we have Pr[Z > (1 +γ)κλ ] < e

−Ω(κ). This completes the proof of the common-prefix
property.

Remark 4.12. Recall that our protocol satisfies the common-prefix property even if λ ∈ (0,1) which GKL model
does not. Moreover, in our system, the honest users should use at least Θ(κ) · cmalicious coins totally in each
round where κ is the security parameter and cmalicious indicates the total number of coins controlled by the
adversary.
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This concludes our proof of the common prefix property Qcp. In next subsection, we will shift our attention
to proving the chain quality property Qcq, a measure of the honest miners’ contributions to a blockchain over a
period of time.

4.4 The Chain Quality Property

The chain-quality property (Definition 4.2) ensures that the rate of adversarial input contributions in a continuous
part of an honest party’s chain is bounded. From Lemma 4.10, in a pure successful round, the honest miners
find at least one solution, and no malicious miners find any. We then find the lower bound of the number of
blocks produced by the honest miners. We further show that given a pure successful round, the number of blocks
produced by the adversarial miners is bound by their computing power. Finally, we demonstrate that the ratio of
malicious blocks in an honest player’s blockchain does not exceed a suitable upper bound in a sufficient number
of rounds with an overwhelming probability.
Theorem 4.13. Let κ be the security parameter. Assume α = λβ, λ ∈ (0,∞), α > 0, β > 0, and α + β < 1 and
ψ = 1 − β. Assume that malicious users control at most cmalicious coins, and that in each user-round honest
users transfer at least Θ(κ) · cmalicious coins from blocks which were generated in Θ(κ) rounds earlier. Assume
the transaction authentication scheme that used in the modified-backbone protocol is unforgeable.

Let C be a blockchain for an honest user. Consider any ` consecutive blocks in C[i, i + `] which are generated
in s rounds. The probability that the adversary has contributed no more than 1

ψ
4 λ+1

` of these blocks is at least

erf(
√
t
2 ), t =Θ(s).

Remark 4.14. Before going to the proof details, we remark that, in s rounds, miners generate at most (β +α)s
blocks. That means ` ≤ (β +α)s, and we can further derive that s ≥ `

β+α . Since now we have t ≥ Θ(`) and

erf(
√
t
2 ) ≈ 1, from the above theorem, we can show that the adversary cannot contribute more than 1

ψ
4 λ+1

` out

of ` blocks, except negligible probability.

Proof. Suppose that block C[i] is generated in round r, and block C[i + `] is generated in round r ′ where
s = r ′ − r +1. From Lemma 4.10, each pure successful round will contribute a block to the best blockchain with
the probability close to 1. For simplicity, we assume that a pure successful round will contribute a block to the
best chain. The number of blocks contributed by malicious miners in the considered chain will not be greater
than the total number of blocks he can generate. Let X denote the number of pure successful rounds and Z
denote the number of blocks generated by malicious miners in s rounds.

For each round, the probability that it is a pure successful round is α ·ψ. The distribution of random variable
X will follow Binomial distribution f (k,s,αψ). We assume that s is big enough, i.e., sαψ > 5, then X can be
approximated to a normal distribution N (sαψ,sαψ(1−αψ)). Similarly, Z will follow a normal distribution
N (sβ, sβ(1− β)).

From the property of normal distribution, we then have

Pr[X < sαψ − t1
√
sαψ(1−αψ)] < 1

2
[1− erf( t1√

2
)]

Pr[Z > sβ + t2
√
sβψ] <

1
2
[1− erf( t2√

2
)]

Let t1 = 1
2

√
sαψ
1−αψ , t2 =

√
sβ
1−β , p =max(12 [1− erf(

t1√
2
)], 12 [1− erf(

t2√
2
)]). It follows that

Pr[X <
1
2
sαψ] < p

Pr[Z > 2sβ] < p
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We consider the situation that X > 1
2sαψ and Z < 2sβ occur at the same time. The probability is no less than

(1− p)2 > 1− 2p. That is

Z
X +Z

<
2sβ

1
2sαψ +2sβ

=
4β

αψ +4β

=
1

ψ
4λ+1

We then have

Pr
[
Z <

1
ψ
4λ+1

· (X +Z)
]
≥ (1− p)2 > 1− 2p = erf(

√
t
2
)

This probability is based on the number of rounds, and it is easy to see that the probability also holds if it is based
on the number of blocks. Therefore, the probability that the adversary has contributed no more than 1

ψ
4 λ+1

` of

these blocks is at least erf(
√
t
2 ) where t =Θ(s). This completes the proof of the chain quality property.
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A Supportting Material for Our Construction

A.1 Transaction flow

We here illustrate the general “flow” of coins through the transaction graphs nested inside the payload of a few
blocks below. Each block is delimited by two adjacent vertical lines. In the two illustrations below, any account’s
balance is easily validated and traceable to a coin base transaction in the initial state C∅. The light dashed edge(s)
indicates that a transaction output from a previous block is being consumed as an input to a transaction in a new
block, which also specifies new transaction output(s) (solid dark edges), the original input is considered to be
spent as soon as it is consumed in the best chain. A chain’s transaction appendix is expressed as a square node
with dotted lines that indicate their value. In this way, each leaf node has a spendable balance which is equal to
the weight of the incoming edge, and the value of a given block is equal to the flow of coins entering that block
(exclude the coins flowing past it). Below, we present a “toy example” to show how blocks and chains may be
valued in the event of a fork. In this particular case, the chains fork at the second block and we denote the top
chain as C1 and the bottom as C2. Comparing these two chains, the chains diverge at height 3 so for each chain
we calculate the subchain value from the fork. In this example, we assume that cmalicious is 10. In the case of C1,
we have the value of the subchain from the fork is value(C1[3, len(C1)]) +max

(
0,C1.T− 1.1 · cmalicious

)
= 38.

In the case of C2, the subchain value is value(C2[3, len(C2)]) +max
(
0,C2.T− 1.1 · cmalicious

)
= 10. Since the

subchain value of C1 is greater than that of C2, the chain C1 would be the better chain between the two chains.

C∅ V alue : 50 Block1 V alue : 50 Block2 V alue : 40 Block3 V alue : 26 C1.T V alue : 23

C∅ V alue : 50 Block1 V alue : 50 Block2 V alue : 40 Block3′ V alue : 10 C2.T V alue = 0
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Figure 4: The flow of transactions is a weighted directed acyclic graph, and this transaction graph exists within
the payload of a blockchain. The vertical lines represent blocks, the nodes represent accounts, and the edges
show the flow of coins. The initial chain C∅ contains a single coinbase transactions ∅ that is spent across three
blocks. The value of each block is calculated following definition 3.9. In this case, the top chain is the best chain
since it has a large coin flow entering block 3 from the fork at block 2. This chain gains strength as more users
sign it with transactions, which are added to the appendix (squares).
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A.2 Coinbase transaction

In Figure 5, we present the format of a coinbase transaction. Coinbase transactions are not signed. Note that
these unsigned transactions may be included in a blockchain via proof of work (as in Bitcoin).

tx


t̃x

 Cr




Credited amount(s) & account(s)

aout
1

cout1




aout
2

cout2
...

aout
`

cout`

vk1

G(vk1)

vk2

G(vk2)

...

vk`

G(vk`)

Figure 5: Coinbase Transaction Data-structure Hierarchy.
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