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ABSTRACT
With increasing digitization, the amount of archived data
that requires long-term protection of confidentiality and in-
tegrity increases rapidly. Examples include electronic health
records, genome data bases, and tax data. In this paper we
present the first archiving solution that provides everlast-
ing confidentiality and, at the same time, maintains a proof
that the data were not changed since they were archived.
For confidentiality protection, our solution combines quan-
tum key distribution (QKD) for data in transit and proactive
secret sharing for data at rest. Proofs of existence are gener-
ated using sequences of timestamped unconditionally hiding
commitments. In addition to a security and performance
analysis, we present a proof-of-concept implementation and
an experimental evaluation. It uses the QKD platform of
the National Institute of Information and Communication
Technology of Japan.

1. INTRODUCTION

1.1 Motivation and problem statement
With increasing digitization, the amount of archived data

increases rapidly. Such data require integrity protection and,
in many cases also their confidentiality must be guaranteed.
Confidentiality means that only authorized parties can ac-
cess the data. Integrity protection provides a proof of ex-
ixtence which allows to verify that the data in the present
form existed at some earlier time, for example, when the
data were archived. In fact much of the archived data is
kept for a very long time. For such data long-term pro-
tection is necessary. For example, electronic health records
and genome data bases may have to be kept as long as the
respective persons are alive or even beyond this date. So
the archiving and protection period may be more than 100
years.

In this paper we address the problem of providing long-
term confidentiality and integrity protection of archived data.
More precisely, we aim at everlasting confidentiality protec-
tion and maintaining a proof that the data existed at archiv-
ing time. We consider solving this problem to be of major
importance now and even more in the future.

However, this problem appears to be very challenging.
Cryptographic techniques used today for providing integrity
and confidentiality do not allow for long-term protection.
Keys chosen today will be too short in the future. New at-
tacks using quantum computers may become real (see [4])

thereby compromising many of the current cryptographic
schemes. There are some partial solutions to the long-term
protection problem. But as explained in Section 1.3 they do
not allow for a comprehensive solution of the problem. For
example, the current long-term integrity solutions compro-
mise the confidentiality of the archived data.

1.2 Contribution
In this paper we present a solution to the problem simulta-

neously protecting confidentiality and integrity of archived
data in the long-term. To the best of our knowledge this
is the first such solution. With respect to integrity protec-
tion, our new idea is to use chains of timestamped uncondi-
tionally hiding commitments. Timestamping such commit-
ments rather than the protected documents as in the known
schemes (see [35]) makes our integrity solution compatible
with confidentiality protection. In regard to confidentiality
protection we combine proactive secret sharing with quan-
tum key distribution (QKD). The known proactive secret
sharing solutions assume the existence of private channels
without discussing their realization. Our idea is to realize
private channels using QKD techniques. So we bring to-
gether techniques that have so far been studied in separate
communities.

Our contribution does not stay on the conceptual level.
Instead, we present a full fledged implementation and ex-
perimental evaluation. The quantum key distribution part
of this implementation uses the very advanced Tokyo QKD
Network [29]. The cryptographic tools are provided by TU
Darmstadt. Using our implementation we are able to pro-
vide experimental data. They demonstrate that our solution
is promising.

In short, our solution works as follows. In regard to con-
fidentiality we distinguish between the protection of data in
transit and data at rest. For example, data are in transit
when they are sent to the archive and they are at rest in
the archive. Confidentiality protection of data in transit is
achieved by a combination of one-time pad encryption [34]
and quantum key distribution [14, 30]; both are known to
be unconditionally secure (see information-theoretic security
[32]). Confidentiality of data at rest is achieved by proac-
tive secret sharing as described in [21, 19]. The idea is to
decompose the data to be protected into shares that are dis-
tributed to a number n of shareholders. From a threshold
number t, (t ≤ n) of these shares the secret data can be
reconstructed. However, less than t shares do no yield any
information about the secret. The scheme is called proactive



as it provides protection against mobile adversaries which
may be able to learn shares over time. This protection is
achieved by running a resharing protocol between the share-
holders.

To maintain a proof of existence we use sequences of times-
tamped cryptographic commitments. Timestamping com-
mitments rather than the archived documents allows for
maintaining confidentiality. In fact, the commitments are
unconditionally hiding which allows for everlasting confiden-
tiality protection as desired. Initially, such a commitment
to the archived data is timestamped. Unfortunately, uncon-
ditionally hiding commitments can only be computationally
binding. Hence, before a commitment looses its binding-
ness, a new commitment and a new timestamp are gener-
ated. When the data are revealed, the verification of the
proof of existence is performed as follows. The timestamp
sequence is recursively verified, proving that the commit-
ments existed at their respective generation times. Also,
the commitments are recursively opened proving eventually,
that the first commitment opens to the archived data and
therefor, these data existed at archiving time.

1.3 Related work
Confidentiality and integrity protection can be achieved

by encryption and digital signatures, respectively (see [7]).
However, the encryption and signature schemes used to-
day are complexity-based. This means that their security is
based on the intractability of some computational problem
such as integer factorization. Such schemes do not provide
long-term protection. Cryptographic keys chosen today will
be too short in the future. New attacks such as quantum
computer attacks may become real (see [4]) thereby com-
promising many of the current cryptographic techniques.
Researchers have proposed solutions that address the chal-
lenges of long-term confidentiality and integrity protection
individually. On the one hand, there are long-term confi-
dentiality protection solutions (see [6]). They refer to data
in transit and data at rest. For example, data are in transit
when they are sent to an archive and they are at rest when
they are stored in the archive. Everlasting confidentiality
protection of data in transit can be achieved by QKD-based
techniques (see [33, 24]). The confidentiality of data at rest
can be protected in the long-term by proactive secret shar-
ing, e.g. [21, 10, 36, 18, 19]. On the other hand, long-term
integrity protection is for example possible with timestamp
chains as described in [35] and [13, 12, 20, 17, 5]. Unfortu-
nately, the known schemes for long-term integrity protection
cannot be combined with long-term confidentiality protec-
tion since hashes of the protected data are required which
may in the long-term reveal information about the data, for
example to the timestamp authority which learns the hash
of the data. This is why the solutions in [22] and [27] do not
provide long-term confidentiality protection.

1.4 Organization
Our paper is organized as follows. Section 2 introduces

the cryptographic components that are being used in our
framework and discusses their security. Section 3 presents
our new framework. In Section 4 we discuss the security of
our framework. Our implementation is described in Section
5. A theoretical performance analysis is provided in Section
6 while the experimental results are shown in Section 7. Fi-
nally, in Section 8 we draw conclusions and sketch future

work.

2. CRYPTOGRAPHIC COMPONENTS
In this section we present the cryptographic components

that are used in our framework which is shown in Figure 1
and explained in Section 3.

Each cryptographic component may consist of a collection
of algorithms and/or protocols. The cryptographic compo-
nents may provide computational or unconditional security.
Computational security is based on the intractability of some
computational problem such as integer factorization. Such
components do not provide long-term protection. If the com-
ponents are unconditionally secure, then their security is ev-
erlasting.

Before a component can be used it is instantiated. We
explain what we mean by this conceptually. Then we give
examples. Unconditionally secure components are instanti-
ated by choosing an implementation of this component. For
computationally secure components, first an expiration date
is chosen until which the component is expected to be secure.
Next, an implementation of the component is chosen. For
example, the RSA signature scheme is an implementation of
a digital signature scheme. Then, parameters are selected
that allow for the implementation to be secure until the ex-
piration date. When we say that a cryptographic component
is used we mean that an instance of this component is used
which consists of an expiration date and implementations
and parameters for each cryptographic algorithm or proto-
col of the component. For each cryptographic component
we present the corresponding security guarantees.

For example, we use timestamp schemes. A timestamp
scheme consists of the algorithms Stamp and Verify. Algo-
rithm Stamp receives as input some data d and returns a
timestamp T on d and the current time t. Input of algo-
rithm Verify is data d, a time t, a timestamp T , and a trust
anchor TA. Typically, the trust anchor is the public key
of some root certification authority. It must be known to a
verifier. Output is either 0 or 1 where 1 means that the time-
stamp proves the existence of d at time t and 0 stands for
the timestamp being invalid. The security notion for time-
stamp schemes is unforgeability which is defined analogous
to signature unforgeability (see [16]).

This is a rather abstract description. In real applications
we need to explicitly say which timestamp scheme is being
used. For example, we can use the timestamp scheme from
[2] based on the RSA signature scheme. The parameters of
such a scheme include a cryptographic hash function and an
RSA-modulus. These parameters are chosen such that they
allow for the scheme to be secure until the chosen expiration
date. In Section 3 we will denote the corresponding instance
by TSI.

Let us consider another example of a cryptographic com-
ponent which involves cryptographic protocols: an authen-
ticated channel. It consists of the protocols Setup and Send.
When we describe protocols we start by presenting the par-
ties involved in the protocol. In the case of the authenti-
cated channel, they are the sender and the receiver. As for
all protocols, we next specify initial and final state of the
protocols. The initial state of the Setup protocol is trivial:
sender and receiver use the same instance of the protocol.
This is an obvious assumption and we will not always men-
tion it. After an execution of Setup both sender and receiver
have the same channel parameters. An example for such a



channel parameter is a session key. Now we turn to the
Send protocol. Initially, the sender has some data d. After a
protocol run, the receiver also has these data. The channel
guarantees mutual authentication in a computational sense.
For details see [3]. Instances of authenticated channels will
be described in Section 5.

In addition to authenticated channels we also use pri-
vate channels. Private channels also involve a sender and
a receiver and support the same protocols as authenticated
channels: Setup and Send. However the security guarantees
are stronger. In addition to computationally secure mutual
authentication private channels also support unconditionally
secure confidentiality (see [34, 32]).

Next, our framework uses commitment schemes. A com-
mitment schemes is composed of the algorithms Commit and
Verify. Input to Commit is some data. Output is a commit-
ment value and a decommitment value. Correspondingly,
input to Verify are data, a commitment value, and a de-
commitment value. Output is 1 or 0. The purpose of such
a scheme is to allow committing to some data without re-
vealing the data. We require the commitment schemes to
be computationally binding and unconditionally hiding. For
details see [26, 15].

Finally, we use proactive secret sharing schemes in which
a dealer, several shareholders, and a retriever participate.
Such schemes allow unconditional confidentiality of data at
rest. When this component is initialized, a first set of share-
holders is selected. However, the set of shareholders may
change over time. Proactive secret sharing schemes are com-
posed of the protocols Setup, Share, Reshare, and Retrieve. In
the Setup protocol, dealer and shareholders agree on sharing
parameters, e.g., size of the shares. In the Share protocol,
the dealer generates one share for each shareholder and sends
it to the respective shareholder through a private channel.
In the Reshare protocol a current set S and a new set S′

of shareholders are involved. They are mutually connected
by private channels. Initially, the shareholders in S have
their individual shares. After the protocol has terminated,
all shareholders in S′ have new shares. Finally, the Retrieve
protocol involves a retriever and a set of shareholders. The
retriever obtains one share from each shareholder through a
private channel. From these shares, he is able to reconstruct
the initial data of the dealer.

We require that the proactive secret sharing schemes that
we use are unconditionally hiding in the mobile adversary
model as introduced in [21]. In this model, adversaries may
be able to learn some shares over time. Proactive secret
sharing prevents the success of such adversaries by renewing
the shares on a regular basis.

3. FRAMEWORK
The purpose of the framework which is described in this

section and depicted in Figure 1 is everlasting confidentiality
protection of a document d that belongs to some document
owner and maintaining a proof that d existed at archiving
time t0. In our framework, the cryptographic components
from Section 2 are used. In principle, our framework works
as follows.

For integrity protection, an evidence service maintains ev-
idence records which are essential for the proof of existence.
This evidence service is not a trusted third party. It just
simplifies the work for the document owner. The evidence
service uses timestamped commitments that are issued on

a regular basis by the document owner. Confidentiality of
the document and the decommitment values are protected
by proactive secret sharing. Confidentiality with respect to
the evidence service is provided by the commitments being
unconditionally hiding.

When the document is revealed to some third party by
the document owner, he reconstructs the document and the
decommitment values of all commitments generated so far
using the most recent shares. He requests an evidence record
from the evidence service. The proof of existence consists
of the evidence record and the decommitment values. The
document owner transmits the document and the proof of
existence to the third party. The third party can verify the
proof of existence using the information it has received.

In the sequel, we present a more technical description
of the framework. The involved parties are the document
owner, the evidence service, and later a third party to which
the document is revealed. The document owner may be re-
placed by an archivist who manages document protection
on behalf of several document owners.

Initialization.
First, the framework is initialized. The initialization in-

cludes selecting a commitment scheme CSI0, a trusted time-
stamp authority which uses a timestamp scheme TSI0, and
a proactive secret sharing scheme PSS together with an ini-
tial set S of shareholders. Also, mutual private channels
are established between the document owner and the initial
shareholders. Furthermore, an authenticated channel is set
up between the document owner and the evidence service.
This channel is updated whenever its security is about to
expire. For all the cryptographic components that only pro-
vide computational security, expiration dates are chosen and
parameters that provide security of the components until the
expiration dates.

Document protection.
Protection of the document d is managed by the document

owner (or the archivist on behalf of the document owner).
Document protection is initialized by computing a commit-
ment value c0 and a decommitment value r0 for d using the
Commit algorithm of the commitment scheme CSI0. The
commitment value c0 is sent to the evidence service. To
protect the confidentiality of the document, the document
owner (who acts as the dealer) uses the Share protocol of the
proactive secret sharing scheme PSS to share (d, r0) among
the current shareholders.

At certain times, the protection is renewed. This either
happens shortly before the regular expiration of the current
commitment scheme or when this component is in danger of
becoming insecure. In this case the commitment scheme is
replaced by a new instance CSIi.

The renewal works as follows. The document owner runs
the Retrieve protocol of PSS with the current shareholders
and obtains d and the sequence of decommitment values
yi−1 = (r0, . . . , ri−1). The document owner computes a
new commitment value ci and a decommitment value ri for
(d, yi−1) using the Commit algorithm of the new commit-
ment scheme instance. He sets yi = (r0, . . . , ri−1, ri). Then
he applies the Share protocol of the proactive secret sharing
scheme to distribute (d, yi) among shareholders.

Constructing evidence records.
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Figure 1: The archiving framework.

The evidence service creates evidence records that are an
essential part of the proof of existence and do not reveal any
information about the archived document.

To compute the initial evidence record, the evidence ser-
vice obtains the commitment value c0 from the document
owner. Then she requests a timestamp on c0 from the
trusted timestamp authority. The timestamp authority ap-
plies the Stamp function of the current timestamp scheme
and returns the timestamp T0 together with the current time
t0. The initial evidence record is e0 = (c0, T0, t0).

The evidence record is renewed when the commitment
scheme or the timestamp scheme are about to expire or are
expected to become insecure. This renewal is done as fol-
lows. Suppose that i − 1 renewals have been made, i > 0.
Then ei−1 = (c0, T0, t0, . . . , ci−1, Ti−1, ti−1) is the current
evidence record. If the commitment scheme was updated,
then ci is the new commitment value received from the doc-
ument owner. Otherwise, the evidence service uses the old
commitment value and sets ci ← ci−1. Then the evidence
service requests a timestamp on (ei−1, ci) from the time-
stamp authority. It uses a new timestamp scheme TSIi
which may coincide with the old one if it is still secure for
some time. She receives (Ti, ti). The new evidence record is
e1 = (c0, T0, t0, . . . , ci, Ti, ti).

Resharing.
To provide protection against mobile adversaries, the shares

are renewed on a regular basis. The shareholders agree when
this should happen. This prevents a mobile adversary to
take advantage of shares he may have been able to obtain.
The current set of shareholders may also be replaced by a
new set of shareholders. Resharing is done by running the
Reshare protocol on the current shares.

Revealing the document.
At any point in time t, the document owner may reveal

the document to a verifier and to prove that it existed
at time t0. To do this, the document owner executes the
following steps. He requests the current evidence record

ek = (c0, T0, t0, . . . , ck, Tk, tk) from the evidence service. He
also retrieves the document d and the list of decommitment
values yk = (r0, . . . , rk) by running the Retrieve protocol for
the proactive secret sharing scheme. He sends the current
proof of existence (d, ek, yk) together with t0 to the intended
verifier. To protect the confidentiality of the document these
data are sent through a private channel.

The verifier to whom the document has been revealed,
does the following to verify the proof of existence. Assume
that the verification happens at time t and that Tk is the
most recent timestamp and let tk+1 = t.

For j = k, k − 1, . . . , 0 the verifier executes the follow-
ing steps. She checks that TSIj was secure in time interval
[tj , tj+1] and that Tj is valid. Next, the verifier checks that
CSIj was secure in time interval [tj , tj+1] and that cj opens
with rj to (d, yj−1). For j = 0 this means that c0 opens with
r0 to d. Since y−1 is the empty sequence, this completes the
proof that d existed at time t0. A more formal proof will be
given in Section 4. We note that for the initial timestamp
verification, the verifier must know beforehand which time-
stamp and which commitment scheme were used with which
parameters and she must know the trust anchor required to
verify Tk. If j < k this information is included in timestamp
Tj+1.

4. SECURITY ANALYSIS
In this section we analyze the security of our solution. We

first describe the adversary model. Afterwards, we present
the security analysis.

We consider an adversary who is active and mobile. Ac-
tive adversaries may deviate from the protocol or may cor-
rupt parties to act on their behalf. Mobile adversaries may
corrupt different parties at different stages of the protocol
execution which do not have to be selected at the beginning
of an attack [25, 9, 21]. With respect to computation power
we consider adversaries that may be active for an unbounded
period of time, but can only do a bounded amount of work
per unit of real time (see [8] for a more precise version of this
adversary model). The adversary model reflects the indefi-



nite lifetime of long-lived systems and of the data processed
by the system. Assume, for instance, the document is sent in
encrypted form to the evidence service. When the encryp-
tion scheme becomes insecure decades later, attackers can
decrypt ciphertexts computed with this scheme and violate
confidentiality. But since realistic attackers do not have un-
bounded computing power, the model limits this power per
unit of real time.

First we analyze the security of the proof of existence for
a document d.

To be able to demonstrate its security, we need to make a
few assumptions. First, we need to assume that timestamp
authorities are trustworthy to include the correct time and
verification information in their timestamps.

The next assumptions are in fact checked during the ver-
ification process. First, the trust anchor used by verifiers
of the proof of existence must be correct. Second, when
they are used, the cryptographic components must be se-
cure in the sense of Section 2. By this we mean the fol-
lowing. We use cryptographic components that only have
complexity-based security: timestamp schemes and commit-
ment schemes. These schemes are introduced at some point
in time and then replaced by new ones before they become
insecure. We assume that their security is guaranteed be-
tween these two points in time. This is also checked in the
verification.

Theorem 4.1. Under the above assumptions, a proof of
existence demonstrates the existence of d in its current form
at time t0.

Proof. Suppose that at some point in time a proof of ex-
istence is generated. Let Tk be the most recent timestamp.
Then the input to the verification algorithm is the initial
time t0 and the current proof of existence (d, ek, yk), con-
taining the document d, the current evidence record ek =
(c0, T0, t0, . . . , ck, Tk, tk), and the list of decommitment val-
ues yk = (r0, . . . , rk).

We prove by induction on i = k, k − 1, . . . , 0 that a suc-
cessful ith step of the verification implies that (ei−1, ci) and
(d, yi−1) existed at time ti. For i = 0, this demonstrates our
assertion since y−1 is the empty sequence and so d existed
at time t0.

First, let i = k. Initially, the verifier has successfully
checked that TSIk was secure in time interval [tk, t] where
t is the current time and that Tk is valid. Since the trust
anchor is assumed to be correct for this verification and the
timestamp authority is assumed to include the correct time-
stamp, this implies that (ek−1, ck) existed at time tk. Next,
the verifier has successfully checked that CSIk was secure in
time interval [tk, t] and that rk opens ck to (d, yk−1). The
validity of Tk, the existence of rk at time t, and the existence
of ck at time tk show that (d, yk−1) existed at time tk.

Now let i ≤ k and assume that (ei−1, ci) and (d, yi−1)
existed at time ti, 0 ≤ i ≤ k.

If i = 0, then as shown above the proof of existence is
complete.

If i > 0, then we need to show that (ei−2, ci−1) and
(d, yi−2) existed at time ti−1. The verification has shown
that TSIi−1 was secure in time interval [ti−1, ti] and that
Ti−1 is valid. Since the timestamp authority included the
correct verification information, it follows that (ei−2, ci−1)
existed at time ti−1. Next, the verifier has checked that
CSIi−1 was secure in time interval [ti−1, ti] and that ci−1

with ri−1 opens to (d, yi−2). Note that although ci−1 might
not be secure anymore at the time of verification t, it still
cannot be opened to another value because ri was fixed at
time ti. Hence we have shown that (ei−2, ci−1) and (d, yi−2)
existed at time ti−1.

Now we show that our framework provides everlasting
confidentiality. For this we require that the proactive se-
cret sharing scheme provides unconditional security in the
sense of information theory. In particular, we require that
if k is the number of shareholders needed to reconstruct the
data shared, then no more than k − 1 shareholders collabo-
rate or are corrupted by the adversary at any point in time.
Also, after renewing the shares the non-corrupted sharehold-
ers delete their old share. We also require that the private
QKD-channels provide unconditional security.

Theorem 4.2. Under the above assumptions, our frame-
work provides unconditional confidentiality of d.

Proof. Data in transit: During document protection,
the document owner sends commitment values to the ev-
idence service and shares to the shareholders. During re-
sharing the shareholders exchange information about the
shares and during revealing the document the shareholders
return the shares to the document owner who forwards the
document to the verifier. The shares of the document and
the decommitment values are sent through private channels
that guarantee unconditional confidentiality and mutual au-
thentication of sender and receiver. Authenticated channels,
which do not guarantee confidentiality, are only used to send
commitments which are unconditionally hiding. Hence, this
does not affect the unconditional confidentiality of the doc-
ument.

Data at rest: At the shareholders, the unconditional con-
fidentiality of the archived document is guaranteed by the
unconditional secrecy of the proactive secret sharing scheme
in the mobile adversary model. At the evidence service, un-
conditional confidentiality of the archived document is pro-
vided because only unconditionally hiding commitments are
stored by the evidence service.

5. IMPLEMENTATION
In this section we describe our implementation of the

framework described in Section 3. We implemented the com-
plete framework including QKD except that we only imple-
mented plain secret sharing without resharing. This is suf-
ficient to show the feasibility and obtain a first impression
of the performance of our solution. Proactive secret sharing
will be added in the next version of the implementation. The
current Tokyo QKD Network allows for four shareholders.

In order to be able to simulate long-term protection, our
implementation allows for replacing the computationally se-
cure cryptographic components by more secure ones

The implementation is done in Java and C. The system
components are hosted on servers at TU Darmstadt and
NICT and communicate over web service interfaces. In
the following we explain the implementation of the cryp-
tographic components and, in particular, of the QKD-based
private channels.

5.1 Implementation of cryptographic compo-
nents



As commitment scheme which is used by the document
owner to generate commitments to documents we use Ped-
ersen commitments [26]. They are unconditionally hiding
and computationally binding as required by the framework.
The scheme is parametrized by two prime numbers pc and
qc. The binary length of qc determines the length of the
values that can be committed to. The bindingness of the
Pedersen commitment scheme is based on the discrete loga-
rithm problem. The hardness of this problem, and thus the
expiration date of a Pedersen instance, depends on the sizes
of the parameters pc and qc.

To allow committing to data of arbitrary length, data are
first hashed and then committed to. Our implementation
supports the SHA-2 hash function family which consists of
the hash functions SHA-224, SHA-256, SHA-384, SHA-512,
SHA-512/224, and SHA-512/256 for different levels of se-
curity. These hash functions are chosen, such that (1) the
size of the output fits the maximum data length the used
commitment scheme instance can commit to and (2) the ex-
pected time the hash function remains secure exceeds the
expiration date of the commitment scheme instance.

The timestamp scheme used by the timestamp authority
from which the evidence service requests timestamps is in-
stantiated in accordance with the RFC 3161 [2] standard. It
ensures unforgeability as required by the framework, given
the used signature scheme does provide unforgeability. Ac-
cording to this standard, in addition to time information,
the timestamps also include verification information such
as public key certificate chains and revocation information.
Furthermore, they contain the signature and hash instances
used. In our implementation, we also add information about
the used commitment scheme instance which is needed in the
verification of the proofs of existence.

Our implementation of the timestamp scheme is based on
the hash-then-sign paradigm. This means that the data to
be timestamped, including the verification information, are
hashed together with the current time. Then the hash value
is signed with the timestamp authority’s private key. As sig-
nature scheme our implementation uses RSA [28]. The pa-
rameter determining the validity period of an RSA instance
is the bitlength of the RSA-modulus n. The supported hash
functions with respect to the timestamp scheme are again
the instances of the SHA-2 family.

We use Shamir’s secret sharing scheme [31]. It provides
unconditional secrecy as required by our framework. More
precisely, we use (3,4)-threshold secret sharing with a total
of four shareholders. Note that shared data have to be split
into pieces that fit to the size of the finite field with which
Shamir’s secret sharing scheme is instantiated. For recon-
struction of the data, each piece is reconstructed separately,
and then the pieces are concatenated to obtain the original
data.

Wherever authenticated channels are used in our frame-
work, these are realized using TLS version 1.2 [11] in the
currently most secure configuration. This protocol is state
of the art and provides mutual authentication in a compu-
tational sense as required by the framework.

Finally, private channels are instantiated using uncondi-
tionally secure one-time pad (OTP) encryption which en-
sures everlasting confidentiality of the data transmission [34,
32]. The OTP encrypted data is sent via classical network
links. In our implementation, the required random keys
(also referred to as OTP keys) are exchanged using QKD.

These are as long as the plaintext and may only be known to
the respective sender and receiver. We use the Tokyo QKD
Network to exchange OTP encryption keys. The network
connects the four shareholders and the document owner. We
provide a detailed description of the QKD platform in the
following section.

5.2 Private channels using QKD
The private channels connecting the document owner and

the shareholders are implemented in a metropolitan field
network testbed, called the Tokyo QKD Network [29]. It
consists of three layers; quantum layer, key management
layer, and application layer as depicted in Figure 2. The
document owner, the shareholders, and the private channels
are on the application layer, supplied with information the-
oretically secure keys from the key management layer. The
stack of the quantum layer and the key management layer
is called the QKD platform, and satisfies the much higher
security requirement compared to the application layer. In
particular, the nodes of the QKD platform are physically
protected from attackers. They are residing in a vault, re-
ferred to as “trusted nodes”. In our experiment, there are
five nodes. In the quantum layer, each point-to-point QKD
link generates OTP keys. Each QKD link consists of a trans-
mitter and a receiver that are connected with two channels,
a quantum channel and an authenticated (classical) chan-
nel. The former is an optical fiber cable connecting a pair
of authenticated encoder and decoder for transmitting ran-
dom numbers via quantum signals. The latter is for real-
izing communications for distilling OTP keys from the ran-
dom numbers. Any eavesdropping attempt on the quantum
channel can be detected as the increase of the bit error rate,
and such insecure key generation sessions will be discarded
[14, 30]. On the other hand, a QKD link itself is vulnera-
ble to Denial of Service attacks (key generation stops when
tapped), and hence a rerouting mechanism is implemented
in the network. In our experiment, there are six QKD links.
The exact configurations of the QKD links and protocols in
use are given in Table 1 with typical key generation rates.

Keys generated in the quantum layer are pushed up to
servers, called key management agents (KMAs), in the key
management layer, then stored and managed. All the KMAs
and the QKD transmitters and receivers are located in the
trusted nodes. The KMAs are connected by authenticated
channels, and execute key relays by key encapsulation in
a hop-by-hop fashion. Thus a key pair can be shared be-
tween two terminal nodes securely even if they are not di-
rectly connected by a QKD link. The KMA resizes the key
strings into appropriate key files, saves them with necessary
metadata such as key IDs and transmitter/receiver IDs, and
authenticates the relayed key file as well as other KMAs in
the relay route. A key management server (KMS) is also
located at one of the trusted nodes, and gathers link infor-
mation (bit error rates, key rates, amounts of accumulated
keys, etc.) from the KMAs, and organizes a routing ta-
ble, and provisions secure paths to the KMAs. Secure key
transfer is made on request from the KMA to the document
owner/shareholder via a protected classical channel, i.e a
tamper resistant metal cable of short distance. This guar-
antees non-interceptable key transfer from the QKD plat-
form to the document owner/shareholder located outside
the vaults. Furthermore, the trusted nodes are protected
by one-way firewalls to prevent attackers from sending mali-
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Figure 2: Visualization of the Tokyo QKD Network.

Name Protocol Length (km) Key rate (bit/s) Loss (dB)

NEC-0 BB84 with decoy 50 (spooled fiber NICT premises) 200k 10
NEC-1 BB84 with decoy 22 (field installed 95% areal line) 200k 13
Toshiba BB84 with decoy 45 (field installed 55% areal line) 300k 14.5
NTT-NICT DPS-QKD with decoy 90 (field installed 50% areal line) 10k 28.6
Gakushuin CV-QKD with decoy 2 (NICT premises) 100k 2
SeQureNet CV-QKD with decoy 2 (NICT premises) 10k 2

Table 1: Specifications of the QKD links.



cious commands from the application layer to the QKD plat-
form. Once supplied with the keys, the document owner and
the shareholders are in charge of key management. Thus the
boundary of responsibility (point-of-interface) is set between
the QKD platform and the application layer.

6. PERFORMANCE ANALYSIS
Our archiving solution achieves everlasting confidentiality

and integrity. Yet, this achievement comes at the cost of (1)
considerable storage space requirements due to the use of
secret sharing along with the additional data stored for the
proof of existence and (2) relatively low data transmission
rates due to the use of QKD in comparison to communica-
tion speeds achievable over classical network links.

In this section we present an analysis of (1) and (2). We
estimate the storage space required by our framework. We
also investigate the limits that are caused by using QKD.
In our implementation, the QKD links are used to generate
and communicate OTP keys before the actual communica-
tion starts. Therefore the bandwidth of the QKD channels
does not limit the speed of the actual communication but
determines the minimum time after which a new communi-
cation is possible.

6.1 Storage space requirements
The amount of stored data is analyzed per document d

stored. Let sized describe the size of d. Once d has been
added to the system, data is stored by the shareholders and
at the evidence service.

Shareholders.
Each shareholder stores a share s per document. The size

of the share is sizes = sized+sizemeta, where sizemeta is the size
of the decommitment values accumulated over time. In our
solution, sizemeta is independent of the document size. The
size of a single decommitment value equals the size of the se-
curity parameter qc of the commitment scheme. Currently, a
secure instance of the Pedersen commitment scheme results
in a decommitment size of 224 bit. The growth of sizemeta

over time is experimentally analyzed in Section 7 (cf. Figure
3) for a time span of 100 years. The experiments show, that
the decommitment values accumulate over this time span to
a total of sizemeta ≈ 1 kilobyte.

Evidence service.
The evidence service stores one evidence record e per doc-

ument. The size of the evidence record sizee is independent
of the document size. sizee depends on the size and number
of timestamps and commitments that it contains. It grows
over time since a new timestamp and a new commitment
are added with each renewal. The growth of sizee over time
is experimentally analyzed in Section 7 (cf. Figure 4) for
a time span of 100 years. The experiments show, that the
size of the evidence record accumulates over 100 years to
sizee ≈ 500 kilobytes.

Total amount of data stored per document.
Let n be the number of shareholders. Then for each

document, n shares have to be stored plus the evidence
record. Therefore, the system in total contains data of size:
sizetotal = n ∗ sizes + sizee. For documents of reasonable size
this quantity is dominated by n times the document size.

sizes preparation phase preparation phase
storage & retrieval share renewal

1KB 27 milliseconds 53 milliseconds
1MB 4.45 minutes 8.88 minutes
1GB 7.41 hours 14.81 hours

Table 2: Key exchange times for for sharing and
resharing keyRateQKD= 300 kilobit/sec.

6.2 Data transmission
We discuss the data transmissions via private channels.

Since we use QKD for these channels, the corresponding
costs are the limiting factor in our framework. The com-
munication costs for the authenticated (classical) channels
are negligible due to available bandwidths. For example,
state-of-the-art optical communication channels allow for a
throughput of 10 terabyte/sec, while only a few hundred
kilobytes of evidence data are sent through these channels.

Data transmission via private channels includes the trans-
fer of shares from the document owner to the shareholders,
the retrieval of these shares from shareholders, as well as
data transmission among shareholders during share renewal.
The communication performance is limited by the previous
QKD key exchange rate.

In the following let keyRateQKD be the key rate of the QKD
link between two parties and let sizes be the size of the shares
for document d. Furthermore, let n be the number of share-
holders. The QKD best performance of our implementation
is 300kbits/sec.

Transfer of data to and retrieval from shareholders.
When the document owner stores data in the archiving

system, he sends one share to each shareholder. The same
holds for data retrieval but with inverse sending direction.
Remember that sizes = sized + sizemeta. The time required
for the initial key distribution between the document owner
and one shareholder is ts = sizes/keyRateQKD seconds. Given
a QKD network, where the document owner is connected to
each shareholder with a separate QKD link, key distribution
can be parallelized. Then, ts is the time required for key ex-
change prior to communicating one share. If there is not an
individual QKD connection between the document owner
and each shareholder, key distribution may have to be seri-
alized in the worst case. Then the key exchange time grows
to n ∗ ts. In Table 2 we give example values for parallelized
key distribution.

Share renewal.
During share renewal, each shareholder sends one share to

all other shareholders. If any two shareholders are connected
the preparation time for this communication is 2 ∗ ts. If
these direct connections do not exist, the preparation time
for share renewal may be at most n ∗ (n− 1) ∗ ts. In Table 2
we also give example values for parallelized key distribution
in this case.

Our analysis shows that everlasting confidentiality comes
at the cost requiring a distributed storage system with total
storage space of a multiple of the original data size. This is
due to the use of secret sharing where the total storage space
requirements is proportional to the number of sharehold-



ers. Therefore, the number of shareholders must be chosen
carefully in order to balance security guarantees and storage
space requirements. The size of the data stored for the proof
of existence is independent of the document size.

Regarding transmission rates, our analysis shows that the
realization of an archiving solution is feasible with current
QKD technology. Yet, it also shows that a considerable time
is required to distribute keys via the QKD links. Paralleliza-
tion of key distribution is essential to achieve key distribu-
tion rates that are optimal for the available QKD technol-
ogy.

7. EXPERIMENTS
In Section 6 we have presented an analysis of the bottle-

necks of our archiving solution: storage space and QKD key
exchange time.

In this section, we present experimental results regarding
our implementation. They refer to the private QKD chan-
nels and to our integrity solution.

QKD performance.
A major part of our experiments was the realization of se-

cret sharing with QKD links between the respective parties.
To the best of our knowledge, our implementation happens
to be the first QKD-based secret sharing implementation.
Our experiments show that such an implementation is pos-
sible but there is still room for optimization. The achieved
secret key rates of the QKD platform are shown in Table 1
and range from 10 kilobits/sec to 300 kilobits/sec depending
on the specification of the respective QKD link. To prevent
being limited by the slowest QKD links (10 kilobits/sec),
keys are relayed between appropriate KMAs such that OTP
keys can be supplied at a reasonable key supply through-
put. In our experiment, this allows to raise the minimum
throughput of key supply for each private channel to 40 kilo-
bits/sec.

Scenario for the integrity proof evaluation.
We studied how space for the evidence records and veri-

fication time for our integrity solution grow over time. We
choose the following scenario. We consider an archive that is
operated for 100 years starting in 2016 and ending in 2116.
In 2016, a document is initially protected by secret sharing
as described in Section 3. Also, the initial evidence record
is generated. Then both the commitments and the evidence
records are renewed as described in our framework.

We choose secure parameters according to the heuristic
of Lenstra [23, 1]. The relevant parameters are presented
in Table 3 and Table 4. The tables show, which parameter
choices are assumed to be secure until which date.

Timestamps are renewed by the evidence service every
2 years. This is a recommended renewal period for digi-
tal certificates. We choose this period because timestamps
are backed by digital certificates. The commitment renewal
period is set to 10 years. This is a conservative choice con-
sidering the proposed parameter lifetimes in Table 4, but
was chosen to also cover unforeseen developments that may
require commitment renewals. The transition to new pa-
rameter lengths is always done at the beginning of a new
validity period.

Results.

Security Scheme Parameters

until 2040
SHA-2 224
RSA 2048

until 2065
SHA-2 224
RSA 3072

until 2085
SHA-2 256
RSA 4096

until 2103
SHA-2 384
RSA 5120

until 2118
SHA-2 384
RSA 6144

Table 3: Timestamping scheme parameters.

Security Scheme Parameters

until 2040
SHA-2 224

Pedersen (2048, 224)

until 2065
SHA-2 224

Pedersen (3072, 224)

until 2085
SHA-2 256

Pedersen (4096, 256)

until 2103
SHA-2 384

Pedersen (5120, 384)

until 2116
SHA-2 384

Pedersen (6144, 384)

Table 4: Commitment scheme parameters.

In the following, we present the experimental results for
our integrity protection solution.

Figure 3 shows the size of the decommitment values that
need to be stored by the shareholders in addition to the
document d. This value grows over time, as decommitment
values are accumulated. Furthermore, the sizes of new de-
commitment values added to the existing ones grow with
the size of the commitment scheme parameters. The total
size of the data grows very slowly from 0.07 kilobytes in
2016 to 0.91 kilobytes in 2116. Also recall that the size of
the decommitment values is independent of the size of the
archived document. In relation to the size of large data such
as genome data, these additional data are negligible.

Figure 4 shows the growth of the evidence records that are
stored by the evidence service. As new commitments and
timestamps are added to the evidence records, they grow
over time. In fact, the evidence size grows almost linearly
in the number of timestamp renewals. A small superlin-
ear factor is introduced by increasing the parameter sizes
from time to time. Notably, the size of the evidence does
not depend on the size of the document that is stored, but
only on the configuration of the commitment scheme and
the timestamping scheme. In our experiments the evidence
record grows from 9.59 kilobytes to 471.61 kilobytes within
100 years. Compared to genome data, for example, this is
still acceptable.

Finally, in Figure 5 we present timings for the verification
of the proofs of existence. They were measured on a ma-
chine with an Intel Core i5 2.9Ghz CPU and 8GB of RAM
running our Java implementation of the verification algo-
rithm. As new evidence is added to the evidence record
over time, the time required for the verification of the evi-
dence record increases. The graph shows that adjusting pa-
rameters over time influences the verification performance
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Figure 3: Size of decommitment values stored by
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Figure 4: Size of evidence records.

significantly. Nevertheless, the performance of our imple-
mentation remains acceptable as verification of the proofs
of existence after 100 years takes only approximately 10 sec-
onds.

In summary, the experiments show that the size of all data
that need to be stored in addition to an archived document
is independent of the document size and grows very slowly.
Furthermore, even with today’s technology the proof of ex-
istence to a document can still be efficiently verified after
100 years of protection.

8. CONCLUSION
We have presented the first digital archiving framework

that simultaneously provides everlasting confidentiality of
the archived documents and maintains a proof that the doc-
uments existed at archiving time and were not changed since.
Our solution has three main ingredients: QKD-based pri-
vate channels which allow for unconditional confidentiality
of data in transit, proactive secret sharing which provides

2,020 2,040 2,060 2,080 2,100 2,120

0

2

4

6

8

10

Year

T
im

e
in

se
co

n
d
s

Figure 5: Time required for proof of existence veri-
fication.

unconditional confidentiality of data at rest, and chains of
timestamped unconditionally hiding commitments which en-
able long-term proofs of existence without compromising
confidentiality. We have also presented a proof of concept
implementation of our framework which combines the tech-
nically very advanced NICT QKD platform with state of
the art implementations of the cryptographic components.
Experimental results show that our solution is promising.
However, there are still a number of issues that we will ad-
dress in the future.

The first challenge is to optimize the performance of our
solution. For example, we plan to modify the QKD platform
such that it does not require serialization of private channel
communications but supports multiple private channel com-
munications in parallel. The next step is to include proactive
secret sharing and to extend the experiments accordingly.
Another challenge will be to also include the possibility of
carrying out computations on the shared data. This is in
principle possible since secret sharing schemes typically have
certain homomorphic properties. In regard to our integrity
solution, it is our goal to come up with a solution that does
not require document reconstruction when the proof of exis-
tence is renewed. Also, our integrity solution relies on cryp-
tographic insecurities being predictable. We will also study
the question how an unexpected break of cryptography can
be dealt with.
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