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Abstract. Threshold secret sharing is a protocol that allows a dealer to share a secret among n players
so that any coalition of t players learns nothing about the secret, but any t+ 1 players can reconstruct
the secret in its entirety.
Robust secret sharing (RSS) provides the additional guarantee that even if t malicious players mangle
their shares, they cannot cause the honest players to reconstruct an incorrect secret.
When t < n

3
, Shamir sharing is known to be robust, and when t > n

2
, RSS is known to be impossible,

but for n
3
< t < n

2
much less is known.

When n
3
< t < n

2
previous RSS protocols could either achieve optimal share size with inefficient (expo-

nential time) reconstruction procedures, or sub-optimal share size with polynomial time reconstruction.
In this work, we construct a simple RSS protocol for t =

(
1
2
− ε

)
n that achieves logarithmic overhead

in terms of share size and simultaneously allows efficient reconstruction. Our shares size increases by
an additive term of O(κ + logn), and reconstruction succeeds except with probability at most 2−κ.
This provides a partial solution to a problem posed by Cevallos et al. in Eurocrypt 2012. Namely, when
t =

(
1
2
−O(1)

)
n we show that the share size in RSS schemes do not require an overhead that is linear

in n.
Previous efficient RSS protocols like that of Rabin and Ben-Or (STOC ’89) and Cevallos et al. (Euro-
crypt ’12) use MACs to allow each player to check the shares of each other player in the protocol. These
checks provide robustness, but require significant overhead in share size. Our construction identifies the
n players as nodes in an expander graph, each player only checks its neighbors in the expander graph.
When t =

{
1
2
−O(1)

}
n, the concurrent, independent work of Cramer et al. (Eurocrypt ’16) shows how

to achieve shares that decrease with the number of players using completely different techniques.
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1 Introduction

Robust secret sharing (RSS) is a protocol that allows a dealer to distribute a secret among n players, so that
any coalition of t malicious parties learns nothing about the secret, while the honest parties can reconstruct
the original secret even if the malicious parties tamper with their shares. An RSS protocol is δ-robust if
reconstruction succeeds with probability at least 1 − δ. In this work, we design the first δ-robust secret
sharing protocol with overhead of size O

(
log 1

δ

)
and efficient reconstruction.

Robust secret sharing can be viewed as a stand-alone protocol, providing a mechanism for secure and
tamper-resistant outsourced storage, or as a means of sending messages across corrupted channels. In the
setting of secure message transmission (SMT), a sender and receiver are connected via n independent chan-
nels, some fraction of which may be adversarially controlled [23]. Any RSS scheme can be made into an SMT
protocol, by simply sending each share across a different channel [37]. Note that unlike Verifiable Secret
Sharing (VSS) [45], in RSS the dealer is always honest. Unlike the model of Tompa and Woll [47], RSS
assumes that the reconstruction algorithm receives shares from all players (not just a subset).

Standard secret sharing [46,5] is extremely well understood, and there exist a wealth of protocols obtaining
essentially optimal parameters in variety of different circumstances (see Section 4.2 for further discussion).
Unfortunately, much less is known about robust secret sharing protocols, and there are significant gaps
between known upper and lower bounds on the efficiency of RSS schemes.

When the corruption threshold is low t < n
3 , then simple Shamir sharing is already robust (because a

Reed Solomon code of rate 1
3 has relative distance 2

3 and hence can recover from a 1
3 fraction of errors).

When t > n
2 it is not hard to see that RSS is impossible [33]. The interesting range of parameters is when

n
3 < t < n

2 , in this regime, perfect RSS is impossible, but RSS is feasible if a negligible failure probability
is allowed. Throughout this work, we will assume that κ is a security parameter, and reconstruction should
succeed with probability at least 1− 2−κ.

Constructions of RSS protocols for n
3 < t < n

2 fall into two categories, those with compact share size and
inefficient reconstruction procedure [8,16,17,34] and those with moderate share size and efficient reconstruc-
tion [45,12]3.

When the reconstruction procedure is allowed running time that is exponential in n, then robust secret
sharing schemes have essentially no overhead in share size. On the other hand, when we require an efficient
reconstruction procedure, much less is known. The original scheme of Rabin and Ben-Or, had overhead4 of
O(κ · n). The best existing scheme – that of Cevallos et al. – has overhead of Õ(κ + n) [12]. It is left as
an open question in [12] whether the overhead can be reduced to O(κ). We exhibit a scheme with overhead
O(κ + log n) whenever t <

(
1
2 − ε

)
n. Our scheme is conceptually simple and has efficient reconstruction

procedure.
Our primary result is the following:

Theorem 1. For any message space M, and any ε, δ > 0, there exists an RSS protocol tolerating an 1
2 − ε

fraction of malicious parties, with the probability of reconstruction failure bounded by δ, having shares size

log |M|+ 4

ε3
log

3n log |M|
ε3δ

This result is proven as Corollary 1.
For a t-private, t + 1-threshold secret sharing scheme, even without robustness, the shares must be

of size log |M|, and Carpentieri et al. [11] showed that to obtain a t-robust, t + 1-threshold RSS with
failure probability of 2−κ shares of size log |M| + κ is necessary. Our scheme, which has shares of size
log |M|+O(κ+ log n+ log log |M|), comes close to achieving this overhead, although we work in a slightly
weaker model where we consider a ( 1

2−ε)n-robust, and ( 1
2 +ε)n-threshold RSS. In this model, the concurrent,

independent work of Cramer et al. [15] shows how to achieve shares of size log |M|/n using completely
different techniques.

3 The work of Lewko and Pastro [38] can be seen as interpolating between these two models.
4 If the message space is M, then any secret sharing scheme must have shares of size at least log |M| to obtain

privacy. WhenM is larger than n, then Shamir sharing achieves this bound. Since many RSS protocols (including
ours) use Shamir sharing plus additional check information, we us the term “overhead” to denote the size of the
check information. Thus the overhead of an RSS scheme is the share size (in bits) minus log |M|.



2 Previous Work

In this section, we use m = log |M| to denote the length of the message, and n to denote the number of
players.

Rabin and Ben-Or [45] created a robust secret-sharing scheme, by taking a threshold secret sharing scheme
and adding MACs which allows players to authenticate each other’s shares. The Rabin Ben-Or scheme first
shares a secret s as (s1, . . . , sn), then generates n2 MAC keys kij and tags τij = MAC(kij , sj). Player i is
then given (si, {τji}j , {kij}j). This results in a RSS protocol, but the drawback is the shares are now of size
|m|+ 2nκ.

The [45] protocol was improved in [12], who showed that by using the same sharing scheme, but an
improved reconstruction procedure increased the probability of identifying cheating players, and allowed
them to use smaller MAC keys and tags. Thus reducing the share sizes from O(κn log n) to O(κ+ n log n).

The work of Cabello, Padró and Sáez [8,9] takes any secret sharing scheme over a finite field F, and makes
it robust by taking the secret s, generating a random r ∈ F, and sharing the triple (s, r, r · s) ∈ F3. The
probability an adversary can then generate shares that correspond to a valid secret is 1/|F|. This triples the
size of the shares, but recovery time is exponential, because recovery requires iterating over all possible sets.
Since there are at most

(
n
t+1

)
≤ 2n subsets of size t+ 1, the error probability of the protocol is δ ≤ 2n

|F| . Thus

the share size is 3 max
(
m, log 2n

δ

)
.

Cramer, Damg̊ard and Fehr showed that the approach of [8,9] results in essentially optimal share size.
Cramer et al. [17] showed that the “tag” (s, r, r ·s) in [8,9,16] could be replaced by an Algebraic Manipulation
Detection (AMD) code (see Appendix A.2 for the full definition of AMD codes). This generalizes the previous
construction, and more importantly decouples the size of the secret from the error probability. Using the
construction of [17] the share size is (d+ 2) max

(
1
dm, log 2nd

δ

)
. Thus results in an improvement over [8,9,16]

when the message space M is very large.
If the adversary’s powers are restricted, then the running time of the previous protocols ([8,9,16,17])

can be improved. Suppose the adversary is allowed to corrupt t players, but each corrupt player chooses
his strategy based on the view of at most v other corrupted players. This adversary is said to be v-local.
Lewko and Pastro [38] can be seen as an adaptation of the schemes of [8,9,16,17]. The dealer shares the
secret s, using a t private scheme to obtain shares s1, . . . , sn. At a high-level the scheme works like this: the
dealer generates a single MAC key, k, but then the dealer generates n tags, τi = MAC(k, si). Each player
then receives three things, a t-private share of s, the tag τi and a v-private share of k. The reconstruction
algorithm will iterate over all subsets of size v+ 1 to reconstruct k and it will accept the first value of k that
successfully verifies t+ 1 of the (si, τi) pairs. To prove security, they cannot use a standard one-time MAC,
since each player receives several MAC tags, and they develop special tools for this purpose.

The scheme of Jhanwar and Safavi-Naini [34] also requires exponential time for reconstruction, but takes
a completely different approach. In this scheme, first the secret is shared using a t+ 1 out of t+ 1 threshold
secret sharing scheme, then these shares are encoded using a (t + 1, n) MDS code,5 and symbols from this
codeword are given to each of the n players. Now, notice that in a (t+1, n) MDS code, any t+1 symbols can
be extended into a codeword, and this extension is unique. Since the adversary has control of only t symbols,
if we look at any collection of t + 2 symbols, the probability that these t + 2 symbols are consistent with a
codeword is at most 1/|F| because the (t+2)nd symbol is determined by the first t+1. Thus the reconstructor
works by finding the codeword that agrees with the n given symbols in at least t + 2 locations. Taking a
union bound over all subsets of size t + 2, the probability that the adversary can perturb true codeword
to a vector that agrees with any other codeword in at least t + 2 locations is bounded by

(
n
t+2

)
|F|−1. By

choosing |F| large enough, this can be made arbitrarily small. Unfortunately, the reconstruction procedure
requires finding the nearest codeword which takes exponential time. This scheme also has the restriction
that n ≥ 2t + 2 (instead of n ≥ 2t + 1). If n = 2t + 1, then adversary can corrupt t locations at random,
leaving only t+ 1 honest participants. Thus the honest codeword will only agree with the received codeword
in t+ 1 locations, and hence will be rejected.

In concurrent, independent work, Cramer et al. [15] constructed efficient robust secret sharing schemes
in the model where t =

(
1
2 − ε

)
n. Their scheme requires three basic building blocks: a length-reducing

5 A Maximum Distance Separable (MDS) code is an error correcting code that meets the singleton bound, i.e., it
has minimum distance d = n− k − 1 where k is the dimension of the code, and n is the block-length.



universal hash function h, an AMD code, and a list-recoverable error-correcting code ECC. Then their RSS
scheme shares a secret, s, by computing ECC(h−1(AMD(s))), and giving each player one symbol of the
resulting codeword. Using the list recovery property of ECC, they can recover a list of potential candidate
reconstructions, {yi}, and using the AMD code, they can identify the correct element from the list. The
length-reducing universal hash function h ensures that even if fewer than t symbols of ECC provide partial
information about the message, the secret s remains statistically hidden from any adversary holding at most t
symbols of ECC(h−1(AMD(s))). This scheme can share secrets of size O(n+κ) with shares of size O(1+κ/n)
which is information-theoretically optimal, and asymptotically superior to our construction.

Scheme Share Size Reconstruction Time Restrictions

[46] max(m, log(n)) polynomial n ≥ 3t+ 1

[45] m+O(κn logn) polynomial

[12] m+ Õ(κ+ n) polynomial

[8,9,16] 3 max(m,n+ log(1/δ)) exponential

[17] m+O(κ+ n) exponential

[34] max(κ,m) exponential n ≥ 2t+ 2

[38] m+ Õ(κ) polynomial 1-local adversary

[15] O(m/n) polynomial t =
(
1
2
−O(1)

)
n, m > n+ κ

This Work m+ Õ(κ) polynomial t =
(
1
2
−O(1)

)
n

Fig. 1. Comparison of previous RSS schemes. In this n denotes the number of players, t denotes the number of
corrupted players, κ denotes the security parameter, and m denotes the bit length of the secret being shared. See
Appendix B for a more detailed comparison of the share sizes of the various schemes.

When the reconstruction is required to be perfect, i.e., no failure probability is allowed it is known that
n ≥ 3t + 1 is a necessary condition, and this bound is achieved by Shamir sharing. Perfectly robust secret
sharing has also been studied for more general access structures, and the situation is well understood [36,40].

A separate line of work considered t-threshold secret sharing schemes, where a group of t cheating players
tries to convince a single honest player to accept the wrong share. Thus at reconstruction time, there are only
t+ 1 players, instead of all n. Since the honest player is outnumbered, there is no way to guarantee correct
reconstruction, so the goal of the scheme is simply for the honest player to detect cheating on the part of
the other players. This model was introduced by Tompa and Woll [47] and further studied in [42,43,37,36].

Our work considers the regime t =
(
1
2 − ε

)
n. In this regime, ε > 0 can be arbitrarily small, but it is

fixed, independent of n and the security parameter κ. In this regime, techniques like share packing [25] can
be employed to amortize the cost of secure multiparty computation, and many extremely efficient multiparty
computation protocols are known [19,22,21,20]. Protocols for secure multiparty computation in the malicious
model immediately yield protocols for RSS, but these protocols are less efficient than the dedicated RSS
protocols discussed above.

3 Secure message transmission (SMT)

Robust secret sharing is very closely related to the notion of Secure Message Transmission (SMT). In SMT,
a sender and receiver are connected via n independent communication channels. An adversary has control
over t out of n of these channels (see Figure 2). The adversary can tamper with information sent over the
channels it controls. The problem of secure message transmission (SMT) was formalized by Dolev, Dwork,
Waarts and Yung [23].

An r-round n-channel SMT protocol has two guarantees. Privacy: an adversary eavesdropping on at most
t of the channels learns no information about the secret being communicated. Robustness: an adversary
tampering with at most t of the channels cannot cause the receiver to receive an incorrect message with
probability more than ε. When ε = 0, the scheme is called perfect.



Sender Receiver...

Fig. 2. An n channel SMT protocol. The sender breaks the message into n pieces. A computationally unbounded
adversary has complete control over t of the n channels.

In [23] it was shown that n ≥ 3t + 1 is necessary and sufficient for perfect one round SMT protocols
(using Reed Solomon codes) and n ≥ 2t+ 1 is necessary and sufficient for perfect two round SMT protocols.
Since that time there has been extensive research on SMT protocols [28,24,37,40,13,27].

By equating the message sent over channel i to the share given to player i, we can see that a one round
SMT protocol is essentially equivalent to an RSS protocol. This equivalence was formalized in [37].

Throughout this work, we use the language and terminology of secret sharing, but by the above equiva-
lence, our RSS protocol can also be viewed as an efficient one-round SMT protocol.

4 Preliminaries

4.1 Notation

A function ν(·) is called negligible if it vanishes faster than the inverse of any polynomial, i.e., for all c > 0,
ν(n) ∈ O(n−c). Throughout this work κ will denote a security parameter. For a set X, we will use the
notation x ← X to denote sampling an element uniformly from X. We use the same notation y ← A(x)
to denote the result of running the randomized algorithm A on input x and obtaining an output. For two
distributions, X,Y , we use ∆(X,Y ) to denote their statistical distance

∆(X,Y ) =
1

2

∑
x

|Pr[X = x]− Pr[Y = x]| = sup
A
|[Pr[X ∈ A]− Pr[Y ∈ A]|

4.2 Secret sharing

Secret-sharing is a multi-party protocol that allows one player, a dealer, to distribute a secret value among
a group of participants such that “authorized” subsets of participants can reconstruct the secret, while the
shares held by an “unauthorized” reveal nothing about the underlying secret. In this work, we mostly focus
on threshold secret sharing schemes, where there is some threshold t, and every subset of participants of size
t + 1 is authorized, while every subset of size t (or smaller) is unauthorized. Secret-sharing was introduced
by Shamir [46] and Blakley [5].

Definition 1 (Secret Sharing). A pair of randomized algorithms (SS,Rec) is called an (t, n)-threshold
secret sharing protocol over a message space M if the following properties hold

– Privacy: For any s, s′ ∈ M, if (s1, . . . , sn) ← SS(s, 1κ) and (s′1, . . . , s
′
n) ← SS(s′, 1κ), then for all

subsets A ⊂ [n] with |A| ≤ t, the distributions {si}i∈A and {s′i}i∈A are statistically close, i.e.,

∆({si}i∈A, {s′i}i∈A) < ν(κ)

for some negligible function ν. If ν = 0, then the scheme is said to have perfect privacy.



– Reconstructability: For all subsets A ⊂ [n] with |A| ≥ t+ 1, if (s1, . . . , sn)← SS(s, 1κ), then

Pr[s = Rec(A, {si}i∈A)] > 1− ν(κ)

where the probability is taken over the coins of SS and Rec. If ν = 0, then we say the scheme has perfect
reconstruction.

Definition 2 (Ramp Secret Sharing). A pair of randomized algorithms (SS,Rec) is called an (t, g, n, ε)-
threshold secret sharing protocol over a message space M if the following properties hold

– Privacy: For any s, s′ ∈ M, if (s1, . . . , sn) ← SS(s, 1κ) and (s′1, . . . , s
′
n) ← SS(s′, 1κ), then for all

subsets A ⊂ [n] with |A| ≤ t, the distributions {si}i∈A and {s′i}i∈A are statistically close, i.e.,

∆({si}i∈A, {s′i}i∈A) < ν(κ)

for some negligible function ν. If ν = 0, then the scheme is said to have perfect privacy.
– Gap Reconstructability: For all subsets A ⊂ [n] with |A| ≥ t+ g, if (s1, . . . , sn)← SS(s, 1κ), then

Pr[s = Rec(A, {si}i∈A)] > 1− ν(κ)

where the probability is taken over the coins of SS and Rec. If ν = 0, then we say the scheme has perfect
reconstruction.

Note that in a ramp scheme, coalitions of between t and t+g players may be able to learn some information
about the secret. One of the most common secret sharing schemes is Shamir Sharing [46].

Definition 3 (Ramp Shamir Sharing). Fix a finite field F with |F| ≥ n+g, and distinct points {α1, . . . , αn} ∈
F \ {β1, . . . , βg}.

– Sharing: To share a message m ∈ Fg, choose a random polynomial, f , of degree t+g−1 in F[x] subject
to the constraints that

f(βi) = mi for i = 1, . . . , g

The ith share of will be f(αi) ∈ F.
– Reconstruction: Any t + g players can reconstruct the polynomial f by interpolation, and recover the

secret m.

The t-privacy follows from the fact that if an adversary learns t+ g evaluations of f , then the remaining
evaluations remain uniformly distributed.

Many general constructions of secret-sharing schemes exist [3,7,4,48,18]. Secret sharing schemes for general
(non-threshold) access structures have been considered [29,31]. Secret sharing schemes can be viewed as
matroids [39] or monotone span programs [26,1]. A survey of secret sharing schemes can be found in [2].

In this work, we focus on robust secret sharing (described in Section 4.3).

4.3 Robust Secret Sharing

Threshold secret sharing allows a dealer to distribute a secret among n players so that any t players learn
nothing about the secret, but any t+ 1 players can reconstruct the secret.

A secret sharing protocol is called robust, if the recovery procedure succeeds (with high probability) even
if a coalition of t players maliciously tampers with their shares.

Definition 4 (RSS). An n-player secret sharing scheme (SS,Rec) is (t, δ)-robust if (s1, . . . , sn)← SS(s, 1κ)
and the following properties hold

– Privacy: For any s, s′ ∈ M, if (s1, . . . , sn) ← SS(s, 1κ) and (s′1, . . . , s
′
n) ← SS(s′, 1κ), then for all

subsets A ⊂ [n] with |A| ≤ t, the distributions {si}i∈A and {s′i}i∈A are statistically close, i.e.,

∆({si}i∈A, {s′i}i∈A) < ν(κ)

for some negligible function ν. If ν = 0, then the scheme is said to have perfect privacy.



– Reconstructability For all subsets A ⊂ [n] with |A| ≤ t, and any adversary A, if {s′i}i∈A ← A({si}i∈A, 1κ),
and si = s′i for i ∈ [n] \A, then

Pr [Rec(s′1, . . . , s
′
n) 6= s] < δ

Note that unlike Verifiable Secret Sharing (VSS) in RSS schemes the dealer is assumed to be honest.
The primary concern will be the size of the shares and the efficiency of the reconstruction procedure. We

also introduce the notion of a nested RSS, which slightly strengthens the notion of an RSS. In a nested RSS
reconstruction can succeed even if only a subset of the shares are available at reconstruction time. Thus in
a nested RSS scheme, t+ g shares are needed to reconstruct if the shares are all correct, and any collection
of t+ g + (1− ε)c correct shares and εc, will also allow reconstruction with failure probability at most δ.

Definition 5 (Nested RSS). An n-player secret sharing scheme (SS,Rec) is a nested (t, g, δ, ε)-robust if
it satisfies the following properties:

– It is a (t, g) Ramp Secret Sharing Scheme
– Reconstructability For all subsets A ⊂ [n] with |A| ≤ t, and any adversary A, if {s′i}i∈A ← A({si}i∈A, 1κ),

and si = s′i for i ∈ [n] \A, then for any B ⊂ [n] with |B| = `, if |A ∩B| < ε(|B| − t− g) then

Pr [Rec(B, {s′i}i∈B) 6= s] < δ

The reconstruction procedure is described from the point of view of a single player. If all players want
to reconstruct the secret, they will need to send their shares to each other player, and then separately run
the reconstruction procedure. In RSS, because the dealer is assumed to be honest, even if all players want to
reconstruct their secret, their is no need for a broadcast channel. If corrupt players send different, malformed
shares to each party during reconstruction, the robustness ensures that each honest party will separately
reconstruct the correct secret. Unlike the model of Tompa and Woll [47], in RSS shares are provided by all
players (but dishonest players can provide arbitrary shares to the reconstruction procedure).

Note that because Shamir shares (f(α1), . . . , f(αn)) correspond to a [t + 1, n] Reed Solomon codeword,
and the Reed Solomon code has minimum distance n−t, the original codeword (and hence the shared secret)
can be recovered even if n−t

2 shares are corrupted. Thus Shamir sharing is robust as long as n−t
2 > t, which

means n > 3t. In this situation, robust reconstruction of Shamir shares can be done efficiently using the
Berlekamp-Welch algorithm for decoding Reed Solomon codes. This yields the following fact

Fact 1 (Robustness of Shamir Sharing) The Shamir sharing scheme is a
(⌊
n−1
3

⌋
, 0
)

RSS scheme, with

shares of size log |M|. The ramp Shamir sharing scheme with gap g is a
(⌊
n−g
3

⌋
, 0
)

RSS with shares of size
log |M|/g. In fact, the error correcting properties of the Reed Solomon code mean that the ramp Shamir
sharing scheme is a

(
t, g, 0, 12

)
nested RSS. This is just the statement that given any t + g + ` evaluations,

where at most 1
2` are erroneous, you can efficiently reconstruct the unique degree t + g polynomial going

through those points.

4.4 Message Authentication Codes (MACs)

Our construction relies on Message Authentication Codes (MACs). MACs take a message and key and output
a “tag” that can be used to authenticate the message. Many types of MACs exist, but we only need a one-
time MAC. In particular, we require that an adversary without knowledge of the MAC key cannot generate
a valid message-tag pair. Note that these MACs are much simpler than the stronger notion of unforgeability
under chosen message attack (see Appendix A.1).

Definition 6. A deterministic function MAC is called a (K,M, δ)-MAC if MAC : K ×M → T and for all
τ ∈ T and m ∈M

Pr
k←K

[MAC(k,m) = τ ] < δ

These MACs are easy to construct, and for concreteness, we recall a simple construction of secure MACs
based on polynomials.



Theorem 2. Let q be a prime power, and ` > 0 an integer. Let M = F`q and K = F2
q and T = Fq then

MAC((k1, k2),m) =
∑̀
i=1

mik
i
1 + k2

is an
(
F2
q,F`q, `q

)
-MAC

Proof. For any fixed m ∈ F`q and τ ∈ Fq define the polynomial

f(x) = x` +
∑̀
i=1

mix
i − k2 − τ

Then f is a polynomial of degree at most `, so f has at most ` roots in Fq. Thus

Pr
k←K

[MAC(k,m) = τ ] = Pr
k←K

[f(k) = 0] ≤ `

q

Now, the adversary succeeds in creating a forgery exactly when k1 is a root of the polynomial f . Since k1 is
uniformly random conditioned on the adversary’s view of a single message-tag pair, the adversary succeeds
in forging a tag with probability at most $ `q .

4.5 Expander graphs

Our construction relies on expander graphs, and in this section we briefly review some basic concepts. See
[32] for an in-depth survey.

For every d regular graph on n nodes, we can create the n × n adjacency matrix A. To normalize A,
we divide each entry by d, to obtain the matrix A′. The regularity of the graph ensures that each row and
column of A′ has weight 1. It is straightforward to check that the all ones vector is an eigenvector of A
with eigenvalue 1, and all other eigenvectors have eigenvalue bounded by 1 in absolute value. The algebraic
expansion of the graph is determined by the size of the second largest eigenvector of A′ denoted λ.

A d regular graph, G with n nodes is called an algebraic expander with expansion λ if λ is the absolute
value of the second largest eigenvalue of the normalized adjacency matrix of G. Thus 0 ≤ λ ≤ 1, and the
closer λ is to zero, the better the expansion of G.

One of the important properties of expanders is that for any subsets of nodes, S and T , of size O(n),

the number of edges between S and T is essentially the expected value d|S||T |
n . This is formalized in the

Expander Mixing Lemma.

Lemma 1 (Expander Mixing Lemma). Let G be a d-regular expander on n vertices with normalized
second eigenvalue λ. For any sets of vertices, S, T , in G∣∣∣∣E(S, T )− d

n
|S||T |

∣∣∣∣ < λd
√
|S||T |

Where E(S, T ) denotes the number of edges between S and T .

An expander graph is called a Ramanujan graph if λ < 2√
d
. See [41] for a survey of Ramanujan graphs.

Our RSS protocol will identify each of the n players with nodes in an expander graph, and each player
will be relied upon to check the shares of his neighbors.

5 Construction

In this section, we explain in detail our new RSS protocol. Previous RSS protocols used MACs to allow each
participant to check the shares provided by other participants in the reconstruction phase. These MACs
provide robustness, but the overhead of sharing a collection of MACs causes a blowup in the size of the



shares held by each player. In the protocol of Rabin and Ben-Or, each party receives a MAC of each other
player’s share. Since the MAC has keys and tags of size O(κ), the share size blows up by O(nκ). Cevallos et
al., showed that the MAC keys and tags could be reduced from size O(κ) to O(log n) by using a more complex
recovery procedure. This reduced the overhead to O(n+κ). In both protocols, each player maintains a MAC
to check every other player’s share. When everyone checks everyone else, a blowup of O(n) is inevitable.

In this work, we change the paradigm, and each player only checks a constant number of other players.
In particular, we consider an d regular graph on n nodes, and we associate each node of the graph with one
of the n players. Then each player will only check its d neighbors in the graph. Thus each player will only
have to maintain d MAC keys and tags. When tags are of size O(κ), this results in an overhead of O(dκ)
(instead of O(nκ)). Because constant degree expanders exist, we can choose d to be a constant, independent
of n. An exact choice of parameters is deferred until later in this section.

Intuitively, there are many reasons for distributing MAC keys and tags according to the edges of an
expander graph. First, because the degree is low, each player (node) must store only a small (constant)
number of keys and tags. Second, if the graph is a vertex expander then any (small) set of malicious players
(nodes) will be connected to an even larger set of honest players, who will attempt to validate the shares
provided by the malicious nodes.

The idea of having computations performed by small “committees” dates back to Bracha [6], and has been
used in a variety cryptography constructions including MPC [31] and SMT [24]6.The idea of distributing
keys according to expander graphs has also been used to reduce storage complexity in key predistribution
schemes for wireless sensor networks [30,10,35].

Since each player only checks a small number of other players, the recovery algorithm has to be adapted
to ensure that no coalition of t malicious parties can succeed in fooling the honest players into accepted
mangled shares.

Let G be a d-regular graph, and let Γ (i) denote the set of d players that are neighbors of player i. Let
MAC : K ×M→ T a (K,M, δ′)-MAC. Our proposed scheme is presented in Figure 3.

To share a secret, s ∈M:

– Share s using a (t, g, δ0, ε0) nested RSS (SS0,Rec0). Let (s1, . . . , sn)← SS0(s, 1κ) be the resulting shares.
– For each i ∈ [n] and j ∈ Γ (i) generate a MAC key, kij ← K, and create the tag

τij = MAC(kij , sj)

– Give player i the share si and the tags {kij , τji}j∈Γ (i)

To reconstruct a secret from shares {si, {kij , τji}j∈Γ (i)}i

– Initialize G = ∅.
– For each i ∈ [n], if |{j : MAC(kij , sj) = τij}| > d

2
. then G = G ∪ {i}.

– Discard all indices i ∈ [n] \ G, and use the recovery algorithm Rec0 of the (t, g, δ0, ε0) nested RSS scheme to
recover s, from the indices in G.

Fig. 3. Robust Secret Sharing from Expander Graphs

6 In the work of Fitzi et al. the “committees” are not constructed according to nodes in an expander graph, but
instead every committee of size d is constructed, resulting nd committees of the n underlying players. Fitzi et
al. are primarily concerned with Perfectly Secure Message Transmission, and so their construction requires two
rounds of communication (a message from receiver to sender, and then a message from sender to receiver). By
contrast, when viewed as a message transmission scheme, our construction has only one round, but has a negligible
probability of failure.



5.1 Expander Construction

Let G be a d-regular expander on n vertices with normalized second eigenvalue λ.

Theorem 3. If (SS0,Rec0) is a nested
((

1
2 − ε

)
n, g, δ0, ε0

)
RSS with share size s0 and G is a d-regular graph

on n vertices with normalized second eigenvalue λ <

√
ε3ε0

( 1
2−ε)(1−ε0)

then the scheme described in Figure 3 is

a
(
1
2 − ε

)
n-robust secret sharing scheme with error probability ndδ′ + δ and share size

s0 + d (log |T |+ log |K|)

Proof. Let B be the set of indices corrupted by the adversary, thus |B| = t.
Notice that if player i is corrupted, and player j is honest, the probability that the adversary can generate

a share s′i and tag τ ′ji = MAC(kji, s
′
i) is at most δ′ by the security of the MAC.

Thus with probability at least 1 − ndδ′ the adversary fails to generate a single forged tag. Throughout
the rest of the argument, we will condition on the event that adversary fails to generate a single forged tag.

Let G be the set of indices where at least d
2 + 1 tags verify (described in the reconstruction procedure in

Figure 3). Recall that B is the set of corrupted players.
Let

M1 = (G ∪ B)c and M2 = G ∩ B

Thus M1 is the set of honest players (incorrectly) rejected by the reconstruction procedure and M2 is the set
of dishonest players accepted by the reconstruction procedure.

The RSS scheme (SS0,Rec0) can recover from an ε0 fraction of errors, Thus the reconstruction procedure
will succeed if

|M2| < ε0 (|G| − t− g)

Now, we have

|G| = n− |B|︸ ︷︷ ︸
# honest players

− |M1|︸︷︷︸
# honest players rejected

+ |M2|︸︷︷︸
# dishonest players accepted

Thus the reconstruction succeeds if

|M2| < ε0 (n− t− g − |B| − |M1|+ |M2|)

Which is equivalent to
1− ε0
ε0
|M2|+ |M1| < n− |B| − t− g

Since ε0 <
1
2 , a sufficient condition for recovery is

1− ε0
ε0

(|M1 ∪M2) < n− |B| − t− g

Let M = M1 ∪M2 be the set of players incorrectly classified in the reconstruction phase. For a player to
be incorrectly classified, at least d/2 of its neighbors must have provided an incorrect MAC, thus

M ⊂ {i : |Γ (i) ∩ B| > d/2}

Thus E(M,B) ≥ d
2 |M|. On the other hand, the Expander Mixing Lemma states that

|E(M,B)| ≤ d

n
|M||B|+ λd

√
|M||B|

Thus
|M|
2
≤ |M||B|

n
+ λ

√
|M||B|



Rearranging, we have

|M| < λ2|B|(
1
2 −

|B|
n

)2
Thus reconstruction succeeds if

1− ε0
ε0

 λ2|B|(
1
2 −

|B|
n

)2
 < n− |B| − t− g

When t = |B| =
(
1
2 − ε

)
n, then this means the reconstruction succeeds if

1− ε0
ε0

(
λ2
(
1
2 − ε

)
n

ε2

)
< 2εn− g

If g < εn, then a sufficient condition is

λ2 <
ε3ε0(

1
2 − ε

)
(1− ε0)

If G is a Ramanujan graph, then λ < 2√
d
, so it suffices to take d >

4( 1
2−ε)(1−ε0)
ε3ε0

Thus for this choice of d reconstruction will succeed unless the adversary successfully forges a tag (which
happens with probability at most ndδ′) or the inner recovery algorithm Rec0 fails (which happens with
probability at most δ).

Although many infinite families of explicit Ramanujan graphs are known, explicit Ramanujan graphs are
not known for all n, d pairs, which limits the applicability of the above construction. In the next section, we
show that the same construction holds (with high probability) for a random graph.

5.2 Random Graphs

It is well-known that a random d-regular graph will be an expands. In particular, [44] shows that a random d
regular graph has λ < 2

√
d− 1 + 1 asymptotically almost surely. This does not allow us to apply the scheme

in Figure 3 directly, however, because that analysis does not give an explicit bound on the probability the
graph fails to be an expend (only that it tends to zero as n→∞).

It is straightforward to show, however, that if the underlying graph is chosen at random, our construction
still has only a negligible failure probability, where now the failure probability is taken over the internal
randomness of the sharing algorithm, the internal randomness of the adversary and the choice of graph.

Using a random graph has the drawback that reconstruction algorithm needs to be told the graph
structure in order to successfully reconstruct the secret.

5.3 Instantiations

Throughout this section, we use a standard MAC (see Theorem 2), that has keys and tags of length log q,
messages of length ` log q and security δ′ = `

q .

Corollary 1 (Using Shamir Sharing). Instantiating our schemes with (SS0,Rec0) as Shamir Sharing,
which is a (t, 1, 0, 12 ) nested RSS,

((
1
2 − ε

)
n, δ
)
-secure RSS scheme with shares of size

log |M|+ 4

ε3
log

3n log |M|
ε3δ



Proof. Thus shares are of size
s0 + d(log |T |+ log |K|)

For Theorem 3 we need d >
4( 1

2−ε)(1−ε0)
ε3ε0

Since ε0 = 1
2 , this becomes d >

4( 1
2−ε)
ε3 . Thus it suffices to

choose d > 2
ε3 .

Since we need δ′ < δ
nd <

δε3

2n , in our MAC, we need q > 2n`
ε3δ . The MAC supports messages of length

` log q, and the shares being signed are of size s0, thus ` < s0, and it suffices to take q = 2ns0
ε3δ . In the Shamir

Sharing scheme s0 = log |M|, so this results in shares of size

log |M|+ 4

ε3
log

3n log |M|
ε3δ

Comparing this to [12], which has shares of size

log |M|+ 12 log
1

δ
+ 3n (log(t+ 1) + log log |M|+ 3)

Our new scheme has shares of size

log |M|+ 4

ε3
log

1

δ
+

4

ε3

(
log 3n+ log log |M|+ log

1

ε3

)
In particular, when ε = O(1), we have an overhead of O

(
log 1

δ

)
instead of O

(
log 1

δ + n
)

as in [12].
Note that in the extreme case, n = 2t + 1, then ε = 1

2n , and since d > 2
3ε3 , our scheme would require

O(n3) tags per share, which is worse than existing schemes [45,12].
We can improve these bounds slightly by moving to Ramp Shamir Sharing

Corollary 2 (Using Ramp Shamir Sharing). For any g < εn, we reduce s0 to log |M|/g, and so the
size of the shares becomes

log |M|
g

+
4

ε3
log

3n log |M|
gε3δ

Using secret sharing schemes based on Cramer and Chen’s ramp-based secret sharing scheme based on

algebraic-geometry codes [14], we can reduce the share size to O
(

logn
ε3

)
.

6 Conclusion

In this work, we give the first RSS protocol with efficient reconstruction and shares of size Õ(κ). Our protocol
works by treating each of the n players as a node in a d-regular expander graph, and having each player
check only its d neighbors. This diverges from previous protocols [45,12] where each player must check all
other players in the protocol. Since expander graphs exist with extremely low degree exist, our protocol
makes significant gains in share size and complexity of reconstruction. In fact, when the number of malicious
parties is t =

(
1
2 − ε

)
n, for an constant ε > 0, our protocol achieves essentially the optimal share size.

Unfortunately, when n = 2t + 1, then ε = O
(
1
n

)
and our scheme is outperformed by existing schemes. It

remains an interesting open question whether there exist RSS schemes that can maintain O(κ) overhead
when n = 2t+ 1.
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A Authentication schemes

A.1 Message Authentication Codes (MACs)

In this section, we recall the notion unforgeability under chosen message attack for Message Authentication
Codes. This is the standard notion of security for MACs. For our purposes, we need a much weaker notion
of security (see Theorem 2). We include the standard definition for reference purposes only.

Definition 7. A Message Authentication Code (MAC) is a pair of deterministic algorithms (MAC,Ver)

MAC : K ×M→ T
(k,m) 7→ τ

and

Ver : K × T ×M→ {0, 1}

such that
Ver(k,MAC(k,m),m) = 1

for all m ∈M.
Security is defined through the following experiment
Experiment expuf−cma

MAC (A)

– k← K
– The adversary, A can make repeated queries to the oracles MAC(k, ·) and Ver(k, ·, ·).
– If A makes a query τ,m to Ver(k, ·, ·) such that
• Ver(k, τ,m) = 1
• The message, m, was never made as a query to the oracle MAC(k, ·).

then return 1, otherwise, return 0

The MAC is called secure (existentially unforgeable against a chosen message attack) if

Pr
[
expuf−cma

MAC = 1
]
< ν

for some negligible function ν(log |K|).

A.2 Algebraic Manipulation Detection (AMD) Codes

An Algebraic manipulation detection (AMD) code is means of encoding information so that tampering by
an oblivious adversary is detectable. AMD have been widely used, but were first formalized by Cramer et
al. in [17].

Definition 8 (AMD Codes). A pair of functions (AMD,Ver) is called a (M, T , δ)-algebraic manipulation
detection (AMD) code if AMD is a probabilistic map AMD : M → T , and Ver is a deterministic map
Ver : T →M∪ {⊥} such that for T is a group and for all m ∈M and ∆ ∈ T

Pr [Ver(AMD(m) +∆) 6∈ {m,⊥}] < δ

We briefly recall a simple construction of AMD Codes given in [17].

Theorem 4 (Theorem 2 in [17]). Let p be prime, d an integer such that p - d + 2 and q a power of p.
Then

AMD(m) =

(
m,x, xd+2 +

d∑
i=1

six
i

)

is an
(
Fdq ,Fdq × Fq × Fq, d+1

q

)
-AMD code.



B Calculating share size in existing schemes

There are three parameters of interest when calculating the size of shares

δ The probability of reconstruction failure
n The number of participants
m The bit length of the message

We will be using these parameters to define the share size s.
Ignoring robustness, to ensure correctness we need s ≥ m. Using Shamir sharing also introduces the

requirement s ≥ log(n).

[45] In this scheme, the secret s ∈ F is shared using Shamir sharing resulting in shares s1, . . . , sn. Then
random, bij 6= 0 and yij are created and cij = si + bijyij mod p where p ≥ |F|. Then player i receives
the shares (si, {yij}j , {bji, cji}j). These shares are of size log |F| + 3n log p. The probability that player
i catches player j cheating is 1 − p−1, thus the probability that all cheaters are caught by all honest
players is at least 1− t(n− t)/p. Thus the cheating probability is bounded by t(n− t)/p ≈ n2/p. So we

need to choose p = n2

δ , which results in share size

s = m+ 3n log
n2

δ

[12] This scheme is very similar to [45], except the MAC used to authenticate shares is weaker, and the
reconstruction algorithm is more complex. In particular, the secret, s is Shamir shared into {si}, and the
shares are signed τij = MAC(kij , si). Player i then receives (si, {kji}j , {τij}j). If MAC has security δ′,
then the security of the overall scheme is e((t+ 1)δ′)(t+1)/2. Standard MACs can achieve security 2−κm
with tags of length λ and keys of length 2λ, and messages of length m. Setting κ = log(t+ 1) + logm+
2
t+1 (log 1

δ ) + log e yields a scheme with security δ and the resulting share size is

s = max

(
m+ 12 log

1

δ
+ 3n(log(t+ 1) + logm+ 3), log n

)
[8,9] A secret, s ∈ F is encoded as (s, r, r · s) ∈ F3, and then shared using a t + 1 out-of-n Shamir sharing

scheme. Given a set of t + 1 shares, the probability that the adversary can cause this to decode to
(s′, r′r′ · s′) is 1/|F|. Taking a union bound over all subsets of size t + 1 gives an error probability of(
n
t+1

)
|F|−1. Thus we need |F| ≥

(
n
t+1

)
δ−1. This yields

s ≥ 3 max

(
m, log

((
n

t+ 1

)
δ−1, n

))
[17] A secret, s ∈ F is encoded as AMD(s), and then shared using a t + 1 out-of-n Shamir sharing scheme.

Using the AMD codes proposed in that paper, AMD(s) = x`+2 +
∑`
i=1 six

i for (s ∈ Fd and x ∈ F) yields
a code with detection probability (` + 1)/|F|. Since reconstruction requires testing all subsets of t + 1
shares, we have to union bound over

(
n
t+1

)
subsets, so the error probability is at most

(
n
t+1

)
(`+ 1)|F|−1.

Thus we need |F| ≥ (` + 1)
(
n
t+1

)
δ−1, but this extra parameter, `, gives us flexibility. Since the message

space is now F`, the resulting shares are of size

s ≥ max

(
(`+ 2) log

((
n

t+ 1

)
(`+ 1)δ−1

)
,
`+ 2

`
m, log(n)

)
When m is very large, we can use the parameter ` to balance the first and second terms in the expression.

[34] A secret, s ∈ F is shared using a t + 1 out-of-t + 1 Shamir sharing scheme. Then this vector in Ft+1 is
encoded using a (t + 1, n) MDS code, and each player receives one symbol of the resulting codeword,
thus the shares are of size F. Like the previous schemes, the probability of error is

(
n
t+1

)
|F|−1.

s ≥ max

(
m, log

((
n

t+ 1

)
δ−1, n

))
(but this scheme works only when n ≥ 2t+ 2 instead of n ≥ 2t+ 1)
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