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Abstract. In this paper we introduce a new type of attack, called nonlinear invariant attack.
As application examples, we present new attacks that are able to distinguish the full versions
of the (tweakable) block ciphers Scream, iScream and Midori64 in a weak-key setting. Those
attacks require only a handful of plaintext-ciphertext pairs and have minimal computational
costs. Moreover, the nonlinear invariant attack on the underlying (tweakable) block cipher can
be extended to a ciphertext-only attack in well-known modes of operation such as CBC or
CTR. The plaintext of the authenticated encryption schemes SCREAM and iSCREAM can be
practically recovered only from the ciphertexts in the nonce-respecting setting. This is the first
result breaking a security claim of SCREAM. Moreover, the plaintext in Midori64 with well-
known modes of operation can practically be recovered. All of our attacks are experimentally
verified.
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1 Introduction

Block ciphers are certainly among the most important cryptographic primitives. Since the invention
of the DES [Nat77] in the mid 70’s and even more with the design of the AES [U.S01], a huge amount
of research has been done on various aspects of block cipher design and block cipher analysis. In the
last decade, many new block ciphers have been proposed that aim at highly resource constrained
devices. Driven by new potential applications like the internet of things, we have witnessed not only
many new designs, but also several new cryptanalytic results. Today, we have at hand a well estab-
lished set of cryptanalytic tools that, when are carefully applied, allow to gain significant confidence
in the security of a block cipher design. The most prominent tools here are certainly differential [BS90]
and linear [Mat93] attacks and their numerous variations [BBS99,Knu94,HCN08,BR14].

Despite this fact, quite some of the recently proposed lightweight block ciphers got broken rather
quickly. One of the reasons for those attacks, on what is supposed to be a well-understood field of
cryptographic designs, is that the new lightweight block ciphers are designed more aggressive than
e.g. most of the AES candidates. Especially when it comes to the design of the key schedule, many
new proposals keep the design very simple, often using identical round keys. While there is no general
defect with such a key schedule, structural attacks become much more of an issue compared to a
cipher that deploys a more complicated key schedule. In this paper we introduce a new structural
attack, named nonlinear invariant attack. At first glance, it might seem quite unlikely that such
an attack could ever be successfully applied. However, we give several examples of ciphers that are
highly vulnerable to this attack.

1.1 Our Contribution

Given a block cipher Ek : Fn2 → Fn2 , the general principle of the nonlinear invariant attack is to find
an efficiently computable nonlinear Boolean function g : Fn2 → F2 such that

g(x)⊕ g(Ek(x))



Table 1. Summary of the nonlinear invariant attack

# of weak keys max. # of recovered bits data complexity time complexity

SCREAM 296 32 bits 33 ciphertexts 323

iSCREAM 296 32 bits 33 ciphertexts 323

Midori64 264 32h bits 33h ciphertexts 323 × h
h is the number of blocks in the mode of operation.

is constant for any x and for many possible keys k. Keys such that this term is constant are called
weak keys. The function g itself is called nonlinear invariant for Ek. Clearly, when the block cipher
Ek has a (non-trivial) nonlinear invariant function g, g(p)⊕ g(Ek(p)) is constant for any plaintext p
and any weak key k. On the other hand, the probability that random permutations have this property
is about 2−N+1 when g is balanced. Therefore, attackers can immediately execute a distinguishing
attack. Moreover, if the constant depends on the secret key, an attacker can recover one bit of
information about the secret key by using one known plaintext-ciphertext pair.

For round-based block ciphers, our attack builds the nonlinear invariants from the nonlinear
invariants of the single round functions. In order to extend the nonlinear invariant for a single round
to the whole cipher, all round-keys must be weak keys. It may be infeasible to find such weak-key
classes for block ciphers with a non-trivial key schedule. However, as mentioned above, many recent
block ciphers are designed for lightweight applications, and they adopt more aggressive designs to
achieve high performance even in highly constrained environments. Several lightweight ciphers do
not deploy any key schedule at all, but rather use the master key directly as the identical round
key for all rounds. In such a situation, the weak-key class of round keys is trivially converted into
the weak-key class of the secret key. In particular, when all round keys are weak, this property is
iterative over an arbitrary number of rounds.

(Ciphertext-Only) Message-Recovery Attacks. The most surprising application of the nonlin-
ear invariant attack is an extension to ciphertext-only message-recovery attacks. Clearly, we cannot
execute any ciphertext-only attack without some information on the plaintexts. Therefore, our at-
tack is ciphertext-only attack under the following environments. Suppose that block ciphers which
are vulnerable against the nonlinear invariant attack are used in well-known modes of operation,
e.g., CBC, CFB, OFB, and CTR. Then, if the same unknown plaintext is encrypted by the same
weak key and different initialization vectors, attackers can practically recover a part of the plaintext
from the ciphertexts only.

Applications. We demonstrate that our new attack practically breaks the full authenticated en-
cryption schemes SCREAM4 [GLS+15] and iSCREAM [GLS+14] and the low-energy block cipher
Midori64 [BBI+15] in the weak-key setting.

We show that the tweakable block ciphers Scream and iScream have a nonlinear invariant function,
and the number of weak keys is 296. Midori64 also has a nonlinear invariant function, and the number
of weak keys is 264. Table 1 summarizes the result of the nonlinear invariant attack against SCREAM,
iSCREAM, and Midori64. The use of the tweakable block cipher Scream is defined by the authenticated
encryption SCREAM, and the final block is encrypted like CTR when the byte length of a plaintext
is not multiple of 16. We exploit this procedure and recover 32 bits of the final block of the plaintext
if the final block length ranges from 12 bytes to 15 bytes. We can also execute a similar attack
against iSCREAM. Note that our attack breaks SCREAM and iSCREAM in the nonce-respecting
model. Midori64 is a low-energy block cipher, and we consider the case that Midori64 is used by well-
known modes of operation. As a result, we can recover 32 bits in every 64-bit block of the plaintext
if Midori64 is used in CBC, CFB, OFB, and CTR.

4 Note that throughout the paper SCREAM always refer to the latest version as SCREAM, i.e. SCREAM
(v3).



Comparison with Previous Attacks. Leander et al. proposed invariant subspace attack on
iSCREAM [LMR15], which is a weak-key attack working for 296 weak keys. The attack can be
a distinguishing attack and key recovery attack in the chosen-message and chosen-tweak model.
Guo et al. presented a weak-key attack on full Midori64 [GJN+15], which works for 232 weak keys,
distinguishes the cipher with 1 chosen-plaintext query, and recovers the key with 216 computations.

Compared to [LMR15], our attack has the same weak key size and we distinguish the cipher in the
known-message and chosen-tweak model. Compared to [GJN+15], our weak-key class is much larger
and the cipher is distinguished with 2 known-plaintext queries. In both applications, the key space
can be reduce by 1 bit, besides a part of message/plaintext can be recovered from the ciphertext.

1.2 Related Work

The nonlinear invariant attack can be regarded as an extension of linear cryptanalysis [Mat93]. While
linear cryptanalysis uses a linear function to approximate the cipher, the nonlinear invariant attack
uses a nonlinear function and the probability of the nonlinear approximation is one. When g is linear,
ciphers that are resistant against the linear cryptanalysis never have a linear approximation with
probabilistically one.

The use of the nonlinear approximation has previously been studied. This extension was first
discussed by Harpes et al. [HKM95], and Knudsen and Robshaw later investigated the effectiveness
deeply [KR96]. However, they showed that there are insurmountable problems in the general use
of nonlinear approximations. For instance, one cannot join nonlinear approximations for more than
one round of a block cipher because the actual approximations depend on the specific value of the
state and key. Knudsen and Robshaw demonstrated that nonlinear approximations can replace linear
approximations in the first and last rounds only [KR96]. Unfortunately, nonlinear cryptanalysis has
not been successful because of this limited application. Our attack can be seen as the first application
of the nonlinear cryptanalysis against real ciphers in the past two decades.

Other related attacks are the invariant subspace attack [LAAZ11,LMR15] and symmetric struc-
tures [LSWD04,BDLF10,ÖÇK15]. Similar to the nonlinear invariant attack, those attacks exploit a
cryptanalytic property which continues over an arbitrary number of rounds in the weak-key setting.
While those attacks have to choose plaintexts, i.e. are chosen plaintext attacks, the nonlinear in-
variant attack does not need to choose plaintexts in general. This in particular allows us to extend
the nonlinear invariant attack from a pure distinguishing attack to the (ciphertext-only) message-
recovery attack.

1.3 Paper Organization

We explain the general ideas and principles of the new attack in Section 2. Section 3 explains how, in
many cases, the attack can be constructed in an almost automatic way using an algorithmic approach
that is for most ciphers practical. Moreover, we give a structural reason why some ciphers, more
precisely some linear layers, are inherently weak against our attack and why our attacks are possible
against those ciphers. In Section 4 we explain in detail our attacks on SCREAM and iSCREAM.
Moreover, Section 5 details our nonlinear invariant attack on Midori64. Finally, in Section 6, we give
some additional insights into the general structure of nonlinear invariant functions and outline some
future work.

2 Nonlinear Invariant Attack

In this section, we describe the basic principle of the attack and its extension to (ciphertext-only)
message-recovery attacks when used in common modes of operations. While our attack can be
applied to any cipher structure in principle, we focus on the case of key-alternating ciphers and
later on substitution permutation networks (SPN) ciphers to simplify the description. We start by
explaining the basic idea and later how, surprisingly, the attack can be extended to a (ciphertext-
only) message-recovery attack in many scenarios.



2.1 Core Idea

Let F : Fn2 → Fn2 be the round function of a key-alternating cipher and Fk(x) = F (x ⊕ k) be the
round function including the key XOR. Thus, for an r-round cipher, the ciphertext C is computed
from a plaintext P using round keys ki as

x0 = P

xi+1 = Fki(xi) = F (xi ⊕ ki) 0 ≤ i ≤ r − 1

C = xr

where we ignore post-whitening key for simplicity.
The core idea of the nonlinear invariant attack is to detect a nonlinear Boolean function g such

that

g(F (x⊕ k)) = g(x⊕ k)⊕ c = g(x)⊕ g(k)⊕ c ∀x

for many keys k, where c is a constant in F2. Keys for which this equality holds will be called weak
keys. The function g itself is called nonlinear invariant in this paper.

The important remark is that, if all round-keys ki are weak then

g(C) = g(F (xr−1 ⊕ kr−1))

= g(xr−1)⊕ g(kr−1)⊕ c
= g(F (xr−2 ⊕ kr−2))⊕ g(kr−1)⊕ c
= g(xr−2)⊕ g(kr−2)⊕ g(kr−1)

...

= g(P )⊕
r−1⊕
i=0

g(ki)⊕
r−1⊕
i=0

c.

Thus, the invariant is iterative over an arbitrary number of rounds and immediately leads to a
distinguishing attack.

Distinguishing Attack. Assume that we found a Boolean function g that is nonlinear invariant
for the round function Fk of a block cipher. Then, if all round keys are weak, this function g is also
nonlinear invariant over an arbitrary number of rounds.

Let (Pi, Ci) 1 ≤ i ≤ N be N pairs of plaintexts and corresponding ciphertexts. Then, g(Pi)⊕g(Ci)
is constant for all pairs. If g is balanced, the probability that random permutations have this property
is about 2−N+1. Note that the case that g is unbalanced can be handled as well, but is not the
main focus of our paper. Therefore, we can practically distinguish the block cipher from random
permutations under a known-plaintext attack .

Suitable Nonlinear Invariants. We next discuss a particular choice of a nonlinear invariant g for
which it is directly clear that weak keys exist. Imagine we were able to identify a nonlinear invariant
g for F , i.e a function such that

g(F (x))⊕ g(x)

is constant, such that g is actually linear (or constant) in some of the inputs. In this case, all round
keys that are zero in the nonlinear components of g, are weak.

More precisely, without loss of generality, assume that the nonlinear invariant g is linear in the
last t bits of input (implying that g is nonlinear in the first s bits of input where s = n− t). Namely,
we can view g as

g : (Fs2 × Ft2)→ F2



such that

g(x, y) = g(x, 0)⊕ g(0, y) = f(x)⊕ `(y)

where f is the nonlinear part of g, and ` is the linear part of g. As g is a nonlinear invariant for F ,
it holds that

g(x, y)⊕ g(F (x, y)) = c,

where c is a constant in F2. Now consider a round key k ∈ Fs2 × Ft2 of the form (0, k′). That is, we
consider a round key such that its first s bits are zero. Then it holds that

g(Fk(x, y)) = g(F (x, y ⊕ k′))
= g(x, y ⊕ k′)⊕ c
= f(x)⊕ `(y ⊕ k′)⊕ c
= f(x)⊕ `(y)⊕ `(k′)⊕ c
= g(x, y)⊕ g(0, k′)⊕ c.

In other words, all those round-keys that are zero in the first s bits are weak. Phrased differently,
the density of weak keys is 2−s.

Example 1. Let g : F4
2 → F2 be a nonlinear invariant as

g(x4, x3, x2, x1) = x4x3 ⊕ x3 ⊕ x2 ⊕ x1.

Then, the function g can be viewed as

g(x4, x3, x2, x1) = f(x4, x3)⊕ `(x2, x1).

Now consider a round key k ∈ F2
2×F2

2 of the form (0, k′). Then, the function g is a nonlinear invariant
for the key XOR because

g(x)⊕ g(x⊕ k) = g(x)⊕ g(x)⊕ g(0, k′) = g(0, k′).

On Key Schedule and Round Constants. Many block ciphers generate round keys from the
master key by a key schedule. For a proper key schedule, it is very unlikely that all round keys are
weak in the above sense. However, many recent lightweight block ciphers do not have a well-diffused
key schedule, but rather use (parts of) the master key directly as the round keys. From a performance
point of view, this approach is certainly preferable.

However, the direct XORing with the secret key often causes vulnerabilities like the slide at-
tack [BW99] or the invariant subspace attack [LAAZ11]. To avoid those attacks, round constants are
additionally XORed in such lightweight ciphers. While dense and random-looking round constant
would be a conservative choice, many such ciphers adopt sparse round constants because they are
advantageous in limited memory requirements.

Focusing on the case of identical round keys, assume that there is a Boolean function g which is
nonlinear invariant for the round function F . Now if all used round constants ci are such that ci is
only involved in the linear terms of g, the function g is nonlinear invariant for this constant addition.
This follows by the same arguments for the weak keys above. We call such constants, in line with
the notation of weak keys from above, weak constant.

To conclude, given a key-alternating cipher with identical round-keys and weak round-constants,
any master-key that is weak, is immediately weak for an arbitrary number of rounds. In this scenario,
the number of weak keys is 2t, or equivalently, the density of weak keys is 2−s.



2.2 Message Recovery Attack

As described so far, the nonlinear invariant attack leaks at most one bit of the secret key. However,
if a block cipher that is vulnerable to the nonlinear invariant attack is used in well-known modes of
operation, e.g., CBC, CFB, OFB, and CTR, surprisingly, the attack can be turned into a ciphertext-
only message recovery attack.

Clearly, we cannot execute any ciphertext-only attack without some information on the plain-
texts. When block ciphers are used under well-known modes of operation, the plaintext itself is not
the input of block ciphers and the input is rather initialization vectors. Here we assume that an
attacker can collect several ciphertexts where the same plaintext is encrypted by the same (weak)
key and different initialization vectors. We like to highlight that this assumption is more practical
not only compared to the chosen-ciphertext attack but also to the known-plaintext attack. In prac-
tice, for instance, assuming an application sends secret password several times, we can recover the
password practically. While the feasibility depends on the behavior of the application, our attack is
highly practical in this case.
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Fig. 1. CBC mode

Attack against CBC Mode. Figure 1 shows the CBC mode, where h message blocks are en-
crypted. Let Pj be the jth plaintext block, and Cij denotes the jth ciphertext block by using the

initialization vector IV i. The attacker aims at recovering the plaintext (P1, P2, . . . , Ph) by observing
the ciphertext (IV i, Ci1, C

i
2, . . . , C

i
h). Moreover, we assume that the block cipher Ek is vulnerable

against the nonlinear invariant attack, i.e., there is a function g such that g(x) ⊕ g(y) is constant,
where x and y denote the input and output of the block cipher.

First, we explain how to recover the plaintext P1 by focusing on the first block. Since Ek is
vulnerable against the nonlinear invariant attack, there is a function g such that g(P1⊕IV i1 )⊕g(Ci1)
is constant for any i ∈ {1, 2, . . . , N}. If g would be a linear function,

g(P1 ⊕ IV j1 )⊕ g(Cj1) = g(P1)⊕ g(IV j1 )⊕ g(Cj1)

is constant, and the attacker could only recover at most one bit of secret information. However, g
is nonlinear in our attack. Therefore, we can guess and determine the part of P1 that is involved
in the nonlinear term of g. More precisely, assume as above – without loss of generality – that g is
nonlinear in the first s inputs and linear in the last t inputs, i.e.

g : Fs2 × Ft2

such that

g(x, y) = f(x)⊕ `(y)



where f is any Boolean function, and ` is a linear Boolean function. Consider again a plaintext
P1 = (x, y) with x ∈ Fs2 and y ∈ Ft2. The corresponding ciphertext Ci1 is split as Ci1 = (ci, di) and
the IVs as IV i = (ai, bi). With this notation, we can rewrite the following

g(P1 ⊕ IV i) = (f(x⊕ ai)⊕ `(y ⊕ bi)) ,
g(P1 ⊕ IV j) = (f(x⊕ aj)⊕ `(y ⊕ bj)) ,

g(Ci1) = (f(ci)⊕ `(di)) ,
g(Cj1) = (f(cj)⊕ `(dj)) .

Now, by using two distinct initialization vectors IV i and IV j

0 = g(P1 ⊕ IV i)⊕ g(Ci1)⊕ g(P1 ⊕ IV j)⊕ g(Cj1)

implies

f(x⊕ ai)⊕ f(x⊕ aj) = `(bi ⊕ bj)⊕ g(Ci1)⊕ g(Cj1). (1)

Assuming that the left side of Eq.(1) randomly changes depending on x, that is the left part of
P1, we can recover one bit of information on P1 by using two initialization vectors. Similarly, we
can recover N − 1 bits of P1 by using N initialization vectors. Note that we can usually efficiently
recover these bits by solving linear systems if the algebraic degree of f is small [MSK98]. We show
the specific procedure for SCREAM and Midori64 in Sect. 4 and Sect. 5, respectively. The relationship
among (P1, IV, C1) is equivalent to that among (Pi, Ci−1, Ci). Therefore, we can similarly guess and
determine the part of Pi from Ci−1 and Ci for any of the plaintext blocks. One interesting remark
is that as long as we start to recover the message from the second block, the attack can be executed
even without the knowledge of the IV.

Attacks against Other Modes. We can execute similar attack against the CFB, OFB, and CTR
modes.

In the CFB mode, the hth ciphertext block Ch is encrypted as

Ch = Ek(Ch−1)⊕ Ph,

where the initialization vector IV is used as the input of the first block. For simplicity, let C0 be
IV . Then, we can recover the part of Ph from two ciphertext blocks Ch−1 and Ch.

In the OFB mode, the hth ciphertext block Ch is encrypted as

Ch = (Ek)h(IV )⊕ Ph,

where (Ek)h(IV ) is h times multiple encryption. Since the nonlinear invariant property is iterative
over an arbitrary number of rounds, the multiple encryption is also vulnerable against the nonlinear
invariant attack. Therefore, we can recover the part of Ph from IV and Ch.

In the CTR mode, the hth ciphertext block Ch is encrypted as

Ch = Ek(IV + h)⊕ Ph.

Therefore, we can recover the part of Ph from IV + h and Ch.

3 Finding Nonlinear Invariants for SP-ciphers

We start by considering the very general problem of finding nonlinear invariants. Namely, given any
function

F : Fm2 → Fm2 ,

our goal is to find a Boolean function
g : Fm2 → F2



such that

g(x) = g(F (x))⊕ c (2)

where c is a constant in F2.
The description so far is generic in the sense that it applies to basically any block cipher. For

now, and actually for the remainder of the paper, we focus on key-alternating ciphers with a round
function using a layer of S-boxes and a linear layer, so called substitution-permutation networks
(SPN).

3.1 SPN Ciphers

In the following, we consider the un-keyed round function only. That is to say that we ignore the
key schedule and also any round constants.

For simplicity, we focus on the case of identical S-boxes, but the more general case can be handled
in a very similar manner. We denote by t the number of S-boxes and by n the size of one S-box.
Thus, the block size processed is n · t bits. With this notation, we consider one round R of an SPN

R : (Fn2 )
t → (Fn2 )

t

as consisting of a layer of S-boxes S with

S(x1, . . . , xt) = (S(x1), . . . , S(xt))

where S is an n-bit S-box and a linear layer

L : (Fn2 )
t → (Fn2 )

t

which can also be seen as
L : Fnt2 → Fnt2 .

The round function R is given as the composition of the S-box layer and the linear layer, i.e.

R(x) = L ◦ S(x).

We would like to find nonlinear invariant g for R. However, computing this directly is difficult
as soon as the block size is reasonable large. For any function F , let us denote by

U(F ) := {g : Fm2 → F2 | g(x) = g(F (x))⊕ c}

the set of all nonlinear invariants for F , and it holds that

g ∈ (U(S) ∩ U(L)) ⊂ U(R).

In other words, functions that are invariant under both S and L are clearly invariants for their
composition R.

As we will explain next, computing parts of U(S)∩U(L) is feasible, and sufficient to automatically
detect the weaknesses described later in the paper.

The S-box Layer. We start by investigating the S-box-layer. Given the S-box as a function

S : Fn2 → Fn2

computing U(S) is feasible as long as n is only moderate in size.
Note that, for any function F , U(F ) is actually a subspace of Boolean functions. To see this,

note that given two Boolean functions f, g ∈ U(F ), it holds

(f ⊕ g)(x) = f(x)⊕ g(x)

= (f(F (x))⊕ c)⊕ (g(F (x))⊕ c′)
= (f ⊕ g)(F (x))⊕ (c⊕ c′)



for any x. Thus the sum, f ⊕g, is in U(F ) as well. Moreover, the all-zero function is in U(F ) for any
F . Therefore, any nonlinear invariant gS ∈ U(S) can actually be described by a linear combination
of basis elements of U(S). More precisely, let b1, . . . , bd : Fn2 → F2 be a basis of U(S), then any
gS ∈ U(S) can be written as

gS(x) =

d⊕
i=1

γibi(x)

for suitable coefficients γi in F2.
To identify a nonlinear invariant gS ∈ U(S), the idea is to consider the algebraic normal form

(ANF) of gS , that is to express gS as

gS(x) =
⊕
u∈Fn

2

λux
u,

where λu ∈ F2 are the coefficients to be determined and xu denotes
∏
xui
i . The key observation

is that Equation (2), for any fixed x ∈ Fn2 , translates into one linear (or affine) equation for the
coefficients λu, namely ⊕

u∈Fn
2

λu(xu ⊕ S(x)u) = c.

The ANF of (xu ⊕ S(x)u) is computed for all u ∈ Fn2 , and we can easily solve the basis b1, . . . , bd ∈
U(S) for n not too big. Appendix A shows the algorithm in detail. In particular, for commonly used
S-box sizes of up to 8 bit, the space U(S) can be computed in less than a second on a standard PC.

So far, we have considered only a single S-box, and it still needs to be discussed how those results
can be translated into the knowledge of invariants for the parallel execution of S-boxes, i.e. for S.
Again, for a layer of S-boxes S computing U(S) directly using its ANF is (in general) too expensive.
However, we can easily construct many elements in U(S) from elements in U(S) as summarized in
the following proposition.

Proposition 1. Let gi ∈ U(S), for i ∈ {1, . . . , t} be any set of invariants for the S-box S. Then,
any function of the form

gS(x1, . . . , xt) =

t⊕
i=1

αigi(xi)

with αi ∈ F2 is in U(S), that is an invariant for the entire S-box layer. The set of function form
a subspace of U(S) of dimension d ∗ t where d is the dimension of U(S), and t is the number of
parallel S-boxes.

We denote this subspace of invariants for S by U`(S), and U`(S) ⊂ U(S).
It turns out that, in general, many more elements are contained in U(S) than those covered by

the construction above. We decided to shift those details, which are not directly necessary for the
understanding of the attacks presented in Section 4 and 5 to the end of the paper, in Section 6.

The Linear Layer. For the linear layer computing U(L) using its ANF seems again difficult. But,
as stated above, we focus on

g ∈ (U(L) ∩ U`(S)) ⊂ (U(L) ∩ U(S)) ⊂ U(R),

and computing U(L) ∩ U`(S) is feasible in all practical cases.
Recall that any nonlinear invariant g ∈ U(S) can actually be described by a linear combination

of basis of U(S) as

gS(x) =

d⊕
i=1

γibi(x)



for suitable coefficients γi in F2.
As any f in U`(S) is itself a direct sum of elements in U(S), it can be written as

f(x1, . . . , xt) =

t⊕
i=1

d⊕
j=1

βi,jbj(xi)

with βi,j ∈ F2. Computing those coefficients βi,j can again be done by solving linear system, as any

fixed x ∈ (Fn2 )
t

results in a linear equation for the coefficients by using

f(x) = f(L(x)).

As long as the dimension of U`(S), i.e. the number of unknowns, is not too large, this again can be
computed within seconds on a standard PC.

Experimental Results. When the procedure explained above was applied to the ciphers SCREAM
and Midori, it instantaneously detected possible attacks. Actually, as we will explain next, there is a
common structural reason why non linear invariant attacks are possible on those ciphers.

3.2 Structural Weakness With Respect To Nonlinear Invariant

Let us consider linear layers which are actually used in the LS-designs [GLSV14] (cf. Section 4)
and also in any AES-like cipher that uses a binary diffusion matrix as a replacement for the usual
MixColumns operation. Then, we consider a linear layer that can be decomposed into the parallel
application of n identical t× t binary matrices M . The input for the first t× t matrix is composed
of all the first output bits of the t S-boxes, the input for the second matrix is composed of all the
second output bits of the S-boxes, etc.

Here, when M is an orthogonal matrix, that is if

〈x, y〉 = 〈xM, yM〉 ∀ x, y,

any quadratic nonlinear invariant for the S-box can be extended to a nonlinear invariant of the whole
round function as described in Theorem 1.

Note that from a design point of view, taking M as an orthogonal matrix seems actually ben-
eficial. Thanks to the orthogonality of M , bounds on the number of active S-boxes for differential
cryptanalysis directly imply the same bounds on the number of active S-boxes for linear cryptanal-
ysis.

Theorem 1. For the SPN ciphers whose round function follows the construction used in LS-designs,
let M ∈ Ft×t2 be the binary representation of the linear layer and M is orthogonal. Assume there is
a nonlinear invariant gS for the S-box. If gS is quadratic, then the function

g(x1, . . . , xt) :=

t⊕
i=1

gS(xi)

is a nonlinear invariant for the round function L ◦ S.

Proof. First, due to Proposition 1, it is immediately clear that g is a nonlinear invariant for the
S-box layer S.

Next, let us consider the linear layer L. Let x ∈ (Fn2 )t and y ∈ (Fn2 )t be the input and output of
L, respectively. Moreover, xi[j] and yi[j] denotes the jth bit of xi and yi, respectively. For simplicity,
let xT ∈ (Ft2)n and yT ∈ (Ft2)n be the transposed input and output, respectively, where xTj ∈ Ft2
denotes (x1[j], x2[j], . . . , xt[j]). Then, it holds yTi = xTi × M for all i ∈ {1, 2, . . . , n}. Since the
Boolean function gS is quadratic, the function is represented as

gS(xi) =

n⊕
i1=1

n⊕
i2=1

γi1,i2(xi[i1] ∧ xi[i2]),



where γi1,i2 are coefficients depending on the function g. From the inner product 〈xTi1 , x
T
i2
〉 =⊕t

i=1 xi[i1] ∧ xi[i2],

g(x) =

t⊕
i=1

gS(xi) =

n⊕
i1=1

n⊕
i2=1

γi1,i2〈xTi1 , x
T
i2〉.

Then,

g(y) =

n⊕
i1=1

n⊕
i2=1

γi1,i2〈xTi1M,xTi2M〉

From the orthogonality of M ,

g(y) =

n⊕
i1=1

n⊕
i2=1

γi1,i2〈xTi1 , x
T
i2〉

=

t⊕
i=1

gS(xi) = g(x)

Therefore, the function g(x) =
⊕t

i=1 gS(xi) is a nonlinear invariant for L. ut

Assuming that the matrix M is orthogonal, Theorem 1 shows that there is a nonlinear invariant for
the round function L ◦ S if there is a quadratic function which is nonlinear invariant for the S-box.

4 Practical Attack on SCREAM

The most interesting application of the nonlinear invariant attack is a practical attack against the
authenticated encryption SCREAM and iSCREAM in the nonce-respecting model. Both authenticated
encryptions have 296 weak keys, and we then practically distinguish their ciphers from a random
permutation. Moreover, we can extend this attack to a ciphertext-only attack.

4.1 Specification of SCREAM

SCREAM is an authenticated encryption and a candidate of the CAESAR competition [GLS+15]. It
uses the tweakable block cipher Scream, which is based on the tweakable variant of LS-designs [GLSV14].

Fig. 2. The components of a LS-design

LS-Designs LS-designs were introduced by Grosso et al. in [GLSV14], and it is used to design block
ciphers. We do not refer to the design rational in this paper, and we only show the brief structure
to understand this paper. The state of LS-designs is represented as an s × ` matrix, where every
element of the matrix is only one bit, i.e., the block length is n = s × `. The ith round function
proceeds as follows:



1. The s-bit S-box S is applied to ` columns in parallel.
2. The `-bit L-box L is applied to s rows in parallel.
3. The round constant C(i) is XORed with the state.
4. The secret key K is XORed with the state.

Figure 2 shows the components of a LS-design. Let SB and LB be the S-box layer and L-box layer,
respectively. Then, we call the composite function (LB ◦ SB) a LS-function. Let x ∈ Fs×`2 be the
state of LS-designs. Then x[i, ?] ∈ F`2 denotes the row of index i of x, and x[?, j] ∈ Fs2 denotes the
column of index j of x. Moreover, let x[i, j] be the bit in the (i+1)th row and (j+1)th column. The
S-box S is applied to x[?, j] for all j ∈ [0, `), and the L-box L is applied to x[i, ?] for all i ∈ [0, s).

Tweakable Block Cipher Scream. Scream is based on a tweakable LS-design with an 8 × 16
matrix, i.e., the block length is 8 × 16 = 128 bits. Let x ∈ F8×16

2 be the state of Scream, then the
entire algorithm is defined as Algorithm 1. Here S and L denote the 8-bit S-box and 16-bit L-box,

Algorithm 1 Specification of Scream

1: x← P ⊕ TK(0)
2: for 0 < σ ≤ Ns do
3: for 0 < ρ ≤ 2 do
4: r = 2(σ − 1) + ρ
5: for 0 ≤ j < 16 do
6: xTj = S[x[?, j]]
7: end for
8: x← x⊕ C(r)
9: for 0 ≤ i < 8 do

10: xi = L[x[i, ?]]
11: end for
12: end for
13: x← x⊕ TK(σ)
14: end for
15: return x

SB LB SB LB8

16

Fig. 3. The σth step function of Scream

respectively. The round constant C(r) is defined as

C(r) = 2199 · r mod 216.

The binary representation of C(r) is XORed with the first row x[0, ?]. Scream uses an 128-bit key
K and an 128-bit tweak T as follows. First, the tweak is divided into 64-bit halves, i.e., T = t0‖t1.
Then, every tweakey is defined as

TK(σ = 3i) = K ⊕ (t0‖t1),

TK(σ = 3i+ 1) = K ⊕ (t0 ⊕ t1‖t1),

TK(σ = 3i+ 2) = K ⊕ (t1‖t0 ⊕ t1).



Here, the x[i, ?] contains state bits from 16(i− 1) to 16i− 1, e.g., x[0, ?] contains state bits from 0
to 15 and x[1, ?] contains state bits from 16 to 31. Moreover, Fig. 3 shows the step function, where
SB and LB are the S-box layer and L-box layer, respectively. The specifications of the S-box and
L-box are given in Appendix B.
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Fig. 4. Encryption of plaintext blocks

Authenticated Encryption SCREAM. The authenticated encryption SCREAM uses the tweak-
able block cipher Scream in the TAE mode [LRW11]. SCREAM consists of three steps: associated data
processing, encryption of the plaintext block, and tag generation. Since our attack exploits encryp-
tion of the plaintext block, we explain the specification (see Fig. 4). Plaintext values are encrypted
by using Scream in order to produce the ciphertext values, and all blocks use Tc = (N‖c‖00000000).
If the last block is a partial block, its bitlength is encrypted to generate a mask, which is then trun-
cated to the partial block size and XORed with the partial plaintext block. Therefore, the ciphertext
length is the same as the plaintext length.

Security Parameter. Finally, we like to recall the security parameters of SCREAM, as described
by the designers. Let nb be the nonce bytesize, and it can be chosen by the user between 1 and 15
bytes. However, the designers recommend that nb = 11, and we also use the recommended parameter
in this paper.

SCREAM has three security parameters, i.e., lightweight security, single-key security, and related-
key security. They are summarized as follows.

Lightweight security : 80-bit security, with a protocol avoiding related keys. Tight parameters:
6 steps, Safe parameters: 8 steps.

Single-key security : 128-bit security, with a protocol avoiding related keys. Tight parameters: 8
steps, Safe parameters: 10 steps.

Related-key security : 128-bit security, with possible related keys. Tight parameters: 10 steps,
Safe parameters: 12 steps.

More precisely, designers order their recommended sets of parameters as follows:

– First set of recommendations: SCREAM with 10 steps, single-key security.

– Second set of recommendations: SCREAM with 12 steps, related-key security.

4.2 Nonlinear Invariant for Scream

The L-box of Scream is chosen as an orthogonal matrix. Therefore, there is a nonlinear invariant for
the LS function from Theorem 1 if we can find quadratic Boolean function g : F8

2 → F2 which is a
nonlinear invariant for the S-box S.



Let x ∈ F8
2 and y ∈ F8

2 be the input and output of the S-box S, respectively. Moreover, x[j] ∈ F2

and y[j] ∈ F2 denote the jth bits of x and y, respectively. Then, the Scream S-box has the following
property

(x[1] ∧ x[2])⊕ x[0]⊕ x[2]⊕ x[5] = (y[1] ∧ y[2])⊕ y[0]⊕ y[2]⊕ y[5]⊕ 1.

Let gS : F8
2 → F2 be a quadratic Boolean function, where

gS(x) = (x[1] ∧ x[2])⊕ x[0]⊕ x[2]⊕ x[5].

Then, the function gS is a quadratic nonlinear invariant for S because

gS(x)⊕ gS(S(x)) = gS(x)⊕ gS(x)⊕ 1 = 1.

Therefore, due to Theorem 1, the Boolean function

g(x) =

15⊕
j=0

gS(x[?, j]) =

15⊕
j=0

(
x[1, j] ∧ x[2, j]⊕ x[0, j]⊕ x[2, j]⊕ x[5, j]

)
is a nonlinear invariant for the LS function. Note that this nonlinear invariant g is clearly balanced,
as it is linear (and not constant) in parts of its input.

Next, we show that this Boolean function is also a nonlinear invariant for the constant addition
and tweakey addition. The round constant C(r) is XORed with only x[0, ?]. Since C(r) linearly
affects the output of the function g,

g(x⊕ C(r)) = g(x)⊕ g(C(r))

for any x. The tweakey TK(σ) is defined as

TK(σ = 3i) = K ⊕ (t0‖t1),

TK(σ = 3i+ 1) = K ⊕ (t0 ⊕ t1‖t1),

TK(σ = 3i+ 2) = K ⊕ (t1‖t0 ⊕ t1),

where T = t0‖t1. Therefore, if we restrict the key and tweak by fixing

K[1, ?] = K[2, ?] = 0,

T [1, ?] = T [2, ?] = T [5, ?] = T [6, ?] = 0,

TK(σ)[1, ?] and TK(σ)[2, ?] are always zero vectors. Then, since the tweakey linearly affects the
output of the function g,

g(x⊕ TK(σ)) = g(y)⊕ g(TK(σ)),

and all those keys are weak. Therefore, the density of weak keys is 2−32, i.e., there are 296 weak
keys.

Let P and C be the plaintext and ciphertext of Scream, respectively. In Ns-step Scream, the
relationship between p and c is represented as

g(P ) = g(C)⊕
2Ns⊕
r=1

g
(
C(r)

) Ns⊕
σ=0

g
(
TK(σ)

)
= g(C)⊕ c⊕ gT (Ns, T )⊕ gK(Ns,K),

where c =
⊕2Ns

r=1 g
(
C(r)

)
, and gT (Ns, T ) and gK(Ns,K) are defined as

gT (Ns, T ) =



g(t0‖t1) Ns = 0 mod 6,

g(t1‖0) Ns = 1 mod 6,

g(0‖t0 ⊕ t1) Ns = 2 mod 6,

g(t0‖t0) Ns = 3 mod 6,

g(t1‖t0 ⊕ t1) Ns = 4 mod 6,

0 Ns = 5 mod 6,



and

gK(Ns,K) =

{
g(K) Ns = 0 mod 2,

0 Ns = 1 mod 2,

respectively. When the master key belongs to the class of weak-keys, g(p) ⊕ g(c) ⊕ gT (Ns, T ) is
constant for all plaintexts and a given key. When the key does not belong to the weak-key class,
the probability that the output is constant is about 2−n+1 given n known plaintexts. Therefore,
we can easily distinguish whether or not the using key belongs to the weak-key class. Note that all
recommended numbers of rounds are even number. Therefore, from

g(K) = g(p)⊕ g(c)⊕ c⊕ gT (Ns, T ),

we can recover one bit of information about the secret key K.

4.3 Practical Attack on SCREAM

nonce (11 bytes)
counter (4 bytes)
zero bits (1 byte)

0
1
2
3
4
5
6
7

Fig. 5. Tweak mapping

Known-Plaintext Attack. We exploit the encryption step of SCREAM (see Fig. 4). The nonlinear
invariant attack is a chosen-tweak attack under the weak-key setting. First, let us consider the class
of weak tweaks. In the encryption step, the tweak Tc = (N‖c‖00000000) is used, where we assume
that nb = 11. Figure 5 shows the structure of Tc. From the condition of the nonlinear invariant
attack, the following Tc

Tc[1, ?] = Tc[2, ?] = Tc[5, ?] = Tc[6, ?] = 0

are weak tweaks. Namely, we choose N whose 3rd, 4th, 5th, 6th, and 11th bytes are zero. Then, if
the counter c is less than 256, i.e. from T0 to T255, the tweak fulfils the condition. Moreover, the
actual nonce fulfils the needs of the tweak if the nonce is implemented as a counter increment, which
seems to occur in practice. If the master key belongs to the weak-key class, we can recover one bit
of information about the secret key by using only one known plaintext. Moreover, by using n known
plaintexts, the probability that the output is constant is about 2−n+1 when the key does not belong
to weak-key class. Therefore, an attacker can distinguish whether or not the used key belongs to the
weak-key class.

Ciphertext-Only Message Recovery Attack. The interesting application of the nonlinear in-
variant attack is a ciphertext-only attack. This setting is more practical than the known-plaintext
attack.

We focus on the procedure of the final block. The input of Scream is the bitlength of Pm−1, and
the bitlength is encrypted to generate a mask. Then the mask is truncated to the partial block size
and XORed with Pm−1. Therefore, the ciphertext length is the same as the plaintext length. In the
ciphertext-only attack, we cannot know Pm−1. On the other hand, we know ciphertext Cm−1 and
the bitlength |Pm−1| can be obtained from |Cm−1|. Therefore, we guess Pm−1 and evaluate

g(|Pm−1|)⊕ g(Pm−1 ⊕ Cm−1)⊕ gT (Ns, T ),



Table 2. The success probability of recovering the correct 32 plaintext bits on SCREAM.

# nonces 33 34 35 36 37 38 39 40 41 42 43

experimental 0.289 0.571 0.762 0.885 0.942 0.976 0.991 0.995 0.998 0.999 1

theoretical 0.289 0.578 0.770 0.880 0.939 0.969 0.984 0.992 0.996 0.998 0.999

and the above value is always constant for any weak tweaks T . Therefore, from two ciphertexts
corresponding to the same final plaintext block encrypted by distinct tweaks, we create a linear
equation as

g(Pm−1 ⊕ Cm−1)⊕ g(Pm−1 ⊕ C ′m−1) = gT (Ns, T )⊕ gT (Ns, T
′). (3)

We can compute the right side of Eq.(3). Moreover, we regard the function g as

g(X) = f(X)⊕ `(X),

where

f(X) =

15⊕
j=0

(
X[1, j] ∧X[2, j]

)
,

`(X) =

15⊕
j=0

X[0, j]⊕X[2, j]⊕X[5, j].

Then,

g(Pm−1 ⊕ Cm−1)⊕ g(Pm−1 ⊕ C ′m−1)

= f(Pm−1 ⊕ Cm−1)⊕ f(Pm−1 ⊕ C ′m−1)⊕ `(Cm−1)⊕ `(C ′m−1)

=

15⊕
j=0

(
Cm−1[1, j]Pm−1[2, j]⊕ Pm−1[1, j]Cm−1[2, j]⊕ Cm−1[1, j]Cm−1[2, j]

)
15⊕
j=0

(
C ′m−1[1, j]Pm−1[2, j]⊕ Pm−1[1, j]C ′m−1[2, j]⊕ C ′m−1[1, j]C ′m−1[2, j]

)
⊕ `(Cm−1)⊕ `(C ′m−1).

The equation above is actual a linear equation in 32 unknown bits, Pm−1[1, j] and Pm−1[2, j], as all
other terms are known. Therefore, we can create t linear equations by collecting t + 1 ciphertexts
encrypted by distinct tweaks. We can recover 32 bits, Pm−1[1, j] and Pm−1[2, j] by solving this system
as soon as the corresponding system has full rank. Assuming the system behaves like a randomly
generated system of linear equations, we can expect that the system has full rank already when
taking slightly more than 33 equations. The time complexity for solving this system is negligible.

Note that the system involves four 16-bit words, Cm−1[0, j], Cm−1[1, j], Cm−1[2, j], and Cm−1[5, j].
Since the bitlength of Cm−1 is equal to that of Pm−1, we cannot solve this system if |Pm−1| < 96.
Therefore, the necessary condition of this attack is 96 ≤ |Pm−1| < 128.

Experimental Results. In order to verify our findings and in particular to verify that the system
indeed behaves like a random system of linear equations, we implemented our ciphertext-only mes-
sage recovery attack for SCREAM. In our experiment, the key is randomly chosen from the weak-key
class. Moreover, we use N distinct nonces such that the corresponding tweak is weak, and collect
N corresponding ciphertexts. We repeated our attack 1000 times. Table 2 summarizes the success
probability of recovering the correct 32 bits. Moreover, in the table we compare the experimental
success probability to the theoretically expected probability in the case of a randomly generated sys-
tem of linear equations. As can be seen, the deviation of the experimental results to the theoretically
expected results is very small.



4.4 Application to iSCREAM

The authenticated encryption iSCREAM also has the similar structure of SCREAM. The specifications
of the S-box and L-box are given in Appendix C. We search for the nonlinear invariant for the
underlying tweakable block cipher iScream. As a result, the following quadratic Boolean function

gS(x) = (x[4] ∧ x[5])⊕ x[0]⊕ x[6].

is nonlinear invariant for the S-box5, and it holds

gS(x)⊕ gS(S(x)) = gS(x)⊕ gS(x) = 0.

Therefore, from Theorem 1, the following Boolean function

g(x) =

15⊕
j=0

gS(x[?, j]) =

15⊕
j=0

(
x[4, j] ∧ x[5, j]⊕ x[0, j]⊕ x[6, j]

)
.

is nonlinear invariant for the LS function.

5 Practical Attack on Midori64

5.1 Specification of Midori64

Midori is a light-weight block cipher recently proposed by Banik et al. [BBI+15], which is particularly
optimized for low-energy consumption. There are two versions depending on the block size; Midori64
for 64-bit block and Midori128 for 128-bit block. Both use 128-bit key. The nonlinear invariant attack
can be applied to Midori64, thus we only explain the specification of Midori64 briefly.

Midori64 adopts an SPN structure with a non-MDS matrix and a very light key schedule. The
state is represented by a 4 × 4-nibble array. At first the plaintext is loaded to the state, then the
key whitening is performed. The state is updated with a round function 16 times, and a final key
whitening is performed. The resulting state is the ciphertext. The overall structure is illustrated in
Fig. 6. More details on each operation will be given in the following paragraphs.
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Fig. 6. Computation structure of Midori64

5 In the round function of iScream with the constant addition, the equation, gS(x) = (x[5] ∧ x[6])⊕ x[2]⊕
x[5]⊕ x[6]⊕ x[7], is another nonlinear invariant.



Key Schedule Function. A user-provided 128-bit key is divided into two 64-bit key states K0 and
K1. Then, a whitening key WK and 15 round keys RKi, i = 0.1. . . . , 14 are generated as follows.

WK ← K0 ⊕K1, RKi ← Ki mod 2 ⊕ αi,

where the αi are fixed 64-bit constants. The round constant αi are binary for each nibble, i.e. any
nibble in αi is either 0000 or 0001. Using such constants is beneficial to keep the energy consumption
low. The exact values of the αi are given in Table 3 for the first 6 rounds. We refer to [BBI+15] for
the complete specification.

Table 3. Examples of round constant αi

α0 α1 α2 α3 α4 α5

0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 0
0 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 0 1 0
1 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0

Round Function. The round function consists of four operations: SubCell, ShuffleCell, MixColumn,
and KeyAdd. Each operation is explained in the following.

SubCell: The 4-bit S-box S defined below is applied to each nibble in the state.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C A D 3 E B F 7 8 9 1 5 0 2 4 6

ShuffleCell: Each cell of the state is permuted as ShiftRows in AES. Let s0, s1, s2, s3 be four
nibbles in the first row. Let s4, . . . , s15 be the other 12 nibbles similarly defined. Then, the cell
permutation is specified as follows.

(s0, s1, . . . , s15)← (s0, s10, s5, s15, s14, s4, s11, s1, s9, s3, s12, s6, s7, s13, s2, s8)

Note that our nonlinear invariant attack would actually work in exactly the same way for any
other cell permutation as well.

MixColumn: The following 4 × 4 orthogonal binary matrix M is applied to every column of the
state.

M =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


KeyAdd: The round key RKi is xored to the state in round i.

In the last round, only SubCell (followed by the post-whitening) is performed.

5.2 Nonlinear Invariant for Midori64

The matrix used in MixColumn is a binary and orthogonal matrix. Thus, Theorem 1 implies that
any quadratic Boolean function g : F4

2 → F2, which is a nonlinear invariant for the S-box S, allows
us to find nonlinear invariant for the entire round function. Similarly to the previous section, we use



the notation x[j] ∈ F2 and y[j] ∈ F2 to denote the jth bits of 4-bit S-box input x and 4-bit S-box
output y, respectively.

We search for g such that g(x) = g(S(x)). Different from Scream, the S-box of Midori64 is small,
and many of such g usually exist. Actually, we found 15 choices of such g.

We then pick up ones that are also nonlinear invariant for the key addition RKi, which is
computed by RKi ← Ki mod 2 ⊕ αi. Here, αi takes 0 or 1 in each nibble, i.e. the 2nd, 3rd, and
4th bits are always 0. Thus we need to avoid g in which the first bit is included in the nonlinear
component, i.e. g cannot involve x[0] and y[0] in their nonlinear component.

Among 15 choices, only one can satisfy this condition. The picked S-box property of Midori64 is
as follows.

(x[3] ∧ x[2])⊕ x[2]⊕ x[1]⊕ x[0] = (y[3] ∧ y[2])⊕ y[2]⊕ y[1]⊕ y[0].

Then, the following gS : F4
2 → F is nonlinear invariant for S;

gS(x) = (x[3] ∧ x[2])⊕ x[2]⊕ x[1]⊕ x[0].

Here, ShuffleCell does not affect the nonlinear invariant. Therefore, from Theorem 1, the following
Boolean function

g(x) =

15⊕
j=0

gS(si)

is a nonlinear invariant for the round function of Midori64. Note, as for SCREAM the Boolean
function g is actually balanced.

5.3 Distinguishing Attack

As mentioned in Section 2, the simple distinguishing attack can be mounted against a weak key. Let
` : F4

2 → F be a linear part of g, namely `(x) = x[2]⊕ x[1]⊕ x[0]. We have g(p)⊕ g(c) = const and
const is a linear part of the values injected to round function during the encryption process;

const = `(WK)⊕ `(RK0)⊕ `(RK1)⊕ · · · ⊕ `(RK14)⊕ `(WK),

= `(RK0)⊕ `(RK1)⊕ · · · ⊕ `(RK14).

Given RKi = Ki mod 2 ⊕ αi, the above equation is further converted as

const = `(K1)⊕ `(α0)⊕ `(α1)⊕ · · · ⊕ `(α14).

As αi[2] = αi[1] = 0 for any i, it can be simply written as

const = `(K1)⊕
14⊕
i=0

15⊕
j=0

αi,j ,

where αi,j is the jth nibble of αi. We confirmed that the total number of 1 in all αi is even, thus⊕14
i=0

⊕15
j=0 αi,j = 0. In the end, g(p)⊕g(c) = `(K1) always holds for Midori64, while this holds with

probability 1/2 for a random permutation.

5.4 Experimental Results

As mentioned in Section 2, the above property can reveal 32 bits (the two most significant bits
from each nibble) of an unknown plaintext block in the weak-key setting when Midori64 is used in
well-known block cipher modes.

We implemented our ciphertext-only message recovery attack for Midori64 in the CBC mode. In
our experiment, the key and IV are chosen uniformly at random from the weak-key space and the



Table 4. The success probability of recovering the correct 32 bits on Midori64-CBC.

# blocks 33 34 35 36 37 38 39 40 41 42 43

experimental 0.279 0.574 0.753 0.883 0.931 0.968 0.988 0.991 0.999 0.997 1

theoretical 0.289 0.578 0.770 0.880 0.939 0.969 0.984 0.992 0.996 0.998 0.999

entire IV space. We also choose a 64-bit plaintext block p, uniformly at random, and assume that p
is iterated over b blocks, where 33 ≤ b ≤ 43. We executed our attack of repeating 1000 times, and
Table 4 summarizes the success probability of recovering the correct 32 bits. Similarly to the case of
SCREAM the system of equations behaves very much like a random system of equation in the sense
that the probability that it has full rank is very close to the corresponding probability for a random
system with the same dimensions.

6 Extensions and Future Work

In this section we outline some extensions to the previously described attacks. Furthermore, we give
some additional insights in the structure of nonlinear invariants in general. Finally, we explain how
invariant subspace attacks can be seen as a special, chosen plaintext , variant of nonlinear invariant
attacks. It is important to point out that none of the observations in this section lead to any attacks.
But we feel that those explanations provide good starting points for future investigations.

More General Nonlinear Invariant. We continue to use the notation that we fixed in Section
3. First recall Proposition 1, that allowed to construct nonlinear invariants for the whole S-box
layer by linearly combining nonlinear invariants for each single S-box. This proposition can actually
be easily extended. Instead of only linearly combining the nonlinear invariants for each S-box, any
combination by using an arbitrary Boolean function results in an invariant for the whole S-box layer
as well. The following proposition summarizes this observation.

Proposition 2. Given any Boolean function f : Ft2 → F2 and t elements

g1, . . . , gt : Fn2 → F2

from U(S) it holds that

gS : (Fn2 )
t → F2

gS(x1, . . . , xn) = f(g1(x1), . . . , gt(xt))

is an element of U(S)

Note that the special case of f being linear actually corresponds to the choice made in Proposition
1.

While this generalization potentially allows a much larger variety of invariants, and therefore
potential attacks, we like to mention that the restriction made in Proposition 1 has two crucial
advantages. First, the choice is small enough, so that it can be handled exhaustively and second,
the invariants generated by Proposition 1 are usually balanced, while this is not necessarily the case
for the generalization.

At first sight, one might be tempted to assume that the above construction actually covers all
invariants for the S-box layer. However, in general, this is not the case.

One counter-example, that is a nonlinear invariant not covered by this construction, can easily be
identified as follows: For simplicity, consider an S-box layer consisting of two identical n bit S-boxes
only. If the two inputs to those two S-boxes are equal, so are the outputs. Thus, the function

g : Fn2 × Fn2 → F2

g(x, y) =

{
1 if x = y
0 else



is an nonlinear invariant of the S-box layer as

g(x, y) = 1⇔ x = y ⇔ S(x) = S(y)⇔ g(S(x), S(y)) = 1.

Moreover, this nonlinear invariant can certainly not be generated by Proposition 2.

Cycle Structure. Actually, there is a nice, and potentially applicable way, of describing all non-
linear invariants for a given permutation F by considering its cycles. Recall that a cycle of F being
a set

Cx := {F i(x) | i ∈ N}
for a value x ∈ Fn2 . Actually, one can show that a mapping g is contained in U(F ) if and only if g
is either constant on all cycles of F or alternating along the cycles of F . The later case corresponds
to nonlinear invariants such that

g(x) + g(F (x)) = 1.

This is because g(x) = g(F (x)) implies

g(x) = g(F (x)) = g(F (F (x))) = · · · = g(F i(x)).

Thus, looking at the cycle structure of F , we can assign to each cycle one value the function g
should evaluate to on this cycle. That view point also shows that the number of invariant functions
g is equal to

|U(F )| = 2(# cycles of F ),

in the case where there exist at least one cycle of odd length or

|U(F )| = 2(# cycles of F )+1,

in the case where all cycles of F have even length. This perspective allows to actually compute a
basis of U(F ) very efficiently. Consider, for simplicity, the case were not all cycles are of even length.
Then, a basis of U(F ) clearly consists of the set of all indicator functions of Cx, i.e.

U(F ) = span{δCa
| a ∈ Fn2}.

Here, for a subset A ⊆ Fn2 , the function δA denotes the indicator function of the set A, i.e.

δA(x) =

{
1 if x ∈ A
0 else

Example 2. Consider the function F : F2
2 → F2

2 with

x 0 1 2 3
F (x) 1 2 0 3

The cycle composition of F is
(0, 1, 2)(3).

Thus we have two cycles of odd length. Following the above, any nonlinear invariant of F is constant
on those cycles. In this case we have the following invariants

g1(x) = δ{0,1,2}(x)

g1(x) = δ{3}(x)

or, more explicitly
x 0 1 2 3

g1(x) 1 1 1 0

and
x 0 1 2 3

g2(x) 0 0 0 1

together with the trivial invariants, that is the identical zero or identical one functions. So in total
F has 4 invariants. ut



Relation to Invariant Subspace Attack. Along the same lines, one can also see the invariant
subspace attack as a special case of a nonlinear invariant. Recall that a subspace V ⊆ Fn2 is called
invariant under (a block cipher) F if

F (V ) = V.

That is, the set V is mapped to itself by the function F . Note that the complement V̄ is also mapped
to itself because the function F is permutation. This means nothing else than that the nonlinear
Boolean function δV (x) is a nonlinear invariant for F as

δV (x) = 1⇔ x ∈ V ⇔ F (x) ∈ V ⇔ δV (F (x)) = 1,

δV (x) = 0⇔ x ∈ V̄ ⇔ F (x) ∈ V̄ ⇔ δV (F (x)) = 0.

In other words, invariant subspace attacks are nonlinear invariant attacks where the support of the
nonlinear invariant is a subspace of Fn2 . And as such, nonlinear invariant attacks could be called
invariant set attacks, as the function g splits in the inputs into two sets, the support of g and its
complement, that are invariant under F .

Further Research. Other interesting directions for further research include the generalization
of the nonlinear invariant to the case where one does not consider the same function g in every
round, but rather a sequence of functions that can be chained together. In fact, we also found
quadratic Boolean function g′ : F4

2 → F2 such that g(x) = g′(S(x)) for Midori64. Owing to the
involution property of the S-box, g(x) = g′(S(x)) always implies g′(x) = g(S(x)). Combining with
the alternative use of K0 and K1 in the key schedule, such g, g′ may be exploited in the attack.
Unfortunately, since such Boolean functions are not nonlinear invariant for the constant addition in
Midori64, we cannot exploit them in real cryptanalysis. However, it is clearly worth discussing this
extension. And last but not least, even so it seems notoriously difficult, it would be nice to be able
to use a statistical variant of the attack described here, i.e. consider nonlinear functions such that
g(F (x)) = g(x) for many – but not necessarily for all – inputs x.
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François Durvaux, Lubos Gaspar, and Stéphanie Kerckhof. SCREAM v1. 2014. Submission to
CAESAR competition.
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A Algorithm to Solve Basis of U(S)

Let gS ∈ U(S), and the algebraic normal form (ANF) is expressed as

gS(x) =
⊕
u∈Fn

2

λux
u,

where λu ∈ F2 are the coefficients to be determined and xu denotes
∏
xui
i . From the definition of

the nonlinear invariant, for any x ∈ Fn2 , the following equation

gS,u(x) =
⊕
u∈Fn

2

λu(xu ⊕ S(x)u)

is constant. The ANF of gS,u is computed for all u ∈ Fn2 , and the ANF is expressed as

gS,u(x) =
⊕
v∈Fn

2

λu,vx
v.

Then, we prepare a matrix [I‖M ], where I is a (2n × 2n) identical matrix and coefficients of M is
computed as

M [u, v] = λu,v

Then, by Gaussian elimination like computation, we compute matrix M ′ = [M ′1‖M ′2]. If rows of M ′2
are [0, 0, . . . , 0] or [1, 0, 0, . . . , 0], the corresponding row of M1 is the basis of U(S). In particular, for
commonly used Sbox sizes of up to 8 bit, the space U(S) can be computed in less than a second on
a standard PC.

From our experiments, 4-bit S-boxes usually have quadratic nonlinear invariant. On the other
hand, it is generally rare that 8-bit S-boxes have quadratic nonlinear invariant. However, as described
in this paper, it is not always rare if low-degree S-boxes are applied like Scream or iScream for the
efficiency.



B Specification of S-box and L-box of Scream

Table 5. Table representation of Scream S-box.

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 20 8D B2 DA 33 35 A6 FF 7A 52 6A C6 A4 A8 51 23
10 A2 96 30 AB C8 17 14 9E E8 F3 F8 DD 85 E2 4B D8
20 6C 01 0E 3D B6 39 4A 83 6F AA 86 6E 68 40 98 5F
30 37 13 05 87 04 82 31 89 24 38 9D 54 22 7B 63 BD
40 75 2C 47 E9 C2 60 43 AC 57 A1 1F 27 E7 AD 5C D2
50 0F 77 FD 08 79 3A 49 5D ED 90 65 7C 56 4F 2E 69
60 CD 44 3F 62 5B 88 6B C4 5E 2D 67 0B 9F 21 29 2A
70 D6 7E 74 E0 41 73 50 76 55 97 3C 09 7D 5A 92 70
80 84 B9 26 34 1D 81 32 2B 36 64 AE C0 00 EE 8F A7
90 BE 58 DC 7F EC 9B 78 10 CC 2F 94 F1 3B 9C 6D 16
A0 48 B5 CA 11 FA 0D 8E 07 B1 0C 12 28 4C 46 F4 8B
B0 A9 CF BB 03 A0 FC EF 25 80 F6 B3 BA 3E F7 D5 91
C0 C3 8A C1 45 DE 66 F5 0A C9 15 D9 A3 61 99 B0 E4
D0 D1 FB D3 4E BF D4 D7 71 CB 1E DB 02 1A 93 EA C5
E0 EB 72 F9 1C E5 CE 4D F2 42 19 E1 DF 59 95 B7 8C
F0 9A F0 18 E6 C7 AF BC B8 E3 1B D0 A5 53 B4 06 FE

Table 5 shows the table representation of Scream S-box. Let M be the binary representation of
the L-box. Then M is defined as

M =



0 0 1 1 1 0 1 0 0 0 0 1 1 1 0 0
1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0
1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0
1 0 0 0 0 0 1 1 0 1 1 0 1 0 0 1
1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1
0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0
0 0 1 0 0 1 0 0 1 0 1 0 0 1 1 1
1 0 1 0 0 1 0 1 0 1 1 1 1 1 1 1
1 1 0 1 0 0 1 0 0 1 1 0 0 0 1 0
1 1 1 1 0 1 0 1 1 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1
0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0
0 1 0 0 1 0 0 0 1 1 1 0 0 1 1 0
1 1 1 1 0 1 1 0 0 1 0 1 1 1 1 0
1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 0
1 0 0 0 1 1 0 1 0 1 0 1 0 0 0 1



.



C Specification of S-box and L-box of iScream

Table 6. Table representation of iScream S-box.

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 00 85 65 D2 5B FF 7A CE 4D E2 2C 36 92 15 BD AD
10 57 F3 37 2D 88 0D AC BC 18 9F 7E CA 41 EE 61 D6
20 59 EC 78 D4 47 F9 26 A3 90 8B BF 30 0A 13 6F C0
30 2B AE 91 8A D8 74 0B 12 CC 63 FD 43 B2 3D E8 5D
40 B6 1C 83 3B C8 45 9D 24 52 DD E4 F4 AB 08 77 6D
50 F5 E5 48 C5 6C 76 BA 10 99 20 A7 04 87 3F D0 5F
60 A5 1E 9B 39 B0 02 EA 67 C6 DF 71 F6 54 4F 8D 2E
70 E7 6A C7 DE 35 97 55 4E 22 81 06 B4 7C FB 1A A1
80 D5 79 FC 42 84 01 E9 5C 14 93 33 29 C1 6E A8 B8
90 28 32 0C 89 B9 A9 D9 75 ED 58 CD 62 F8 46 9E 19
A0 CB 7F A2 27 D7 60 FE 5A 8E 95 E3 4C 16 0F 31 BE
B0 64 D3 3C B3 7B CF 40 EF 8F 94 56 F2 17 0E AF 2A
C0 2F 8C F1 E1 DC 53 68 72 44 C9 1B A0 38 9A 07 B5
D0 5E D1 03 B1 23 80 1F A4 34 96 E0 F0 C4 49 73 69
E0 DA C3 09 AA 4A 51 F7 70 3E 86 66 EB 21 98 1D B7
F0 DB C2 BB 11 4B 50 6B E6 9C 25 FA 7D 82 3A A6 05

Table 6 shows the table representation of iScream S-box. Let M be the binary representation of
the L-box. Then M is defined as

M =



0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1
1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1
1 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0
1 0 1 0 0 0 0 1 1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 1 1 1 0 0 1 1 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1
1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1
1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 1
1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0
1 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 1 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0



.


