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Abstract

The information ratio of a secret sharing scheme Σ measures the size of the largest share
of the scheme, and is denoted by σ(Σ). The optimal information ratio of an access structure
Γ is the infimum of σ(Σ) among all schemes Σ for Γ, and is denoted by σ(Γ). The main result
of this work is that for every two access structures Γ and Γ′, |σ(Γ)−σ(Γ′)| ≤ |Γ∪Γ′|−|Γ∩Γ′|.
As a consequence of this result, we see that close access structures admit secret sharing
schemes with similar information ratio. We show that this property is also true for particular
families of secret sharing schemes and models of computation, like the family of linear secret
sharing schemes, span programs, Boolean formulas and circuits.

In order to understand this property, we also study the limitations of the techniques for
finding lower bounds on the information ratio and other complexity measures. We analyze
the behavior of these bounds when we add or delete subsets from an access structure.

Key words. Cryptography, Secret sharing, Information ratio, Monotone span program,
Monotone Boolean formula.

1 Introduction

Secret sharing is cryptographic primitive that is used to protect a secret value by distributing
it into shares. Secret sharing is used to prevent both the disclosure and the loss of secrets. In
the typical scenario, each share is sent privately to a different participant. Then a subset of
participants is qualified if their shares determine the secret value, and forbidden if their shares
do not contain any information on the secret value. The family of qualified subsets is monotone
increasing, and it is called the access structure of the scheme. If every subset of participants is
either qualified or forbidden, we say that the scheme is perfect. In this work we just consider
perfect secret sharing schemes that are information-theoretically secure, that is, schemes whose
security does not rely on any computational assumption.

Secret sharing schemes were introduced by Shamir [40] and Blakley [9] in 1979, and are
used in many cryptographic applications such as secure multiparty computation, attribute-based
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encryption and distributed cryptography (see [2] for more details). These applications require the
use of efficient secret sharing schemes. Namely, schemes with short shares, efficient generation of
the shares, and efficient reconstruction of the secret. The information ratio of a secret sharing
scheme Σ is the ratio of the maximum length in bits of the shares to the length of the secret
value, and we denote it by σ(Σ). The information ratio is widely used as a measure of the
efficiency of secret sharing schemes. Linear secret sharing schemes are of particular interest
because they have homomorphic properties, and because the shares are generated by using linear
mappings, simplifying the generation of shares and the reconstruction of the secret.

Ito, Saito and Nishizeki [27] presented a method to construct a secret sharing scheme for any
monotone increasing family of subsets. Viewing access structures as monotone Boolean functions,
Benaloh and Leichter [8] presented a method to construct a secret sharing scheme from any
monotone Boolean formula. However, for almost all access structures, the information ratios of
the schemes constructed using these and other general methods [8, 27, 31] are exponential on the
number of participants. In order to understand the length of shares required to realize an access
structure Γ, we define the optimal information ratio of Γ as the infimum of the information
ratios of all the secret sharing schemes for Γ, and we denote it by σ(Γ).

The computation of the optimal information ratio of access structures is difficult, in general,
and concrete values are known only for certain families of access structures, like particular
families of multipartite access structures (e.g. [11, 20, 21]), access structures with a small number
of participants (e.g. [36]), or access structures with small minimal sets (e.g. [16]). A common
method to obtain bounds on this parameter is to define random variables associated to the
shares and to the secret, and then apply the information inequalities of the Shannon entropy
of these random variables. Csirmaz [15] used a connection between the Shannon entropy and
polymatroids to develop a technique for finding lower bounds. Using this technique, it was
possible to find an access structure with n participants for which the optimal information ratio
is Ω(n/ log(n)). Currently, it is the best lower bound on the information ratio for an access
structure.

Linear secret sharing schemes are equivalent to monotone span programs [2, 31]. This
connection was very useful to extend bounds on the complexity of monotone span programs to
bounds on the information ratio of the linear secret sharing schemes. Cook et al. [14] showed

that there is an access structure that requires linear schemes of information ratio 2Ω(n1/14 log(n)).
Previously, other superpolynomial lower bounds were presented, like [3].

For every perfect secret sharing scheme, the information ratio must be at least 1. The
schemes that attain this bound are called ideal, and their access structures are also called ideal.
Brickell and Davenport [12] showed that the access structure of ideal secret sharing schemes
determines a matroid. Conversely, linear matroids determine ideal access structures, but a little
is known about other families of matroids. The connection between ideal access structures and
matroids is a powerful tool to characterize families of ideal access structures, e.g. [20]. However,
we lack of general criteria to determine if an access structure admits an efficient scheme. That,
we lack of general criteria to determine if an access structure admits secret sharing scheme
with information ratio at most r, for certain r > 1. Recent works provided interesting results
on the characterization of access structures with efficient schemes for other models of secret
sharing [32, 41].

The main objective of this work is to find properties of the access structures that admit
efficient secret sharing schemes. The specific question we consider is to know whether access
structures that are close admit secret sharing schemes with similar information ratios. Namely,
the objective is to bound the difference between the optimal information ratios of access structures
that differ on a small number of subsets. Answers to this question will help to understand the
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limitations of secret sharing and the behavior of the optimal information ratio, as a function
from the set of access structures to the set of real numbers.

Our main result is that |σ(Γ)− σ(Γ′)| ≤ |Γ ∪ Γ′| − |Γ ∩ Γ′| for every two access structures Γ
and Γ′. The proof of this result is constructive. Given any secret sharing scheme Σ for Γ, we can
construct a secret sharing scheme Σ′ for Γ′ that satisfies that σ(Σ′) ≤ σ(Σ) + |Γ ∪ Γ′| − |Γ ∩ Γ′|.
Moreover, if Σ is linear, then Σ′ is linear too. The construction relies on a combinatorial result
that allows a description of Γ′ as the union and the intersection of Γ and other access structures
of a particular kind. Then, using an extension of the techniques of Benaloh and Leichter [8], we
generate secret sharing schemes for the desired access structure.

An immediate consequence of this bound is that the access structures that are close to
access structures with efficient secret sharing schemes also admit efficient schemes, and the
access structures that are close to access structures requiring large shares, also require large
shares. This bound also has consequences on cryptographic applications that use secret sharing.
For instance, using the results in [17], we see that close Q2 adversary structures admit secure
multiparty computation protocols of similar complexity, in the passive adversary case. In the
context of access control, for similar policies, we can build attribute-based encryption schemes
of similar complexity [26].

By taking advantage of the combinatorial nature of this result, we extend this bound to
other models of computation like formulas, circuits, and span programs. We are able to bound
the formula size, the circuit size, and the span program size for monotone Boolean formulas,
obtaining analogous results. In order to understand this property, we also study the limitations
of the techniques for finding lower bounds on the information ratio. We study the nature of
the bounds based on the Shannon inequalities [15, 33], the Razborov’s rank method [37], the
subcritical families method [3], and submodular formal complexity measures. We study the
behavior of these bounds when we add or delete subsets from an access structure.

The search for bounds on the information ratios of close access structures was motivated by
a work by Beimel, Farràs and Mintz [4]. They presented a method that, given a secret sharing
scheme Σ for an access structure Γ and an access structure Γ′ with Γ′ ⊆ Γ and min Γ′ ⊆ min Γ, it
provides a secret sharing scheme for Γ. They showed that if Γ and Γ′ are graph access structures
and dist(min Γ,min Γ′) is small, and Σ is efficient then the new scheme is also efficient. The
results were improved in [5].

In this work, we also revise the techniques in [4] and we provide a general combinatorial
formulation of a result in [4] that can be extended to other models of computation.

In Section 2 we define secret sharing, and in Section 3 we present the combinatorial results
that are the basis of the main results in this work. Section 4 is dedicated to the main bound on
the information ratio of secret sharing schemes. Sections 5 and 6 are dedicated to the study
of the lower bounds on the information ratio. Finally, we present in Section 7 the results for
formulas and circuits.

2 Definition of Secret Sharing

This work is dedicated to unconditionally secure secret sharing schemes. In this section we
define access structure, secret sharing scheme, and we present the complexity measures used in
this work. The definition of secret sharing is from [2]. For an introduction to secret sharing,
see [2, 35], for example.

Definition 2.1 (Access Structure). Let P be a set. A collection Γ ⊆ P(P ) is monotone if B ∈ Γ
and B ⊆ C ⊆ P implies C ∈ Γ. An access structure is a monotone collection Γ ⊆ P(P ) of
non-empty subsets of P . The family of minimal subsets in Γ is denoted by min Γ.
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Definition 2.2 (Distribution Scheme). Let P = {1, . . . , n} and let K be a finite set. A
distribution scheme on P with domain of secrets K is a pair Σ = (Π, µ), where µ is a probability
distribution on a finite set R, and Π is a mapping from K×R to a set of n-tuples K1×K2×· · ·×Kn.
The set R is called the set of random strings and Kj is called the domain of shares of j.

For a distribution scheme (Π, µ) and for any A ⊆ P , we denote Π(s, r)A the projection of
Π(s, r) to its A-entries.

Definition 2.3 (Secret Sharing). Let K be a finite set of secrets with |K| ≥ 2. A distribution
scheme (Π, µ) on P with domain of secrets K is a secret-sharing scheme realizing an access
structure Γ if the following two requirements hold for every A ⊆ P :

• If A ∈ Γ, then there exists a reconstruction function ReconA : Ki1 × . . .×Kir → K such
that for every k ∈ K,

Pr [ ReconA(Π(k, r)A) = k ] = 1. (1)

• If A /∈ Γ, then for every a, b ∈ K, and for every possible vector of shares (sj)j∈A,

Pr[ Π(a, r)A = (sj)j∈A ] = Pr[ Π(b, r)A = (sj)j∈A ]. (2)

In a secret sharing scheme, usually we consider that there is an additional player p0 not in
P called the dealer. The dealer distributes a secret k ∈ K according to Σ by first sampling a
random string r ∈ R according to µ, computing a vector of shares Π(k, r) = (s1, . . . , sn), and
privately communicating each share sj to party j. The subsets of participants in P satisfying
condition (1) are called authorized, and the ones satisfying condition (2) are called forbidden. In
this work we just consider perfect secret sharing schemes, that is, schemes in which every subset
of participants is authorized or forbidden.

Definition 2.4 (Linear Secret Sharing Scheme). Let F be a finite field. A secret sharing scheme
Σ = (Π, µ) is (F, `)-linear if K = F`, the sets R, K1, . . ., Kn are vector spaces over F, µ is the
uniform distribution on R, and Π is surjective linear mapping.

For a secret sharing scheme Σ on P , the information ratio of Σ is

σ(Σ) =
max1≤j≤n log |Kj |

log |K|
,

and the total information ratio of Σ is

σT(Σ) =

∑
1≤j≤n log |Kj |

log |K|
.

We say that Σ is ideal if σ(Σ) = 1. In this case, we say that its access structure ideal as well.
For an access structure Γ, we define the optimal information ratio σ(Γ) as the infimum of

the information ratio of the secret sharing schemes for Γ. Also, we define the optimal total
information ratio σT(Γ) as the infimum of the total information ratio of the secret sharing
schemes for Γ. Analogously, for every finite field F we define λF,`(Γ) and λT

F,`(Γ) as the infimum
of the information ratios and total information ratios of the (F, `)-linear secret sharing schemes
for Γ, respectively.

4



3 Combinatorial results

This is a technical section in which we provide combinatorial results about the addition and
deletion of subsets in access structures and in minimal access structures. These results will
be used in the following sections to construct formulas, circuits and secret sharing schemes to
obtain lower bounds on their complexity. First we introduce some notation on access structures
and we recall some of their properties. We use some definitions that are common in extremal
combinatorics. See [25] for more details.

Let P be a set. We define the distance between B,B′ ⊆ P(P ) as

dist(B,B′) = |B ∪ B′| − |B ∩ B′|,

which is the size of the symmetric difference of the two sets. All through this paper, we measure the
closeness between families of subsets by this distance. Observe that dist(B,B′) = |B\B′|+ |B′\B|.

A family of subsets B ⊆ P(P ) is an antichain if A * B for every A,B ∈ B. For any
B ⊆ P(P ) we define minB and maxB as the families of minimal and maximal subsets in B,
respectively. Both minB and maxB are antichains. We define the complementary of B as
Bc = P(P ) \ B, and for every i ∈ P we define B(i) = {A \ {i} : i ∈ A ∈ B}. The degree of
i ∈ P in B, denoted by degi B, is defined by |B(i)|, and the degree of B deg(B) is defined as
the maximum of degi B among i ∈ P . For every set A ⊆ P , we define the closure of a set A
as cl(A) = {A ∪ B : B ⊆ P \ A}. We also define the closure of B as cl(B) = ∪A∈Bcl(A). The
closure of any family of subsets is monotone increasing, and so it is an access structure.

A family of subsets B ⊆ P(P ) is an access structure if and only if cl(B) = B. If Γ is an access
structure, then cl(min Γ) = Γ and Γc is monotone decreasing. For an access structure Γ on P ,
we define its dual as

Γ∗ = {P \A : A ⊆ P, A /∈ Γ}.
The union and intersection of access structures, and the dual of an access structure are access
structures as well. The minimal authorized subsets of Γ∗ are in correspondence with the
maximal subsets not in Γ and vice versa. That is, min Γ∗ = {P \ B : B ∈ max Γc} and
max(Γ∗c) = {P \ A : A ∈ min Γ}. Hence Γ∗∗ = Γ. For any two access structures Γ and Γ′,
(Γ ∪ Γ′)∗ = {P \A : A /∈ Γ} ∩ {P \A : A /∈ Γ′} = Γ∗ ∩ Γ′∗. Analogously, (Γ ∩ Γ′)∗ = Γ∗ ∪ Γ′∗.

Now we define three parametrized families of access structures. As we show in the following
sections, these access structures admit short formulas and efficient secret sharing schemes. For
any A ⊆ P , we define the access structures

FA = {B ⊆ P : B * A}, SA = {B ⊆ P : A ( B}, TA = {B ⊆ P : A ⊆ B}.

The access structure TA is the smallest access structure that contains A, and it is usually
called the trivial access structure for A. The access structure SA is TA minus {A}, and
minSA = {A ∪ {p} : p ∈ P \ A} is the sunflower of A [25]. The access structure FA is the
biggest access structure not containing A, and it has just one maximal forbidden subset, that is
A. Its minimal access structure is minFA = {{i} : i /∈ A}. Observe that FA = T ∗P\A.

3.1 Decomposition of Access Structures

Proposition 3.1 is the basis of the main results in this work, and Proposition 3.2 is a complementary
result.

Proposition 3.1. Let Γ,Γ′ be two access structures on P . Then

Γ′ =
(

Γ ∩
⋂

A∈max(Γ\Γ′)

FA

)
∪

⋃
A∈min(Γ′\Γ)

TA.
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Proof. Let Γ′′ = Γ ∩ Γ′. Since Γ′ = Γ′′ ∪ (Γ′ \ Γ) and Γ′ is monotone increasing,

Γ′ = cl(Γ′) = cl(Γ′′) ∪ cl(Γ′ \ Γ) = Γ′′ ∪
⋃

A∈Γ′\Γ

TA = Γ′′ ∪
⋃

A∈min(Γ′\Γ)

TA.

We dedicate the rest of the proof to show that Γ′′ = Γ ∩
⋂

A∈max(Γ\Γ′) FA. By the properties of
the dual of access structures described above,

Γ′′∗ = (Γ ∩ Γ′)∗ = Γ∗ ∪ Γ′∗ = Γ∗ ∪ {B ⊆ P : B ∈ Γ′∗ and B /∈ Γ∗}
= Γ∗ ∪ {P \A : A ∈ Γ \ Γ′}.

Using that Γ′′∗ = cl(Γ′′∗), we obtain that

Γ′′∗ = cl(Γ∗) ∪ cl({P \A : A ∈ Γ \ Γ′}) = Γ∗ ∪
⋃

A∈Γ\Γ′TP\A

= Γ∗ ∪
⋃

A∈max(Γ\Γ′)TP\A.

Therefore,
Γ′′ = (Γ′′∗)∗ = Γ∗∗ ∩

⋂
A∈max(Γ\Γ′)T

∗
P\A = Γ ∩

⋂
A∈max(Γ\Γ′)FA.

Proposition 3.2. Let Γ,Γ′ be two access structures on P . Let Γ̃ be the access structure with
min Γ̃ = (min Γ) ∩ Γ′. Then

Γ′ = Γ̃ ∪
⋃

A∈Γ\Γ′
cl((minSA) ∩ Γ′) ∪

⋃
A∈min(Γ′\Γ)

TA.

Proof. Let Γ′′ = Γ ∩ Γ′. As in the proof of Proposition 3.1, we can describe Γ′ as Γ′ = Γ′′ ∪⋃
A∈min(Γ′\Γ) TA. We dedicate the rest of the proof to show that Γ′′ = Γ̃∪

⋃
A∈Γ\Γ′ cl((minSA)∩Γ′).

Since Γ = min Γ ∪
⋃

A∈Γ minSA, we have that

Γ′′ = cl(Γ′′) = cl(Γ ∩ Γ′) = cl((min Γ ∪ (Γ \min Γ)) ∩ Γ′)

= cl((min Γ) ∩ Γ′) ∪
⋃

A∈Γcl((minSA) ∩ Γ′)

= Γ̃ ∪
⋃

A∈Γcl((minSA) ∩ Γ′).

Let B1 = Γ \Γ′, B2 = min(Γ∩Γ′), and B3 = Γ∩Γ′ \min(Γ∩Γ′). Observe that B1 ∪B2 ∪B3 = Γ.
Let Ai =

⋃
A∈Bicl((minSA)∩ Γ′) for i = 1, 2, 3. We claim that Γ′′ = Γ̃∪A1. First we prove that

A3 ⊆ A2, and then we prove that A2 ⊆ Γ̃ ∪ A1.
For every B ∈ B3 there exists a set B′ ∈ B2 satisfying B ⊆ cl(B′). In this situation,

cl(minSB) ⊆ cl(minSB′). Taking into account that (minSA)∩Γ′ = minSA for every A ∈ B2∪B3,
we obtain A3 ⊆ A2.

Let A ∈ B2. If A ∈ min Γ, then A ∈ Γ̃ because B2 ⊆ Γ′, and so minSA ⊆ Γ̃. Suppose that
A /∈ min Γ. Then there exists B ∈ Γ satisfying A ∈ minSB, and in particular A ∈ (minSB) ∩ Γ′.
Since A ∈ min(Γ∩Γ′), B ∈ Γ\(Γ∩Γ′) = Γ\Γ′ = B1. Then cl(minSA) ⊆ cl(A) ⊆ cl((minSB)∩Γ′).
Therefore A2 ⊆ Γ̃ ∪ A1, which concludes the proof.

3.2 Decomposition of Minimal Access Structures

In this section we consider the problem of modifying minimal access structures. Next we
introduce a notion of covering that will be used to find useful descriptions of minimal access
structures that are close.
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Definition 3.3. Let B1,B2 ⊆ P(P ) be two families of subsets satisfying B1 ∩ B2 = ∅. A family
of subsets C ⊆ P(P ) is a (B1,B2)-covering if it satisfies the following properties:

1. for every A ∈ B1 and for every B ∈ C, A * B, and

2. for every A ∈ B2 there exists B ∈ C such that A ⊆ B.

Example 3.4. Let B ⊆ P(P ) be an antichain and let A ∈ B. Then C = {P \ {i} : i ∈ A} is a
({A},B \ {A})− covering.

Next, we present in Lemma 3.5 a necessary and sufficient condition for the existence of
coverings.

Lemma 3.5. Let B1,B2 ⊆ P(P ). There exists a (B1,B2)-covering if and only if

A * B for every A ∈ B1 and B ∈ B2. (3)

Proof. Let C be a (B1,B2)-covering. For every A ∈ B1 and B ∈ B2, cl(A)∩C = ∅ and cl(B)∩C 6= ∅,
so A * B. Conversely, if A * B for every A ∈ B1 and B ∈ B2, then B2 is a (B1,B2)-covering.

Beimel, Farràs and Mintz constructed efficient secret sharing schemes for very dense graphs [4].
The next lemma abstracts some of the techniques they used in [4, Lemma 5.2] and [4, Lemma
5.4]. We include its proof in the appendix.

Lemma 3.6. Let B1,B2 ⊆
(
P
k

)
be two families of subsets with B1 ∩ B2 = ∅ for some k > 1. If

B1 has degree d, then there is a (B1,B2)-covering of degree 2kkkdk−1 lnn.

This result has also consequences in graph theory, which corresponds to the case k = 2. It
implies that every graph G = (V,E) with E ⊆

(
P
2

)
admits an equivalence cover of degree 16d lnn,

where d is the degree of
(
P
2

)
\ E (see [4] for more details). The next proposition is the result we

will use to construct formulas, circuits, and secret sharing schemes for access structures.

Proposition 3.7. Let Γ,Γ′ be two access structures with min Γ′ ⊆ min Γ. If C is a (min Γ \
min Γ′,min Γ′)-covering, then

min Γ′ = {A ∈ min Γ : A ⊆ B for some B ∈ C}.

Proof. For every subset A ∈ min Γ′, there exists B ∈ C with A ⊆ B. For every A ∈ min Γ\min Γ′,
A * B for every B ∈ C, and so the equality holds.

4 Secret Sharing Constructions

Benaloh and Leichter [8] presented a general construction for secret sharing. Given an access
structure Γ, we can define the Boolean function f : P(P )→ {0, 1} satisfying f(A) = 1 if and only
if A ∈ Γ. This function is monotone increasing. Given a monotone Boolean formula computing
f , it is possible to construct a linear secret sharing scheme for Γ by just translating ANDs and
ORs into secret sharing operations.

In this section we extend the construction of Benaloh and Leichter by allowing the composition
of any kind of schemes. Namely, we introduce the operations AND and OR of arbitrary secret
sharing schemes. These operations represent two natural settings. Roughly speaking, the OR of
two schemes Σ1 and Σ2 is a scheme in which the same secret is shared independently by using
Σ1 and Σ2. In the case of the AND operation, the secret s is split into r and s+ r, where r is a
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random value in K, and then the r is shared by means of Σ1 and r + s is shared independently
by means of Σ2.

Before defining these operations, we present secret sharing schemes for the families of access
structures FA, SA and TA introduced in Section 3, for A ⊆ P , A 6= ∅. The secret sharing
schemes we present are ideal and are valid for any finite set of secrets K with |K| ≥ 2. Moreover,
if K = F` for some finite field F, then we show that these access structures also admit ideal
(K, `)-linear secret sharing schemes.

Let K = {a0, . . . , am−1} be a set of size m ≥ 2. For the constructions we present below,
we assume that K is a ring. In the case that K is not a ring, we will consider the bijection
between K and Zm, the construction will be defined over Zm. Without loss of generality, let
P = {1, . . . , n} and A = {1, . . . , t} for some t < n.

• FA: Since minFA = {{i} : i /∈ A}, the participants in A are not relevant, and so we just
need to define the shares of the participants in P \ A. Consider Kj = ∅ for j ∈ A and
Kj = K for j ∈ P \ A. In this case there is no need for randomness. A secret sharing
scheme for FA is defined by the mapping Π with Π(k)j = k for t+ 1 ≤ j ≤ n.

• SA: Consider Kj = K for j = 1, . . . , n, and µ the uniform distribution on R = Kt. A
secret sharing scheme for SA is defined by the mapping Π with Π(k, r)j = rj for 1 ≤ j ≤ t
and Π(k, r)j = k −

∑t
i=1 ri for t+ 1 ≤ j ≤ n. Observe that adapting this scheme we can

construct an ideal secret sharing for any access structure Γ with min Γ ⊆ minSA.

• TA: Since minTA = {A}, we just need to define the shares of the participants in A.
Consider Kj = K for j ∈ A, Kj = ∅ for j ∈ P \ A, and µ the uniform distribution on
R = Kt−1. A secret sharing scheme for TA is defined by the mapping Π with Π(k, r)j = rj
for 1 ≤ j < t and Π(k, r)t = k −

∑t−1
i=1 ri. For A = P , we can construct an analogous

scheme.

Given a secret sharing scheme Σ on P , we define Σ|A as the secret sharing scheme on P in
which only the participants in A receive the shares from Σ. The access structure of Σ|A on P is
Γ|A = {B ⊆ P : B ∩A ∈ Γ}, and min(Γ|A) = {B ∈ min Γ : B ⊆ A}.

4.1 ANDs and ORs of Secret Sharing Schemes

Let Σ1 = (Π1, µ1) and Σ2 = (Π2, µ2) be two secret sharing schemes on a set of participants P
that have the same domain of secrets K, satisfying that µ1 and µ2 are independent probability
distributions on some finite sets R1 and R2, and let Πi : K ×Ri → Ki

1 × . . .×Ki
n for i = 1, 2.

We define the OR of Σ1 and Σ2 as the secret sharing scheme Σ1 ∨ Σ2 = (Π, µ) where
Π : K ×R→ K1 × . . .×Kn is the mapping with R = R1 ×R2, Ki = K1

i ×K2
i for i = 1, . . . , n,

and
Π(k, r1, r2)i = (Π1(k, r1)i,Π

2(k, r2)i)

for i = 1, . . . , n; and µ is the product of µ1 and µ2. If a subset of P is authorized in Σ1 or in Σ2,
then it is authorized in Σ. Moreover, the ones forbidden both in Σ1 and Σ2 are also forbidden in
Σ. Therefore the access structure of Σ1 ∨ Σ2 is the union of the access structures of Σ1 and Σ2.

Now we define the AND of Σ1 and Σ2. First we need to introduce an additional scheme.
Let Σ3 = (Π3, µ3) be the ideal secret sharing scheme on P ′ = {1, 2} with access structure
Γ = TP ′ = {P ′} described above, with domain of secrets K, set of random strings R3 = K, and
uniform probability distribution µ3 on K. The AND of Σ1 and Σ2 is the secret sharing scheme
Σ1 ∧ Σ2 = (Π, µ) where Π : K × R → K1 × . . . ×Kn is the mapping with R = R1 × R2 × R3,
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Ki = K1
i ×K2

i for i = 1, . . . , n, and

Π(k, r1, r2, r3)i = (Π1(Π3(k, r3)1, r1)i,Π
2(Π3(k, r3)2, r2)i)

for i = 1, . . . , n; and µ is the product of µ1, µ2, and µ3. If a subset of P is authorized in both Σ1

and Σ2, then it is authorized in Σ. Moreover, the ones forbidden in Σ1 or Σ2 are also forbidden
in Σ. Therefore the access structure of Σ1 ∧ Σ2 is the intersection of the access structures of Σ1

and Σ2.
Both operations preserve linearity. That is, if Σ1 and Σ2 are (F, `)-linear secret sharing

scheme for a finite field F and ` > 0, then Σ1∨Σ2 and Σ1∧Σ2 are also (F, `)-linear. In both cases,
each participant receives a share from Σ1 and a share from Σ2, so σ(Σ1 ∧ Σ2) = σ(Σ1 ∨ Σ2) ≤
σ(Σ1) + σ(Σ2), and σT(Σ1 ∧ Σ2) = σT(Σ1 ∨ Σ2) = σT(Σ1) + σT(Σ2). Therefore, for every two
access structures Γ1 and Γ2, σ(Γ1∪Γ2), σ(Γ1∩Γ2) ≤ σ(Γ1)+σ(Γ2) and σT(Γ1∪Γ2), σT(Γ1∩Γ2) ≤
σT(Γ1) + σT(Γ2). We have the analogous inequalities for the parameters λF,` and λT

F,` for every
finite field F.

Now we present a well known construction for every access structure [27]. Consider the secret
sharing schemes for the access structures TA for every A ∈ min Γ and then we define Σ as the
OR of these schemes. Then we obtain a scheme with σ(Σ) = deg(min Γ). If we describe Γ as
(Γ∗)∗ = (∪A∈max ΓcTP\A)∗ = ∩A∈max ΓcFA we obtain a description in terms of ANDs of access
structures [27]. Then we can construct a secret sharing scheme Σ with σ(Σ) = deg(max Γc).

Remark 4.1. All the results in this section can be adapted to other kinds of secret sharing
schemes: statistical secret sharing schemes (see [2]), computational secret sharing schemes (see [7]),
and perfect secret sharing schemes defined using the entropy function (see Definition B.1). The
AND and OR operations defined above can be easily translated to these models, except for
the latter, because it assumes that the secrets are chosen according to a specific probability
distribution (see Section B for more details).

4.2 Secret Sharing Schemes for Close Access Structures

Theorem 4.2. Let Γ,Γ′ be two access structures. Then

|σ(Γ)− σ(Γ′)| ≤ dist(Γ,Γ′).

Proof. Let Σ be a secret sharing scheme for Γ. By Proposition 3.1, the access structure Γ′ is
realized by the secret sharing scheme

Σ′ =
(

Σ ∧
∧

A∈max(Γ\Γ′)ΣFA

)
∨
∨

A∈min(Γ′\Γ)ΣTA
,

where ΣFA
and ΣTA

are the ideal secret sharing schemes described above for FA and TA,
respectively. Then σ(Σ′) ≤ σ(Σ) + |Γ \ Γ′|+ |Γ′ \ Γ| = σ(Σ) + dist(Γ,Γ′).

In the proof of the last theorem we construct a secret sharing scheme for Γ′ using ANDs and
ORs of a scheme for Γ and schemes for access structures of the kind TA and FA. Since these
access structures admit ideal (F, 1)-linear secret sharing schemes for any finite field F and for
any A, if we have a (F, 1)-linear secret sharing scheme for Γ then we obtain a (F, 1)-linear secret
sharing scheme for Γ′. We can also extend this result to (F, `)-linear secret sharing schemes for
every ` > 1. Therefore, we obtain the following result.

Corollary 4.3. Let Γ,Γ′ be two access structures, and let F be a finite field. For every ` ≥ 1,
|λF,`(Γ)− λF,`(Γ′)| ≤ dist(Γ,Γ′)
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In the next example we show that for distance equal to one, we cannot improve the general
bounds in Theorem 4.2 and in Corollary 4.3. We present access structures Γn, Γ′n and Γ′′n with
dist(Γ′′n,Γn) = dist(Γ′′n,Γ

′
n) = 1 and with |σ(Γ′′n)− σ(Γn)| = |σ(Γ′′n)− σ(Γ′n)| = 1− 1/(n− 2) for

n ≥ 3.

Example 4.4. Consider the access structures Γn and Γ′n on P = {1, . . . , n} with min Γn =
{{1, i} : i > 1} on min Γ′n = {{1}, {2, . . . , n}}. These access structures admit ideal secret
sharing schemes for every set of secrets, and ideal linear secret sharing schemes for any finite
field F. Now consider the access structures Γ′′n with min Γ′′n = {{1, i} : i > 1} ∪ {{2, . . . , n}}.
Observe that Γ′′n = Γn ∪ {{2, . . . , n}} = Γ′n \ {{1}}, and so dist(Γ′′n,Γn) = dist(Γ′′n,Γ

′
n) = 1.

By Theorem 4.2 and Corollary 4.3 σ(Γ′′n) ≤ 2 and λ(Γ′′n) ≤ 2. It was proved in [21] that
λ(Γ′′n) = σ(Γ′′n) = 2− 1/(n− 2) for n ≥ 3.

Proposition 4.5. Let Γ,Γ′ be two access structures. Let Γ̃ be the access structure with min Γ̃ =
(min Γ) ∩ Γ′. Then

σ(Γ′) ≤ σ(Γ̃) + dist(Γ′,Γ).

Proof. Let Σ and Σ̃ be secret sharing schemes for Γ and Γ̃, respectively. We use Proposition 3.2
to construct a secret sharing scheme for Γ′. Observe that for every A ∈ Γ, (minSA)∩Γ′ ⊆ minSA.
Hence, using the scheme described above for SA we can construct an ideal secret sharing scheme
cl((minSA)∩Γ′), which we call Σ′′A. Then the access structure Γ′ is realized by the secret sharing
scheme

Σ′ =
(

Σ̃ ∨
∨

A∈Γ\Γ′Σ
′′
A

)
∨
∨

A∈Γ′\ΓΣTA
,

where ΣTA
is an ideal secret sharing scheme for TA. It satisfies σ(Σ′) ≤ σ(Σ̃) + |Γ\Γ′|+ |Γ′ \Γ| =

σ(Σ̃) + dist(Γ,Γ′).

In general, the bound presented in the previous proposition is not better than the one in
Theorem 4.2. However, it is interesting because the construction is different and because it
relates the optimal information ratio of Γ and Γ̃. The access structure Γ̃ may be of special
interest. For example, if Γ and Γ′ satisfy that min Γ and min Γ′ are in

(
P
k

)
for some k (like graph

access structures), then Γ̃ is the access structure with min Γ̃ = min Γ ∩min Γ′ = min Γ \ (Γ \ Γ′).
In this situation, the relation between σ(Γ) and σ(Γ̃) has been studied in previous works as [4].

4.3 Secret Sharing Schemes for Access Structures with Close Minimal Access
Structures

Now we present another decomposition of access structures that provide different bounds on the
information ratio of access structures. In particular, these bounds are useful for access structures
whose minimal access structures are close. The main result of this subsection is Theorem 4.9.
The quality of the bounds in this theorem depends on the degree of a covering. In Lemma 3.6
we provide a bound on the degree of coverings. In Example 4.10 we show an access structure for
which this technique provides an optimal secret sharing scheme.

Lemma 4.6. Let Γ,Γ′ be two access structures with min Γ ⊆ min Γ′. Let Σ be a secret sharing
scheme for Γ. Then there exists a secret sharing scheme Σ′ for Γ′ with

σ(Σ′) ≤ σ(Σ) + deg(min Γ′ \min Γ) and σT(Σ′) ≤ σT(Σ) + n deg(min Γ′ \min Γ).

Proof. Let Σ be a secret sharing scheme for Γ and let Σ′′ be the trivial scheme for min Γ′ \min Γ,
that is, Σ′′ =

∨
A∈min Γ′\min Γ ΣTA

. Then the scheme Σ′ = Σ ∨ Σ′′ realizes Γ′ and its information
ratio and total information ratio hold the desired bounds.
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Lemma 4.7. Let Γ,Γ′ be two access structures with min Γ′ ⊆ min Γ. Let Σ be a secret sharing
scheme for Γ. If there exists a (min Γ \min Γ′,min Γ′)-covering of degree d, then there exists a
secret sharing scheme Σ′ for Γ′ with

σ(Σ′) ≤ dσ(Σ) and σT(Σ′) ≤ dσT(Σ).

Proof. Let C be a (min Γ\min Γ′,min Γ′)-covering of degree d. We define a secret sharing scheme
Σ′ as the OR of all the secret sharing schemes Σ|B for B ∈ C. By Proposition 3.7, Σ′ realizes
Γ′. In this scheme, each i ∈ P receives degi(C) shares. Since degi(C) ≤ d, σ(Σ′) ≤ dσ(Σ), and
σT(Σ′) =

∑
B∈C σ

T(Σ|B) ≤ dσT(Σ).

Example 4.8. Let Γ,Γ′ be two access structures with dist(min Γ,min Γ′) = 1 and min Γ′ ⊆ min Γ.
As we saw in Example 3.4, there exists a (min Γ \min Γ′,min Γ′)-covering C of degree at most
n− 1. Hence given a secret sharing scheme Σ for Γ we can construct a secret sharing scheme for
Γ′ whose information ratio is less than (n− 1)σ(Σ).

Theorem 4.9. Let Γ,Γ′ be two access structures on P . If there exists a (min Γ \min Γ′,min Γ′)-
covering of degree d, then

σ(Γ′) ≤ dσ(Γ) + deg(min Γ′ \min Γ), and

σT(Γ′) ≤ dσT(Γ) + n deg(min Γ′ \min Γ).

Proof. Let Γ′′ be the access structure defined by min Γ′′ = min Γ′ ∩ min Γ. Observe that
min Γ \ min Γ′ = min Γ \ min Γ′′, and that every (min Γ \ min Γ′,min Γ′)-covering is also a
(min Γ \min Γ′′,min Γ′′)-covering by Lemma A.1. Given a secret sharing scheme Σ for Γ, there
is a secret sharing scheme Σ′′ for Γ′′ with σ(Σ′′) ≤ dσ(Σ) by Lemma 4.7. Then using Lemma 4.6
we obtain a secret sharing scheme for Γ′ of the desired total information ratio.

Example 4.10. Let P be a set of n = 2`+1 participants for some ` > 0, P = {a, b0, . . . , b`−1, c0,
. . . , c`−1}. Let Γ be the 2-threshold access structure on P and let Γ′ be the access struc-
ture on P with min Γ′ = {{p, q} ⊆ P} \ {{a, ci} : 0 ≤ i ≤ ` − 1}. Then C = {C1, C2} =
{{a, b0, . . . , b`−1}, {b0, . . . , b`−1, c0, . . . , c`−1}} is a (min Γ \ min Γ′,min Γ′)-covering. Using the
construction described in Lemma 4.7, we obtain that Σ′ = Σ|C1 ∨Σ|C2 is a secret sharing scheme
for Γ′. It satisfies σT(Σ′) = σT(Σ|C1) + σT(Σ|C2) = `+ 1 + 2` = 3`+ 1. By [4, Theorem 7.1],
σT(Γ) ≥ n+ ` = 3`+ 1. Therefore σT(Γ′) = n+ `.

5 Lower Bounds on the Information Ratio

In this section and in the following one we study techniques for finding lower bounds on the
information ratio. For these bounds, we analyze the effect of adding and deleting subsets in the
access structure

If we view the secret and the shares of a scheme as random variables, then we can compute
the entropy of the secret and the shares. Then we can obtain bounds on the information ratio
using the Shannon information inequalities and other information inequalities. For the sake of
completeness, we present in Section B an alternative definition of secret sharing that defines the
secret and the shares as random variables.

We study the lower bound on σ(Γ) introduced by Mart́ı-Farré and Padró [33], which is
denoted by κ(Γ). The main result in this section is Theorem 5.7, which shows a property of
κ that is analogous to the one in Theorem 4.2. The bound κ exploits the connection between
secret sharing schemes and polymatroids, which is presented below. The value of κ for an access
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structure can also be obtained by requiring the Shannon inequalities on the entropies of the
shares and the secret (see [15, 35] for more details).

We use notation introduced in [19, 34] to describe the polymatroids and the associated access
structures. For a function F : P(Q)→ R and subsets X,Y, Z ⊆ Q, we denote

∆F (Y :Z|X) = F (X ∪ Y ) + F (X ∪ Z)− F (X ∪ Y ∪ Z)− F (X) (4)

and ∆F (Y :Z) = ∆F (Y :Z|∅). To simplify the notation, for x ∈ Q, we will write F (x) instead of
F ({x}).

Definition 5.1. A polymatroid is a pair S = (Q, f) formed by a finite set Q, the ground set ,
and a rank function f : P(Q)→ R satisfying the following properties.

• f(∅) = 0.

• f is monotone increasing : if X ⊆ Y ⊆ Q, then f(X) ≤ f(Y ).

• f is submodular : f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ) for every X,Y ⊆ Q.

Additionally, if f(X) ≤ |X| for every X ⊆ Q, then we say that S is a matroid.

Proposition 5.2 ([19]). A map f : P(Q)→ R is the rank function of a polymatroid with ground
set Q if and only if f(∅) = 0 and ∆f (y :z|X) ≥ 0 for every X ⊆ Q and y, z ∈ Q \X.

Now we describe the family of Γ-polymatroids for an access function Γ. These polymatroids
are then used to compute κ(Γ).

Definition 5.3. Let Γ be an access structure on P and let S = (Q, f) be a polymatroid with
Q = P ∪ {p0}. Then S is a Γ-polymatroid if for every A ⊆ P satisfies the following properties.

• If A ∈ Γ then ∆f (p0 :A) = f(p0).

• If A /∈ Γ then ∆f (p0 :A) = 0.

A Γ-polymatroid is said to be normalized if f(p0) = 1.

Definition 5.4. For an access structure Γ on P we define κ(Γ) as the infimum of σ0(S) =
maxp∈P f(p) over all normalized Γ-polymatroids S = (Q, f).

Theorem 5.5 ([33]). For every access structure Γ, σ(Γ) ≥ κ(Γ).

The main result in this section is Theorem 5.7. Its proof is constructive, and requires the
construction of polymatroids for the union and the intersection of access structures. Below we
define the AND and OR operations on polymatroids associated to access structures. We show
in Lemma 5.6 that these operations are well defined and that the resulting polymatroids are
associated to the intersection and union of access structures, respectively. The proof is rather
tedious and so it is moved to Section C.

Let S1 = (Q, f1) and S2 = (Q, f2) be two normalized polymatroids. We define the normalized
polymatroids S1 ∨ S2 = (Q, f1 ∨ f2) and S1 ∧ S2 = (Q, f1 ∧ f2) as follows. For every A ⊆ P ,

• (f1 ∨ f2)(A) = f1(A) + f2(A)−min{∆f1(p0 :A),∆f2(p0 :A)}

• ∆f1∨f2(p0 :A) = max{∆f1(p0 :A),∆f2(p0 :A)}

• (f1 ∧ f2)(A) = f1(A) + f2(A)
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• ∆f1∧f2(p0 :A) = min{∆f1(p0 :A),∆f2(p0 :A)}

Lemma 5.6. Let Γ1 and Γ2 be two access structures on P . Let S1 be a Γ1-polymatorid and S2

a Γ2-polymatorid. Then S1 ∨ S2 is a Γ1 ∪ Γ2-polymatroid, and S1 ∧ S2 is a Γ1 ∩ Γ2-polymatroid.

Theorem 5.7. Let Γ,Γ′ be two access structures on P . Then

|κ(Γ)− κ(Γ′)| ≤ dist(Γ,Γ′).

The proof of this theorem is in Section C. It is constructive and uses the previous lemma.
Roughly speaking, given a Γ-polymatroid, we compose it with polymatroids for other access
structures and we obtain Γ′-polymatroid.

An access structure Γ is a matroid port if there exists a Γ-polymatroid S that is a matroid.
If Γ is a matroid port, then κ(Γ) = 1 [12, 33]. As a consequence of Theorem 5.7, the value of κ
of access structures that are close to matroid ports is small. Mart́ı-Farré and Padró [33] showed
that if an access structure Γ is not a matroid port, then κ(Γ) ≥ 3/2 (see [33] for more details).
We can also say that if an access structure Γ is not a matroid port and is at distance one of
a matroid port, then 3/2 ≤ κ(Γ) ≤ 2. The access structures presented Example 4.4 have the
property that σ and κ coincide. Hence, for access structures at a distance 1 we cannot improve
this bound.

Csirmaz [15] found a family of access structures {Γn}n≥0 with κ(Γn) ≥ O(n/ log n), but also
proved that κ(Γ) ≤ n for every access structure Γ. Therefore, the previous theorem only provide
useful bounds for access structures that are very close. However, it illustrates the nature of the
Shannon inequalities restrictions with regard to the access structure. Recently, this method has
been extended to non-Shannon inequalities, for instance in [6, 34]. For an access structure Γ
on P and for a family of information inequalities or rank inequalities I, we define κI(Γ) as the
infimum of maxx∈P f(p) over all normalized Γ-polymatroids satisfying the restrictions of I. An
interesting problem is to study whether κI behaves as κ.

6 Bounds for Linear Secret Sharing Schemes

For any finite field F, every (F, 1)-linear secret sharing scheme Σ is equivalent to a monotone
span program of size σT(Σ) (see [2] for more details). Since the bounds studied in this section are
bounds on the total information ratio of (F, 1)-linear secret sharing schemes, we have the same
results for the size of monotone span programs. Next we present a formulation of the Razborov’s
rank measure [37] that is adapted to the context of secret sharing and access structures.

6.1 Razborov’s Rank Measure

Let Γ be an access structure, and let U, V ⊆ P(P ) be two families of subsets with U ⊆ Γ and
V ⊆ Γc. A (U, V )-rectangle is a Cartesian product U0 × V0 for which U0 ⊆ U and V0 ⊆ V .
For each i ∈ P , define the rectangle Ri = (U × V ) ∩ (T{i} × F{i}). Denote the set of all such
rectangles by RΓ(U, V ) = {R1, . . . , Rn}.

Let F be a field and let A be any |U | × |V | matrix over F with rows indexed by elements of
U and columns indexed by elements of V . The restriction of A to the rectangle R = U0 × V0 is
the submatrix A �R obtained by setting to 0 all entries not indexed by R.

Definition 6.1 ([37]). Let Γ ⊆ P(P ) an access structure, U ⊆ Γ, V ⊆ Γc. Let F be a field and
let A be a |U | × |V | matrix over F. The rank measure of Γ with respect to A is given by

µA(Γ) =
rank(A)

maxR∈RΓ(U,V ) rank(A �R)
,
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and µA(Γ) = 0 if rank(A) = 0.

Razborov [37] showed that the rank measure of a monotone Boolean function is a lower
bound on the size of the shortest formula for this function (see Section 7). Later, Gál [24] proved
that the rank measure is also a lower bound on the size of monotone span programs. Taking
into account the connection between monotone span programs and linear secret sharing schemes
mentioned above, we obtain that the rank function is a lower bound on the optimal information
ratio for linear secret sharing schemes. Namely, we have the following result.

Theorem 6.2. Let Γ ⊆ P(P ) an access structure, U ⊆ Γ, V ⊆ Γc. Let F be a field and let A be
a |U | × |V | matrix over F. Then,

µA(Γ) ≤ λTF,1(Γ).

In the following theorem, we study the behavior of this bound when we add or delete subsets
from an access structure.

Theorem 6.3. Let Γ,Γ′ ⊆ P(P ) be access structures, U ⊆ Γ, V ⊆ Γc. Let F be a field and let
A be a |U | × |V | matrix over F. Then, there exist U ′, V ′ ⊆ P(P ) with U ′ ⊆ Γ′, V ′ ⊆ Γ′c and a
|U ′| × |V ′| matrix A′ over F for which

µA′(Γ
′) ≥ µA(Γ)− dist(Γ,Γ′).

Proof. Set U ′ = U ∩Γ′ and V ′ = V ∩Γ′c, and let A′ be the restriction of A to |U ′|×|V ′|. Observe
that |U\U ′| ≤ |Γ\Γ′| because U\U ′ = U\Γ′ and U ⊆ Γ. Similarly, we see that |V \V ′| ≤ |Γ′\Γ|
by using Γc\Γ′c = Γ′\Γ. Since A′ is the submatrix obtained by setting to 0 all entries of A
indexed by U\U ′ × V \V ′, we have rank(A) ≤ rank(A′) + |U\U ′|+ |V \V ′|. Therefore

rank(A) ≤ rank(A′) + dist(Γ,Γ′).

Given a rectangle R ∈ RΓ(U, V ), let R′ = R ∩ (U ′ × V ′). Note that A′ �R′ is a submatrix of
A �R, and thus rank(A �R) ≥ rank(A′ �R′). Since the map RΓ(U, V ) → RΓ′(U

′, V ′) given by
R 7→ R ∩ (U ′ × V ′) is exhaustive, we get the inequality

max
R∈RΓ(U,V )

rank(A �R) ≥ max
R′∈RΓ′ (U

′,V ′)
rank(A′ �R′).

By using the previous inequalities, we see that

µA(Γ) =
rank(A)

maxR∈RΓ(U,V ) rank(A �R)
≤ rank(A′) + dist(Γ,Γ′)

maxR′∈R′Γ′ (U ′,V ′) rank(A′ �R′)

≤ µA′(Γ′) + dist(Γ,Γ′).

Note that the behavior of the rank function bound is different from that of λT
F,1. If we

extend the bound on Corollary 4.3 to λT we have that for every two access structures Γ and Γ′,
|λT

F,`(Γ)− λT
F,`(Γ

′)| ≤ n · dist(Γ,Γ′).
Recently, in [14], the rank function bound has been used to prove that there exists an access

structure that requires linear schemes of information ratio 2Ω(n1/14 log(n)). Currently, this is the
best lower bound for linear secret sharing schemes.
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6.2 Subcritical families

The next technique provides lower bounds on the size of the shares for linear secret sharing
schemes. It was introduced in [3].

Definition 6.4. Let Γ be an access structure and let H ⊆ min Γ. We say that H is a critical
subfamily for Γ, if every H ∈ H contains a set TH ⊆ H, |TH | ≥ 2, such that the following two
conditions are satisfied

1. The set TH uniquely determines H in the subfamily H: No other set in H contains TH .

2. For any subset Y ⊆ TH , the set SY = ∪A∈H, A∩Y 6=∅A \ Y does not contain any member of
min Γ.

Theorem 6.5. Let H be a critical subfamily of an access structure Γ. Then λT(Γ) ≥ |H|.

Given a critical subfamily of an access structure Γ, it is easy to construct a critical subfamily
for an access structure Γ′ obtained by deleting some authorized subsets or minimal authorized
subsets from Γ. However, it is not easy to find a critical subfamily for access structures that are
obtained by adding authorized subsets or minimal authorized subsets.

Lemma 6.6. Let H be the critical subfamily of an access structure Γ. Let Γ′ be access structures
with min Γ′ ⊆ min Γ and |min Γ′ \min Γ| = `, and let Γ′′ be an access structure with Γ′′ ⊆ Γ and
|Γ \ Γ′′| = `. Then there exist two critical subfamilies H′ and H′′ of Γ′ and Γ′′, respectively, with
|H′|, |H′′| ≥ |H| − `.

Proof. The families of subsets H′ = H ∩min Γ′ and H′′ = H ∩ Γ′′ are critical subfamilies of Γ′

and Γ′′, respectively.

7 Formulas and Circuits

In this section, we apply the approach of Section 4 to study the behavior of the complexity
measures associated to monotone Boolean functions. Informally, our results show that similar
monotone Boolean functions have close complexity measures. In particular, we aim to give
similar bounds as those in Theorems 4.2 and 4.9 and Proposition 4.5 for the leafsize and the size
of monotone Boolean functions. For an introduction to this area, see [30, 42], for example.

7.1 Definitions

A Boolean function is a function of the form f : {0, 1}n → {0, 1} for some n ≥ 1. We also
see the domain of a Boolean function as the power set of P = {1, . . . , n} via the bijection
{0, 1}n → P(P ) : (xi)i∈P 7→ {i ∈ P : xi = 1}. Then we define Γf as the collection of elements
A ∈ P(P ) such that f(A) = 1. A Boolean function f is monotone if and only if Γf is an access
structure. In this case, set min f = min Γf . For two monotone Boolean functions f, f ′ on the
same domain, we define the distance between f and f ′ as dist(f, f ′) = dist(Γf ,Γ

′
f ).

For a monotone Boolean function f : P(P )→ {0, 1}, we define the dual of f as the function
f∗ : P(P )→ {0, 1} with f∗(A) = ¬f(P\A). Note that Γf∗ = (Γf )∗. Therefore, f is monotone if
and only if f∗ is monotone.

Given a Boolean function f : P(P )→ {0, 1} and a set B ⊆ P , we define the restriction of f
to B to be the Boolean function f |B : P(P )→ {0, 1} characterized by f |B (A) = f(A ∩B). In
other words, the restriction of the Boolean function f : {0, 1}n → {0, 1} to the subset B ⊆ P is
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the Boolean function f |B : {0, 1}n → {0, 1} defined by f |B (x) = f(x′), where x′i = xi for all
i ∈ B and x′i = 0 elsewhere. We have that Γf |B = cl(min f ∩ P(B)).

If the domain of a Boolean function f is {0, 1}n, we say f is fanin-n. If Φ, g1, . . . , gm are
Boolean functions and Φ is fanin-m, we can define a Boolean function Φ(g1, . . . , gm) by applying
all the outputs of g1, . . . , gm to Φ in an orderly manner. For i ∈ P , we denote the i-th input
variable by xi. Note that xi can be seen as the monotone Boolean function satisfying Γxi = T{i}.
We now define circuits, formulas and some related concepts.

Definition 7.1. Let Ω be a set of Boolean functions. A circuit S over Ω is a sequence (g1, . . . , gm)
of Boolean functions such that

• The first n Boolean functions are input variables, and

• for every other gj , there exists Φ ∈ Ω and k1, . . . , kdj < j such that gj = Φ(gk1 , . . . , gkdj ).

A Boolean function g in a circuit is fanout-r if there exist r posterior functions that are computed
using g. A formula F over Ω is a circuit over Ω whose fanout of functions is at most 1.

A circuit S = (g1, . . . , gm) computes a Boolean function f if f = gj for some j. We say that
a circuit over Ω is monotone if Ω = {∧,∨}. Similarly, we say it is deMorgan if Ω = {∧,∨,¬}
and the gate ¬ is only applied to input variables.

Let Ff and Fg be formulas computing monotone Boolean functions f and g, respectively. Then,
Ff ∧ Fg is a formula computing the Boolean function h = f ∧ g = max{f, g}, and Γh = Γf ∩ Γg.
Similarly, Ff ∨ Fg is a formula computing the Boolean function h′ = f ∨ g = min{f, g}, and
Γh′ = Γf ∪ Γg. For every formula F and B ⊆ P , we define F |B as the formula that is obtained
by replacing xi by 0 for every i ∈ B. If F computes a function f , then F |B computes f |B.

7.2 Bounds on the Size of Formulas and Circuits

The size (resp. leafsize) of a circuit (resp. formula) is defined as the number of non-input
Boolean functions (resp. input variables) in it. If f is a Boolean function, we denote by S(f)
(resp. S+(f)) the minimal size of a deMorgan (resp. monotone) circuit computing f . Similarly,
we denote by L(f) (resp. L+(f)) the minimal leafsize of a deMorgan (resp. monotone) formula
computing f . Since all results in this article concerning the complexity measure S and L hold
verbatim for S+ and L+ respectively, we state them only for S and L.

We now present bounds as those in Theorems 4.2 and 4.9 and Proposition 4.5 for the
leafsize and the size of monotone Boolean functions. The following proposition shows that
similar monotone Boolean functions are close in size. The proofs of the following results are in
Section D.

Proposition 7.2. For every two monotone Boolean functions f and f ′,

|L(f)− L(f ′)| ≤ n · dist(f, f ′) and |S(f)− S(f ′)| ≤ n · dist(f, f ′).

Proposition 7.3. Let f, f ′ be two monotone Boolean functions. Let f̃ be the monotone Boolean
function with min f̃ = min f ∩ Γf ′. Then

L(f ′) ≤ L(f̃) + n · dist(f, f ′) and S(f ′) ≤ S(f̃) + n · dist(f, f ′).

Proposition 7.4. Let f, f ′ : {0, 1}n → {0, 1} be two monotone Boolean functions. If there
exists a (min f \min f ′,min f ′ ∩min f ′)-covering of degree d, then

L(f ′) ≤ d · L(f) + n · |min f ′\min f |, and

S(f ′) ≤ d · (S(f) + 1) + n · |min f ′\min f | − 1.
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7.3 Submodular Formal Complexity Measures

A nonnegative real-valued function µ defined on the set of monotone Boolean functions in n
variables is a submodular formal complexity measure if

• µ(xi) ≤ 1 for i = 1, . . . , n,

• µ(f ∧ g) + µ(f ∨ g) ≤ µ(f) + µ(g) for every monotone Boolean functions f, g.

For every submodular formal complexity measure µ and for every monotone Boolean function
f , L(f) ≥ µ(f) [38]. See [30, 38] for more details about submodular formal complexity measures.

Proposition 7.5. Let µ be a submodular formal complexity measure. Then for every two
monotone Boolean functions f and f ′,

|µ(f)− µ(f ′)| ≤ n · dist(f, f ′)

The Razborov’s rank measure µA in Section 6, described in terms of submodular Boolean
functions, is also submodular [38]. However, the bound we obtained for µA for close access
structures is much better than the one in the previous proposition. Notice that both λT and σT

are not submodular functions (see Section C.1 for more details).
The behavior of µA and L for close monotone Boolean functions is different. Let f and f ′ be

two monotone Boolean functions at a distance `. Let A and A′ be matrices over a finite field F
that maximize µA(f) and µA′(f

′). The difference L(f)− L(f ′) can be much bigger than `, but
the difference µA(f)− µA′(f ′) is at most `.
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[18] O. Farràs, T. Hansen, T. Kaced, C. Padró. Optimal Non-Perfect Uniform Secret Sharing
Schemes. Advances in Cryptology, CRYPTO 2014. Lecture Notes in Comput. Sci. 8617
(2014) 217–234.
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A Proof of Lemma 3.6

In this section we provide a proof of Lemma 3.6. The main ideas of this proof are from the
proof of [4, Lemma 5.4]. We need to introduce the following result, whose proof is direct, and
the definition of a coloring of family of subsets.

Lemma A.1. Let B1,B2 ⊆ P(P ). A (B1,B2)-covering is also a (B1,B′2)-covering for every
B′2 ⊆ B2.
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A coloring of B ⊆ P(P ) with c colors is a mapping µ : P → {1, . . . , c} such that for every
A ∈ B there exists u, v ∈ A with µ(u) 6= µ(v).

Proof of Lemma 3.6. Due to Lemma 3.5, if B1 ⊆
(
P
k

)
, the biggest family of subsets B′2 ⊆

(
P
k

)
admitting a (B1,B′2)-covering is B′2 =

(
P
k

)
\ B1. By Lemma A.1, it is enough to restrict our proof

to the case B2 = B̃1 =
(
P
k

)
\ B1.

In order to construct a (B1, B̃1)-covering, we use colorings of B1. Given a coloring µ of B1,
we consider the family of subsets of elements in P of the same color. If all the elements in a
subset A ⊆ P have the same color by µ, then B * A for every B ∈ B1.

The existence of the covering is proved by using the probabilistic method (see [1], for
example). We choose r = 2kkkdk−1 lnn random colorings µ1, . . . , µr of B1 with 2kd colors. For
every coloring µi, we define Ci = {A ⊆ P : A is a maximal monochromatic subset in µi}. Now
we show that C = ∪ri=1Ci is a (B1, B̃1)-covering with probability at least 1− 1/(k!).

Let A = {v1, . . . , vk} ∈ B̃1. We fix i and compute the probability that A ⊆ B for some
B ∈ Ci, which is equivalent to say that A is monochromatic in µi. Fix an arbitrary coloring of
P \A. We prove that conditioned on this coloring, the probability that A is monochromatic is
at least 1

2(2kd)k−1 . Let B ∈ B1 with v1 ∈ B. If B \ {v1} is monochromatic, then the color of v1

must be different from the color of B \ {v1}. Thus there are at most d colors that v1 cannot take.
Extending this argument, there are at most kd colors that do not allow A to be monochromatic.
Thus the probability that v1 is colored by one of the remaining 2kd− kd colors is at least half,
and the probability that in this case v2, . . . , vk are colored in the same color as v1 is at least
1/(2kd)k−1. Then A ⊆ B for some B ∈ Ci with probability at least 1/(2(2kd)k−1).

The probability that A * B for every B ∈ C is(
1− 1

2(2kd)k−1

)r

≤ e−
r

2(2kd)k−1 =
1

nk
.

Thus, the probability that C is not a (B1, B̃1)-covering is less than
(
n
k

)
/nk ≤ 1/k!. In particular,

such covering exists.

B An Alternative Definition of Secret Sharing

In this section we present another definition of secret sharing. This definition and the one
in Section 2 are equivalent (see [2]). In this definition, we assume that secrets are chosen in
K according to a certain probability distribution µ′. Then the distribution scheme Σ and µ′

determine a random variable Si for every i ∈ P . For every A = {i1, . . . ir} ⊆ Q = P ∪ {p0}, we
call SA = Si1 × . . .× Sir .

The Shannon entropy of the random variable SA is denoted by H(SA). In addition, for such
random variables, one can consider the conditional entropy H(SA|SB) = H(SA∪B)−H(SB), the
mutual information I(SA :SB) = H(SA)−H(SA|SB), and the conditional mutual information
I(SA :SB|SC) = H(SA|SC)−H(SA|SB∪C). For an introduction to information theory, see [13].

Definition B.1. Let K be a finite set of secrets, where |K| ≥ 2. A distribution scheme (Π, µ)
with domain of secrets K together with a random variable S0 on K is a secret sharing scheme
realizing an access structure Γ if the following requirements hold for every A ⊂ P :

• If A ∈ Γ then I(S0 :SA) = H(S0).

• If A /∈ Γ then I(S0 :SA) = 0.
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Definition 2.3 and Definition B.1 are equivalent, and so the access structure determined
according to one definition coincides with the one determined according to the other definition.
The access structure of a secret sharing scheme is independent of the distribution of the secrets.
That is, if a scheme realizes an access structure with respect to one distribution on the secrets,
then it realizes the access structure with respect to any other distribution with the same support
(see [2] for more details).

The results in Section 4 can be extended to secret sharing schemes defined according to
Definition B.1, but there are some details that have to be taken into account. It is not possible to
perform the OR operation of two secret sharing schemes with different probability distributions
on the secrets. Also, it is not possible to perform an AND of secret sharing schemes whose secret
distribution is not uniform. If we restrict the study to the secret sharing schemes in which the
secret is chosen according to the uniform probability distribution, then we can define ANDs and
ORs in a straightforward way.

In the information theoretic context the size of the shares is measured in terms of the
entropy of the secret and the shares by means of maxi∈P H(Si)/H(S0). If we suppose that the
distribution of the secret is uniform on K, then log |K| = H(S0). Then since log |Si| ≥ H(Si)
for every i ∈ P , for every secret sharing scheme Σ on P , σ(Σ) ≥ maxi∈P H(Si)/H(S0).

C Proofs of Section 5

This section is dedicated to the proof of Lemma 5.6 and Theorem 5.7. First we present a
technical lemma, whose proof is straightforward.

Lemma C.1. Let S = (Q, h) be a normalized Γ-polymatroid for some access structure Γ. Then

p1) f(A ∪ {p0}) = f(A) + 1−∆f (p0 :A) for every A ⊆ P .

p2) ∆f (p:p|A) = f(p ∪A)− f(A).

p3) ∆f (p:A ∪ {q}) ≥ ∆f (p:A) for every A ⊆ Q, p, q ∈ Q \A.

p4) ∆f (p0 :A ∪ {p, q}) + ∆f (p0 :A)−∆f (p0 :A ∪ {p})−∆f (p0 :A ∪ {q}) = ∆f (p:q|A ∪ {p0})−
∆f (p:q|A) for every A ⊆ Q, p, q ∈ Q \A.

Proof of Lemma 5.6. Let S1 = (Q, f1) be a normalized Γ-polymatroid, and let S2 = (Q, f2) be
a normalized Γ′-polymatroid. Let S3 = S1 ∨ S2, S4 = S1 ∧ S2, g = f1 ∨ f2, and h = f1 ∧ f2.
First we prove that S3 and S4 are polymatroids. We use the characterization of polymatorid in
Proposition 5.2 to prove it. Namely, we prove that ∆g(p:q|A) ≥ 0 and ∆h(p:q|A) ≥ 0 for every
p, q ∈ Q and A ⊆ Q. We divide the proof into different cases.

Let A ⊆ P and let {p, q} ⊆ P \A. By property p1) of Lemma C.1 we have ∆g(p:p|A) ≥ 0
and ∆h(p:p|A) ≥ 0.
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g1)

∆g(p:q|A) =g(A ∪ {p}) + g(A ∪ {q})− g(A ∪ {p, q})− g(A)

=f1(A ∪ {p}) + f2(A ∪ {p}) + f1(A ∪ {q}) + f2(A ∪ {q})
− f1(A ∪ {p, q})− f2(A ∪ {p, q})− f1(A)− f2(A)

−min{∆f1(p0 :A ∪ {p}),∆f2(p0 :A ∪ {p})}
−min{∆f1(p0 :A ∪ {q}),∆f2(p0 :A ∪ {q})}
+ min{∆f1(p0 :A ∪ {p, q}),∆f2(p0 :A ∪ {p, q})}
+ min{∆f1(p0 :A),∆f2(p0 :A)}

=∆f1(p:q|A) + ∆f2(p:q|A) + a− b,

where

• a = min{∆f1(p0 :A∪ {p, q}),∆f2(p0 :A∪ {p, q})}+ min{∆f1(p0 :A), ∆f2(p0 : A)}, and

• b = min{∆f1(p0 :A∪{p}),∆f2(p0 :A∪{p})}+min{∆f1(p0 :A∪{q}), ∆f2(p0 :A∪{q})}.

If a = 0 then ∆f1(p0 :A ∪ {p, q}) = 0 or ∆f2(p0 :A ∪ {p, q}) = 0. By property p3) of
Lemma C.1, it implies that b = 0. If a = 2 then ∆f1(p0 :A) = ∆f2(p0 : A) = 1, and so using
the same property we obtain that b = 2.

Now suppose that a < b. The unique possible case is a = 1 and b = 2. In this case, there
exists some i ∈ {1, 2} for which ∆fi(p0 :A∪{p, q}) = ∆fi(p0 :A∪{p}) = ∆fi(p0 :A∪{q}) = 1
and ∆fi(p0 :A) = 0. We have

a− b =∆fi(p0 :A ∪ {p, q}) + ∆fi(p0 :A)−∆fi(p0 :A ∪ {p})−∆fi(p0 :A ∪ {q}),

which is equal to ∆fi(p:q|A ∪ {p0})−∆fi(p:q|A) by property p4) of Lemma C.1. Hence
∆f1(p:q|A) + ∆f2(p:q|A) + a− b ≥ 0.

Therefore, we can conclude that∆g(p:q|A) ≥ 0.

h1) ∆h(p:q|A) = ∆f1(p:q|A) + ∆f2(p:q|A) ≥ 0.

Let A ⊆ P and let p ∈ P \ A. By property p1) of Lemma C.1, ∆g(p0 :p0|A) ≥ 0 and
∆h(p0 :p0|A) ≥ 0.

g2)

∆g(p:p0|A) = g(A ∪ {p}) + g(A ∪ {p0})− g(A ∪ {p, p0})− g(A)

= g(A ∪ {p}) + g(A) + 1−∆g(p0 :A)− (g(A ∪ {p}) + 1−∆g(p0 :A) + g(A))

= ∆g(p0 :A ∪ {p})−∆g(p0 :A)

= max{∆f1(p0 :A ∪ {p}),∆f2(p0 :A ∪ {p})} −max{∆f1(p0 :A),∆f2(p0 :A)},

which is nonnegative by property p3) of Lemma C.1.

h2)

∆h(p:p0|A) = h(A ∪ {p}) + h(A ∪ {p0})− h(A ∪ {p, p0})− h(A)

= h(A ∪ {p}) + h(A) + 1−∆h(p0 :A)− (h(A ∪ {p}) + 1−∆h(p0 :A) + h(A))

= ∆h(p0 :A ∪ {p})−∆h(p0 :A)

= min{∆f1(p0 :A ∪ {p}),∆f2(p0 :A ∪ {p})} −min{∆f1(p0 :A),∆f2(p0 :A)},

which is non-negative by property p3) of Lemma C.1.
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Let A ⊆ P and let {p, q} ⊆ P \ A. By property p1) of Lemma C.1, ∆g(p:p|A ∪ {p0}) ≥ 0
and ∆h(p:p|A ∪ {p0}) ≥ 0.

g3)

∆g(p:q|A ∪ {p0}) = g(A ∪ {p, p0}) + g(A ∪ {q, p0})− g(A ∪ {p, q, p0})− g(A ∪ {p})
= g(A ∪ {p}) + 1−∆g(p0 :A ∪ {p})
+ g(A ∪ {q}) + 1−∆g(p0 :A ∪ {q})
− (g(A ∪ {p, q}) + 1−∆g(p0 :A ∪ {p, q}))
− (g(A) + 1−∆g(p0 :A))

= g(A ∪ {p}) + g(A ∪ {q})− g(A ∪ {p, q})− g(A)

+ ∆g(p0 :A) + ∆g(p0 :A ∪ {p, q})
−∆g(p0 :A ∪ {p})−∆g(p0 :A ∪ {q})
= ∆f1(p:q|A) + ∆f2(p:q|A)

− (∆f1(p:q|A) + ∆f2(p:q|A)−∆f1(p:q|A ∪ {p0})−∆f2(p:q|A ∪ {p0}))
= ∆f1(p:q|A ∪ {p0}) + ∆f2(p:q|A ∪ {p0})
≥ 0.

h3)

∆h(p:q|A ∪ {p0}) = h(A ∪ {p, p0}) + h(A ∪ {q, p0})− h(A ∪ {p, q, p0})− h(A ∪ {p})
= h(A ∪ {p}) + 1−∆h(p0 :A ∪ {p})
+ h(A ∪ {q}) + 1−∆h(p0 :A ∪ {q})
− (h(A ∪ {p, q}) + 1−∆h(p0 :A ∪ {p, q}))
− (h(A) + 1−∆h(p0 :A))

= ∆h(p:q|A) + ∆h(p0 :A ∪ {p, q}) + ∆h(p0 :A)

−∆h(p0 :A ∪ {p})−∆h(p0 :A ∪ {q})
= ∆f1(p:q|A) + ∆f2(p:q|A) + a− b,

where

• a = min{∆f1(p0 :A ∪ {p, q}),∆f2(p0 :A ∪ {p, q})}+ min{∆f1(p0 :A),∆f2(p0 : A)}, and

• b = min{∆f1(p0 :A∪{p}),∆f2(p0 :A∪{p})}+min{∆f1(p0 :A∪{q}), ∆f2(p0 :A∪{q})}.

Note that ∆h(p:q|A ∪ {p0}) = ∆g(p:q|A), and we already proved that ∆g(p:q|A) ≥ 0
in g1).

It concludes the proof that S3 and S4 are polymatroids.
Now we prove that indeed S3 is a Γ1 ∪ Γ2-polymatroid and S4 is a Γ1 ∩ Γ2-polymatroid.

A set A ⊆ P is in Γ1 ∪ Γ2 if and only if ∆f1(p0 :A) = 1 or ∆f2(p0 :A) = 1, that is, if and
only if max{∆f1(p0 :A),∆f2(p0 :A)} = 1. Hence S3 is a Γ1 ∪ Γ2-polymatroid. A set A ⊆
P is in Γ1 ∩ Γ2 if and only if ∆f1(p0 :A) = 1 and ∆f2(p0 :A) = 1, that is, if and only if
min{∆f1(p0 :A),∆f2(p0 :A)} = 1. Hence S4 is a Γ1 ∩ Γ2-polymatroid.

Proof of Theorem 5.7. The proof of this theorem is analogous to the proof of Theorem 4.2. Let
A ⊆ P . We define the TA-polymatroid STA

= (Q, h) as the one with h(B) = |B ∩A| for every
B ⊆ P , and ∆h(p0 : B) = 1 if and only if A ⊆ B. We define the SA-polymatroid SSA

= (Q, h)
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as the one with h(B) = |B ∩ A|+ min{|B ∩ (P \ A), 1} for every B ⊆ P , and ∆h(p0 : B) = 1
if and only if A ⊆ B and |B| < |A|. Finally, we define FA-polymatroid SFA

= (Q, h) as the
one with h(B) = 1 if |B ∩ (P \ A)| 6= 0 and h(B) = 0 else, and ∆h(p0 : B) = 1 if and only if
|B ∩ (P \A)| > 0. Note that σ0(STA

) = σ0(SSA
) = σ0(SFA

) = 1.
Let S be a Γ-polymatroid. By Proposition 3.1, the following construction is a Γ′-polymatroid:

S ′ =
(
S ∧

∧
A∈max(Γ\Γ′)SFA

)
∨
∨

A∈min(Γ′\Γ)STA
.

Then κ(Γ′) ≤ κ(Γ) + |Γ \ Γ′|+ |Γ′ \ Γ| = κ(Γ) + dist(Γ,Γ′).

C.1 Submodularity

Example C.2. Consider the access structures Γ, Γ′, Γ′′, and Γ′′′ on P = {1, 2, 3, 4} with
min Γ =

(
P
2

)
\ {{1, 4}}, min Γ′ = {{1, 2}, {2, 3}, {3, 4}, {1, 4}}, min Γ′′ =

(
P
2

)
, and min Γ′′′ =

{{1, 2}, {2, 3}, {3, 4}}. Observe that Γ′′ = Γ ∪ Γ′, and Γ′′′ = Γ ∩ Γ′. It is known that σT(Γ) =
σT(Γ′) = σT(Γ′′) = 4 and σT(Γ′′′) = 5, and so

σT(Γ) + σT(Γ′) < σT(Γ′′) + σT(Γ′′′) = σT(Γ ∪ Γ′) + σT(Γ ∩ Γ′).

The previous example shows access structures for which σT does not satisfy the submodularity
property. For these access strucuctures, σT and κT (the bound defined analogously from κ)
coincide, and they also coincide with λT

F,` for all ` and for all finite field F with |F| > 4. Therefore

κT and λT
F,` are not submodular either.

D Proofs of Section 7

In this section we show the proofs of the Propositions 7.2, 7.3 and 7.4. First we give formulas
and complexity measures for particular families of Boolean functions. We start with the Boolean
functions associated to the access structures TA, RA, SA defined in Section 3, and we proceed
with the restriction f |B of some Boolean function f to B ∈ P(P ).

Note that TA = ∩i∈AT{i}. Hence ∧i∈Axi is a formula for fTA
, of size |A|. Since FA = (TP\A)∗,

by using De Morgan’s laws we get fFA
= f∗TP\A

, and so ∨i∈P\Axi is a formula for fFA
of size n−|A|.

Since SA = TA ∩ FA, by using the two previous formulas we have that (∧i∈Axi) ∧
(
∨i∈P\Axi

)
is

a formula for fSA
of size n.

We now consider the restriction f |B : {0, 1}n → {0, 1} of a Boolean function f . By applying
the restriction xi = 0 for all i /∈ B to a minimal monotone (or deMorgan) circuit (resp. formula)
for f , and removing redundant input variables and Boolean functions, we get a circuit (resp.
formula) for f |B. Therefore, S(f |B) ≤ S(f) and L(f |B) ≤ L(f).

Proof of Proposition 7.2. Let F be a formula computing f . Using Proposition 3.1 with Γ = Γf

and Γ′ = Γf ′ we see that F ′ = (F ∧
∧

A∈max(Γ\Γ′)GA)∨
∨

A∈min(Γ′\Γ)HA is a formula computing

f ′, where GA and HA are the formulas for FA and TA described above, respectively. Hence,

L(f ′) ≤ L(f) +
∑

A∈max(Γ\Γ′)|P\A|+
∑

A∈min(Γ′\Γ)|A|

≤ L(f) + n · dist(Γ,Γ′).

The result for S is analogous.
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Proof of Proposition 7.3. Using Proposition 3.2 with Γ = Γf , Γ′ = Γf ′ and Γ̃ = Γf̃ we have

Γ′ =
(

Γ̃ ∪
⋃

A∈Γ′\Γcl (minSA ∩ Γ′))
)
∪
⋃

A∈min(Γ\Γ′)TA.

Now note that cl (minSA ∩ Γ′)) = TA ∩
⋃

i/∈A:A∪{i}∈Γ′T{i}, hence this access structure admits
the formula (

∧
i∈A xi) ∧

∨
i/∈A:A∪{i}∈Γ′ xi, which has size at most n. The rest of the proof is

analogous to the proof of Proposition 7.2. The result for S can be proved in a similar way.

Proof of Proposition 7.4. Let C be a (min f \min f ′,min f∩min f ′)-covering, and take A ∈ min f .
In this case, A ∈ min f ′ if and only if there exists B ∈ C such that A ∈ P(B). Hence
min f ∩min f ′ =

⋃
B∈C(min f ∩ P(B)). Now, since min f ′ = (min f ∩min f ′) ∪ (min f ′\min f),

Γf ′ = cl(min f ′)

= cl(min f ∩min f ′) ∪ cl(min f ′\min f)

=
(⋃

B∈Ccl(min f ∩ P(B))
)
∪
⋃

A∈min f ′\min fTA

=
(⋃

B∈CΓf |B

)
∪
⋃

A∈min f ′\min fTA.

Hence, if HA is the formula for TA described above, the formula

F ′ =
(∨

B∈CF |B
)
∨
∨

A∈min f ′\min fGA

computes f ′. The result for S is analogous.

Proof of Proposition 7.5. Let Γ = Γf and Γ = Γf ′ . Let g and h be the monotone Boolean
functions associated to the access structures ∩A∈max Γ\Γ′FA and ∪A∈min Γ′\ΓTA, respectively.
Since f ′ = (f ∧ g) ∨ h and µ is submodular,

µ(f ′) = µ((f ∧ g) ∨ h)

≤ µ(f ∧ g) + µ(h)− µ((f ∧ g) ∧ h)

≤ µ(f) + µ(g)− µ(f ∨ g) + µ(h)− µ((f ∧ g) ∧ h)

≤ µ(f) + µ(g) + µ(h).

Since µ is submodular, the size of the monotone formulas described above for TA and FA are
upper bounds on µ(fTA

) and µ(fFA
). Then

µ(g) + µ(h) = µ(∩A∈max Γ\Γ′FA) + µ(∪A∈min Γ′\ΓTA)

≤
∑

A∈max(Γ\Γ′)(n− |A|) +
∑

A∈min(Γ′\Γ)|A|

≤ n · |max(Γ \ Γ′)|+ n · |min(Γ′ \ Γ)|
≤ n · dist(f, f ′).
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