
1

Efficient and Private Scoring of Decision Trees,
Support Vector Machines and Logistic Regression

Models based on Pre-Computation
Martine De Cock, Rafael Dowsley, Caleb Horst, Raj Katti,

Anderson C. A. Nascimento, Stacey C. Newman and Wing-Sea Poon

Abstract—Many data-driven personalized services require that
private data of users is scored against a trained machine learning
model. In this paper we propose a novel protocol for privacy-
preserving classification of decision trees, a popular machine
learning model in these scenarios. Our solutions are composed
out of building blocks, namely a secure comparison protocol,
a protocol for obliviously selecting inputs, and a protocol for
evaluating polynomials. By combining some of the building blocks
for our decision tree classification protocol, we also improve
previously proposed solutions for classification of support vector
machines and logistic regression models. Our protocols are
information theoretically secure and, unlike previously proposed
solutions, do not require modular exponentiations. We show that
our protocols for privacy-preserving classification lead to more
efficient results from the point of view of computational and
communication complexities. We present accuracy and runtime
results for 7 classification benchmark datasets from the UCI
repository.

Index Terms—Private classification, decision trees, support
vector machines, logistic regression.

I. INTRODUCTION

Data-driven machine learning has the ability to vastly im-
prove the quality of our daily lives and is already doing so
in many ways. Healthcare providers use systems based on
machine learning to diagnose patients; wearable devices are
connected to fitness tracking apps that use machine learning
to make personal health recommendations; search engines and
social media sites rely on machine learning to decide which
content to show to each individual user, including which adver-
tisements; e-commerce companies leverage machine learning
to determine which products or movies to recommend to
customers based on their prior purchase behavior; online
dating services use machine learning in an attempt to connect
people with the love of their lives. . . the list goes on and
on. To benefit from any of these personalized services, the
personal data of users – such as personal preferences, browsing
behavior or medical lab results – needs to be scored against
a trained machine learning model. In this paper we propose
techniques to perform this scoring in an encrypted way so

Martine De Cock, Caleb Horst, Raj Katti, Anderson C. A. Nasci-
mento, Stacey C. Newman and Wing-Sea Poon are with the Insti-
tute of Technology, University of Washington Tacoma, Tacoma, WA,
USA. E-mails: mdecock@uw.edu, calebjh@uw.edu, rajkatti@uw.edu, and-
clay@uw.edu, newmsc8@uw.edu, wpoon93@uw.edu.

Rafael Dowsley is with the Institute of Theoretical Informatics, Karlsruhe
Institute of Technology. Am Fasanengarten 5, Geb. 50.34, 76131 Karlsruhe,
Germany. Email: rafael.dowsley@kit.edu.

that individuals do not have to share their personal data with
anyone “in the clear” but may still benefit from these types of
personalized services.

More specifically, we deal with scenarios where a person
holding data (Alice) wants to score her data against a model
in possession of another party (Bob) such that, at the end of
the protocol, Bob learns nothing about Alice’s data and Alice
learns as little as possible about Bob’s model.

Our contributions: We propose a new privacy-preserving
protocol for evaluating decision trees. We also substantially
improve upon previously proposed protocols for hyperplane
based classifiers - we include support vector machines and
logistic regression classifiers as specific cases. We provide
formal definitions of security and show that our protocols
match these definitions. We show that our protocols compare
favorably against previous results [10], [9], [18].

Our results are proven in the so-called commodity-based
model [4], [3], in which correlated data is distributed to Alice
and Bob during a setup phase. Later on, during an online
phase, Alice and Bob use these commodities to run the desired
computation on their respective inputs. This data can be pre-
distributed by a trusted authority or it can be pre-computed by
the players during a setup phase using well known protocols
available in the literature. These commodities do not depend
on the actual inputs of Alice or Bob. Thus, in case a trusted
authority is used to distribute the commodities, the trusted
authority never engages in the actual computation during the
online phase and never learns any information about the model
held by Bob or the data possessed by Alice. The protocols in
our online phase are information theoretically secure; that is, if
the commodities are provided in an information theoretically
secure fashion, the overall protocol will be information theo-
retically secure. Finally, differently from previously proposed
solutions [10], [9], [41] our protocols solely use modular
additions and multiplications. No modular exponentiations are
ever required.

The main idea behind our solutions is to decompose the
problem of obtaining privacy-preserving classifiers into the
problem of obtaining secure versions of a few building
blocks: distributed multiplication, distributed comparison, bit-
decomposition of shares, distributed inner product and argmax
computation, and oblivious input selection. We then either
use the most efficient available versions of these protocols
or propose more efficient ones. In more detail, the main
contributions include:

2

• A novel protocol for computing private scoring of deci-
sion trees where Bob learns nothing about Alice’s data
and Alice learns only the depth of Bob’s decision tree.
Moreover, only modular additions and multiplications are
required. In previous solutions [10], [9], [41], either mod-
ular exponentiations and fully homomorphic encryption
are required [10], [9] or Paillier encryption-based private
comparison schemes and Oblivious Transfer protocols
(both requiring modular exponentiations) are required
[41].

• A novel secure comparison protocol that, for input sizes
normally used in practical applications, outperforms ex-
isting solutions in terms of communication and computa-
tion complexities and has round complexity comparable
to the best previous solution.

• Demonstration that applying an adaptation of the bit
decomposition protocol proposed in [28] and our new
comparison protocols as building blocks to previously
proposed protocols for hyper-plane based classifiers [18]
delivers more efficient results for the computational and
communication complexities. We implement the particu-
lar case of support vector machines and logistic regres-
sion.

• Application of our proposed protocols on 7 real data
benchmark datasets from the UCI Machine Learning
repository and presentation of the obtained accuracies and
running times.

Our solutions are secure in the honest-but-curious model,
consistent with the security model used in previous works [10],
[9], [18]. We provide full proofs of security.

Outline: We first introduce our notation and model in
Section II. Section III explains the machine learning classifiers
that are considered in this work. We then present the building
blocks that are used in the privacy-preserving classifiers: a
secure distributed comparison protocol in Section IV, a secure
argmax protocol in Section V, a secure bit-decomposition pro-
tocol in Section VI and an oblivious input selection protocol
in Section VII. After that, Section VIII describes the privacy-
preserving classifiers and Section IX the experiments that we
performed to assess their performance. Section X explains how
the pre-distributed data can be generated by the parties if no
trusted initializer is available (or desirable). Finally, Section XI
compares our solution with the related work and Section XII
presents our concluding remarks.

II. PRELIMINARIES

A. Notation and Security Model

We denote by y
$← F (x) the act of running the proba-

bilistic algorithm F with input x and obtaining the output
y. y ← F (x) is similarly used for deterministic algorithms.
All logarithms are base 2. For a bit b, we let b̄ represent its
negation.

In this work additively secret sharings are used to perform
computation modulo q. A value x is secretly shared over Zq
by picking x1, . . . , xn uniformly at random subject to the
constraint that x =

∑n
i=1 xi mod q and then distributing each

share xi to Pi. Let JxK
q

denote this secret sharing. Given JxK
q
,

Functionality FD
TI

FD
TI runs with the parties P1, . . . , Pn and is parametrized by

an algorithm D. Upon initialization run (D1, . . . , Dn)
$←

D. For i = 1, . . . , n, deliver Di to Pi.

Fig. 1. The Trusted Initializer functionality.

JyK
q

and a constant c, it is trivial for the parties to compute
a secret sharing JzKq corresponding to z = x+ y, z = x− y,
z = cx or z = x+c. All of these operations can be performed
locally by the parties without any interaction by simply adding,
subtracting or multiplying the shares respectively for the first
three cases, and by having a pre-agreed party add the constant
in the last case. These operations will be denoted respectively
by JzKq ← JxKq + JyKq , JzKq ← JxKq − JyKq , JzKq ← cJxKq

and JzK
q
← JxK

q
+c. For a secret sharing JxK

q
, the parties can

open the value x by revealing their shares xi. Similarly, for a
matrix X , JXK

q
will denote the element-wise secret sharing of

the matrix and the operations will be denoted in the same way.
In order to unify the treatment of the protocols with the case
in which one input x is held by a single party Pi, we write
JxK

q
← x to denote the case in which Pi computes with the

share x and the remaining parties with shares equal to zero.
We should remark that the applications considered in this

paper are between two parties, but for the sake of generality
some protocols are described in a more general form, running
with n parties.

Adversarial Model: The adversaries considered in this
paper are honest-but-curious (as in all other privacy-preserving
classification protocols so far), meaning that they follow the
protocol instructions correctly, but try to learn additional
information. For more information about parallel composition
theorems for this model, we refer the reader to chapter 4
of [13]. Our security guarantees are based on the simulation
paradigm: for each adversary attacking the real protocol, there
should be a simulator in the ideal world that interacts with the
ideal functionality (instead of a real protocol execution) and
is such that an external party cannot distinguish the real and
ideal worlds. In our protocols the simulation strategy will be
described very briefly as they are very simple: all the messages
look uniformly random from the recipient’s point of view,
except for the messages that open some secret share to a party,
but these ones can be easily simulated using the output of the
respective functionalities.

B. Commodity-based Cryptography

The commodity-based model [4], [3] is a setup assumption
in which there is a trusted initializer who pre-distributes cor-
related data to the protocol participants during a setup phase,
which is performed before the protocol execution (possibly
far before the inputs are even fixed) and is independent of
the protocol inputs. The trusted initializer does not take part
in the protocol execution after the setup phase; in particular,
he does not learn the parties’ inputs. The trusted initializer is

3

Functionality FDMM

FDM runs with parties P1, . . . , Pn and is parametrized by
the size q of the ring and the dimensions i, j and k of the
matrices.

Input: Upon receiving a message from a party with its
shares of JXK

q
and JY K

q
, verify if the share of X is in Zi×jq

and the share of Y is in Zj×kq . If it is not, abort. Otherwise,
record the shares, ignore any subsequent message from that
party and inform the other parties about the receipt.

Output: Upon receipt of the shares from all parties, recon-
struct X and Y from the shares, compute Z = XY and
create a secret sharing JZKq to distribute to the parties: the
corrupt parties fix their shares of the output to any constant
values and the shares of the uncorrupted parties are then
created by picking uniformly random values subject to the
correctness constraint.

Fig. 2. The distributed matrix multiplication functionality.

modeled in this work by an ideal functionality FD
TI, which is

parametrized by an algorithm D that samples the correlated
data to be pre-distributed to the parties. See Figure 1 for
details.

The main advantage of using this model is that, for many
problems, it allows very efficient solutions with unconditional
security (in some cases even perfect security). This follows
from the fact that, in these problems, the trusted initializer can
pre-distribute instances computed on random inputs, which the
parties later on only derandomize to match their actual inputs.
This model was already used to obtain very efficient solutions
for primitives such as commitments [36], [7], [31], oblivious
transfer [4], [3], inner-product [20], [25], linear algebra [17],
string equality [25], verifiable secret sharing [32], [19], set
intersection [25] and oblivious polynomial evaluation [39]. In
the context of privacy-preserving machine learning, this model
was used in [18], [12].

In practice, this correlated data can be obtained in different
ways: (1) it can be distributed by a single trusted center that
runs the setup phase and delivers the data to the participants;
(2) it can be pre-distributed by many not entirely trusted
centers that do not interact with (or even know) each other. In
this case only a majority of honest centers is needed [4], [6];
(3) it can be pre-computed by the parties themselves, using
a multi-party computation protocol in order to emulate the
trusted initializer (in this case the main advantage is offloading
the heavy computational steps to an offline phase that can be
executed at any idle time).

C. Secure Distributed Matrix Multiplication

Given the operations that can be performed locally with
the secret sharings, one remaining important operation that is
still missing is the multiplication of secret sharings. While

Secure Distributed Matrix Multiplication Protocol
πDMM

The protocol is parametrized by the size q of the ring
and the dimensions i, j and k of the matrices, and runs
with the parties P1, . . . , Pn. The trusted initializer chooses
uniformly random U and V in Zi×jq and Zj×kq , respectively,
computes W = UV and pre-distributes secret sharings
JUK

q
, JV K

q
, JW K

q
to the parties. The parties have inputs

JXKq , JY Kq and interact as follows:

1) Locally compute JDK
q
← JXK

q
− JUK

q
and JEK

q
←

JY K
q
− JV K

q
, then open D and E.

2) Locally compute JZKq ← JW Kq +EJUKq +DJV Kq +
DE.

Fig. 3. The protocol for secure distributed matrix multiplication.

this operation can be complicated to perform in the plain
model, in the commodity-based model there is a very simple
and efficient solution from Beaver [5]. Here we present an
extension of his idea for basic multiplication to performs
distributed matrix multiplication. The parties have as input
JXKq and JY Kq , for matrices X ∈ Zi×jq and Y ∈ Zj×kq , and
want to obtain shares of the product. The trusted initializer
pre-distributes a random matrix multiplication triple to the
parties, i.e., secret sharings JUK

q
, JV K

q
and JW K

q
for U and

V uniformly random in Zi×jq and Zj×kq , respectively, and
W = UV . The parties then derandomize the random matrix
multiplication triple during the protocol execution in order to
compute a secret sharing JZK

q
corresponding to Z = XY

without leaking any information about the input values X and
Y or the output value Z. Figure 2 describes the distributed
matrix multiplication functionality FDMM that is considered
and Figure 3 presents the protocol πDMM that implements such
functionality.

Theorem II.1. The protocol πDMM is correct and securely
implements the distributed matrix multiplication function-
ality FDMM against honest-but-curious adversaries in the
commodity-based model.

Proof. Correctness: For verifying correctness, first notice that
Z = XY = (U +D)(V + E) = UV + UE +DV +DE =
W+UE+DV +DE and therefore JZK

q
← JW K

q
+EJUK

q
+

DJV K
q

+DE obtains a secret sharing corresponding to Z =
XY . The fact that the resulting shares are uniformly random
with the constraint that Z = XY follows trivially from the fact
that the pre-distributed multiplication triple has this property.

Security: The simulation is very simple and proceeds
as follows. The simulator S runs internally a copy of the
adversary A and reproduces the real world protocol exe-
cution perfectly for A. For that, it simulates the protocol
execution with dummy inputs for the uncorrupted parties. The
leverage of the simulator is the fact that it can simulate the
trusted initializer functionality FD

TI for A. Using this leverage,

4

whenever a corrupted party announces its shares of D and
E in the simulated protocol execution, S can extract the
respective shares of X and Y to give to the distributed matrix
multiplication functionality FDMM. And whenever an honest
party sends its shares to the functionality, S simulates the
announced messages for A by sending random messages,
which from A’s point of view are indistinguishable from the
messages in the real protocol execution as the shares of U
and V are uniformly random and unknown to A. Given its
knowledge about JUK

q
, JV K

q
, JW K

q
, D and E by the end of

the simulated execution, S knows, for each corrupted party,
which value its share of the output is supposed to take, and
therefore S can fix these values in FDMM so that the sum of the
uncorrupted parties’ shares is compatible with the simulated
execution.

Notation: We denote by πDM the protocol for the special
case of multiplication of single elements. The special case of
inner-product computation will be denoted as πIP.

III. MACHINE LEARNING CLASSIFIERS

In this section we briefly review the machine learning mod-
els for which we propose privacy-preserving scoring protocols
in Section VIII. Our presentation and notation is similar to that
of Bost et al. [10], [9].

A. Decision Trees

Decision trees are non-parametric, discriminative classi-
fiers1. Alice holds an input vector x = (x1, . . . , xt) ∈ Rt
consisting of t features. The classification algorithm consists
of a mapping C: Rt→{c1, . . . , ck} on x. The result of the
classification C(x) is one of the k possible classes c1, . . . , ck.
The model is a tree structure and is held by Bob. Each internal
node of the tree structure tests the value of a particular feature
against a corresponding threshold and branches according to
the results. Each leaf node specifies one of the k classes. The
result of the classification is the class associated with the leaf
reached from traversing the tree.

In all our secure protocols a full tree is assumed. In the case
where a decision tree is not full, one can always fill it with
dummy nodes to obtain a full tree. It is assumed, without loss
of generality, that the trees are binary.

Bob’s model is D = (d,G,H,w), where d is the depth
of the tree, G: {1, . . . , 2d}→{1, . . . , k} is a mapping from
the indices of the leaves to the indices of the classes,
H: {1, . . . , 2d−1}→{1, . . . , t} is a mapping from the indices
of the internal nodes (always considered in level-order) to the
indices of Alice’s input features and w = (w1, . . . , w2d−1)
with wi ∈ R contains the thresholds corresponding to each
internal node. For each internal node vi with 1 ≤ i ≤ 2d − 1,
let zi be the Boolean variable denoting the result of comparing
xH(i) with wi, which is one if xH(i) ≥ wi and zero otherwise.
The classification process goes as follows:

1Being non-parametric means that the structure of the model is not com-
pletely fixed, the model can grow in size to accommodate the complexity of
the training data. Being discriminative means that the model learns boundaries
between the classes.

x
1
≥ w

1

x
2
≥ w

2 x
3
≥ w

3

c
1

c
2

c
1

c
2

z
1
= 1

z
2
= 1 z

3
= 1

z
1
= 0

z
2
= 0 z

3
= 0

Fig. 4. Example of decision tree with 7 nodes and 2 classes.

• Starting from the root node, for the current internal node
vi, evaluate zi. If zi = 1, take the left branch; otherwise,
the right branch.

• The algorithm terminates when a leaf is reached. If the
j-th leaf is reached, then the output is cG(j).

Similar to Bost et al. [9], we are able to express D as a
polynomial which has an output corresponding to the label
of the resulting leaf node. The polynomial is a sum of
terms such that each term corresponds to one possible path
in the tree: the term corresponding to path taken by x in
the tree evaluates to the classification result (i.e., the class
associated to that leaf), while the remaining terms evaluate
to zero. This polynomial is created with the knowledge of
G and takes as input all zi, which can be calculated via
comparisons between the thresholds held by Bob and the
features held by Alice. The classification then consists of
evaluating the polynomial PG: {0, 1}2d−1→{1, . . . , k} on
input z = (z1, . . . , z2d−1). For example, for the tree portrayed
in Figure 4, the polynomial PG that represents the tree is:
PG(z1, z2, z3) = z1z2c1 + z1z̄2c2 + z̄1z3c1 + z̄1z̄3c2 where x̄
denotes 1− x.

B. Hyperplane Based Classifiers and Support Vector Ma-
chines

Hyperplane-based classifiers are parametric, discriminative
classifiers. For a setting with t features2 and k classes, the
model consists of k vectors w = (w1, . . . ,wk) with wi ∈ Rt
and the classification result is obtained by determining, for
Alice’s feature vector x ∈ Rt, the index

k∗ = argmax
i∈[k]
〈wi,x〉,

where 〈·, ·〉 is the inner-product.
Hyperplane-based classifiers are very common in machine

learning. They can be obtained, for example, through maximiz-
ing the margin (as in support vector machines, which are ex-
plained below), perceptron learning, Fisher linear discriminant
analysis and least squares optimization. All these techniques

2We can have one of the features being 1 in order to account for constants.

5

result in hyperplane-based classifiers for which the privacy-
preserving scoring protocols we propose in Section VIII are
applicable.

Support vector machine (SVM) learning is a method for
training classifiers based on different types of kernel func-
tions – polynomial functions, radial basis functions, etc. An
SVM is characterized by a linear separating hyperplane which
maximizes the margins between the classes [21]. The decision
boundary is maximized with respect to the data points from
each class (known as support vectors) that are closest to the
decision boundary. Support vector machines are a particular
case of hyperplane-based classifiers. For the particular case
of an SVM classifier with two classes c+ and c−, we can
rephrase hyperplane-based classifiers as follows. Alice holds
an input vector x, Bob holds a model (a, b), where a is an t-
dimensional vector (the weight vector) and b is a real number.
The result of the classification is obtained by computing

sign (〈x,a〉+ b) ,

where sign (y) is + if y > 0 and − otherwise.
Logistic regression is a classifier that models the posterior

probability of the class given the input features by fitting
a logistic curve to the relationship between them [33]. As
such, logistic regression model outputs can be interpreted as
probabilities of the occurrence of a class. When the response
is a binary variable with class labels c+ and c−, then for a new
input instance x, a trained logistic regression model outputs
the probabilities

PC|X(c−|x) =
1

1 + exp(〈x,a〉+ b)

and PC|X(c+|x) = 1−PC|X(c−|x), where the weight vector
a and the real number b are learned during the logistic
regression model training process. The class decision for the
given probability is then made based on a threshold value
which is often set to 0.5: if PC|X(c+|x) ≥ 0.5, then we predict
that the instance belongs to the positive class, and otherwise
we predict the instance belongs to the negative class. In this
case the classification can be done by computing

sign (〈x,a〉+ b) .

IV. SECURE DISTRIBUTED COMPARISON

In this section, we present a secure distributed comparison
protocol which uses the multiplication protocol from Sec-
tion II-C as a building block. Let the `-bit integers to be
compared be x = x` . . . x1 and y = y` . . . y1. The parties
P1, . . . , Pn have additively secret sharings JxiK2 and JyiK2 of
each bit of x and y. The output of the distributed comparison
is J1K

2
if x ≥ y and J0K

2
if x < y. The distributed

comparison functionality FDC is described in Figure 5. It
takes bitwise shares of the numbers to be compared as input
and outputs shares of the comparison result. The protocol
that implements it follows the lines of Damgård, Geisler and
Krøigaard [15], which is one of the most efficient known
solutions for the secure comparison problem. However, due

Functionality FDC

FDC runs with parties P1, . . . , Pn and is parametrized by
the bit-length ` of the values being compared.

Input: Upon receiving a message from a party with its
shares of JxiK2

and JyiK2
for all i ∈ {1, . . . , `}, record the

shares, ignore any subsequent messages from that party and
inform the other parties about the receipt.

Output: Upon receipt of the inputs from all parties, re-
construct x and y from the bitwise shares. If x ≥ y, then
create and distribute to the parties the secret sharing J1K

2
;

otherwise the secret sharing J0K
2
. Before the deliver of the

output shares, the corrupt parties fix their shares of the
output to any constant values. In both cases the shares of the
uncorrupted parties are then created by picking uniformly
random values subject to the correctness constraint.

Fig. 5. The distributed comparison functionality.

Secure Distributed Comparison Protocol πDC

Let ` be the bit length of the integers to be compared. The
trusted initializer pre-distributes the correlated randomness
necessary for the execution of all instances of the dis-
tributed multiplication protocol. The parties have as inputs
shares JxiK2

and JyiK2
of each bit of x and y. The protocol

proceeds as follows:

1) For i = 1, . . . , `, compute in parallel JdiK2
←

JyiK2
(1− JxiK2

) using the multiplication protocol
πDM and locally compute JeiK2

← JxiK2
+ JyiK2

+ 1.
2) For i = 1, . . . , `, compute JciK2 ←

JdiK2

∏`
j=i+1JejK2

using the multiplication protocol
πDM.

3) Compute JwK2 ← 1 +
∑`
i=1JciK2 locally.

Fig. 6. The protocol for secure distributed comparison.

to our usage of pre-distributed, correlated randomness, it is
possible to eliminate the use of the computationally intensive
steps. We also simplified the protocol to work over Z2 instead
of a much larger ring Zq . The resulting comparison protocol
πDC is described in Figure 6.

Theorem IV.1. The distributed comparison protocol πDC is
correct and securely implements the distributed comparison
functionality FDC against honest-but-curious adversaries in
the commodity-based model.

Proof. Correctness: We have that x < y if and only if there
exists i such that all the bits (x`, . . . , xi+1) are identical to
the bits (y`, . . . , yi+1) and xi < yi. In our protocol the binary
values ei = xi + yi + 1 mod 2 indicate whether xi = yi

6

Functionality Fargmax

Fargmax runs with parties P1, . . . , Pn and is parametrized
by the bit-length ` of the values being compared and the
number k of values being compared.

Input: Upon receiving a message from a party with its
bitwise shares of Jvj,iK2

for all j ∈ {1, . . . , k} and
i ∈ {1, . . . , `}, record the shares, ignore any subsequent
messages from that party and inform the other parties about
the receipt.

Output: Upon receipt of the inputs from all parties, recon-
struct the values vj from the bitwise shares vj,i, compute
m = argmaxj∈{1,...,k} vj , and send m to P1.

Fig. 7. The argmax functionality.

(ei = 1) or xi 6= yi (ei = 0). Additionally, the binary values
di = yi(1− xi) indicate whether xi < yi (di = 1) or xi ≥ yi
(di = 0). Therefore x < y if and only if there exists i such that
e` = . . . = ei+1 = 1 and di = 1. If these conditions are met
for some i, then ci = di

∏`
j=i+1 ej will be 1; otherwise ci = 0.

Note that at most one ci can be equal to 1 since a ci could
only possibly be 1 if it corresponds to the most significant bit
in which the strings differ. Finally w = 1+

∑`
i=1 ci mod 2 is

equal to the complement of the ci’s exclusive-or and thus equal
to zero if and only if there exists i such that ci = 1. Putting
all facts together the correctness of the protocol follows.

Security: The only messages exchanged are for the execu-
tions of the distributed multiplication protocol πDM, therefore
the security trivially follows from the fact that πDM securely
realizes FDMM. The simulation is very simple and proceeds
as follows. The simulator S runs internally a copy of the
adversary A and reproduces the protocol execution perfectly
for A. For that, it simulates the protocol execution with
dummy inputs for the uncorrupted parties. The leverage of
the simulator is the fact that it can simulate the distributed
multiplication functionality FDMM for A. Using such leverage,
S can easily extract the shares of the inputs and outputs that
correspond to each corrupt party in order to give them to FDC,
which picks the shares of the uncorrupted parties uniformly
at random subject to the correctness constraint. The real and
ideal worlds are then indistinguishable.

Optimization: The computation of the products of the ei’s
do not need to be repeated. The idea is to create a binary tree
with the ei’s in the leaves and then proceed upwards: at each
internal node compute the product of its two children (and
record it). The nodes at the same level can be computed in
parallel. For the computation of the ci’s, there is at most one
relevant node at each level of the tree, and the multiplications
are done in parallel as soon as the values are available. This
optimized version has 2 + log ` rounds and uses at most 2`+
`dlog `e

2 − 1 instances of πDM over Z2.

Secure Argmax Protocol πargmax

Let ` be the bit length of the k values to be compared.
The trusted initializer pre-distributes all the correlated
randomness necessary for the execution of the instances
of the distributed multiplication and comparison protocols.
The parties have as input bitwise shares Jvj,iKq for all
j ∈ {1, . . . , k}, i ∈ {1, . . . , `} and proceed as follows:

1) For all j = 1, . . . , k and n ∈ {1, . . . , k} \ j, the
parties execute in parallel the distributed comparison
protocol πDC with inputs Jvj,iK2

and Jvn,iK2
(i =

1, . . . , `). Let Jwj,nK2
denote the output obtained.

2) For all j = 1, . . . , k, the parties computed in parallel
JwjK2

=
∏
n∈{1,...,k}\jJwj,nK2

using the distributed
multiplication protocol πDM.

3) The parties open wj for P1. If wj = 1, P1 append j
to the value to be output in the end.

Fig. 8. The secure argmax protocol.

V. SECURE ARGMAX

Suppose that the parties P1, . . . , Pn have bitwise shares of a
tuple of values (v1, . . . , vk) and want one of them, let’s say P1,
to learn all the arguments m ∈ {1, . . . , k} such that vm ≥ vj
for all j ∈ {1, . . . , k}, but no party should learn any vj or the
relative order between the elements. I.e., the parties just want
P1 to learn

m = arg max
j∈{1,...,k}

vj .

The argmax functionality Fargmax is described in Figure 7.
Using our protocol for secure distributed comparison it is
possible to give simple and practical solutions for securely
computing this function. An idea, which optimizes the number
of communication rounds, is having the parties comparing
in parallel each ordered pair of vectors and then using the
result of the comparisons to determine the argmax. Note than
when considering all executions of the comparison protocol
involving a specific value vj as the first argument, they will
all return one if and only if the value is a maximum. The
protocol πargmax is described in Figure 8.

Theorem V.1. The argmax protocol πargmax is correct and
securely implements the argmax functionality Fargmax against
honest-but-curious adversaries in the commodity-based model.

Proof. Correctness: The correctness follows trivially as for
a maximum value, all comparison involving it as the first
argument will return one, and so the product of the comparison
results will also be one and the index will be added to the
output. For all values which are not a maximum, at least one
comparison will return zero, and so the product will be zero
and the index will not be added.

Security: The first two steps only involve invocations of the
distributed comparison πDC and multiplication πDM protocols,
while the last step only opens one bit of information per index,

7

Functionality Fdecomp

Fdecomp runs with parties P1, . . . , Pn and is parametrized
by the bit-length ` of the value x being converted from
additive sharings JxKq in Zq to additive bitwise sharings
JxiK2

in Z2 such that x = x` · · ·x1.

Input: Upon receiving a message from a party with its
share of JxK

q
, record the share, ignore any subsequent

messages from that party and inform the other parties about
the receipt.

Output: Upon receipt of the inputs from all parties, re-
construct the value x = x` · · ·x1 from the shares, and for
i ∈ {1, . . . , `} distribute new sharings JxiK2

of the bit xi.
Before the output deliver, the corrupt parties fix their shares
of the outputs to any constant values. The shares of the
uncorrupted parties are then created by picking uniformly
random values subject to the correctness constraints.

Fig. 9. The bit-decomposition functionality.

indicating whether it corresponds to a maximum value or not;
but this information is exactly the information contained in
the output of the functionality Fargmax; hence the security of
the protocol follows easily. Using the fact that πDC securely
realizes FDC and πDM securely realizes FDMM, the simulator
S runs internally a protocol execution for the adversary A in
which he simulates the ideal functionalities and uses dummy
inputs for the uncorrupted parties. Using this leverage, it is
trivial for S to extract the inputs of the corrupted parties in
order to give to Fargmax. If P1 is corrupted, S can then use the
output it gets from Fargmax to adjust the output of the simulated
protocol by picking an uncorrupted party and changing its
share of each wj appropriately before the opening. The real
and ideal worlds are then indistinguishable.

Optimization: Similarly to the comparison protocol, the
multiplications in the second step can be done using a binary
tree approach, thus taking logdk − 2e rounds.

VI. SECURE BIT-DECOMPOSITION

In this section we deal with the problem of converting from
shares JxK

q
of a value x in a large field Zq to shares of JxiK2

in the field Z2, where x` · · ·x1 is the binary representation of
x. The bit-decomposition functionality Fdecomp is described
in Figure 9. The usefulness of such functionality comes from
the fact that it allows to convert from a representation that
allows the efficient execution of algebraic operations to a
representation that allows the efficient execution of Boolean
operations, such as a comparison. We present in Figure 10 a
bit-decomposition protocol πdecomp that is specialized for the
two-party case with q = 2`. Alice and Bob know shares a and
b, respectively, such that x = a+ b mod 2`. Note that Alice
also knows the bit string representation of a, i.e., a` . . . a1, and
Bob similarly knows b` . . . b1. The main observation is that the

Secure Two-Party Bit-Decomposition Protocol πdecomp

Let ` be the bit length of the value x to be reshared.
All distributed multiplications using protocol πDM will be
over Z2 and the required correlated randomness is pre-
distributed by the trusted initializer. The parties, Alice and
Bob, have as input JxK

q
for q = 2` and proceed as follows:

1) Let a denote Alice’s share of x, which corresponds
to the bit string a` . . . a1. Similarly, let b denote
Bob’s share of x, which corresponds to the bit string
b` . . . b1. Define the secret sharings JyiK2 as the pair
of shares (ai, bi) for yi = ai + bi mod 2, JaiK2

as
(ai, 0) and JbiK2

as (0, bi).
2) Compute Jc1K2

← Ja1K2
Jb1K2

using πDM and locally
set Jx1K2

← Jy1K2
.

3) For i = 2, . . . , `:
a) Compute JdiK2

← JaiK2
JbiK2

+ 1
b) JeiK2

← JyiK2
Jci−1K2

+ 1
c) JciK2 ← JeiK2JdiK2 + 1
d) JxiK2 ← JyiK2 + Jci−1K2

4) Output JxiK2
for i ∈ {1, . . . , `}.

Fig. 10. The secure two-party bit-decomposition protocol.

difference between the sum of a = a` . . . a1 and b = b` . . . b1
modulo 2` and two bit strings that xor to the bit string x` · · ·x1
is exactly equal to the carry bits.3 Therefore we use a carry
computation to obtain the bitwise secret sharings JxiK2 starting
from a` . . . a1 and b` . . . b1.

Theorem VI.1. Over any ring Z2` , the bit-decomposition
protocol πdecomp is correct and securely implements the bit-
decomposition functionality Fdecomp for the special case of
two players against honest-but-curious adversaries in the
commodity-based model.

Proof. Correctness: The protocol implements a full adder
logic ci = (ai∧bi)∨((ai⊕bi)∧ci−1), which can be similarly
expressed as ci = ¬(¬(ai∧bi)∧¬((ai⊕bi)∧ci−1)) to obtain
the carry bit string. By adding ci−1 into yi, we convert from
bit strings that sum to x modulo 2` to bit strings that xor to
x, thus obtaining the shares of xi modulo 2.

Security: The only non-local operations are the invocations
of the distributed multiplication protocol πDM, which securely
realizes FDMM. Therefore the security follows essentially from
the security of that protocol. S runs a copy of A and simulates
an execution of the protocol using dummy inputs for the
uncorrupted party. Since S is the one simulating the distributed
multiplication functionality FDMM, it can easily extract the
corrupted party’s share of the input in order to give it to
Fdecomp and also derive the corrupted party’s shares of the
outputs in order to fix then in Fdecomp. Consequently the real
and ideal worlds are indistinguishable.

3The protocol is similar to the one of Laud and Randmets [28], see the
related works in Section XI for more details.

8

Functionality FOIS

FOIS runs with Alice and Bob and is parametrized by the
size n of the input vector x = (x1, . . . , xn) and the bit-
length ` of each input xj .

Input: Upon receiving a message with the input vector x =
(x1, . . . , xn) from Alice, store them, ignore any subsequent
message from her and inform Bob that the inputs were
received.

Output: Upon receipt of the selected index k ∈ [t] from
Bob, distribute bitwise sharings Jxk,iK2

for i ∈ {1, . . . , `}
and ignore any subsequent messages. Before the output
deliver, the corrupt party fix its shares of the outputs to any
constant values. The shares of the uncorrupted parties are
then created by picking uniformly random values subject
to the correctness constraints.

Fig. 11. The oblivious input selection functionality.

Optimization: The idea to optimize the number of rounds
to logarithmic is to compute speculatively. In the first round
the bit strings are divided in blocks of size 1 and the values
of xi and ci are computed speculatively using both ci−1 = 1
and ci−1 = 0 for all but i = 1, for which we know that
there is no carry in and so only one computation is needed.
The second round divides the bit strings in blocks of size 2
and uses the information from the previous round to compute
xi+1xi and ci+1ci speculatively using both ci−1 = 1 and
ci−1 = 0 (except for the least significant block that only
needs one computation). The third round proceeds analogously
with blocks of size 4 by joining the blocks of size 2, and
so on. After dlog `e rounds one gets the desired bit strings
x` . . . x1 and c` . . . c1. The first iteration uses 3` instances of
the multiplication protocol and needs two rounds of communi-
cation as there are pairs of sequential multiplications, all other
iterations only need one round of communication and use 2`
multiplications each. Therefore in total the optimized protocol
has 2+dlog `e rounds and uses 2`dlog `e+3` instances of the
multiplication protocol.

VII. OBLIVIOUS INPUT SELECTION

In our applications there are also circumstances in which
Alice holds a vector of inputs x = (x1, . . . , xn) and Bob
holds an index k, and they want to obtain bitwise secret
sharings of xk for further uses in the protocol, but without
revealing any information about the inputs or k. The oblivious
input selection functionality FOIS, which captures this task, is
described in Figure 11. In Figure 12 a protocol πOIS realizing
this functionality is presented.

Theorem VII.1. The oblivious input selection protocol πOIS is
correct and securely implements the oblivious input selection

functionality FOIS against honest-but-curious adversaries in
the commodity-based model.

Proof. Correctness: Straightforward to verify.
Security: Similarly to the previous proofs, S uses the

fact that the only messages exchanged are for performing
the distributed multiplications and the leverage of being able
to simulate FDMM in order to simulate an execution of the
protocol to A and at the same time being able to extract the
inputs and the output shares of a corrupted party in order to
forward to FOIS. By doing so, the real and ideal worlds are
indistinguishable.

VIII. ASSEMBLING THE BUILDING BLOCKS

We now present our privacy-preserving classifiers using the
building blocks from the previous sections.

A. Secure Decision Trees

Here, Alice inputs x = (x1, . . . , xn) ∈ Rn and the
classification algorithm will result in one of the k possible
classes c1, . . . , ck. Bob holds the model D = (d,G,H,w),
where d is the depth of the tree, G maps the leaves to classes,
H maps internal nodes (always considered in level-order) to
input features and w is a vector of thresholds. Each internal
node of the tree structure tests the value of a particular feature
against a corresponding threshold and branches according to
the results. Each leaf node specifies a class. In all our secure
protocols, we assume without loss of generality that we have
a full binary tree. In case a decision tree is not full, one can
always fill it with dummy nodes and obtain a full one. Let
zi be the Boolean variable denoting the result of comparing
xH(i) with wi. We recall the classification algorithm:
• Starting from the root node, for the current internal node
vi, evaluate zi. If zi = 1, take the left branch; otherwise,
the right branch.

• The algorithm terminates when a leaf is reached. If the
j-th leaf is reached, then the output is cG(j).

The classification can be expressed as a polynomial
PG: {0, 1}2d−1→{1, . . . , k} that depends on the mapping G
from the leaves to the classes. On input z = (z1, . . . , z2d−1),
PG gives the classification result. This polynomial is a sum of
terms such that each term corresponds to one possible path in
the tree: the term corresponding to path taken by x in the tree
evaluates to the classification result (i.e., the class associated
to that leaf), while the remaining terms evaluate to zero.

The idea of our secure protocol is that, for each internal
node, Alice and Bob use the oblivious input selection protocol
πOIS to obtain bitwise secret sharings of the value xH(i)

that will be compared against the threshold wi of this node.
Note that, as Alice does not learn any information from the
execution of πOIS, she does know which feature will be used
in the comparison at each internal node. Then the comparisons
are performed using the secure distributed comparison protocol
πDC in order to obtain z, which is then used to evaluate the
polynomial PG using the secure multiplication protocol πDM

and local addition of secret sharings. The only information
leaked about the tree structure to Alice is its depth d. The

9

Oblivious Input Selection Protocol πOIS

Let ` be the bit length of the inputs to be shared and n
the dimension of the input vector. The trusted initializer
pre-distributes all the correlated randomness necessary for
the execution of πDM over Z2. Alice has as input a vector
of values, x = (x1, . . . , xn), and Bob has as input k, the
index of the desired input value. They proceed as follows:

1) Define yk = 1 and, for j ∈ {1, . . . , n}\{k}, yj = 0.
For j ∈ {1, . . . , n} and i ∈ {1, . . . , `}, let xj,i denote
the i-th bit of xj . Define JyjK2 as the pair of shares
(0, yj) and Jxj,iK2 as (xj,i, 0)

2) For i = 1, . . . , `, compute JziK2
←∑n

j=1 JyjK2
Jxj,iK2

using the distributed
multiplication πDM over Z2.

3) Output JziK2
for i ∈ {1, . . . , `}.

Fig. 12. The oblivious input selection protocol.

Functionality FDT

FDT is parametrized by the tree depth d, which is revealed
to Alice.

Input: Upon receiving the feature vector x from Alice
or the decision tree model D = (d,G,H,w) from Bob,
store it, ignore any subsequent message from that party,
and inform the other party about the receipt.

Output: Upon receipt of the inputs from both parties,
evaluate the decision tree D with the input x. Let j be
the reached leaf. Output G(j) to Alice.

Fig. 13. The decision tree functionality.

decision tree functionality FDT is described in Figure 13 and
a more detailed description of the protocol πDT realizing FDT

is in Figure 14.

Theorem VIII.1. The decision tree protocol πDT is cor-
rect and securely implements the decision tree functionality
FDT against honest-but-curious adversaries in the commodity-
based model.

Proof. Correctness: For each leaf j ∈ {1, . . . , 2d}, the secret
sharings Jyj−1,rK2

with r = 1, . . . , dlog ke obtained in step
3 correspond to a binary representation of the index of its
associated class (offset by 1) if j is the leaf that would be
reached by using the model D on input x; otherwise they
correspond to zeros as at least one of the terms JzuK2+js in the
multiplication would be zero. Thus in step 4, by summing all
Jyj−1,rK2

for j ∈ {1, . . . , 2d}, opening the results and adding

Secure Decision Tree Protocol πDT

Alice has as input a feature vector x and Bob has a decision
tree model D = (d,G,H,w). Alice and Bob proceed as
follows:

1) For i = 1, . . . , 2d − 1, Alice and Bob obtain bitwise
secret sharings of xH(i) by executing the protocol
πOIS with inputs x1, · · · , xn from Alice and input
H(i) from Bob.

2) For i = 1, . . . , 2d − 1, Alice and Bob securely
compare xH(i) and wi using the protocol πDC. For
the input wi, Bob inputs its bit representation to πDC

and Alice inputs zeros. Let JziK2
denote the result.

3) For j = 0, . . . , 2d − 1, let jd . . . j1 be the binary
representation of j with d bits and let bα . . . b1 for
α = dlog ke be the binary representation of G(j +
1) − 1. For r = 1, . . . , α, initialize Jyj,rK2 with the
shares (0, br). Initialize u = 1 and s = d. While
s > 0 do:

a) For all r = 1, . . . , α update Jyj,rK2 ←
Jyj,rK2

(JzuK2
+ js) using πDM over Z2.

b) Update u← 2u+ js and s← s− 1.

4) For all r = 1, . . . , α compute JσrK2
←
∑2d−1
j=0 Jyj,rK2

and open σr to Alice. Alice reconstructs σ from the
bit string σα . . . σ1 and outputs k∗ = σ + 1.

Fig. 14. The protocol for secure evaluation of a decision tree.

1, Alice obtains the result of the classification k∗.

Security: Alice learns the depth d of the tree in order to
allow the execution, but this is leaked by FDT as well. In
the first three steps messages are only exchanged in order
to execute the sub-protocols πOIS, πDC and πDM respec-
tively, which securely realize the functionalities FOIS, FDC

and FDMM respectively. Then the last step simply reveals
the bit string encoding the class that was the result of the
classification to Alice. The simulation strategy is similar to
the one in the previous sections. The simulator S internally
runs a protocol execution for the adversary A in which S
simulates FOIS, FDC and FDMM and uses dummy inputs for the
uncorrupted parties. Using this leverage S can easily extract
the inputs of the corrupted party, x in case Alice is corrupted or
D = (d,G,H,w) in case Bob is corrupted, in order to forward
to FDT. In case Alice is corrupted, upon learning the correct
output from FDT, S can adjust appropriately Bob’s shares of
σr in the simulated protocol in order to match the right result.
The real and ideal worlds are then indistinguishable.

Optimization: All independent operations are run in paral-
lel and the round complexity of step 3(a) can be reduced using
techniques similar to the previous sections.

10

B. Secure Hyperplane-Based Classifiers

A privacy-preserving hyperplane-based classifier is easily
achievable using our building blocks. The classification result
of hyperplane-based classifiers is given by the index

k∗ = argmax
i∈[k]
〈wi,x〉.

Thus, one just needs to represent the model and features in Zq ,
compute each inner product between wi and x by using πIP,
input the results into the bit-decomposition protocol πdecomp

and then into the argmax protocol πargmax.
In the specific case of SVM, Alice holds an input vector x,

Bob holds a model (a, b), where a is an t-dimensional vector
(the weight vector) and b is a real number. The result of the
classification is obtained by computing

sign (〈x,a〉+ b) ,

where sign (y) is + if y > 0 and − otherwise. The overall
idea for obtaining privacy-preserving SVM classifiers is as
follows: Alice inputs her personal vector x and Bob inputs his
model vector a to the secure distributed inner product protocol
πIP. After that, the result is run through the bit-decomposition
protocol πdecomp. The resultant bitwise shares, together with
b, are used in the comparison protocol πDC to determine the
final result, which is then opened to Alice as her prediction.

To score a logistic regression classifier with threshold 0.5
one needs to check whether the expression

log

(
PC|X(c+|x)

PC|X(c−|x)

)
is positive or not, where

PC|X(c−|x) =
1

1 + exp(〈x,a〉+ b)
.

This boils down to computing sign (〈x,a〉+ b), where x is
the input feature vector, and the a and b are vectors defining
the logistic regression classification model (held by Bob).
Therefore, the protocol used to privately evaluate a logistic
regression model is exactly the same as the one described in
the support vector machines section.

The security of these compositions follows from the security
of the sub-protocols and the fact that no values are ever opened
before the final result; each party only sees shares, which
appear completely random.

IX. EXPERIMENTS

For decision trees, SVM and logistic regression models we
report accuracy (calculated using 10-fold cross validation) for
7 different datasets within the UCI Repository4. We also report
average classification time for an instance in each dataset when
following our privacy-preserving protocol as well as average
time required when the classification is done in the clear. Note
that the bit-length used to express the values should be large
enough as not to compromise the accuracy of the algorithms. It
is no real gain for applications if the performance is improved

4UC Irvine Machine Learning Repository https://archive.ics.uci.edu/ml/
datasets.html

at the cost of drastically decreasing the accuracy, therefore the
accuracy is also reported.

Support Vector Machine: For this study, we tested SVM
with a linear kernel, and we report the results for accuracy for
7 different datasets from the UCI repository. We leveraged the
e1071 package within R [29], setting type to ’C-classification’,
indicating our problems were classification tasks.

Decision Trees: We used an implementation of the classi-
fication and regression tree algorithm (CART) [11] in R [37].
The minimum deviance (mean squared error) is used as the
test parameter for proceeding with a new split. That is, adding
a node should reduce the error by at least a certain amount.
For our models, we set the complexity parameter to 0.01 and
report the corresponding accuracy.

Logistic Regression: For our experimentation, we used
R’s base glm function[35], setting the family parameter to
binomial(link=“logit”) to obtain a logistic regression model.

The following datasets were chosen for our experimentation:

1) Breast Cancer Wisconsin (Diagnostic): The goal with
this dataset is to classify 568 different tumors as ma-
lignant or benign. Each tumor is characterized by 30
different continuous features derived from an image of
the tumor (i.e. perimeter, area, symmetry, etc.).

2) Pima Indians Diabetes: This dataset includes 767
females of at least 21 years of age, all with Pima Indian
decent, and we wish to identify those with diabetes. We
leverage 8 different continuous features which describe
each woman’s health (examples: body mass index, dias-
tolic blood pressure).

3) Parkinsons: Here, the task is to differentiate between
patients with and without Parkinsons. To this end, the
dataset includes 22 features, all of which are measures
derived from voice recordings of 195 different patients
(example: average vocal fundamental frequency).

4) Connectionist Bench (Sonar, Mines vs. Rocks): The
goal with this dataset is to differentiate whether 207
sonar signals were bounced off of a metal cylinder vs.
a roughly cylindrical rock. Each of the 60 features is
within the range of 0.0 to 1.0 and represents energy
within a particular frequency band over a certain period
of time.

5) Hill-Valley: The task for this dataset is to identify hills
vs. valleys in terrain. Each of the 100 continuous features
is a point on a 2-D graph. We chose the dataset which
did not contain any noise.

6) LSVT Voice Rehabilitation: This dataset includes 126
patients who have undergone voice rehabilitation treat-
ment and we wish to determine the success of their
treatment, i.e. whether their phonations are considered
acceptable or unacceptable. To do this, we leverage 312
features, each of which is the results of a different speech
signal algorithm.

7) Spambase: Here, the goal is to identify 4,600 emails
as either spam or not spam. This dataset includes 57
features which describe the contents of each email
(examples: word frequencies, number of capital letters).

https://archive.ics.uci.edu/ml/datasets.html
https://archive.ics.uci.edu/ml/datasets.html

11

A. Results

1) Implementation Specifics: To generate preliminary re-
sults, the privacy-preserving algorithms were implemented in
Java, and compared against a simple implementation with-
out any privacy preservation. For our experiments with the
privacy-preserving classifiers, a general bit length, `, of 64
bits was used for representing all the inputs and throughout
all calculations, as this allowed for a good trade off between
complexity and space for precision. For some trials, a smaller
bit length might have served with sufficient precision.

All values had to be converted to integers to properly
work in the proposed algorithms. This was accomplished by
choosing a multiplier value and applying it to the features
and the weights for SVM and logistic regression or the
thresholds for decision trees and rounding any remaining
decimals. Furthermore, since calculations were done over a
ring, any negative values had to be expressed as their additive
inverses. This means in addition to precision considerations,
the bit length must be selected in such a way that the positive
values and negative values will remain distinctly separate in
the lower half and upper half of the values, respectively. This
allows us to differentiate between positive and negative values
by comparing against 2`−1 instead of 0.

Table I presents the results for the case of decision tree clas-
sifiers and Table II for SVM and logistic regression classifiers.
These results were generated using our implementations as run
on a nearly off the shelf personal computer with 4 GB RAM
at 1333 MHz, an Intel Core i7 at 2 GHz, and a Windows 7
OS, with most nonessential background tasks stopped for the
duration of the tests.

Classifications were run for each dataset at least 50 times
and the average duration of the online portion of the protocol
execution was recorded. For secure classification experiments
with the Spambase dataset, a subset of the full UCI dataset
was used to limit the amount of pre-distributed data necessary.

B. Analysis and Comparisons to Previous Results

Decision Trees: the computing time for running our proto-
col for the privacy-preserving evaluation of decision trees is
at most 26 milliseconds for trees of depth up to 9. In [10],
[9], for evaluating a tree of depth 4, the computing time is
in the order of a few seconds. Our protocol has 12 rounds of
communication or less for trees with depth up to 9, while the
number of interactions in [10], [9] is always over 30, even for
trees of depth 4. In the case of the protocols for computing
decision trees of [41], the computing time for a tree with depth
4 is around 100 ms (about 50 time slower than ours). The
communication complexity of our protocol for a decision tree
of depth 4 and 8 features is around 2KB, while the results in
[41] are around 100KB and in [10], [9] are around 3MB for
trees of the same dimension. As stated in [10], [9] and in [41],
solutions based on general purpose multiparty computation
frameworks have a much poorer performance then the specific
protocols presented here as well as the protocols presented in
[10], [9] and in [41].

It is noteworthy that while our implementation is in Java,
the implementations in [10], [9] and in [41] are in C++. Thus,

we could probably decrease our running time significantly by
implementing them in C++.

Support Vector Machines: We run the protocols proposed
in [18] with our optimized bit decomposition and comparison
protocols. While there are no implementation times given in
[18], it is clear that our implementations have a significant
impact in the performance. The number of rounds is usually
the most important factor in determining the latency of these
protocols and we reduce the round complexity from linear, as
proposed in [18], to logarithmic in the input length. Compared
to the implementations described in [10], [9] the computation
times are about 50ms for 30 and 47 features. In our case
for 30 features, the computing time is less than 6 ms. Our
number of rounds is larger than in [10], [9]. Our solution
takes 17 rounds. The solution in [10], [9] takes 7 rounds. If
the roundtrip time is the major factor in the total time the
solution proposed in [10], [9] is preferable to ours. The main
reason for the elevated round complexity in our solution is the
bit decomposition protocol, which is not needed in [10], [9].

Logistic Regression: The efficiency of the logistic regres-
sion protocol is the same as the support vector machine one.

X. REMOVING THE TRUSTED INITIALIZER

Our protocols assume that pre-distributed data is made
available to the players by a trusted initializer: random binary
multiplication triples (binary Beaver triples) in the case of
decision trees and random binary multiplication triples and
random inner product evaluations for the support vector ma-
chines and logistic regression classifiers.

In case a trusted initializer is not available or desirable,
Alice and Bob can run pre-computations during a setup
phase. In the case of the protocol evaluating decision trees,
to obtain the binary random multiplication triples, Alice and
Bob can run oblivious transfer protocols on random inputs.
The outcome of these evaluations can be easily transformed
in the random binary multiplication triples. The nice point
of this solution is that oblivious transfer can be extended
efficiently by using symmetric cryptographic primitives [24],
[27], [2]. The online phase of our protocols would remain
the same - using solely modular additions and multiplications.
Therefore, even considering the offline phase, our protocol
would still be substantially more efficient than the protocols
proposed in [10], [9] and in [41]. We also remark that the
protocol for evaluating decision trees in [10], [9] does not
allow its computationally heavy steps (Paillier encryptions and
uses of a somewhat homomorphic encryption scheme) to be
pre-computed. We also note that while the oblivious transfer
executions in [41] could also be pre-computed, the Paillier
encryption scheme would still be needed in the online phase.

XI. RELATED WORKS

Privacy-preserving Scoring of Machine Learning Classi-
fiers: There is a huge literature in training privacy-preserving
machine learning models (see [1] for a survey). However,
general (non-application specific) privacy-preserving protocols
for privately scoring machine learning classifiers were pro-
posed just recently in [10], [9] for the case of hyperplane-
based classifiers, Naive Bayes and decision trees and in [41]

12

Dataset Depth Number Accuracy Classification Time Classification Time Communication Complexity
of Tree of Features in the Clear (ms) Secure Protocol (ms) Uplink+Downlink (kB)

Breast Cancer 4 30 95.95% 0.07 + 1 RTT/2 6.5 + 11 RTT/2 8.21
Diabetes 9 8 77.18% 0.02 + 1 RTT/2 23.0 + 12 RTT/2 104.36

Parkinson’s 4 22 88.72% 0.40 + 1 RTT/2 7.6 + 11 RTT/2 6.34
Connectionist Bench 4 60 73.91% 0.10 + 1 RTT/2 20.8 + 11 RTT/2 15.24

Hill-Valley 3 100 49.83% 0.14 + 1 RTT/2 9.2 + 10 RTT/2 11.49
LSVT rehabilitation 3 310 79.37% 0.75 + 1 RTT/2 25.7 + 10 RTT/2 34.46

Spambase 6 57 88.89% 0.10 + 1 RTT/2 9.2 + 12 RTT/2 61.08
TABLE I

RESULTS OF THE EXPERIMENTS FOR THE DECISION TREE CLASSIFIERS. THE CLASSIFICATION TIME IS GIVEN AS THE COMPUTING TIME PLUS THE
NUMBER OF HALF ROUNDTRIP TIMES (RTT/2).

Dataset Number Accuracy Classification Time Classification Time Communication Complexity
of Features in the Clear (ms) Secure Protocol (ms) Uplink+Downlink (kB)

SVM
Breast Cancer 30 97.71% 0.06 + 1 RTT/2 5.1 + 17 RTT/2 0.94

Diabetes 8 77.05% 0.02 + 1 RTT/2 2.8 + 17 RTT/2 0.59
Parkinson’s 22 87.18% 0.04 + 1 RTT/2 3.1 + 17 RTT/2 0.81

Connectionist Bench 60 74.70% 0.10 + 1 RTT/2 6.3 + 17 RTT/2 1.40
Hill-Valley 100 57.59% 0.17 + 1 RTT/2 6 + 17 RTT/2 2.03

LSVT rehabilitation 310 80.16% 0.51 + 1 RTT/2 13.3 + 17 RTT/2 5.31
Spambase 57 92.72% 0.10 + 1 RTT/2 7.3 + 17 RTT/2 1.36

Logistic Regression
Breast Cancer 30 95.95% 0.07 + 1 RTT/2 5.4 + 17 RTT/2 0.94

Diabetes 8 77.31% 0.02 + 1 RTT/2 4.7 + 17 RTT/2 0.59
Parkinson’s 22 85.13% 0.04 + 1 RTT/2 5.1 + 17 RTT/2 0.81

Connectionist Bench 60 74.40% 0.11 + 1 RTT/2 6.2 + 17 RTT/2 1.40
Hill-Valley 100 60.07% 0.16 + 1 RTT/2 7.2 + 17 RTT/2 2.03

LSVT rehabilitation 310 53.17% 0.49 + 1 RTT/2 12.8 + 17 RTT/2 5.31
Spambase 57 92.70% 0.10 + 1 RTT/2 6.0 + 17 RTT/2 1.36

TABLE II
RESULTS OF THE EXPERIMENTS FOR THE SVM AND LOGISTIC REGRESSION CLASSIFIERS. THE CLASSIFICATION TIME IS GIVEN AS THE COMPUTING

TIME PLUS THE NUMBER OF HALF ROUNDTRIP TIMES (RTT/2). ALL DATASETS ONLY HAVE TWO CLASSES.

for decision trees and random forests. In [18] protocols for
hyperplane-based and Naive Bayes classifiers were proposed.

In [10], [9], hyperplane-based classifiers were implemented
by using a secure protocol for computing the inner product
based on the Paillier encryption scheme and a comparison
protocol that also relies heavily on the Paillier encryption
scheme.

The decision tree protocol of Bost et al. [10], [9] is divided
in two phases. In a first stage Paillier-based comparison
protocols are run with Alice inputting a vector containing her
features and Bob inputting the threshold values of the decision
tree. On a second stage, fully homomorphic encryption is used
to process the outcomes of the comparison protocols run in
the first stage. It is claimed that the protocol leaks nothing
about the tree (we will show that in a more realistic attack
scenario this is not true) and the second stage is round-optimal.
However, the computations to be performed are heavy and
the first stage involves many rounds (in total their protocol
typically has more rounds than ours). In our solution, we allow
the depth of the tree to be leaked, but avoid altogether using
Paillier and fully homomorphic encryption. In our solution, the
online phase for evaluating decision trees uses solely modular
additions and multiplications.

In [41] protocols for decision trees and random forests were
proposed. The protocols are based on an original comparison
protocol also based on the Paillier encryption scheme and on
oblivious transfer. The Paillier encryption scheme uses mod-
ular exponentiation and oblivious transfer protocols that are

usually as expensive as public-key cryptographic primitives.
As pointed out in the introduction, our solutions use, in the
online phase, solely additions and multiplications over a finite
field or ring.

In [18], one can find protocols for hyperplane-based and
Naive Bayes classifiers in the commodity-based model. By
directly replacing some of the building blocks used in [18]
(the comparison and bit decomposition protocols) by the ones
we propose in this paper, the communication and computing
complexities can be decreased.

All the published results for privacy-preserving machine
learning classification are secure in the honest-but-curious
model.

How much information is leaked about the decision
trees in [10], [9] and in [41]: In the protocol in [10], [9],
theoretically nothing is ever leaked about the tree. However,
if an adversary can measure the time it takes for Bob to do
the evaluation of the decision tree protocol, clearly the deeper
the tree the longer the computation becomes. Therefore, some
information about the depth of the tree is leaked if this side
channel attack is considered. Therefore, in our solution we do
not loose much by giving away the depth of the tree to an
adversary. In [41], the depth of the tree is also leaked.

Privacy-preserving Comparison Protocols: Secure com-
parison cannot be performed without some kind of assumption.
In the setting of computational security, it can be obtained
using general building blocks such as homomophic encryp-
tion [15], [16], [23], [26] and Yao’s garbled circuits [30],

13

or also using specific assumptions, such as encryption of
bits as quadratic and non-quadratic residues modulo an RSA
modulus [22]. All these protocols involve costly computational
operations.

In this work the focus is on protocols with unconditional
security. For obtaining unconditionally secure comparison one
standard assumption is the existence of a secure multiplication
protocol [14], [34], [38], [8], which itself can be achieved
using pre-distributed correlated randomness in the commodity-
based model. We consider the problem of comparison sepa-
rately from that of bit-decomposition. Therefore, to have a fair
comparison with previous solutions, we consider their internal
comparison protocols, which already receive bit-decomposed
values; instead of their full-fledged comparison protocols,
which also perform the bit-decomposition. For inputs with `
bits, it is possible to use only O(`) invocations of the mul-
tiplication protocol and even get constant round comparison
protocols [14], [34], [38]. The protocol in [18] uses exactly
` instances of the underlying multiplication protocol and has
dlog (`+ 1)e rounds; however its output is not represented as
0 or 1 in Zq as usual, but instead as 0 or uniformly random in
Z∗q , and this restricts its usability as a sub-protocol to create
more complex protocols.

Our comparison protocol uses operations over Z2 instead of
Zq with large q. In its optimized version it uses 2`+ `dlog `e

2 −1
instances of a binary multiplication protocol (i.e., an AND
gate) and has 2 + log ` rounds. We have a bigger complexity
O(` log `) in terms of invocations of the multiplication proto-
col, but the operations are changed from Zq (with a large value
q) to Z2, which implies smaller storage complexity and faster
operations. We should also mention that our constants are
better. The solution of Toft [38], for example, uses 13`+ 6

√
`

instances of the underlying multiplication protocol (in Zq),
which for the typical values of ` used in machine learning
classifiers is more than our solution. And for these typical
values of `, the total number of rounds of our protocol will be
very close to the 6 rounds of Toft’s protocol. In comparison to
the protocol of David et al. [18], we trade-off ` multiplications
in Zq with q > 2`+2 for 2` + `dlog `e

2 − 1 multiplications in
Z2, and also eliminate the restrictions due to its non-standard
output representation.

Finally, we should mention that if the parties are the ones
generating the correlated data during a pre-computation phase,
as our protocol uses multiplications in Z2, they can benefit
from oblivious transfer extension techniques [24], [27], [2] for
generating the random binary multiplication triples necessary
to perform the online phase.

Bit Decomposition Protocols: The best solution for bit-
decomposition, in terms of round complexity, is a constant-
round solution by Toft [38], which has round complexity equal
to 23. Veugen noted in [40] that for a certain range of practical
parameters (number of input bits less than 20), a protocol
with a linear number of rounds in the length of the input
could outperform the solution presented by Toft [38]. Veugen
proposed a protocol that has a linear number of rounds in
`, where ` is the length of the input in bits. Veugen also
proposed a way to reduce the number of rounds of this protocol
by a factor of β, obtaining a round complexity equal to `/β

at the cost of performing an exponential (in β) number of
multiplications in a pre-processing phase.

The bit-decomposition protocol used in this work is over
binary fields and runs in 2+dlog `e rounds. For practical values
of ` (less than 100 typically), it is always better than Toft’s
and Veugen’s solutions. The number of multiplications to be
performed in our the online phase, 2`dlog `e+ 3`, is less than
the 31`dlog `e + 71` + 30d

√
`e multiplications in the case of

Toft’s protocol. While Veugen’s protocol can have a fast online
phase, requiring only 3`− 2β multiplications for `/β rounds,
it requires an exponential (in β) number of multiplications in
the offline phase.

A restriction of our protocol is that it only works for
operations modulo a power of 2. As we need no modular in-
versions in our privacy-preserving machine learning protocols
this imposes no problem at all. The bit-decomposition protocol
of Laud and Randmets [28] for the case of three parties with
at most one corruption is similar to one here. It first reduce
the original problem to a new one between two-parties, and
then uses the adder idea to obtain bitwise shares. Although
the protocol is not fully specified in [28], we believe that the
authors intended to use the same adder computation as in our
work.

XII. CONCLUSION

In this paper we have proposed a novel protocol for privacy-
preserving classification of decision trees, and improved the
performance of previously proposed protocols for general
hyperplane-based classifiers and for the two specific cases of
support vector machines and logistic regression. Our protocols
work in the commodity-based model. The pre-distributed data
can be distributed during a setup phase by a trusted authority
to Alice and Bob. In the case a trusted authority is not available
or desirable, Alice and Bob can pre-compute this data by
themselves, during a setup phase, with the help of well-known
computationally secure schemes.

Our solutions are very efficient and use solely modular
addition and multiplications. We present accuracy and runtime
results for 7 classification benchmark datasets from the UCI
repository.

REFERENCES

[1] C. C. Aggarwal and S. Y. Philip. A general survey of privacy-preserving
data mining models and algorithms. Springer, 2008.

[2] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient
oblivious transfer and extensions for faster secure computation. In A.-
R. Sadeghi, V. D. Gligor, and M. Yung, editors, ACM CCS 13: 20th
Conference on Computer and Communications Security, pages 535–548,
Berlin, Germany, Nov. 4–8, 2013. ACM Press.

[3] D. Beaver. Precomputing oblivious transfer. In D. Coppersmith, editor,
Advances in Cryptology – CRYPTO’95, volume 963 of Lecture Notes in
Computer Science, pages 97–109, Santa Barbara, CA, USA, Aug. 27–
31, 1995. Springer, Heidelberg, Germany.

[4] D. Beaver. Commodity-based cryptography (extended abstract). In 29th
Annual ACM Symposium on Theory of Computing, pages 446–455, El
Paso, Texas, USA, May 4–6, 1997. ACM Press.

[5] D. Beaver. One-time tables for two-party computation. In Computing
and Combinatorics, pages 361–370. Springer, 1998.

[6] D. Beaver. Server-assisted cryptography. In Proceedings of the 1998
workshop on New security paradigms, NSPW ’98, pages 92–106, New
York, NY, USA, 1998. ACM.

14

[7] C. Blundo, B. Masucci, D. R. Stinson, and R. Wei. Constructions and
bounds for unconditionally secure non-interactive commitment schemes.
Des. Codes Cryptography, 26(1-3):97–110, June 2002.

[8] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen,
M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I.
Schwartzbach, and T. Toft. Secure multiparty computation goes live.
In R. Dingledine and P. Golle, editors, FC 2009: 13th International
Conference on Financial Cryptography and Data Security, volume 5628
of Lecture Notes in Computer Science, pages 325–343, Accra Beach,
Barbados, Feb. 23–26, 2009. Springer, Heidelberg, Germany.

[9] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser. Machine learning
classification over encrypted data. Cryptology ePrint Archive, Report
2014/331, 2014. http://eprint.iacr.org/2014/331.

[10] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser. Machine learning
classification over encrypted data. In ISOC Network and Distributed
System Security Symposium – NDSS 2015, San Diego, California, USA,
Feb. 8–11, 2015. The Internet Society.

[11] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Wadsworth Publishing Company, 1984.

[12] M. d. Cock, R. Dowsley, A. C. A. Nascimento, and S. C. Newman.
Fast, privacy preserving linear regression over distributed datasets based
on pre-distributed data. In Proceedings of the 8th ACM Workshop on
Artificial Intelligence and Security, AISec ’15, pages 3–14, New York,
NY, USA, 2015. ACM.

[13] R. Cramer, I. Damgård, and J. B. Nielsen. Secure Multiparty Compu-
tation and Secret Sharing. Cambridge University Press, 2015.

[14] I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft. Uncon-
ditionally secure constant-rounds multi-party computation for equality,
comparison, bits and exponentiation. In S. Halevi and T. Rabin, editors,
TCC 2006: 3rd Theory of Cryptography Conference, volume 3876 of
Lecture Notes in Computer Science, pages 285–304, New York, NY,
USA, Mar. 4–7, 2006. Springer, Heidelberg, Germany.

[15] I. Damgård, M. Geisler, and M. Krøigaard. Homomorphic encryption
and secure comparison. IJACT, 1(1):22–31, 2008.

[16] I. Damgård, M. Geisler, and M. Krøigaard. A correction to ’efficient and
secure comparison for on-line auctions’. IJACT, 1(4):323–324, 2009.

[17] B. David, R. Dowsley, J. van de Graaf, D. Marques, A. C. A.
Nascimento, and A. C. B. Pinto. Unconditionally secure, universally
composable privacy preserving linear algebra. Information Forensics
and Security, IEEE Transactions on, 11(1):59–73, Jan 2016.

[18] B. M. David, R. Dowsley, R. Katti, and A. C. A. Nascimento. Efficient
unconditionally secure comparison and privacy preserving machine
learning classification protocols. In M. H. Au and A. Miyaji, editors,
ProvSec 2015: 9th International Conference on Provable Security,
volume 9451 of Lecture Notes in Computer Science, pages 354–367,
Kanazawa, Japan, Nov. 24–26, 2015. Springer, Heidelberg, Germany.

[19] R. Dowsley, J. Müller-Quade, A. Otsuka, G. Hanaoka, H. Imai, and
A. C. A. Nascimento. Universally composable and statistically secure
verifiable secret sharing scheme based on pre-distributed data. IEICE
Transactions, 94-A(2):725–734, 2011.

[20] R. Dowsley, J. van de Graaf, D. Marques, and A. C. A. Nascimento.
A two-party protocol with trusted initializer for computing the inner
product. In Y. Chung and M. Yung, editors, WISA 10: 11th International
Workshop on Information Security Applications, volume 6513 of Lecture
Notes in Computer Science, pages 337–350, Jeju Island, Korea, Aug. 24–
26, 2010. Springer, Heidelberg, Germany.

[21] H. Drucker, C. J. C. Burges, L. Kaufman, A. J. Smola, and V. Vapnik.
Support vector regression machines. In Advances in Neural Information
Processing Systems 9, Proceedings of the 1996 NIPS conference, pages
155–161, 1996.

[22] M. Fischlin. A cost-effective pay-per-multiplication comparison method
for millionaires. In D. Naccache, editor, Topics in Cryptology –
CT-RSA 2001, volume 2020 of Lecture Notes in Computer Science,
pages 457–472, San Francisco, CA, USA, Apr. 8–12, 2001. Springer,
Heidelberg, Germany.

[23] J. A. Garay, B. Schoenmakers, and J. Villegas. Practical and secure
solutions for integer comparison. In T. Okamoto and X. Wang, editors,
PKC 2007: 10th International Conference on Theory and Practice of
Public Key Cryptography, volume 4450 of Lecture Notes in Computer
Science, pages 330–342, Beijing, China, Apr. 16–20, 2007. Springer,
Heidelberg, Germany.

[24] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious
transfers efficiently. In D. Boneh, editor, Advances in Cryptology –
CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science,
pages 145–161, Santa Barbara, CA, USA, Aug. 17–21, 2003. Springer,
Heidelberg, Germany.

[25] Y. Ishai, E. Kushilevitz, S. Meldgaard, C. Orlandi, and A. Paskin-
Cherniavsky. On the power of correlated randomness in secure com-
putation. In A. Sahai, editor, TCC 2013: 10th Theory of Cryptography
Conference, volume 7785 of Lecture Notes in Computer Science, pages
600–620, Tokyo, Japan, Mar. 3–6, 2013. Springer, Heidelberg, Germany.

[26] R. S. Katti and C. Ababei. Secure comparison without explicit XOR.
CoRR, abs/1204.2854, 2012.

[27] V. Kolesnikov and R. Kumaresan. Improved OT extension for transfer-
ring short secrets. In R. Canetti and J. A. Garay, editors, Advances in
Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture Notes in
Computer Science, pages 54–70, Santa Barbara, CA, USA, Aug. 18–22,
2013. Springer, Heidelberg, Germany.

[28] P. Laud and J. Randmets. A domain-specific language for low-
level secure multiparty computation protocols. In I. Ray, N. Li, and
C. Kruegel:, editors, ACM CCS 15: 22nd Conference on Computer
and Communications Security, pages 1492–1503, Denver, CO, USA,
Oct. 12–16, 2015. ACM Press.

[29] D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch.
e1071: Misc Functions of the Department of Statistics, Probability
Theory Group (Formerly: E1071), TU Wien, 2015. R package version
1.6-7.

[30] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and
mechanism design. In Proceedings of the 1st ACM Conference on
Electronic Commerce, EC ’99, pages 129–139, New York, NY, USA,
1999. ACM.

[31] A. C. A. Nascimento, J. Müller-Quade, A. Otsuka, G. Hanaoka, and
H. Imai. Unconditionally secure homomorphic pre-distributed bit com-
mitment and secure two-party computations. In C. Boyd and W. Mao,
editors, ISC 2003: 6th International Conference on Information Security,
volume 2851 of Lecture Notes in Computer Science, pages 151–164,
Bristol, UK, Oct. 1–3, 2003. Springer, Heidelberg, Germany.

[32] A. C. A. Nascimento, J. Müller-Quade, A. Otsuka, G. Hanaoka, and
H. Imai. Unconditionally non-interactive verifiable secret sharing secure
against faulty majorities in the commodity based model. In M. Jakob-
sson, M. Yung, and J. Zhou, editors, ACNS 04: 2nd International
Conference on Applied Cryptography and Network Security, volume
3089 of Lecture Notes in Computer Science, pages 355–368, Yellow
Mountain, China, June 8–11, 2004. Springer, Heidelberg, Germany.

[33] A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers:
A comparison of logistic regression and naive Bayes. In Advances in
Neural Information Processing Systems 14, Proceedings of the 2001
NIPS conference, pages 841–848. MIT Press, 2001.

[34] T. Nishide and K. Ohta. Multiparty computation for interval, equality,
and comparison without bit-decomposition protocol. In T. Okamoto and
X. Wang, editors, PKC 2007: 10th International Conference on Theory
and Practice of Public Key Cryptography, volume 4450 of Lecture Notes
in Computer Science, pages 343–360, Beijing, China, Apr. 16–20, 2007.
Springer, Heidelberg, Germany.

[35] R Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2015.

[36] R. L. Rivest. Unconditionally secure commitment and oblivious transfer
schemes using private channels and a trusted initializer. Preprint avail-
able at http://people.csail.mit.edu/rivest/Rivest- commitment.pdf, 1999.

[37] T. Therneau, B. Atkinson, and B. Ripley. rpart: Recursive Partitioning
and Regression Trees, 2015. R package version 4.1-10.

[38] T. Toft. Constant-rounds, almost-linear bit-decomposition of secret
shared values. In M. Fischlin, editor, Topics in Cryptology – CT-
RSA 2009, volume 5473 of Lecture Notes in Computer Science, pages
357–371, San Francisco, CA, USA, Apr. 20–24, 2009. Springer, Hei-
delberg, Germany.

[39] R. Tonicelli, A. C. A. Nascimento, R. Dowsley, J. Müller-Quade,
H. Imai, G. Hanaoka, and A. Otsuka. Information-theoretically secure
oblivious polynomial evaluation in the commodity-based model. Inter-
national Journal of Information Security, 14(1):73–84, 2015.

[40] T. Veugen. Linear round bit-decomposition of secret-shared values.
Information Forensics and Security, IEEE Transactions on, 10(3):498–
506, March 2015.

[41] D. J. Wu, T. Feng, M. Naehrig, and K. E. Lauter. Privately evaluating
decision trees and random forests. IACR Cryptology ePrint Archive,
2015:386, 2015.

http://eprint.iacr.org/2014/331

	Introduction
	Preliminaries
	Notation and Security Model
	Commodity-based Cryptography
	Secure Distributed Matrix Multiplication

	Machine Learning Classifiers
	Decision Trees
	Hyperplane Based Classifiers and Support Vector Machines

	Secure Distributed Comparison
	Secure Argmax
	Secure Bit-Decomposition
	Oblivious Input Selection
	Assembling the Building Blocks
	Secure Decision Trees
	Secure Hyperplane-Based Classifiers

	Experiments
	Results
	Implementation Specifics

	Analysis and Comparisons to Previous Results

	Removing the Trusted Initializer
	Related Works
	Conclusion
	References

