
Revocable Hierarchical Identity-Based Encryption
with Adaptive Security

Kwangsu Lee∗

Abstract

Hierarchical identity-based encryption (HIBE) can be extended to revocable HIBE (RHIBE) if a
private key of a user can be revoked when the private key is revealed or expired. Previously, many
selectively secure RHIBE schemes were proposed, but it is still unsolved problem to construct an adap-
tively secure RHIBE scheme. In this work, we propose two RHIBE schemes in composite-order bilinear
groups and prove their adaptive security under simple static assumptions. To prove the adaptive security,
we use the dual system encryption framework, but it is not simple to use the dual system encryption
framework in RHIBE since the security model of RHIBE is quite different with that of HIBE. We show
that it is possible to solve the problem of the RHIBE security proof by carefully designing hybrid games.

Keywords: Hierarchical identity-based encryption, Key revocation, Adaptive security, Dual system encryp-
tion, Bilinear maps.

∗Korea University, Seoul, Korea. Email: kwangsu.lee@korea.ac.kr.

1

1 Introduction

Hierarchical identity-based encryption (HIBE) is an important extension of identity-based encryption (IBE)
[6] that uses the identity of a user as the public-key of the user. In HIBE, the identity of a user is represented
as a hierarchical structure and a user with a private key can delegate his private key to next-level users. The
concept of HIBE was introduced by Horwitz and Lynn [12] to reduce the burden of a private key generation
in a trusted center and a secure HIBE scheme that supports arbitrary many levels are proposed by Gentry
and Silverberg [10]. HIBE can be extended to broadcast encryption, forward-secure encryption, chosen-
ciphertext secure encryption, and searchable encryption [1, 7–9] and it has many interesting applications
like encryption systems for medical data and range query on encrypted data [2, 27].

To use an HIBE scheme in real applications, we should revoke the private key of a user if his private
key is revealed or his credential is expired. Revocable HIBE (RHIBE) is an extension of HIBE that supports
the revocation functionality by broadcasting an update key for non-revoked users per each time period.
Previously, an efficient revocable IBE (RIBE) schemes were proposed by many researchers [3,15,19,21,24].
Seo and Emura [23] proposed the first RHIBE scheme by following the design strategy of Boldyreva et
al. [3] that uses a binary tree and proved its selective security. After that, some efficient RHIBE schemes
with improved parameters were proposed [17, 26], but these are also proven to be selectively secure.

The right security model of RHIBE is the adaptive model where an adversary can select a target in the
challenge step. In RIBE, adaptively secure RIBE schemes were already proposed in [15, 19, 24]. However,
all RHIBE schemes only provide the selective security where the challenge identity ID∗ and the challenge
time T ∗ should be submitted before receiving public parameters or the selective revocation list security
where the challenge revocation set R∗ should be additionally submitted [17, 23, 26]. Although an RHIBE
scheme claimed to be adaptively secure was proposed in [25], the security proof that uses the dual system
encryption technique has some flaws. Therefore, the construction of an adaptively secure RHIBE scheme is
an unsolved open problem.

1.1 Our Results

In this paper, we give an answer to this unsolved problem by proposing two RHIBE schemes in composite-
order bilinear groups and proving their adaptive security under simple static assumptions.

We first propose an RHIBE-CS scheme by combining the HIBE and IBE schemes of Lewko and Waters
[18] and the complete subtree (CS) scheme of Naor, Naor, and Lotspiech [20] in a modular way. For the
construction of our RHIBE-CS scheme, we follow the modular design approach of Lee and Park [17] except
that the underlying HIBE and IBE schemes are replaced by the schemes of Lewko and Waters. We then prove
the adaptive security of our RHIBE-CS scheme by using the dual system encryption framework [18, 28].
However, the naive approach of dual system encryption does not work for RHIBE since an adversary can
query a private key for ID that is a prefix of ID∗ and an update key for T ∗ where ID∗ is the challenge identity
and T ∗ is the challenge time, and these private key and update key cannot be easily converted from normal
to semi-functional. Thus, solving this problem of RHIBE when the dual system encryption was used is the
core of the security proof. The main technical idea of solving this problem is described in the later part of
this section.

Next, we propose an RHIBE-SD scheme by using the subset difference (SD) scheme instead of using
the CS scheme to reduce the size of an update key. As mentioned before, we also follow the modular
design approach of Lee and Park [17]. Our RHIBE-SD scheme has O(r) number of group elements in an
update key and O(log2 Nmax) number of group elements in a private key whereas our RHIBE-CS scheme has
O(r log(Nmax/r)) number of group elements in an update key and O(logNmax) number of group elements

2

Table 1: Comparison of revocable hierarchical identity-based encryption schemes

Scheme PP Size SK Size UK Size CT Size Model Assumption

SE (CS) [23] O(`) O(`2 logN) O(`r log N
r) O(`) SE-IND DBDH

SE (CS) [26] O(`) O(` logN) O(`r log N
r) O(1) SE-IND q-Type

SE (SD) [26] O(`) O(` log2 N) O(`r) O(1) SRL-IND q-Type

LP (CS) [17] O(1) O(logN) O(`+ r log N
r) O(`) SE-IND q-Type

LP (SD) [17] O(1) O(log2 N) O(`+ r) O(`) SRL-IND q-Type

Ours (CS) O(`) O(` logN) O(`+ r log N
r) O(1) AD-IND Static

Ours (SD) O(`) O(` log2 N) O(`+ r) O(1) AD-IND Static

We let N be the number of maximum users in each level, r be the number of revoked users, and ` be the depth of a
hierarchical identity. We count the number of group elements to measure the size of parameters. We use symbols
SE-IND for selective IND-CPA, SRL-IND for selective revocation list IND-CPA, and AD-IND for adaptive IND-
CPA.

in a private key. The detailed comparison of RHIBE schemes is given in Table 1. To prove the adaptive
security of our RHIBE-SD scheme, we carefully use the proof technique of Lee et al. [15] that was used to
prove the adaptive security of their RIBE scheme.

1.2 Our Techniques

To prove the adaptive security of an HIBE scheme, the dual system encryption framework was introduced
by Waters [28]. In the dual system encryption framework, ciphertexts and private keys can be normal or
semi-functional in which a normal ciphertext can be decrypted by a normal or semi-functional private key
whereas a semi-functional ciphertext cannot be decrypted by a semi-functional private key. To prove the
adaptive security, a normal challenge ciphertext is changed to be semi-functional, and then each normal
private key is changed to be semi-functional one by one through hybrid games. The main obstacle of this
proof is to overcome the paradox of dual system encryption in which a simulator can check whether a private
key is normal or semi-functional by decrypting a semi-functional ciphertext since a simulator can generate
a ciphertext and a private key for any identity. Lewko and Waters [18] solved this problem by introducing
the nominally semi-functional type of private keys where a semi-functional ciphertext can be decrypted by
a nominally semi-functional private key. Note that an information theoretic argument should be given to
argue that a nominally semi-functional key is indistinguishable from a semi-functional key.

For the security proof of an RHIBE scheme, one may simply use the dual system encryption technique
that changes private keys and update keys from normal types to semi-functional types one by one through
hybrid games. However, this simple strategy does not work since the adversary of RHIBE can query a
private key for ID that is a prefix of ID∗ and an update key for T = T ∗ where ID∗ and T ∗ are the challenge
identity and time. That is, we cannot show the information theoretic argument for these private key and
update key since ID is a prefix of ID∗ and T = T ∗. In HIBE, the restriction of an adversary that ID is not
a prefix of ID∗ is essentially used to show the information theoretic argument. Thus, it is not easy to prove
the adaptive security of an RHIBE scheme by using the dual system encryption framework.

Our strategy to overcome this problem is that private keys and update keys of an RHIBE scheme are first
divided into smaller component keys and then these component keys that are related to the same node in a

3

binary tree are grouped together. Next, these component keys that belong to the same group are changed
from normal types to semi-functional types one by one through hybrid games. Similar proof strategy was
used in [14, 15, 22]. In particular we consider an RHIBE-CS scheme that use the CS scheme. A private key
consists of many HIBE private keys that are related to a path in a binary tree and an update key also consists
of many IBE private keys that are related to a cover set in a binary tree. By the grouping of HIBE private
keys and IBE private keys with the same node, we can use the restriction of the RHIBE security model to
show an information theoretic argument.

For example, if an adversary requests a private key for ID ∈ Prefix(ID∗) and one HIBE private key of
this private key is related to a node v∗, then all IBE private keys in update keys satisfy T 6= T ∗ for this node
v∗ since this private key should be revoked on time T ∗ by the restriction of the security model. Thus, we
first change IBE private key related to v∗ from normal to semi-functional one by one by using T 6= T ∗, and
then we change HIBE private keys related to v∗ from normal to semi-functional at once. Note that there is
no paradox of dual system encryption when we change HIBE private keys from normal to semi-functional
since IBE private keys are already semi-functional. Recall that an information theoretic argument is not
needed if nominally semi-functional keys are not used. Similar argument also applies when the adversary
requests an update key for T = T ∗ and one IBE private key of this update key is related to a node v∗ since
we have ID 6∈ Prefix(ID∗) for all HIBE private key for this node v∗.

To prove the adaptive security of our RHIBE-SD scheme, we also use the similar proof strategy that
private keys and update keys are divided into smaller component keys and these component keys that belong
to the same group are changed from normal to semi-functional. In our RHIBE-CS scheme, a group is simply
defined by a node v j in a binary tree. In our RHIBE-SD scheme, a group is defined as a set of subsets Si, j

such that vi is the same and the depth d j of v j is the same where Si, j is defined by two nodes vi and v j in
a binary tree. To change HIBE private keys and IBE private keys in the same group from normal to semi-
functional, we carefully design hybrid games since a group is very complex. Note that Lee et al. [15] also
used this proof strategy to prove the adaptive security of their RIBE-SD scheme.

1.3 Related Work

An IBE scheme with key revocation was first proposed by Boneh and Franklin [6] in which each user should
retrieve his private key from a trusted center for the identity ID‖T per each time period T . Boldyreva, Goyal,
and Kumar [3] proposed a scalable RIBE scheme by combining a fuzzy IBE scheme and the CS scheme in
which an update key is broadcasted to non-revoked users per each time period. This design method that uses
the CS scheme for key revocation was also used to build other adaptively secure RIBE schemes [19,24]. The
SD scheme is an improvement on the CS scheme since the size of a broadcasting set can be reduced [20].
Lee et al. [15] proposed an RIBE scheme that uses the SD scheme to improve the size of an update key and
proved its adaptive security under static assumptions. An RIBE scheme based on a binary tree cannot have
short private keys and update keys. To overcome this problem, Park et al. [21] proposed an RIBE scheme
with short private keys and update keys by using multilinear maps.

As mentioned before, the first selectively secure RHIBE scheme was proposed by Seo and Emura [23] by
combining the HIBE scheme of Boneh and Boyen [4] and the CS scheme. This RHIBE scheme is relatively
inefficient since a user should retrieve all update keys generated by his ancestors to decrypt a ciphertext. To
solve this problem of inefficiency, Seo and Emura [26] proposed another selectively secure RHIBE scheme
with history-free updates that uses the CS (or SD) scheme where a user only needs to retrieve an update key
generated by his parent. Recently, Lee and Park [17] proposed new RHIBE schemes with shorter private
keys and update keys by combining a new HIBE scheme that has short intermediate private keys and the CS
(or SD) scheme in a modular way.

4

An attribute-based encryption (ABE) scheme also can be extended to support the key revocation. A
revocable ABE (RABE) scheme was also proposed by Boldyreva et al. [3] by combining a key-policy
ABE scheme and the CS scheme and its selective revocation list security was claimed. To securely protect
information stored in cloud storage, one may use an RABE scheme since it provides the access control on
encrypted data as well as the key revocation. Sahai et al. [22] pointed out that RABE is not enough for cloud
storage and then they proposed a revocable-storage ABE (RS-ABE) scheme that supports the key revocation
and the ciphertext update. After that, Lee et al. showed that an RS-ABE scheme can be improved by using a
self-updatable encryption (SUE) scheme [13, 14]. Recently, Lee et al. [16] proposed a weaker CCA-secure
RS-ABE scheme and proved its selective security.

2 Preliminaries

In this section, we introduce composite-order bilinear groups and complexity assumptions. Next, we define
the syntax and the adaptive security model of RHIBE.

2.1 Notation

Let I be the identity space. A hierarchical identity ID with a depth k is defined as an identity vector
ID = (I1, . . . , Ik) ∈ Ik. We let ID| j be a vector (I1, . . . , I j) of size j derived from ID. If ID = (I1, . . . , Ik), then
we have ID = ID|k. We define ID|0 = ε for simplicity. The function Prefix(ID|k) returns a set of prefix
vectors {ID| j} for all 1 ≤ j ≤ k where ID|k = (I1, . . . , Ik) ∈ Ik for some k. For two hierarchical identities
ID|i and ID| j with i < j, ID|i is an ancestor of ID| j and ID| j is a descendant of ID|i if ID|i ∈ Prefix(ID| j).

2.2 Bilinear Groups of Composite Order

Let N = p1 p2 p3 where p1, p2, and p3 are distinct prime numbers. Let G and GT be two multiplicative cyclic
groups of same composite order N and g be a generator of G. The bilinear map e : G×G→ GT has the
following properties:

1. Bilinearity: ∀u,v ∈G and ∀a,b ∈ ZN , e(ua,vb) = e(u,v)ab.

2. Non-degeneracy: ∃g such that e(g,g) has order N, that is, e(g,g) is a generator of GT .

We say that G is a bilinear group if the group operations in G and GT as well as the bilinear map e are
all efficiently computable. Furthermore, we assume that the description of G and GT includes generators
of G and GT respectively. We use the notation Gpi to denote the subgroups of order pi of G respectively.
Similarly, we use the notation GT,pi to denote the subgroups of order pi of GT respectively.

2.3 Complexity Assumptions

Assumption 1 (Subgroup Decision, SD). Let (N,G,GT ,e) be a description of the bilinear group of com-
posite order N = p1 p2 p3. Let g1,g2,g3 be generators of subgroups Gp1 ,Gp2 ,Gp3 respectively. The SD
assumption is that if the challenge tuple

D = ((N,G,GT ,e),g1,g3) and Z

are given, no PPT algorithm A can distinguish Z = Z0 = X1 ∈ Gp1 from Z = Z1 = X1R1 ∈ Gp1 p2 with
more than a negligible advantage. The advantage of A is defined as AdvSD

A (1λ) =
∣∣Pr[A(D,Z0) = 0]−

Pr[A(D,Z1) = 0]
∣∣ where the probability is taken over random choices of X1 ∈Gp1 and R1 ∈Gp2 .

5

Assumption 2 (General Subgroup Decision, GSD). Let (N,G,GT ,e) be a description of the bilinear group
of composite order N = p1 p2 p3. Let g1,g2,g3 be generators of subgroups Gp1 ,Gp2 ,Gp3 respectively. The
GSD assumption is that if the challenge tuple

D = ((N,G,GT ,e),g1,g3,X1R1,R2Y1) and Z

are given, no PPT algorithm A can distinguish Z = Z0 = X2Y2 ∈ Gp1 p3 from Z = Z1 = X2R3Y2 ∈ Gp1 p2 p3

with more than a negligible advantage. The advantage of B is defined as AdvGSD
A (1λ) =

∣∣Pr[A(D,T0) =
0]−Pr[A(D,T1) = 0]

∣∣ where the probability is taken over random choices of X1,X2 ∈Gp1 , R1,R2,R3 ∈Gp2 ,
and Y1,Y2 ∈Gp3 .

Assumption 3 (Composite Diffie-Hellman, ComDH). Let (N,G,GT ,e) be a description of the bilinear
group of composite order N = p1 p2 p3. Let g1,g2,g3 be generators of subgroups Gp1 ,Gp2 ,Gp3 respectively.
The ComDH assumption is that if the challenge tuple

D = ((N,G,GT ,e),g1,g2,g3,ga
1R1,gb

1R2) and Z

are given, no PPT algorithm A can distinguish Z = Z0 = e(g1,g1)
ab from Z = Z1 = e(g1,g1)

c with more
than a negligible advantage. The advantage of A is defined as AdvComDH

A (1λ) =
∣∣Pr[A(D,Z0) = 0]−

Pr[A(D,Z1) = 0]
∣∣ where the probability is taken over random choices of a,b,c ∈ ZN , and R1,R2 ∈Gp2 .

2.4 Pseudo-Random Functions

A pseudo-random function (PRF) [11] is an efficiently computable function F :K×X →Y where K is the
key space, X is the domain, and Y is the range. Let F(k, ·) be an oracle for a uniformly chosen k ∈ K and
f (·) be an oracle for a uniformly chosen function f : X →Y . We say that a PRF is secure if for all efficient
adversaries A the advantage AdvPRF

A (1λ) =
∣∣Pr[AF(k,·) = 1]−Pr[A f (·) = 1]

∣∣ is negligible.

2.5 Revocable HIBE

RHIBE is an extension of HIBE and it provides the revocation functionality in which each user can revoke
child users if the private key of a child user is revealed. In RHIBE, each user additionally provides an update
key UK per each time period and a child user can derive a (short-term) decryption key DK to decrypt a
ciphertext by combining his (long-term) private key SK and the update key UK if he is not revoked in the
update key. The syntax of RHIBE with history-free updates [26] is defined as follows:

Definition 2.1 (Revocable HIBE). An RHIBE scheme with history-free updates for the identity space I,
the time space T , and the message space M, consists of seven algorithms Setup, GenKey, UpdateKey,
DeriveKey, Encrypt, Decrypt, and Revoke, which are defined as follows:

Setup(1λ ,L,Nmax): This algorithm takes as input a security parameter 1λ and the maximum number Nmax

of users in each level. It outputs a master key MK, an (empty) revocation list RLε , a state STε , and
public parameters PP.

GenKey(ID|k,STID|k−1 ,PP): This algorithm takes as input a hierarchical identity ID|k = (I1, . . . , Ik) ∈ Ik,
the state STID|k−1 , and public parameters PP. It outputs a private key SKID|k .

UpdateKey(T,RLID|k−1 ,DKID|k−1,T ,STID|k−1 ,PP): This algorithm takes as input time T ∈ T , a revoca-
tion list RLID|k−1 , a decryption key DKID|k−1,T , and public parameters PP. It outputs an update key
UKID|k−1,T,R where R is the set of revoked identities on time T derived from RLID|k−1 .

6

DeriveKey(SKID|k ,UKID|k−1,T,R,PP): This algorithm takes as input a private key SKID|k for a hierarchical
identity ID|k, an update key UKID|k−1,T,R for time T and a revoked set R, and the public parameters
PP. It outputs a decryption key DKID|k,T .

Encrypt(ID|`,T,M,PP): This algorithm takes as input a hierarchical identity ID|` = (I1, . . . , I`) ∈ I`, time
T , a message M, and the public parameters PP. It outputs a ciphertext CTID|`,T .

Decrypt(CTID|`,T ,DKID′|k,T ′ ,PP): This algorithm takes as input a ciphertext CTID|`,T , a decryption key
DKID′|k,T ′ and the public parameters PP. It outputs an encrypted message M.

Revoke(ID|k,T,RLID|k−1 ,STID|k−1): This algorithm takes as input a hierarchical identity ID|k, revocation
time T , a revocation list RLID|k−1 , and a state STID|k−1 . It updates the revocation list RLID|k−1 .

The correctness of RHIBE is defined as follows: For all MK and PP generated by Setup(1λ ,L,Nmax), SKID|k
generated by GenKey(ID|k,ST |k−1,PP), UKID|k−1,T,R generated by UpdateKey(T,RLID|k−1 ,DKID|k−1,T ,STID|k−1 ,
PP), CTID|`,T generated by Encrypt(ID|`,T,M,PP), it is required that

• If ID|k 6∈ R, then DeriveKey(SKID|k ,UKID|k−1,T,R,PP) = DKID|k,T .

• If ID|k ∈ R, then DeriveKey(SKID|k ,UKID|k−1,T,R,PP) =⊥.

• If (ID′|k ∈ Prefix(ID|`))∧ (T = T ′), then Decrypt(CTID|`,T ,DKID′|k,T ′ ,PP) = M.

• If (ID′|k 6∈ Prefix(ID|`))∨ (T 6= T ′), then Decrypt(CTID|`,T ,DKID′|k,T ′ ,PP) =⊥.

The adaptive security model of RHIBE can be defined by extending the adaptive security model of
RIBE. We use the adaptive model of RHIBE by extending the selective model of Seo and Emura [26]. In
the adaptive security model of RHIBE, an adversary can adaptively request a private key query for any ID
and an update key query for time T . In the challenge step, the adversary selects the challenge identity ID∗

and challenge time T ∗, and two challenge messages M∗0 ,M
∗
1 with some restrictions. After receiving the

challenge ciphertext, the adversary guesses the encrypted message in the challenge ciphertext. The formal
security definition of RHIBE is given as follows:

Definition 2.2 (Adaptive IND-CPA Security). The adaptive IND-CPA security (AD-IND-CPA) of RHIBE
is defined in terms of the following experiment between a challenger C and a PPT adversary A:

1. Setup: C obtains a master key MK, a revocation list RLε , a state STε , and public parameters PP by
running Setup(1λ ,L,Nmax). It keeps MK,RLε ,STε to itself and gives PP to A.

2. Phase 1: A adaptively requests a polynomial number of queries. These queries are processed as
follows:

• Private key. If it is a private key query for a hierarchical identity ID|k, then C gives a private
key SKID|k and a state STID|k by running GenKey(ID|k,STID|k−1 ,PP).

• Update key. If it is an update key query for a hierarchical identity ID|k−1 and time T , then
C gives an update key UKID|k−1,T,R by running UpdateKey(T,RLID|k−1 ,DKID|k−1,T ,STID|k−1 ,PP)
with the restriction: If ID|k−1 or one of its ancestors is revoked on time T , then this update key
query cannot be requested since DKID|k−1,T cannot be derived.

• Decryption key. If it is a decryption key query for a hierarchical identity ID|k and time T , then
C gives a decryption key DKID|k,T by running DeriveKey(SKID|k ,UKID|k−1,T,R,PP).

7

• Revocation. If it is a revocation query for a hierarchical identity ID|k and time T , then C updates
a revocation list RLID|k−1 by running Revoke(ID|k,T,RLID|k−1 ,STID|k−1) with the restriction: A
revocation query for ID|k on time T cannot be requested if an update key query for ID|k on the
time T was requested.

Note that we assume that update key, decryption key, and revocation queries are requested in non-
decreasing order of time.

3. Challenge: A submits a challenge hierarchical identity ID∗|` = (I∗1 , . . . , I
∗
`), challenge time T ∗, and

two challenge messages M∗0 ,M
∗
1 with the following restrictions:

• If a private key query for ID|k ∈ Prefix(ID∗|`) where k ≤ ` was requested, then ID|k or one of
its ancestors must be revoked at some time T ≤ T ∗.

• A decryption key query for the challenge hierarchical identity ID∗|k or its ancestors on the chal-
lenge time T ∗ was not requested.

C flips a random coin µ ∈ {0,1} and gives the challenge ciphertext CT ∗ID∗|`,T ∗ to A by running
Encrypt(ID∗|`,T ∗,M∗µ ,PP).

4. Phase 2: A may continue to request a polynomial number of queries subject to the same restrictions
as before.

5. Guess: Finally, A outputs a guess µ ′ ∈ {0,1}, and wins the game if µ = µ ′.

The advantage ofA is defined as AdvAD-IND-CPA
RHIBE,A (1λ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over
all the randomness of the experiment. An RHIBE scheme is AD-IND-CPA secure if for all probabilistic
polynomial-time (PPT) adversaryA, the advantage ofA in the above experiment is negligible in the security
parameter λ .

3 Hierarchical IBE

In this section, we describe an HIBE scheme and an IBE scheme that are used as the building blocks of our
RHIBE schemes.

3.1 HIBE Scheme

For the underlying HIBE scheme of our RHIBE schemes, we use a key encapsulation mechanism (KEM)
version of the HIBE scheme of Lewko and Waters (LW-HIBE) [18]. The LW-HIBE scheme is very similar
to the HIBE scheme of Boneh et al. (BBG-HIBE) [5] that has short ciphertexts except that it uses composite-
order groups. To build our RHIBE schemes in a modular way, we additionally define some useful algorithms
that are introduced by Lee and Park [17].

HIBE.Setup(GDS,L): Let GDS = ((N,G,GT ,e),g1,g3) be the description of a bilinear group with gen-
erators g1 ∈ Gp1 ,g3 ∈ Gp3 . It selects random elements h,u1, . . . ,uL ∈ Gp1 and a random exponent
γ ∈ ZN . It outputs a master key MK = γ and public parameters PP =

(
(N,G,GT ,e),g = g1,Y =

g3,h,u1, . . . ,uL,Λ = e(g,g)γ
)
.

8

HIBE.GenKey(ID|k,MK,PP): Let ID|k = (I1, . . . , Ik) ∈ Ik and MK = γ . It chooses random r ∈ ZN ,Y0,Y1,
{Y2,i}L

i=k+1 ∈ Gp3 and outputs a private key SKID|k =
(
K0 = gγ(h∏

k
i=1 uIi

i)
rY0,K1 = g−rY1,

{
K2,i =

ur
iY2,i

}L
i=k+1

)
.

HIBE.RandKey(SKID|k ,PP): Let SKID|k =(K′0,K
′
1,{K′2,i}L

i=k+1). It chooses random r′ ∈ZN ,Y ′0,Y
′
1,{Y ′2,i}L

i=k+1 ∈
Gp3 and outputs a randomized private key SKID|k =

(
K0 =K′0 ·(h∏

k
i=1 uIi)r′Y ′0,K1 =K′1 ·g−r′Y ′1,

{
K2,i =

K′2,i ·ur′Y ′2,i
}L

i=k+1

)
.

HIBE.Delegate(ID|k,SKID|k−1 ,PP): Let ID|k = (I1, . . . , Ik) ∈ Ik and SKID|k−1 =
(
K′0,K

′
1,{K′2,i}L

i=k

)
where

ID|k−1 is a prefix of ID|k. It creates a temporal private key T SK =
(
K0 =K′0 ·(K′2,k)Ik ,K1 =K′1,

{
K2,i =

K′2,i
}L

i=k+1

)
. Next, it outputs a delegated private key SKID|k by running HIBE.RandKey(T SK,PP).

HIBE.Encaps(ID|`, t,PP): Let ID|` = (I1, . . . , I`) ∈ I`. It outputs a ciphertext header CHID|` =
(
C0 =

gt ,C1 = (h∏
`
i=1 uIi)t

)
and a session key EK = Λt .

HIBE.Decaps(CTID|` ,SKID′|k ,PP): Let CHID|` = (C0,C1,C2) and SKID′|k = (K0,K1,{K2,i}L
i=k+1). If ID′|k ∈

Prefix(ID|`), then it outputs a session key EK by calculating e(C0,K0) ·e(C1,K1 ∏
`
i=k+1(K2,i)

Ii). Oth-
erwise, it outputs ⊥.

The following two additional algorithms are very important for our modular RHIBE construction. The
ChangeKey algorithm can change the master key exponent of an HIBE private key by supporting the ad-
dition of exponent values and the scalar multiplication. The MergeKey algorithm can add master key
exponents of two HIBE private keys by merging two HIBE private keys for the same hierarchical identity.
As pointed by Lee and Park [17], HIBE schemes in the commutative blinding category can easily support
these algorithms [4, 5, 18]. The additional two algorithms are described as follows:

HIBE.ChangeKey(SKID|k ,{(opi,δi)}n
i=1,PP): Let SKID|k = (K′0,K

′
1,{K′2,i}L

i=k+1) and opi ∈ {+,×}. It sets

T SK(0) = SKID|k . For each (opi,δi), it performs: If opi = +, then it sets T SK(i) = (K(i)
0 = K(i−1)

0 ·
gδi ,K(i)

1 = K(i−1)
1 ,{K(i)

2, j = K(i−1)
2, j }L

j=k+1). If opi = ×, then it sets T SK(i) = (K(i)
0 = (K(i−1)

0)δi ,K(i)
1 =

(K(i−1)
1)δi ,{K(i)

2, j = (K(i−1)
2, j)δi}L

j=k+1). It outputs a new private key SKID|k by running HIBE.RandKey
(T SK(n),PP).

HIBE.MergeKey(SK(1)
ID|k ,SK(2)

ID|k ,η ,PP): Let SK(1)
ID|k =(K′0,K

′
1,{K′2,i}L

i=k+1) and SK(2)
ID|k =(K′′0 ,K

′′
1 ,{K′′2,i}L

i=k+1)

be two private keys for the same identity ID|k. It computes a temporal private key T SK =
(
K0 =

K′0 ·K′′0 ,K1 = K′1 ·K′′1 ,
{

K2,i = K′2,i ·K′′2,i
}L

i=k+1

)
. Next, it outputs a merged private key SKID|k by run-

ning HIBE.ChangeKey(T SK,(+,η),PP). Note that the master key part is γ1 + γ2 +η if the master
key parts of SK(1)

ID|k and SK(2)
ID|k are γ1 and γ2 respectively.

Theorem 3.1 ([18]). The above HIBE scheme is AD-IND-CPA secure if the SD, GSD, and ComDH as-
sumptions hold.

3.2 IBE Scheme

We use a KEM version of the LW-IBE scheme that is a special case of the LW-HIBE scheme [18]. For our
modular RHIBE construction, we also define two additional algorithms of IBE.

9

IBE.Setup(GDS): Let GDS = ((N,G,GT ,e),g1,g3) be the description of a bilinear group with generators
g1 ∈Gp1 ,g3 ∈Gp3 . It selects random elements v,w ∈Gp1 and a random exponent β ∈ ZN . It outputs
a master key MK = β and public parameters PP =

(
(N,G,GT ,e),g = g1,Y = g3,v,w,Λ = e(g,g)β

)
.

IBE.GenKey(T,MK,PP): Let T ∈ T and MK = β . It chooses random r ∈ ZN ,Y0,Y1 ∈ Gp3 and outputs a
private key SKT =

(
K0 = gβ (vwT)rY0,K1 = g−rY1

)
.

IBE.RandKey(SKT ,PP): Let SKT = (K′0,K
′
1). It chooses random r′ ∈ ZN ,Y ′0,Y

′
1 ∈ Gp3 and outputs a ran-

domized private key SKT =
(
K0 = K′0 · (vwT)r′Y ′0,K1 = K′1 ·g−r′Y ′1

)
.

IBE.Encaps(T, t,PP): It outputs a ciphertext header CHT =
(
C0 = gt ,C1 = (vwT)t

)
and a session key EK =

Λt .

IBE.Decaps(CTT ,SKT ′ ,PP): Let CHT = (C0,C1) and SKT ′ = (K0,K1). If T ′ = T , then it outputs a session
key EK by calculating e(C0,K0) · e(C1,K1). Otherwise, it outputs ⊥.

IBE.ChangeKey(SKT ,{(opi,δi)}n
i=1,PP): Let SKT = (K′0,K

′
1) and opi ∈ {+,×}. It sets T SK(0) = SKT .

For each (opi,δi), it performs: If opi =+, then it sets T SK(i) = (K(i)
0 = K(i−1)

0 ·gδi ,K(i)
1 = K(i−1)

1). If
opi =×, then it sets T SK(i) = (K(i)

0 = (K(i−1)
0)δi ,K(i)

1 = (K(i−1)
1)δi). It outputs a new private key SKT

by running IBE.RandKey(T SK(n),PP).

IBE.MergeKey(SK(1)
T ,SK(2)

T ,η ,PP): Let SK(1)
T = (K′0,K

′
1) and SK(2)

T = (K′′0 ,K
′′
1) be two private keys for

the same T . It computes a temporal private key T SK =
(
K0 = K′0 ·K′′0 ,K1 = K′1 ·K′′1

)
. Next, it outputs

a merged private key SKT by running IBE.ChangeKey(T SK,(+,η),PP). Note that the master key
part is β1 +β2 +η if the master key parts of SK(1)

T and SK(2)
T are β1 and β2 respectively.

Theorem 3.2 ([18]). The above IBE scheme is AD-IND-CPA secure if the SD, GSD, and ComDH assump-
tions hold.

4 Revocable HIBE with Complete Subtree

In this section, we propose an RHIBE scheme via the complete subtree method and prove its adaptive
security under simple static assumptions.

4.1 The CS Scheme

The complete subtree (CS) scheme is a specific instance of the subset cover framework of Naor et al. [20].
We follow the definition the CS scheme in the work of Lee and Park [17].

CS.Setup(Nmax): Let Nmax = 2n for simplicity. It first sets a full binary tree BT of depth n. Each user is
assigned to a different leaf node in BT . The collection S is defined as {Si} where Si is the set of all
leaves in a subtree Ti with a subroot vi ∈ BT . It outputs the full binary tree BT .

CS.Assign(BT , ID): Let vID be a leaf node of BT that is assigned to the user ID. Let (vk0 ,vk1 , . . . ,vkn) be
the path from the root node vk0 = v0 to the leaf node vkn = vID. For all j ∈ {k0, . . . ,kn}, it adds S j into
PVID. It outputs the private set PVID = {S j}.

10

CS.Cover(BT ,R): It first computes the Steiner tree ST (R). Let Tk1 , . . .Tkm be all the subtrees of BT that
hang off ST (R), that is all subtrees whose roots vk1 , . . .vkm are not in ST (R) but adjacent to nodes of
outdegree 1 in ST (R). For all i∈ {k1, . . . ,km}, it adds Si into CVR. It outputs a covering set CVR = {Si}.

CS.Match(CVR,PVID): It finds a subset Sk with Sk ∈CVR and Sk ∈ PVID. If there is such a subset, it outputs
(Sk,Sk). Otherwise, it outputs ⊥.

Lemma 4.1 ([20]). In the CS scheme, the size of a private set is O(logNmax) and the size of a covering set
is O(r log(Nmax/r)) where Nmax is the maximum number of leaf nodes and r is the size of revoked users R.

4.2 Construction

To build an RHIBE-CS scheme, we follow the modular design strategy of Lee and Park [17]. That is, we
construct an RHIBE-CS scheme by combining HIBE and IBE schemes with special properties and the CS
scheme. As mentioned before, we use the LW-HIBE scheme in composite-order bilinear groups as the
underlying HIBE scheme for our RHIBE scheme. The LW-HIBE scheme has short ciphertexts similar to
the BBG-HIBE scheme, but it is fully secure under static assumptions [18]. Lee and Park [17] also pointed
out that the BBG-HIBE scheme also can be used to build a selectively secure RHIBE scheme in a modular
way. In this work, we prove the adaptive security of our RHIBE scheme. Our RHIBE-CS scheme is very
similar to that of Lee and Park [17] except that it uses composite-order bilinear groups and the underlying
HIBE and IBE schemes are replaced by the HIBE and IBE schemes of Lewko and Waters [18].

RHIBE-CS.Setup(1λ ,L,Nmax): Let λ be a security parameter, L be the maximum depth of a hierarchical
identity, and Nmax be the maximum number of users for each level.

1. It first generates bilinear groups G,GT of composite order N = p1 p2 p3 where p1, p2, and p3 are
random primes. It sets GDS = ((N,G,GT ,e),g1,g2) where gi is a random generator of Gpi . It
obtains MKHIBE and PPHIBE by running HIBE.Setup(GDS,L). It also obtains MKIBE and PPIBE

by running IBE.Setup(GDS).

2. It selects a random exponent α ∈ ZN and outputs a master key MK = α and public parameters
PP =

(
PPHIBE ,PPIBE ,Ω = e(g1,g1)

α ,Nmax
)
. For notational simplicity, we define SKID|0 = MK.

RHIBE-CS.GenKey(ID|k,STID|k−1 ,PP): Let ID|k = (I1, . . . , Ik) ∈ Ik be a hierarchical identity with k ≥ 1
and STID|k−1 be a state information.

1. If STID|k−1 is empty (since it is first called), then it obtains BT ID|k−1 by running CS.Setup(Nmax)
and generates a false master key βID|k−1 and a PRF key zID|k−1 . Next, it sets STID|k−1 = (BT ID|k−1 ,
βID|k−1 ,zID|k−1).

2. It assigns ID|k to a random leaf node v ∈ BT ID|k−1 and obtains a private set PVID|k = {S j} by
running CS.Assign(BT ID|k−1 , ID|k).

3. For each S j ∈ PVID|k , it computes γ j = PRF(zID|k−1 ,L j) where L j = Label(S j) and obtains an
HIBE private key SKHIBE,S j by running HIBE.GenKey(ID|k,γ j,PP).

4. Finally, it outputs a private key SKID|k =
(
PVID|k ,{SKHIBE,S j}S j∈PVID|k

)
. Note that the master key

part of SKHIBE,S j is γ j.

RHIBE-CS.UpdateKey(T,RLID|k−1 ,DKID|k−1,T ,STID|k−1 ,PP): Let DKID|k−1,T = (RSKHIBE,ID|k−1 ,RSKIBE,T)
and STID|k−1 = (BT ID|k−1 ,βID|k−1 ,zID|k−1) with k ≥ 1.

11

1. It first obtains a randomized decryption key RDKID|k−1,T = (RSKHIBE ,RSKIBE) by running
RHIBE-CS.RandDK(DKID|k−1,T ,−βID|k−1 ,PP).

2. It derives the set of revoked identities R at time T from RLID|k−1 . Next, it obtains a covering set
CVR = {Si} by running CS.Cover(BT ID|k−1 ,R).

3. For each Si ∈CVR, it computes γi = PRF(zID|k−1 ,Li) where Li = Label(Si) and obtains SKIBE,Si

by running IBE.GenKey(T,βID|k−1− γi,PP).

4. Finally, it outputs an update key UKID|k−1,T,R =
(
RDKID|k−1,T ,CVR,{SKIBE,Si}Si∈CVR

)
. Note that

the master key parts of RSKHIBE ,RSKIBE , and SKIBE,Si are η ′, α−η ′−βID|k−1 , and βID|k−1 − γi

for some random η ′ respectively.

RHIBE-CS.DeriveKey(ID|k,T,SKID|k ,UKID|k−1,T,R,PP): Let ID|k =(I1, . . . , Ik) with k≥ 0, SKID|k =(PVID|k ,
{SKHIBE,S j}S j∈PVID|k

), and UKID|k−1,T,R = (RDKID|k−1,T ,CVR,{SKIBE,Si}Si∈CVR) where RDKID|k−1,T =

(RSK′HIBE,ID|k−1
,RSK′IBE,T).

If k = 0, then SKID|0 = MK = α and UKID|−1,T,R is empty. It proceeds as follows:

1. It selects a random exponent η ∈ ZN . It then obtains RSKHIBE,ID|0 and RSKIBE,T by running
HIBE.GenKey(ID|0,η ,PP) and IBE.GenKey(T,α−η ,PP) respectively.

2. It outputs a decryption key DKID|0,T = (RSKHIBE,ID|0 ,RSKIBE,T).

If k ≥ 1, then it proceeds as follows:

1. If ID|k 6∈ R, then it obtains (Si,Si) by running CS.Match(CVR,PVID|k). Otherwise, it outputs ⊥.
Next, it retrieves SKHIBE,Si from SKID|k and SKIBE,Si from UKID|k−1,T,R.

2. It obtains RSK′′HIBE,ID|k by running HIBE.Delegate(ID|k,RSK′HIBE,ID|k−1
,PP) since ID|k−1 ∈

Prefix(ID|k). Next, it selects a random exponent η ∈ZN and obtains RSKHIBE,ID|k and RSKIBE,T

by running HIBE.MergeKey(RSK′′HIBE,ID|k ,SKHIBE,Si ,η ,PP) and IBE.MergeKey(RSK′IBE ,SKIBE,Si ,

−η ,PP) respectively.

3. Finally, it outputs a decryption key DKID|k,T =
(
RSKHIBE,ID|k ,RSKIBE,T

)
.

Note that the master key parts of RSKHIBE,ID|k and RSKIBE,T are η ′ and α −η ′ for some random η ′

respectively.

RHIBE-CS.RandDK(DKID|k,T ,β ,PP): Let DKID|k,T =
(
RSK′HIBE,ID|k ,RSK′IBE,T

)
and β ∈ ZN be an expo-

nent. It first selects a random exponent η ∈ ZN and obtains RSKHIBE,ID|k and RSKIBE,T by running
HIBE.ChangeKey(RSK′HIBE,ID|k ,(+,η),PP) and IBE.ChangeKey(RSK′IBE,T ,(+,−η +β),PP) re-
spectively. It outputs a randomized decryption key DKID|k,T =

(
RSKHIBE,ID|k ,RSKIBE,T

)
. Note that

the master key parts of RSKHIBE,ID|k and RSKIBE,T are η ′ and α−η ′+β respectively.

RHIBE-CS.Encrypt(ID|`,T,M,PP): Let ID|` = (I1, . . . , I`) ∈ I` be a hierarchical identity with ` ≥ 1.
It first chooses a random exponent t ∈ ZN . Next, it obtains CHHIBE,ID|` and EKHIBE by running
HIBE.Encaps(ID|`, t,PP). It also obtains CHIBE,T and EKIBE by running IBE.Encaps(T, t,PP). It
outputs a ciphertext CTID|k,T =

(
CHHIBE,ID|` ,CHIBE,T ,C = Ωt ·M

)
.

RHIBE-CS.Decrypt(CTID|`,T ,DKID′|k,T ′ ,PP): Let CTID|`,T = (CHHIBE,ID|` ,CHIBE,T ,C) and DKID′|k,T ′ = (
RSKHIBE,ID′|k ,RSKIBE,T ′). If ID′|k ∈ Prefix(ID|`) and T = T ′, then it obtains EKHIBE and EKIBE

by running HIBE.Decaps(CHHIBE,ID|` ,RSKHIBE,ID|k ,PP) and IBE.Decaps(CHIBE,T ,RSKIBE,T ′ ,PP)
respectively. Otherwise, it outputs ⊥. It outputs an encrypted message M =C · (EKHIBE ·EKIBE)

−1.

12

RHIBE-CS.Revoke(ID|k,T,RLID|k−1 ,STID|k−1): If ID|k is not assigned in BT ID|k−1 , then it outputs ⊥. Oth-
erwise, it updates RLID|k−1 by adding (ID|k,T) to RLID|k−1 .

Remark 1. The RHIBE scheme of Lee and Park [17] uses intermediate private keys of HIBE to reduce the
size of a private key instead of using normal private keys of HIBE. However, our RHIBE-CS scheme just
uses normal private keys of HIBE since the BBG-HIBE and LW-HIBE schemes cannot have intermediate
private keys.

The correctness of our RHIBE-CS scheme can be easily checked by using the correctness of HIBE, IBE,
and CS schemes. We omit the correctness.

4.3 Security Analysis

To prove the adaptive security of our RHIBE-CS scheme, we use the dual system encryption proof technique
of Lewko and Waters [18]. As mentioned before, we simply cannot change normal private keys and normal
update keys into semi-functional keys one by one through hybrid games. Instead, we divide private keys
and update keys into small component keys and these small component keys are grouped together if they
are related to the same node in a binary tree. The security proof is described as follows.

Theorem 4.2. The above RHIBE-CS scheme is AD-IND-CPA secure if the SD, GSD, and ComDH assump-
tions hold.

Proof. We first define the semi-functional type of HIBE private keys, HIBE ciphertext, IBE private keys,
and IBE ciphertexts. For the semi-functional type, we let g2 denote a fixed generator of the subgroup Gp2 .

HIBE.GenKeySF-1. Let SK′ID|k = (K′0,K
′
1,{K′2,i}L

i=k+1) be a normal private key. It chooses random expo-
nents a0,b0,{zi}L

i=k+1 ∈ ZN and outputs a semi-functional type-1 private key SKID|k =
(
K0 = K′0ga0

2 ,

K1 = K′1gb0
2 ,

{
K2,i = K′2,ig

b0zi
2

}L
i=k+1

)
.

HIBE.GenKeySF-2. Let SK′ID|k = (K′0,K
′
1,{K′2,i}L

i=k+1) be a normal private key. It chooses a random ex-
ponent a0 ∈ ZN and outputs a semi-functional type-2 HIBE private key SKID|k =

(
K0 = K′0ga0

2 ,K1 =

K′1,
{

K2,i = K′2,i
}L

i=k+1

)
.

HIBE.GenKeySF. Let SK′ID|k = (K′0,K
′
1,{K′2,i}L

i=k+1) be a normal private key. Let δ j,0 ∈ ZN be a fixed
random exponent that will be defined in RHIBE. It outputs a semi-functional HIBE private key
SKID|k =

(
K0 = K′0gδ j,0

2 ,K1 = K′1,
{

K2,i = K′2,i
}L

i=k+1

)
.

HIBE.EncryptSF. Let CH ′ID|` = (C′0,C
′
1) be a normal ciphertext header. It chooses random exponents

c,d0 ∈ ZN and outputs a semi-functional HIBE ciphertext header CHID|` =
(
C0 =C′0gc

2,C1 =C′1gcd0
2

)
.

Note that if a semi-functional type-1 HIBE private key are used to decrypt a semi-functional HIBE
ciphertext, then an additional random element e(g2,g2)

c(a0+∑
`
i=k+1 b0ziIi−b0d0) is left. If a0 +∑

`
i=k+1 b0ziIi =

b0d0, then this HIBE private key is nominally semi-functional type-1.

IBE.GenKeySF-1. Let SK′T = (K′0,K
′
1) be a normal private key. It chooses random exponents a1,b1 ∈ ZN

and outputs a semi-functional type-1 IBE private key SKT =
(
K0 = K′0ga1

2 ,K1 = K′1gb1
2

)
.

IBE.GenKeySF-2. Let SK′T = (K′0,K
′
1) be a normal private key. It chooses a random exponent a1 ∈ ZN and

outputs a semi-functional type-2 IBE private key SKT =
(
K0 = K′0ga1

2 ,K1 = K′1
)
.

13

IBE.GenKeySF. Let SK′T = (K′0,K
′
1) be a normal private key. Let δi,1 ∈ZN be a fixed random exponent that

will be defined in RHIBE. It outputs a semi-functional IBE private key SKT =
(
K0 =K′0gδi,1

2 ,K1 =K′1
)
.

IBE.EncryptSF. Let CH ′T = (C′0,C
′
1) be a normal ciphertext header. It chooses random exponents c,d1 ∈

ZN and outputs a semi-functional IBE ciphertext header CHT =
(
C0 =C′0gc

2,C1 =C′1gcd1
2

)
.

Note that if a semi-functional type-1 IBE private key is used to decrypt a semi-functional IBE ciphertext,
then an additional random element e(g2,g2)

c(a1−b1d1) is left. If a1 = b1d1, then this IBE private key is
nominally semi-functional type-1.

We now define the semi-functional types of private keys, update keys, decryption keys, and ciphertexts
in RHIBE by using the semi-functional HIBE and IBE types.

RHIBE-CS.GenKeySF. It first creates a normal private key SK′ID|k = (PVID|k ,{SK′HIBE,S j
}S j∈PVID|k

) by
using MK where PVID|k = {S j}. For each S j ∈ PVID|k , it fixes a random exponent δ j,0 ∈ ZN for
S j ∈ BT ID|k−1 and converts a normal SK′HIBE,S j

to a semi-functional SKHIBE,S j with the exponent δ j,0.
It outputs a semi-functional private key SKID|k = (PVID|k ,{SKHIBE,S j}S j∈PVID|k

).

RHIBE-CS.UpdateKeySF. It first creates a normal update key UK′ID|k−1,T,R
= (RDK′ID|k−1,T

,CVR,{SK′IBE,Si

}Si∈CVR) by using MK where CVR = {Si}. Let RDK′ID|k−1,T
= (RSK′HIBE,ID|k−1

,RSK′IBE,T). It chooses
random exponents a0,aID|k−1 ∈ZN where aID|k−1 is fixed forBT ID|k−1 . It converts a normal RSK′HIBE,ID|k−1

to a semi-functional type-2 RSKHIBE,ID|k−1 with the exponent a0. It also converts a normal RSK′IBE,T to
a semi-functional type-2 RSKIBE,T with the exponent aID|k−1 . It sets a semi-functional RDKID|k−1,T =
(RSKHIBE,ID|k−1 ,RSKIBE,T). For each Si ∈CVR, it fixes a random exponent δi,1 ∈ ZN for Si ∈ BT ID|k−1

and converts a normal SK′IBE,Si
to a semi-functional SKIBE,S j with the exponent δi,1. It outputs a semi-

functional update key UKT,R = (RDKID|k−1,T ,CVR,{SKIBE,Si}Si∈CVR).

RHIBE-CS.DeriveKeySF. It first creates a normal decryption key DK′ID|k,T = (RSK′HIBE,ID|k ,RSK′IBE,T)

by using MK. It chooses random exponents a0,a1 ∈ ZN . It converts a normal RSK′HIBE,ID|k to a
semi-functional type-2 RSKHIBE,ID|k with the exponent a0. It also converts a normal RSK′IBE,T to a
semi-functional type-2 RSKIBE,T with the exponent a1. It outputs a semi-functional decryption key
DKID|k,T = (RSKHIBE,ID|k ,RSKIBE,T).

RHIBE-CS.EncryptSF. It first creates a normal ciphertext CT ′ID|`,T =(CH ′HIBE,ID|` ,CH ′IBE,T ,C
′). It chooses

random exponents c,d0,d1 ∈ ZN . It converts a normal CH ′HIBE,ID|` to a semi-functional CHHIBE,ID|`
with exponents c,d0. It also converts a normal CH ′IBE,T to a semi-functional CHIBE,T with exponents
c,d1. It outputs a semi-functional ciphertext CTID|`,T = (CHHIBE,ID|k ,CHIBE,T ,C′).

The security proof consists of a sequence of hybrid games: The first game will be the original security
game and the last one will be a game in which an adversary has no advantage. We define the games as
follows:

Game G0. This game is the original security game. In this game, all private keys, update keys, decryption
keys and the challenge ciphertext are normal.

Game G1. In the game G1, the PRFs that are used in the generation of private keys and update keys are
changed to be truly random functions.

14

Game G2. In this game, the challenge ciphertext is changed to be semi-functional. All other keys are still
normal.

Game G3. Next, we define a new game G3. In this game, all private keys and all update keys are changed
to be semi-functional.

Game G4. In this game G4, the remaining decryption keys are changed to be semi-functional. That is, all
private keys, update keys, decryption keys, and the challenge ciphertext are now semi-functional.

Game G5. In the final game G5, the session key in the semi-functional challenge ciphertext is changed to
be random. In this game, the adversary cannot distinguish the challenge messages since the session
key is random.

Let AdvG j
A be the advantage of A in the game G j. We have that AdvAD-IND-CPA

RHIBE,A (1λ) = AdvG0
A , and AdvG5

A =
0. From the following Lemmas 4.3, 4.4, 4.5, 4.8, and 4.11, we obtain the equation

AdvAD-IND-CPA
RHIBE,A (1λ)≤

5

∑
j=1

∣∣AdvG j−1
A −AdvG j

A
∣∣

≤ O(qL)AdvPRF
B (1λ)+AdvSD

B (1λ)+O(q logNmax +qrmax logNmax)AdvGSD
B (1λ)+

AdvComDH
B (1λ).

This completes the proof.

Lemma 4.3. If the PRF is secure, then no polynomial-time adversary can distinguish G0 from G1 with a
non-negligible advantage.

This proof of Lemma 4.3 is relatively straightforward from the security of PRF. That is, we can use
additional hybrid games that change a PRF to a truly random function. Note that there are at most O(qL)
number of binary trees in the security proof where q is the number of key queries and L is the maximum
level of a hierarchical identity. We omit the proof of this lemma.

Lemma 4.4. If the SD assumption holds, then no polynomial-time adversary can distinguish G1 from G2
with a non-negligible advantage.

Proof. Suppose there exists an adversaryA that distinguishes G1 from G2 with a non-negligible advantage.
A simulator B that solves the SD assumption usingA is given: a challenge tuple D= ((N,G,GT ,e),gp1 ,gp3)
and Z where Z = Z0 = X1 ∈ Gp1 or Z = Z1 = X1R1 ∈ Gp1 p2 . Then B that interacts with A is described as
follows:

Setup: B first chooses random exponents h′,u′1, . . . ,u
′
L,v
′,w′,α ∈ ZN and random elements Λ1,Λ2 ∈GT,p1 .

Next, it builds PPHIBE =
(
(N,G,GT ,e),g = gp1 ,Y = gp3 ,h = gh′

p1
,u1 = gu′1

p1 , . . . ,uL = gu′L
p1 ,Λ1

)
and PPIBE =(

(N,G,GT ,e),g = gp1 ,Y = gp3 ,v = gv′
p1
,w = gw′

p1
,Λ2

)
. It sets MK = α and publishes PP =

(
PPHIBE ,PPIBE ,

Ω = e(g,g)α
)
.

Phase 1: B creates normal keys by running normal algorithms except that each γ j is randomly chosen in
ZN instead of calculating it by running PRF. Note that it cannot create semi-functional keys since gp2 is not
given.
Challenge: B builds CHHIBE,ID∗|` =

(
C0 = Z,C1 =(Z)h′+∑

`
i=1 u′iI

∗
i
)

and CHIBE,T ∗ =
(
C0 = Z,C1 =(Z)v′+w′T ∗

)
.

Next, it flips a random coin µ ∈{0,1} and creates a challenge ciphertext CT ∗ID∗|`,T ∗ =
(
CHHIBE,ID∗|` ,CHIBE,T ∗ ,

C = e(Z,g)α ·M∗µ
)
.

15

Phase 2: Same as Phase 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

If Z = Z0 =X1, then the simulation is the same as G1. If Z = Z1 =X1R1, then it is the same as G2 since the
challenge ciphertext is semi-functional by implicitly setting d0 ≡ h′+∑

`
i=1 u′I∗i mod p2 and d1 ≡ v′+w′T ∗

mod p2. Note that d0 and d1 are random since h′,u′1, . . . ,u
′
L,v
′,w′ modulo p2 are not correlated with their

values modulo p1 by the Chinese Remainder Theorem (CRT). This completes our proof.

Lemma 4.5. If the GSD assumption holds, then no polynomial-time adversary can distinguish G2 from G3
with a non-negligible advantage.

Proof. For the proof of this lemma, we cannot use simple hybrid games that change a normal private key
(or normal update key) to a semi-functional private key (or semi-functional update key) one by one since the
adversary of RHIBE can query a private key for ID|k ∈ Prefix(ID∗|`) and an update key for T ∗. Note that
these normal keys cannot directly converted to semi-functional keys since an information theoretic argument
cannot be used.

To solve this problem, we first divide each private key and update key into small HIBE private keys
and IBE private keys. Recall that a private key SKID|k consists of many HIBE private keys and an update
key UKID|k−1,T,R consists of a randomized decryption key and many IBE private keys where each HIBE
private key (or an IBE private key) is associated with a node v j (or a subset S j) in BT ID|k−1 . Next, HIBE
private keys and IBE private keys that are related to the same node v j in BT ID|k−1 are grouped together. To
uniquely identify a node v j ∈ BT ID|k−1 , we define a node identifier NID of this node as a string ID|k−1‖L j

where L j = Label(S j). To prove this lemma, we change normal HIBE private keys and normal IBE private
keys that are related to the same node identifier NID into semi-functional keys by defining additional hybrid
games. This additional hybrid games are performed for all node identifiers that are used in the key queries
of the adversary.

For additional hybrid games that change HIBE private keys (or IBE private keys) that are related to
the same node identifier NID = ID|k−1‖L j from normal keys to semi-functional keys, we need to define an
index pair (in, ic) for an HIBE private key (or an IBE private key) that is related to the node v j ∈ BT ID|k−1

where in is a node index and ic is a counter index. Suppose that an HIBE private key (or an IBE private key)
is related to a node NID. The node index in for the HIBE private key (or the IBE private key) is assigned as
follows: If the node v j ∈ BT ID|k−1 with a node identifier NID appears first time in key queries, then we set in
as the number of distinct node identifiers in previous key queries plus one. If the node identifier NID already
appeared before in key queries, then we set in as the value i′n of previous HIBE private key (or IBE private
key) with the same node identifier. The counter index ic of an HIBE private key is assigned as follows: If
the node identifier NID appears first time in HIBE private key queries, then we set ic as one. If the node
identifier NID appeared before in HIBE private key queries, then we set ic as the number of HIBE private
keys with the same node identifier that appeared before plus one. Similarly, we assigns the counter index ic
of an IBE private key.

For the security proof, we define a sequence of additional hybrid games G2,1, . . . ,G2,h, . . . ,G2,qn where
G2 = G2,0 and qn is the number of all node identifiers that are used in HIBE private keys and IBE private
keys of an adversary. In the game G2,h for 1 ≤ h ≤ qn, the challenge ciphertext is semi-functional, HIBE
private keys and IBE private keys with a node index in ≤ h are semi-functional, the remaining HIBE private
keys and IBE private keys with a node index in > h are normal, and all randomized decryption keys are still
normal. In the game G3, the remaining randomized decryption keys are changed to be semi-functional.

Let AdvG j
A be the advantage ofA in the game G j. From the following Lemmas 4.6 and 4.7, we have the

16

following equation

AdvG2
A −AdvG3

A ≤
qn

∑
h=1

∣∣AdvG2,h−1
A −AdvG2,h

A
∣∣+ ∣∣AdvG2,qn

A −AdvG3
A
∣∣

≤ O(q logNmax +qrmax logNmax)AdvGSD
B (1λ).

This completes the proof.

Lemma 4.6. If the GSD assumption holds, then no polynomial-time adversary can distinguish G2,h−1 from
G2,h with a non-negligible advantage.

Proof. We first divide the behavior of an adversary as two types: Type-I and Type-II. We next show that this
lemma holds for two types of the adversary. Let ID∗|` be the challenge hierarchical identity and T ∗ be the
challenge time. The adversary types are formally defined as follows:

Type-I. An adversary is Type-I if it queries on a hierarchical identity ID|k 6∈ Prefix(ID∗|`) for all HIBE
private keys with the node index h, and it queries on time T = T ∗ for at least one IBE private key with
the node index h.

Type-II. An adversary is Type-II if it queries on time T 6= T ∗ for all IBE private keys with the node index
h. Note that it may query on a hierarchical identity ID|k ∈ Prefix(ID∗|`) for at least one HIBE private
key with h, or it may query on a hierarchical identity ID|k 6∈ Prefix(ID∗|`) for all HIBE private keys
with h.

If an adversary is Type-I, then all HIBE private keys related with the node index h are changed to be semi-
functional through hybrid games by using the restriction ID|k 6∈ Prefix(ID∗|`). After that, the remaining
IBE private keys with h are change to be semi-functional. Note that there is no paradox of the dual system
encryption when the remaining IBE private keys are changed since HIBE private keys are already semi-
functional. If an adversary is Type-II, then all IBE private keys are changed to be semi-functional by using
the restriction T 6= T ∗ and then the remaining HIBE private keys are changed to be semi-functional.

For the Type-I adversaryAI , we define hybrid games H1,1,H1,2, . . . ,Hqc,1,Hqc,2 = H′qc,2,H
′
qc,1, . . . ,H

′
1,2,

H′1,1,H′0,2,H′′ where G2,h−1 = H0,2, H′′ = G2,h, and qc is the maximum number of HIBE private key queries
for the node index h. The games are formally defined as follows:

Game Hhc,1. This game Hhc,1 for 1 ≤ hc ≤ qc is almost the same as G2,h−1 except the generation of HIBE
private keys and IBE private keys with the node index h. An IBE private key with an index pair (h, ic)
is generated as normal. An HIBE private key with an index pair (h, ic) is generated as follows:

• ic < hc: It generates a normal SK′HIBE,S j
and converts the key to a semi-functional type-2 SKHIBE,S j

by selecting a new random exponent a0 ∈ ZN .

• ic = hc: It generates a normal SK′HIBE,S j
and converts the key to a semi-functional type-1 SKHIBE,S j

by selecting new random exponents a0,b0,{zi} ∈ ZN .

• ic > hc: It simply creates a normal HIBE private key.

Recall that if a0+∑
`
i=k+1 b0ziIi = b0d0, then this HIBE private key is nominally semi-functional type-1

where d0 is the exponent of the challenge HIBE ciphertext header.

17

Game Hhc,2. This game Hhc,2 is almost the same as Hhc,1 except that the HIBE private key for the index pair
(h, ic = hc) is generated with b0 = 0. That is, this HIBE private key is generated as semi-functional
type-2. In the game Hqc,2, all HIBE private keys with the node index h are semi-functional type-2, but
all IBE private keys with the node index h are still normal.

Game H′hc,1. This game H′hc,1 is almost the same as Hhc,1 except the generation of an HIBE private key with
an index pair (h, ic ≥ hc). This HIBE private key is generated as follows:

• ic ≥ hc: It first generates SK′′HIBE,S j
= (K′′0 ,K

′′
1 ,{K′′2,i}) as the same as Hhc,1. Note that this can be

normal or semi-functional type-1. It chooses a random exponent δ j,0 ∈ ZN once for the subset

S j and creates a semi-functional HIBE private key SKHIBE,S j =
(
K0 = K′′0 gδ j,0

2 ,K1 = K′′1 ,{K2,i =
K′′2,i}

)
.

Game H′hc,2. This game H′hc,2 is almost the same as H′hc,1 except that the HIBE private key with the index
pair (h, ic = hc) is generated with b0 = 0. The modification is similar to the game H′hc,1. In the game
H′0,2, all HIBE private keys with the node index h are semi-functional where a fixed δ j,0 is used for a
subset S j, but all IBE private keys with the node index h are still normal.

Game H′′. This game H′′ is the same as G2,h. Compared to the game H′0,2, all normal IBE private keys with
the node index h are changed to be semi-functional by using a fixed δi,1 for a subset Si.

Let AdvHi
AI

be the advantage of AI in a game Hi. From the following Lemmas 4.12, 4.13, 4.14, 4.15,
and 4.16, we obtain the following equation

AdvH0,2
AI
−AdvH ′′

AI
≤

qc

∑
hc=1

∣∣AdvHhc−1,2
AI

−AdvHhc,1
AI

∣∣+ qc

∑
hc=1

∣∣AdvHhc,1
AI
−AdvHhc ,2

AI

∣∣+
qc

∑
hc=1

∣∣Adv
H ′hc,2
AI
−Adv

H ′hc,1
AI

∣∣+ qc

∑
hc=1

∣∣Adv
H ′hc,1
AI
−Adv

H ′hc−1,2
AI

∣∣+ ∣∣Adv
H ′0,2
AI
−AdvH ′′

AI

∣∣
≤ O(qc)AdvGSD

B (1λ).

For the Type-II adversary AI , we define hybrid games I1,1,I1,2, . . . ,Iqc,1,Iqc,2 = I′qc,2,I
′
qc,1, . . . ,I

′
1,2,I′1,1,

I′0,2,I′′ where G2,h−1 = I0,2, I′′ = G2,h, and qc is the maximum number of IBE private key queries for the
node index h. The games are formally defined as follows:

Game Ihc,1. This game Ihc,1 for 1 ≤ hc ≤ qc is almost the same as G1,h−1 except the generation of HIBE
private keys and IBE private keys with the node index h. An HIBE private key with an index pair
(h, ic) is generated as normal. An IBE private key with an index pair (h, ic) is generated as follows:

• ic < hc: It generates a normal SK′IBE,Si
and converts the key to a semi-functional type-2 SKIBE,Si

by selecting a new random exponent a1 ∈ ZN .

• ic = hc: It generates a normal SK′IBE,Si
and converts the key to a semi-functional type-1 SKIBE,Si

by selecting new random exponents a1,b1 ∈ ZN .

• ic > hc: It simply creates a normal IBE private key.

Recall that if a1 = b1d1, then this IBE private key is nominally semi-functional type-1 where d1 is the
exponent of the challenge IBE ciphertext header.

18

Game Ihc,2. This game Ihc,2 is almost the same as Ihc,1 except that the IBE private key for the index pair
(h, ic = hc) is generated with b1 = 0. That is, this IBE private key is generated as semi-functional
type-2. In the game Iqc,2, all IBE private keys with the node index h are semi-functional type-2, but
all HIBE private keys with the node index h are still normal.

Game I′hc,1. This game I′hc,1 is almost the same as Ihc,1 except the generation of an IBE private key with an
index pair (h, ic ≥ hc). This IBE private key is generated as follows:

• ic ≥ hc: It first generates SK′′IBE,Si
= (K′′0 ,K

′′
1) as the same as Ihc,1. Note that this can be normal

or semi-functional type-1. It chooses a random exponent δi,1 ∈ ZN once for the subset Si and
creates a semi-functional IBE private key SKIBE,Si =

(
K0 = K′′0 gδi,1

2 ,K1 = K′′1
)
.

Game I′hc,2. This game I′hc,2 is almost the same as I′hc,1 except that the IBE private key with the index pair
(h, ic = hc) is generated with b1 = 0. This modification is similar to the game I′hc,1. In the game I′0,2,
all IBE private keys with the node index h are semi-functional where a fixed δi,1 is used for a subset
Si, but all HIBE private keys with the node index h are still normal.

Game I′′. This game I′′ is the same as G2,h. Compared to the game I′0,2, all normal HIBE private keys with
the node index h are changed to be semi-functional by using a fixed δi,1 for a subset Si.

Let AdvIi
AI

be the advantage of AI in a game Ii. From the following Lemmas 4.17, 4.18, 4.19, 4.20, and
4.21, we obtain the following equation

AdvI0,2
AII
−AdvI′′

AI
≤

qc

∑
hc=1

∣∣AdvIhc−1,2
AII

−AdvIhc,1
AII

∣∣+ qc

∑
hc=1

∣∣AdvIhc,1
AII
−AdvIhc,2

AII

∣∣+
qc

∑
hc=1

∣∣Adv
I′hc,2
AII
−Adv

I′hc,1
AII

∣∣+ qc

∑
hc=1

∣∣Adv
I′hc,1
AII
−Adv

I′hc−1,2
AII

∣∣+ ∣∣Adv
I′0,2
AII
−AdvI′′

AII

∣∣
≤ O(qc)AdvGSD

B (1λ).

This completes our proof.

Lemma 4.7. If the GSD assumption holds, then no polynomial-time adversary can distinguish G2,qn from
G3 with a non-negligible advantage.

Proof. Suppose there exists an adversary A that distinguishes G2,qn from G3 with a non-negligible advan-
tage. A simulator B that solves the GSD assumption usingA is given: a challenge tuple D = ((N,G,GT ,e),
gp1 ,gp3 ,X1R1,R2Y1) and Z where Z = Z0 = X2Y2 or Z = Z1 = X2R3Y2. Then B that interacts with A is
described as follows:

Setup: B first chooses random exponents h′,u′1, . . . ,u
′
L,v
′,w′,α ∈ ZN and random elements Λ1,Λ2 ∈GT,p1 .

Next, it builds PPHIBE =
(
(N,G,GT ,e),g = gp1 ,Y = gp3 ,h = gh′

p1
,u1 = gu′1

p1 , . . . ,uL = gu′L
p1 ,Λ1

)
and PPIBE =(

(N,G,GT ,e),g = gp1 ,Y = gp3 ,v = gv′
p1
,w = gw′

p1
,Λ2

)
. It sets MK = α and publishes PP =

(
PPHIBE ,PPIBE ,

Ω = e(g,g)α
)
.

Phase 1: For each query, B proceeds as follows: If this is a private key query, then it creates a semi-
functional one by using MK and R2Y1. If this is a decryption key query, then it creates a normal one. If this
is an update key query for ID|k−1, T , and R, then it creates IBE private keys as semi-functional and it creates
a randomized decryption key as follows:

19

• It first chooses random exponents η ′,r1,r2 ∈ ZN and random elements Y ′0,Y
′
1,{Y ′2,i},Y ′′0 ,Y ′′1 ∈ Gp3 . It

also fixes a random exponent δ ′ID|k−1
forBT ID|k−1 . Next, it builds an HIBE private key RSKHIBE,ID|k−1 =(

K0 = (Z)η ′(h∏
k−1
i=1 uIi

i)
r1Y ′0,K1 = g−r1Y ′1,{K2,i = ur1

i Y ′2,i}
)

and an IBE private key RSKIBE,T =
(
K0 =

gα(Z)
−η ′−β ′ID|k−1 (vwT)r2Y ′′0 ,K1 = g−r2Y ′′1

)
. It creates RDKID|k−1,T =

(
RSKHIBE,ID|k−1 ,RSKIBE,T

)
.

Challenge: B first builds CHHIBE,ID∗|` =
(
C0 =X1R1, C1 =(X1R1)

h′+∑
`
i=1 u′iI

∗
i
)

and CHIBE,T ∗ =(C0 =X1R1, C1 =

(X1R1)
v′+w′T ∗). Next, it flips a random coin µ ∈ {0,1} and creates the semi-functional challenger ciphertext

CTID∗|`,T ∗ = (CHHIBE,ID∗|` ,CHIBE,T ∗ ,C = e(X1R1,g)α ·M∗µ).
Phase 2: Same as Phase 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

If Z = Z0 = X2Y2, then the simulation is the same as G2,qn . If Z = Z1 = X2R3Y2, then the simulation
is the same as G3 since a randomized decryption key in an update key is generated as semi-functional by
implicitly setting a0≡ cη ′ mod p2 and aID|k−1 ≡−cη ′−cβ ′ID|k−1

mod p2 where c≡ logg2
(R3) mod p2 and

two values η ′ mod p2,β
′
ID|k−1

mod p2 are random by CRT. Note that there is no paradox of dual system
encryption since HIBE private keys in a private key and IBE private keys in an update key are already
semi-functional.

Lemma 4.8. If the GSD assumption holds, then no polynomial-time adversary can distinguish G3 from G4
with a non-negligible advantage.

Proof. For the security proof, we define a sequence of hybrid games G3,1,G3,2, . . . ,G3,qdk where G3 =
G3,0 and qdk is the number of decryption key queries of an adversary. In the game G3,hd for 1 ≤ hd ≤
qdk, all private keys, all update keys, and the challenge ciphertext are generated as semi-functional, but
decryption keys are generated as follows: The first hd decryption keys are generated as semi-functional and
the remaining decryption keys are generated as normal.

To show that an adversary cannot distinguish G3,hd−1 from G3,hd , we additionally define games Jhd ,1,
Jhd ,2,Jhd ,3 where Jhd−1,3 = G3,hd−1. These games are defined as follows:

Game Jhd ,1. This game is almost similar to the game G3,hd−1 except the generation of hd th decryption
key. Let RSK′HIBE,ID|k = (K′0,K

′
1,{K′2,i}) be a normal HIBE private key and RSK′IBE,T = (K′′0 ,K

′′
1) be

a normal IBE private key. The hd th decryption key consists of a semi-functional type-1 HIBE private
key RSKHIBE,ID|k = (K0 = K′0ga0

2 ,K1 = K′1gb0
2 ,{K2,i = K′2,ig

b0zi
2 }) and a semi-functional type-1 IBE

private key RSKIBE,T = (K0 = K′′0 ga1
2 ,K1 = K′′1 gb1

2) where a0,b0,{zi},a1,b1 are random exponents in
ZN .

Game Jhd ,2. In this game, the HIBE private key and the IBE private key in in the hd th decryption key is
changed to be semi-functional type-2. It is obvious that Jhd ,2 = G3,hd .

Recall that the decryption key is nominally semi-functional type-1 if a0 +∑
`
i=k+1 b0ziIi +a1 = b0d0 +b1d1.

Let Adv
Jhd ,i

A be the advantage of A in the game Jhd ,i. We have that AdvG3
A = AdvJ1,0

A and AdvG4
A =

Adv
Jqdk ,2

A . From the following Lemmas 4.9 and 4.10, we obtain the following equation

AdvG3
A −AdvG4

A ≤
qdk

∑
hd=1

(∣∣Adv
Jhd ,0

A −Adv
Jhd ,1

A
∣∣+ ∣∣Adv

Jhd ,1

A −Adv
Jhd ,2

A
∣∣)≤ O(qdk)AdvGSD

B (1λ).

This completes our proof.

20

Lemma 4.9. If the GSD assumption holds, then no polynomial-time adversary can distinguish Jhd−1,2 from
Jhd ,1 with a non-negligible advantage.

Proof. Suppose there exists an adversaryA that distinguishes Jhd−1,2 from Jhd ,1 with a non-negligible advan-
tage. A simulator B that solves the GSD assumption usingA is given: a challenge tuple D = ((N,G,GT ,e),
gp1 ,gp3 ,X1R1,R2Y1) and Z where Z = Z0 = X2Y2 or Z = Z1 = X2R3Y2. Then B that interacts with A is
described as follows:

Setup: B first chooses random exponents h′,u′1, . . . ,u
′
L,v
′,w′,α ∈ ZN and random elements Λ1,Λ2 ∈GT,p1 .

Next, it builds PPHIBE =
(
(N,G,GT ,e),g = gp1 ,Y = gp3 ,h = gh′

p1
,u1 = gu′1

p1 , . . . ,uL = gu′L
p1 ,Λ1

)
and PPIBE =(

(N,G,GT ,e),g = gp1 ,Y = gp3 ,v = gv′
p1
,w = gw′

p1
,Λ2

)
. It sets MK = α and publishes PP =

(
PPHIBE ,PPIBE ,

Ω = e(g,g)α
)
.

Phase 1: For each query, B proceeds as follows: If this is a private key (or update key) query, then it creates
a semi-functional one by using MK and R2Y1. If this is an hd th decryption key query for ID|k and T , then it
handles this query as follows:

• j < hd : It creates a semi-functional decryption key by using MK and R2Y1.

• j = hd : It first chooses random exponents η ′,r′1,r
′
2 ∈ ZN and random elements Y ′0,Y

′
1,{Y ′2,i},Y ′′0 ,Y ′′1 ∈

Gp3 . Next, it builds an HIBE private key RSKHIBE,ID|k =
(
K0 = (Z)η ′+(h′+∑

k
i=1 u′iIi)r′1Y ′0,K1 = (Z)−r′1Y ′1,

{K2,i =(Z)u′ir
′
1Y ′2,i}

)
and an IBE private key RSKIBE,T =

(
K0 = gα(Z)−η ′+(v′+w′T)r′2Y ′′0 , K1 =(Z)−r′2Y ′′1

)
.

It creates DKID|k,T =
(
RSKHIBE,ID|k ,RSKIBE,T

)
.

• j > hd : It creates a normal decryption key by using MK.

Challenge: B first builds CHHIBE,ID∗|` =
(
C0 =X1R1, C1 =(X1R1)

h′+∑
`
i=1 u′iI

∗
i
)

and CHIBE,T ∗ =(C0 =X1R1, C1 =

(X1R1)
v′+w′T ∗). Next, it flips a random coin µ ∈ {0,1} and creates the semi-functional challenger ciphertext

CTID∗|`,T ∗ = (CHHIBE,ID∗|` ,CHIBE,T ∗ ,C = e(X1R1,g)α ·M∗µ).
Phase 2: Same as Phase 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

If Z = Z0 = X2Y2, then the simulation is the same as Jhd−1,2. If Z = Z1 = X2R3Y2, then the simulation
is almost the same as Jhd ,1 except that the hd th decryption key is generated as a nominally semi-functional
type-1 by implicitly setting a0 ≡ cη ′+cr′1(h

′+∑
k
i=1 u′iIi) mod p2, b0 ≡ cr′1 mod p2, zi ≡ u′i mod p2, a1 ≡

−cη ′+ cr′2(v
′+w′T) mod p2, and b1 ≡ cr′2 mod p2 where c≡ logg2

(R3). Note that we solve the paradox
of dual system encryption by introducing the nominally semi-functional decryption key. To finish the proof,
we should argue that the adversary cannot distinguish a nominally semi-functional decryption key from a
semi-functional decryption key. For this argument, we can easily show an information theoretic argument
by using the restriction of a decryption key query in the security model and CRT. We omit the details of this
argument.

Lemma 4.10. If the GSD assumption holds, then no polynomial-time adversary can distinguish Jhd ,1 from
Jhd ,2 with a non-negligible advantage.

Proof. The proof of this lemma is almost the same as that of Lemma 4.9, except the generation of the hd th
decryption key. The hd th decryption key for ID|k and T is generated as follows:

21

• j = hd : It chooses random exponents η ′,r′1,r
′
2,a
′
0,a
′
1 ∈ZN and random elements Y ′0,Y

′
1,{Y ′2,i},Y ′′0 ,Y ′′1 ∈

Gp3 . Next, it builds an HIBE private key RSKHIBE,ID|k =
(
K0 = (Z)η ′+(h′+∑

k
i=1 u′iIi)r′1(R2Y1)

a′0Y ′0, K1 =

(Z)−r′1Y ′1, {K2,i =(Z)u′ir
′
1Y ′2,i}

)
and an IBE private key RSKIBE,T =

(
K0 = gα(Z)−η ′+(v′+w′T)r′2(R2Y1)

a′1Y ′′0 ,
K1 = (Z)−r′1Y ′′1

)
. It creates DKID|k,T =

(
RSKHIBE,ID|k ,RSKIBE,T

)
.

Note that the hd th decryption key is no longer correlated with the challenge ciphertext since K0 is randomized
by (R2Y1)

a′0 . If Z = Z0 = X2Y2, then the simulation is the same as Jhd ,2. If Z = Z1 = X2R3Y2, then the
simulation is the same as Jhd ,1.

Lemma 4.11. If the ComDH assumption holds, then no polynomial-time adversary can distinguish G4 from
G5 with a non-negligible advantage.

Proof. Suppose there exists an adversary A that distinguish G4 from G5 with a non-negligible advantage.
A simulator B that solves the ComDH assumption using A is given: a challenge tuple D = ((N,G,GT ,e),
gp1 ,gp2 ,gp3 ,g

a
p1

R1,gb
p1

R2) and Z where Z = Z0 = e(gp1 ,gp1)
ab or Z = Z1 = e(gp1 ,gp1)

c. Then B that interacts
with A is described as follows:

Setup: B first chooses random exponents h′,u′1, . . . ,u
′
L,v
′,w′ ∈ ZN and random elements Λ1,Λ2 ∈ GT,p1 .

Next, it builds PPHIBE =
(
(N,G,GT ,e),g = gp1 ,Y = gp3 ,h = gh′

p1
,u1 = gu′1

p1 , . . . ,uL = gu′L
p1 ,Λ1

)
and PPIBE =(

(N,G,GT ,e),g = gp1 ,Y = gp3 ,v = gv′
p1
,w = gw′

p1
,Λ2

)
. It implicitly sets α = a from ga

p1
R1 and publishes

PP =
(
PPHIBE ,PPIBE ,Ω = e(g,ga

p1
R1)

)
.

Phase 1: For each query, B creates a semi-functional key by using ga
2R1 and g2 that are given in the assump-

tion. Note that it cannot create a normal update key since ga
p1

is not given.

Challenge: B first builds CHHIBE,ID∗|` =
(
C0 = gb

p1
R2, C1 = (gb

p1
R2)

h′+∑
`
i=1 u′iI

∗
i
)

and CHIBE,T ∗ = (C0 =

gb
p1

R2, C1 = (gb
p1

R2)
v′+w′T ∗). Next, it flips a random coin µ ∈ {0,1} and creates a challenger ciphertext

CTID∗|`,T ∗ = (CHHIBE,ID∗|` ,CHIBE,T ∗ ,C = Z ·M∗µ).
Phase 2: Same as Phase 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

If Z = Z0, then the simulation is the same as G4. If Z = Z1, then the simulation is the same as G5 since
C is random.

4.4 Type-I Adversary

Lemma 4.12. If the GSD assumption holds, then no polynomial-time Type-I adversary can distinguish
Hhc−1,2 from Hhc,1 with a non-negligible advantage.

Proof. Suppose there exists an adversary AI that distinguishes Hhc−1,2 from Hhc,1 with a non-negligible
advantage. A simulator B that solves the GSD assumption using AI is given: a challenge tuple D =
((N,G,GT ,e),gp1 ,gp3 ,X1R1,R2Y1) and Z where Z = Z0 = X2Y2 or Z = Z1 = X2R3Y2. Then B that inter-
acts with AI is described as follows:

Setup: B first chooses random exponents h′,u′1, . . . ,u
′
L,v
′,w′,α ∈ ZN and random elements Λ1,Λ2 ∈ Gp3 .

Next, it builds PPHIBE =
(
(N,G,GT ,e),g = gp1 ,Y = gp3 ,h = gh′

p1
,u1 = gu′1

p1 , . . . ,uL = gu′L
p1 ,Λ1

)
and PPIBE =(

(N,G,GT ,e),g = gp1 ,Y = gp3 ,v = gv′
p1
,w = gw′

p1
,Λ2

)
. It sets MK = α and publishes PP =

(
PPHIBE ,PPIBE ,

Ω = e(g,g)α
)
.

22

Phase 1: For each query, B proceeds as follows: If this is a decryption key query, then it creates a normal
key. If this is an HIBE private key or an IBE private key query with indexes (in, ic), then B handles this
query as follows:

• Case in < h: It first builds a normal key by using MK and converts the key to a semi-functional one
with fixed random exponents δ j,0,δ j,1 ∈ ZN for the subset S j by using R2Y1.

• Case in = h: If this is an IBE private key query, then it creates a normal key by using MK. If this is
an HIBE private key query, then it proceeds as follows:

– ic < hc: It first builds a normal HIBE private key and converts the key to a semi-functional type-2
key with a random exponent a0 ∈ ZN by using R2Y1.

– ic = hc: It chooses random elements Y ′0,Y
′
1,{Y ′2,i}∈Gp3 and creates an HIBE private key SKHIBE =(

K0 = gγ j(Z)h′+∑
k
i=1 u′iIiY ′0, K1 = (Z)−1Y ′1, {K2,i = (Z)u′iY ′2,i}

)
.

– ic > hc: It creates a normal HIBE private key by using MK.

• Case in > h: It creates a normal HIBE private key or a normal IBE private key.

Challenge: B first builds CHHIBE,ID∗|` =
(
C0 =X1R1, C1 =(X1R1)

h′+∑
`
i=1 u′iI

∗
i
)

and CHIBE,T ∗ =(C0 =X1R1, C1 =

(X1R1)
v′+w′T ∗). Next, it flips a random coin µ ∈ {0,1} and creates the semi-functional challenger ciphertext

CTID∗|`,T ∗ = (CHHIBE,ID∗|` ,CHIBE,T ∗ ,C = e(X1R1,g)α ·M∗µ).
Phase 2: Same as Phase 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

If Z = Z0 = X2Y2, then the simulation is the same as Hhc−1,2 since the HIBE private key with (in =
h)∧(ic = hc) and the semi-functional challenge HIBE ciphertext header are correctly distributed. If Z = Z1 =
X2R3Y2, then the simulation is almost the same as Hhc,1 except that the HIBE private key with (in = h)∧(ic =
hc) is generated as a nominally semi-functional type-1 key by implicitly setting a0≡ logg2

(R3)(h′+∑
k
i=1 u′iIi)

mod p2, b0 ≡ logg2
(R3) mod p2, and zi ≡ u′i mod p2. Note that the paradox of dual system encryption is

solved by introducing the nominally semi-functional type-1 key. That is, the simulator cannot check whether
the HIBE private key is normal or nominally semi-functional type-1 since the nominally semi-functional
type-1 key is correlated to the challenge ciphertext.

Next, we should argue that the Type-I adversary cannot distinguish a nominally semi-functional type-1
HIBE private key from a semi-functional type-1 HIBE private key. For this argument, we show an informa-
tion theoretic argument by using the fact that ID|k 6∈ Prefix(ID∗|`) for all HIBE private key queries with the
node index h. Suppose there exists an unbounded Type-I adversary. If the query with (in = h)∧ (ic = hc) is
an HIBE private key, then the adversary can gather the values a0 ≡ b0(h′+∑

k
i=1 u′iIi) mod p2,b0 mod p2

from the HIBE private key and d0 ≡ h′+∑
`
i=1 u′iI

∗
i mod p2 from the challenge HIBE ciphertext header. We

easily obtain that h′+∑
k
i=1 u′iIi mod p2 looks random to the adversary since h′+u′jI j is a pair-wise indepen-

dent function, ∃ j such that I j 6= I∗j if ID|k 6∈ Prefix(ID∗|`), and h′ mod p2 and u′j mod p2 are information
theoretically hidden to the adversary. This completes our proof.

Lemma 4.13. If the GSD assumption holds, then no polynomial-time Type-I adversary can distinguish Hhc,1
from Hhc,2 with a non-negligible advantage.

Proof. The proof of this lemma is almost the same as that of Lemma 4.12. The only difference is the
generation of an HIBE private key with indexes (h, ic = hc). This HIBE private key is generated as follows:

23

• ic = hc: It chooses random a′0 ∈ZN , Y ′0,Y
′
1,{Y ′2,i} ∈Gp3 and creates an HIBE private key SKHIBE,ID|k =(

K0 = gγ j(Z)h′+∑
k
i=1 u′iIiY ′0(R2Y1)

a′0 , K1 = (Z)−1Y ′1, {K2,i = (Z)u′iY ′2,i}
)
.

Note that this HIBE private key with indexes (h,hc) is no longer correlated with the challenge ciphertext
since K0 is randomized by (R2Y1)

a′0 .

Lemma 4.14. If the GSD assumption holds, then no polynomial-time Type-I adversary can distinguish
H′hc−1,2 from H′hc,1 with a non-negligible advantage.

Lemma 4.15. If the GSD assumption holds, then no polynomial-time Type-I adversary can distinguish H′hc,1
from H′hc,2 with a non-negligible advantage.

The proofs of Lemmas 4.14 and 4.15 are almost the same as those of Lemmas 4.12 and 4.13 respectively.
The only difference is that each element K0 of HIBE private keys with the node index h that is generated in
Lemma 4.12 (or Lemma 4.13) is additionally multiplied by (R2Y1)

δ ′j,0 where a fixed exponent δ ′j,0 is related
with the node v j. This modification is possible since R2Y1 is given in the assumption. In this case, HIBE

private keys with the node index h additionally contain R
δ ′j,0
2 . We omit the detailed proofs of these lemmas.

Lemma 4.16. If the GSD assumption holds, then no polynomial-time Type-I adversary can distinguish H′0,2
from H′′ with a non-negligible advantage.

Proof. The proof of this lemma is the important part of the security proof since it changes the IBE private
key for T ∗ from a normal type to a semi-functional type. It should be noted that this changes from normal
to semi-functional cannot be handled by introducing a nominally semi-functional type since an information
theoretic argument for T ∗ cannot be used. To solve this problem, we directly change normal keys with the
index h to semi-functional keys without introducing nominally semi-functional keys.

Many part of this proof is similar to that of Lemma 4.12 except that the generation of HIBE private keys
and IBE private keys with the node index h. These keys with the node index in = h are generated as follows:

• Case in = h: Let δ ′j,0 be a fixed exponent in ZN for the subset S j in this node index h.

If this is an HIBE private key query, then it selects random r1 ∈ ZN ,Y ′0,Y
′
1,{Y ′2,i} ∈Gp3 and creates an

HIBE private key SKHIBE,ID|k =
(
K0 = Z(h∏

k
i=1 uIi)r1Y ′0 · (R2Y1)

δ ′j,0 , K1 = g−r1Y ′1, {K2,i = ur1
i Y ′2,i}

)
.

If this is an IBE private key query, then it selects random r2 ∈ ZN ,Y ′′0 ,Y
′′
1 ∈ Gp3 and creates an IBE

private key SKIBE,T =
(
K0 = gβID|k−1 (Z)−1(vwT)−r2Y ′′0 , K1 = g−r2Y ′′1

)
.

If Z = Z0 = X2Y2, then the simulation is the same as H′0,2 since all HIBE private keys with h are semi-
functional and all IBE private keys with h are normal. If Z = Z1 = X2R3Y2, then the simulation is the same
as H′′ since it implicitly sets δ j,0 = loggp2

(R3)+ loggp2
(R2)δ

′
j,0 mod p2 and δ j,1 =− loggp2

(R3) mod p2.
We now show that the paradox of dual system encryption does not occur. To check whether an IBE

private key with h is normal or semi-functional, the simulator may try to decrypt a semi-functional ciphertext
by deriving a decryption key from these keys with h. However, the simulator always derive a semi-functional
decryption key from those keys since the HIBE private key with h is already semi-functional. Thus, the
simulator cannot check whether the IBE private key with h is normal or semi-functional since the decryption
always fails. This completes our proof.

24

4.5 Type-II Adversary

Lemma 4.17. If the GSD assumption holds, then no polynomial-time Type-II adversary can distinguish
Ihc−1,2 from Ihc,1 with a non-negligible advantage.

Lemma 4.18. If the GSD assumption holds, then no polynomial-time Type-II adversary can distinguish Ihc,1
from Ihc,2 with a non-negligible advantage.

Lemma 4.19. If the GSD assumption holds, then no polynomial-time Type-II adversary can distinguish
I′hc−1,2 from I′hc,1 with a non-negligible advantage.

Lemma 4.20. If the GSD assumption holds, then no polynomial-time Type-II adversary can distinguish I′hc,1
from I′hc,2 with a non-negligible advantage.

Lemma 4.21. If the GSD assumption holds, then no polynomial-time Type-II adversary can distinguish I′0,2
from I′′ with a non-negligible advantage.

The proofs of Lemmas 4.17, 4.18, 4.19, 4.20, and 4.21 are almost the same as those of Lemmas 4.12,
4.13, 4.14, 4.15, and 4.16 respectively except that IBE private keys are first changed to semi-functional
by using the restriction T 6= T ∗ and the master key part of an IBE private key is set with the exponent
βID|k−1− γi. Note that the IBE scheme is a specific case of the HIBE scheme. We omit the detailed proofs of
these lemmas.

5 Revocable HIBE with Subset Difference

In this section, we propose an RHIBE-SD scheme by combining HIBE, IBE, and SD schemes and prove its
adaptive security under simple static assumptions.

5.1 The SD Scheme

The subset difference (SD) scheme is also a specific instance of the subset cover framework of Naor et
al. [20]. We also follow the SD definition of Lee and Park [17].

SD.Setup(Nmax): Let Nmax = 2n for simplicity. It first sets a full binary tree BT of depth n. Each user is
assigned to a different leaf node in BT . The collection S of SD is the set of all subsets {Si, j} where
vi,v j ∈ BT and v j is a descendant of vi. It outputs the full binary tree BT .

SD.Assign(BT , ID): Let vID be the leaf node of BT that is assigned to the user ID. Let (vk0 ,vk1 , . . . ,vkn) be
the path from the root node vk0 to the leaf node vkn = vID. For all i, j ∈ {k0, . . . ,kn} such that v j is a
descendant of vi, it adds the subset Si, j defined by two nodes vi and v j in the path into PVID. It outputs
the private set PVID = {Si, j}.

SD.Cover(BT ,R): It first sets a subtree T as the Steiner tree ST (R) that is the minimum subtree of BT that
connects all the leaf nodes in R and the root node, and then it builds a covering set CVR iteratively by
removing nodes from T until T consists of just a single node as follows:

1. It finds two leaf nodes vi and v j in T such that the least-common-ancestor v of vi and v j does not
contain any other leaf nodes of T in its subtree. Let vl and vk be the two child nodes of v such
that vi is a descendant of vl and v j is a descendant of vk. If there is only one leaf node left, it
makes vi = v j to the leaf node, v to be the root of T and vl = vk = v.

25

2. If vl 6= vi, then it adds the subset Sl,i to CVR; likewise, if vk 6= v j, it adds the subset Sk, j to CVR.

3. It removes from T all the descendants of v and makes v a leaf node.

It outputs the covering set CVR = {Si, j}.

SD.Match(CVR,PVID): It finds two subsets Si, j and S′i′, j′ such that Si, j ∈CVR, S′i′, j′ ∈ PVID, i = i′, d j = d j′ ,
and j 6= j′ where d j is the depth of v j. If it found two subsets, then it outputs (Si, j,S′i′, j′). Otherwise,
it outputs ⊥.

Lemma 5.1 ([20]). In the SD scheme, the size of a private set if O(log2 Nmax) and the size of a covering set
is O(r) where Nmax is the maximum number of leaf nodes and r is the size of revoked users R.

5.2 Construction

Our RHIBE-SD scheme is also very similar to that of Lee and Park [17] except that the underlying HIBE
and IBE schemes are replaced by the LW-HIBE and LW-IBE schemes. Recall that Lee and Park proposed
a modular design approach of RHIBE, so we can also follow their design approach. Let ∆i,I be a Lagrange
coefficient which is defined as ∆i,I(x) = ∏ j∈I, j 6=i

x− j
i− j for an index i ∈ Zp and a set of indexes I in Zp.

RHIBE-SD.Setup(1λ ,L,Nmax): Let λ be a security parameter, L be the maximum depth of a hierarchical
identity, and Nmax be the maximum number of users for each level.

1. It first generates bilinear groups G,GT of composite order N = p1 p2 p3 where p1, p2, and p3 are
random primes. It sets GDS = ((N,G,GT ,e),g1,g2) where gi is a random generator of Gpi . It
obtains MKHIBE and PPHIBE by running HIBE.Setup(GDS,L). It also obtains MKIBE and PPIBE

by running IBE.Setup(GDS).

2. It selects a random exponent α ∈ ZN and outputs a master key MK = α and public parameters
PP =

(
PPHIBE ,PPIBE ,Ω = e(g,g)α ,Nmax

)
. For notational simplicity, we define SKID|0 = MK.

RHIBE-SD.GenKey(ID|k,STID|k−1 ,PP): Let ID|k = (I1, . . . , Ik) ∈ Ik be a hierarchical identity with k ≥ 1,
and STID|k−1 be a state information.

1. If STID|k−1 is empty (since it is first called), then it obtains BT ID|k−1 by running SD.Setup(Nmax)
and generates a false master key βID|k−1 ∈ Zp and a PRF key zID|k−1 . Next, it sets STID|k−1 =
(BT ID|k−1 ,βID|k−1 ,zID|k−1).

2. It assigns ID|k to a random leaf node v ∈ BT ID|k−1 and obtains a private set PVID|k = {Si, j} by
running SD.Assign(BT ID|k−1 , ID|k).

3. For each Si, j ∈ PVID|k , it defines fGL(x) = aGLx+βID|k−1 by computing aGL = PRF(zID|k−1 ,GL)
where (Li,L j) = Label(Si, j), d j = Depth(S j), and GL = Li‖d j, and then it obtains SKHIBE,S j by
running HIBE.GenKey(ID|k, fGL(L j),PP).

4. Finally, it outputs a private key SKID|k =
(
PVID|k ,{SKHIBE,Si, j}Si, j∈PVID|k

)
. Note that the master

key part of SKHIBE,Si, j is fGL(L j).

RHIBE-SD.UpdateKey(T,RLID|k−1 ,DKID|k−1,T ,STID|k−1 ,PP): Let DKID|k−1,T = (RSKHIBE,ID|k−1 ,RSKIBE,T)
and STID|k−1 = (BT ID|k−1 ,βID|k−1 ,zID|k−1) with k ≥ 1.

26

1. It first obtains a randomized decryption key RDKID|k−1,T = (RSKHIBE ,RSKIBE) by running
RHIBE-SD.RandDK(DKID|k−1,T ,−βID|k−1 ,PP).

2. It derives the set R of revoked identities at time T from RLID|k−1 . Next, it obtains a covering set
CVR = {Si, j} by running SD.Cover(BT ID|k−1 ,R).

3. For each Si, j ∈ CVR, it defines fGL(x) = aGLx+ βID|k−1 by computing aGL = PRF(zID|k−1 ,GL)
where (Li,L j) = Label(Si, j), d j = Depth(S j), and GL = Li‖d j, and then it obtains SKIBE,Si, j by
running IBE.GenKey(T, fGL(L j),PP).

4. Finally, it outputs an update key UKID|k−1,T,R =
(
RDKID|k−1,T ,CVR,{SKIBE,Si, j}Si, j∈CVR

)
. Note that

the master key parts of RSKHIBE ,RSKIBE , and SKIBE,Si are η ′, α−η ′−βID|k−1 , and fGL(L j) for
some random η ′ respectively.

RHIBE-SD.DeriveKey(ID|k,T,SKID|k ,UKID|k−1,T,R,PP): Let ID|k =(I1, . . . , Ik) with k≥ 0, SKID|k =(PVID|k ,
{SKHIBE,Si, j}Si, j∈PVID|k

), and UKID|k−1,T,R =(RDKID|k−1,T ,CVR,{SKIBE,Si, j}Si, j∈CVR) where RDKID|k−1,T =

(RSK′HIBE,ID|k−1
,RSK′IBE,T).

If k = 0, then SKID|0 = MK and UK is empty. It proceeds as follows:

1. It selects a random exponent η ∈ Zp. It then obtains RSKHIBE,ID|0 and RSKIBE,T by running
HIBE.GenKey(ID|0,η ,PP) and IBE.GenKey(T,MK−η ,PP) respectively.

2. It outputs a decryption key DKID|0,T = (RSKHIBE,ID|0 ,RSKIBE,T).

If k ≥ 1, then it proceeds as follows:

1. If ID|k 6∈ R, then it obtains (Si, j,Si′, j′) by running SD.Match(CVR,PVID|k). Otherwise, it outputs
⊥. Next, it retrieves SKHIBE,Si′, j′ from SKID|k and SKIBE,Si, j from UKID|k−1,T,R.

2. It sets I = {L j,L j′} and calculates two Lagrange coefficients ∆L j,I(0) and ∆L j′ ,I(0) by using
the fact L j 6= L j′ . It obtains T SKHIBE and T SKIBE by running HIBE.ChangeKey(SKHIBE,Si′, j′ ,
(×,∆L j′ ,I(0)),PP) and IBE.ChangeKey(SKIBE,Si, j ,(×,∆L j,I(0)),PP) respectively.

3. It obtains RSK′′HIBE,ID|k by running HIBE.Delegate(ID|k,RSK′HIBE,ID|k−1
,PP). It selects a ran-

dom exponent η ∈Zp. Next, it obtains RSKHIBE,ID|k and RSKIBE,T by running HIBE.MergeKey
(RSK′′HIBE ,T SKHIBE ,η ,PP) and IBE.MergeKey(RSK′IBE ,T SKIBE ,−η ,PP) respectively.

4. Finally, it outputs a decryption key DKID|k,T =
(
RSKHIBE,ID|k ,RSKIBE,T

)
.

Note that the master key parts of RSKHIBE,ID|k and RSKIBE,T are η ′ and α −η ′ for some random η ′

respectively.

RHIBE-SD.RandDK(DKID|k,T ,β ,PP): It is the same as the randomization algorithm in Section 4.2.

RHIBE-SD.Encrypt(ID|`,T,M,PP): It is the same as the encryption algorithm in Section 4.2.

RHIBE-SD.Decrypt(CTID|`,T ,DKID′|k,T ′ ,PP): It is the same as the decryption algorithm in Section 4.2.

RHIBE-SD.Revoke(ID|k,T,RLID|k−1 ,STID|k−1): It is the same as the revocation algorithm in Section 4.2.

27

5.3 Security Analysis

We also use the dual system encryption proof technique of Lewko and Waters [18] to prove the adaptive
security of our RHIBE-SD scheme. The overall strategy of this security proof is somewhat similar to that
of our RHIBE-CS scheme, but we use a different grouping method of small component keys because of
the difference between the CS scheme and the SD scheme. The details of the security proof are given as
follows.

Theorem 5.2. The above RHIBE-SD scheme is AD-IND-CPA secure if the SD, GSD, and ComDH assump-
tions hold.

Proof. We first define the semi-functional types of private keys, update keys, decryption keys, and cipher-
texts in RHIBE by using the semi-functional types of HIBE and IBE in Theorem 4.2. For the semi-functional
type, we let g2 denote a fixed generator of the subgroup Gp2 .

RHIBE-SD.GenKeySF. It first creates a normal private key SK′ID|k = (PVID|k ,{SK′HIBE,Si, j
}Si, j∈PVID|k

) by
using MK where PVID|k = {Si, j}. For each Si, j ∈ PVID|k , it chooses a random exponent δi, j ∈ ZN once
for Si, j ∈BT ID|k−1 and converts a normal SK′HIBE,Si, j

to a semi-functional SKHIBE,Si, j with the exponent
δi, j. It outputs a semi-functional private key SKID|k = (PVID|k ,{SKHIBE,Si, j}Si, j∈PVID|k

).

RHIBE-SD.UpdateKeySF. It first creates a normal update key UK′ID|k−1,T,R
=(RDK′ID|k−1,T

,CVR,{SK′IBE,Si, j

}Si, j∈CVR) by using MK. Let RDK′ID|k−1,T
= (RSK′HIBE,ID|k−1

,RSK′IBE,T). It chooses random expo-
nents a0,aID|k−1 ∈ ZN where aID|k−1 is fixed for BT ID|k−1 . It converts a normal RSK′HIBE,ID|k−1

to a
semi-functional type-2 RSKHIBE,ID|k−1 with the exponent a0. It also converts a normal RSK′IBE,T to a
semi-functional type-2 RSKIBE,T with the exponent aID|k−1 . It sets a semi-functional RDKID|k−1,T =
(RSKHIBE,ID|k−1 ,RSKIBE,T). For each Si, j ∈CVR, it chooses a random exponent δi, j ∈ ZN once for Si, j

and converts a normal SK′IBE,Si, j
to a semi-functional SKIBE,Si, j with the exponent δi, j. It outputs a

semi-functional update key UKID|k−1,T,R = (RDKID|k−1,T ,CVR,{SKIBE,Si, j}Si, j∈CVR).

RHIBE-SD.DeriveKeySF. It first creates a normal decryption key DK′ID|k,T = (RSK′HIBE,ID|k ,RSK′IBE,T)

by using MK. It chooses random exponents a0,a1 ∈ ZN . It converts a normal RSK′HIBE,ID|k to a
semi-functional type-2 RSKHIBE,ID|k with the exponent a0. It also converts a normal RSK′IBE,T to a a
semi-functional type-2 RSKIBE,T with the exponent a1. It outputs a semi-functional decryption key
DKID|k,T =

(
RSKHIBE,ID|k ,RSKIBE,T

)
.

RHIBE-SD.EncryptSF. It first creates a normal ciphertext CT ′ID|`,T =(CH ′HIBE,ID|` ,CH ′IBE,T ,C
′). It chooses

random exponents c,d0,d1 ∈ ZN . It converts a normal CH ′HIBE,ID|` to a semi-functional CHHIBE,ID|`
with exponents c,d0. It also converts a normal CH ′IBE,T to a semi-functional CHIBE,T with exponents
c,d1. It outputs a semi-functional ciphertext CTID|`,T =

(
CHHIBE,ID|` ,CHIBE,T ,C′

)
.

The security proof consists of the sequence of hybrid games G0,G1, . . . ,G5. The first game G0 is the
original security game and the last one G5 is a game such that the adversary has no advantage. We omit the
definition of these games since these are the same as those in Theorem 4.2.

Let AdvG j
A be the advantage of A in the game G j. We have that AdvAD-IND-CPA

RIBE,A (1λ) = AdvG0
A and

28

AdvG5
A = 0. From the following Lemmas 5.3, 5.4, 5.5, 5.8, and 5.9, we obtain the following equation

AdvAD-IND-CPA
RIBE,A (1λ)≤

5

∑
j=1

∣∣AdvG j−1
A −AdvG j

A
∣∣

≤ O(qL)AdvPRF
B (1λ)+AdvSD

B (1λ)+O
(
q2 log2 Nmax +q2rmax

)
AdvGSD

B (1λ)+

AdvComDH
B (1λ).

This completes our proof.

Lemma 5.3. If the PRF is secure, then no polynomial-time adversary can distinguish G0 from G1 with a
non-negligible advantage.

Lemma 5.4. If the SD assumption holds, then no polynomial-time adversary can distinguish G1 from G2
with a non-negligible advantage.

The proofs of Lemmas 5.3 and 5.4 are the same as those of Lemmas 4.3 and 4.4.

Lemma 5.5. If the GSD assumption holds, then no polynomial-time adversary can distinguish G2 from G3
with a non-negligible advantage.

Proof. For the proof of this lemma, we cannot use simple hybrid games that change a normal private key
(or normal update key) to a semi-functional private key (or semi-functional update key) one by one since the
adversary of RHIBE can query a private key for ID|k ∈ Prefix(ID∗|`) and an update key for T ∗. Note that
these normal keys cannot directly converted to semi-functional keys since an information theoretic argument
cannot be used.

To solve this problem, we first divide each private key and update key into small HIBE private keys
and IBE private keys. Recall that a private key SKID|k consists of many HIBE private keys and an update
key UKID|k−1,T,R consists of a randomized decryption key and many IBE private keys where each HIBE
private key (or an IBE private key) is associated with a subset Si, j in BT ID|k−1 . Next, HIBE private keys
and IBE private keys that are related to the same group of a subset Si, j in BT ID|k−1 are grouped together. To
uniquely identify the group of a subset Si, j ∈ BT ID|k−1 , we define a group identifier GID of this subset as
a string ID|k−1‖Li‖d j where (Li,L j) = Label(Si, j) and d j = Depth(S j). To prove this lemma, we change
normal HIBE private keys and normal IBE private keys that are related to the same group identifier into
semi-functional keys by defining additional hybrid games. This additional hybrid games are performed for
all group identifiers that are used in the key queries of the adversary.

For additional hybrid games that change HIBE private keys (or IBE private keys) that are related to
the same group identifier GID = ID|k−1‖Li‖d j from normal keys to semi-functional keys, we need to state
additional information of a subset Si, j in BT ID|k−1 . Note that an HIBE private key for Si, j and an IBE
private key for Si′, j′ share the same polynomial f (x) if (Li = Li′)∧ (d j = d j′) since they belong to the same
group. Thus we associate an HIBE private key (or an IBE private key) with an index pair (ig, im, ic) to state
additional information where ig is a group index, im is a member index, and ic is a counter index.

Suppose that an HIBE private key (or an IBE private key) is related with a subset Si, j, Then this key has
a group identifier GID = ID|k−1‖Li‖d j and a member label L j. The group index ig for HIBE private keys (or
IBE private keys) is assigned as follows: If the group identifier GID appears first time in queries, then we set
ig as the number of distinct group identifiers in previous queries plus one. If the group identifier GID already
appeared before in queries, then we set ig as the value i′g of previous HIBE private key (or IBE private key)
with the same group identifier GID. The member index im for the group index ig is assigned as follows: If

29

the member label L j for this group identifier GID appears first time in queries, then we set im as the number
of distinct members for this group identifier GID in previous queries plus one. If the member label L j for
this group identifier already appeared before in queries, then we set im as the value i′m of previous one. The
counter index ic is assigned as follows: If the group identifier and member label (GID,L j) appears first time
in queries, then we set ic as one. If the group identifier and member label (GID,L j) appeared before in
queries, then we set ic as the number of queries with the group identifier and member label (GID,L j) that
appeared before plus one.

For the security proof, we additionally define a sequence of games G2,1, . . . ,G2,h, . . . ,G2,qg where G2 =
G2,0 and qg is the maximum number of group identifiers that are used in private keys and update keys. In the
game G2,h for 1 ≤ h ≤ qg, the challenge ciphertext is semi-functional, HIBE private keys and IBE private
keys with a group identifier ig ≤ h are semi-functional, the remaining HIBE private keys and IBE private
keys with a group index ig > h are normal, and all randomized decryption keys are still normal. In the game
G3, the remaining randomized decryption keys are changed to be semi-functional.

Let AdvG j
A be the advantage ofA in the game G j. From the following Lemmas 5.6 and 5.7, we have the

following equation

AdvG2
A −AdvG3

A ≤
qg

∑
h=1

∣∣AdvG2,h−1
A −AdvG2,h

A
∣∣+ ∣∣Adv

G2,qg
A −AdvG3

A
∣∣

≤ O(q2 log2 Nmax +q2rmax)AdvGSD
B (1λ).

This completes the proof.

Lemma 5.6. If the GSD assumption holds, then no polynomial-time adversary can distinguish G2,h−1 from
G2,h with a non-negligible advantage.

Proof. We first divide the behavior of an adversary as two types: Type-I and Type-II. We next show that this
lemma holds for two types of the adversary. Let ID∗|` be the challenge hierarchical identity and T ∗ be the
challenge time respectively. The two types of adversaries are formally defined as follows:

Type-I. An adversary is Type-I if it queries on a hierarchical identity ID|k ∈ Prefix(ID∗|`) for at least one
HIBE private key with the group index h, or it queries on time T = T ∗ for at least one IBE private key
with the group index h. More specifically, this adversary can be divided as follows:

• Type-I-A. This adversary queries on a hierarchical identity ID|k 6∈ Prefix(ID∗|`) for all HIBE
private keys with the group index h, and it queries on time T = T ∗ for at least one IBE private
key with the group index h.

• Type-I-B. This adversary queries on time T 6= T ∗ for all IBE private keys with h, and it queries
on a hierarchical identity ID|k ∈ Prefix(ID∗|`) for at least one HIBE private key with h.

• Type-I-C. This adversary queries on a hierarchical identity ID|k ∈ Prefix(ID∗|`) for at least one
HIBE private key with h, and it queries on time T = T ∗ for at least one IBE private key with h.

Type-II. An adversary is Type-II if it queries on a hierarchical identity ID|k 6∈ Prefix(ID∗|`) for all HIBE
private keys with the group index h, and it queries on time T 6= T ∗ for all IBE private keys with the
group index h.

Let’s assume that a group index h for this game is defined in BT ID|k−1 . Let CVR∗ be the covering set of
an update key for the challenge time T ∗ and the revoked set R∗ at time T ∗, and PVID∗|k be the private set of

30

an private key for an hierarchical identity ID∗|k ∈ Prefix(ID∗|`). Let h∗m be a member index of the group
index h such that the HIBE private key for ID∗|k or the IBE private key for T ∗ belong to the member index
h∗m. If the adversary is Type-I-A, then there is only one member index h∗m since CVR∗ is a partition. If the
adversary is In Type-I-B, then there is only one member index h∗m since PVID∗|k is related with a path. If the
adversary is Type-I-C, the member index h∗m of CVR∗ with the group index h should be the same as that of
PVID∗|k with the same group index h in the SD scheme if ID∗|k ∈ R∗. If the adversary is Type-II, then there
is no member index h∗m since the adversary does not request a key query for ID∗|k or T ∗.

For the Type-I adversaryAI , we define hybrid games H(1,1),1,H(1,1),2, . . . ,H(qm,qc),1,H(qm,qc),2 =H′(qm,qc),2,

H′(qm,qc),1, . . . ,H
′
(1,1),2,H

′
(1,1),1,H

′
(1,0),2,H

′′ where G2,h−1 = H(1,0),2, H′′ = G2,h, qm is the maximum number
of distinct member subsets of the group index h, and qc is the maximum number of queries for one member
subset. The games are formally defined as follows:

Game H(hm,hc),1. This game H(hm,hc),1 for 1≤ hm ≤ qm and 1≤ hc ≤ qc is almost the same as G2,h−1 except
the generation of HIBE private keys and IBE private keys with the group index h. These HIBE private
keys and IBE private keys with indexes (ig = h, im, ic) are generated as follows:

• Case ig < h: The keys (HIBE private keys and IBE private keys) are generated as semi-functional.

• Case ig = h: The keys are generated as follows:

– (im 6= h∗m)∧ (im < hm) or (im 6= h∗m)∧ (im = hm)∧ (ic < hc):
If this is an HIBE private key query, then it generates a normal SK′HIBE,Si, j

and converts the
key to a semi-functional type-2 SKHIBE,Si, j by selecting a new random exponent a0 ∈ ZN .
If this is an IBE private key query, then it generates a normal SK′IBE,Si, j

and converts the key
to a semi-functional type-2 SKIBE,Si, j by selecting a new random exponent a1 ∈ ZN .

– (im 6= h∗m)∧ (im = hm)∧ (ic = hc):
If this is an HIBE private key query, then it generates a normal SK′HIBE,Si, j

and converts the
key to a semi-functional type-1 SKHIBE,Si, j by selecting new random exponents a0,b0,{zi} ∈
ZN .
If this is an IBE private key query, then it generates a normal SK′IBE,Si, j

and converts the key
to a semi-functional type-1 SKIBE,Si, j by selecting new random exponents a1,b1 ∈ ZN .

– (im 6= h∗m)∧ (im = hm)∧ (hc < ic) or (im 6= h∗m)∧ (hm < im): It simply creates a normal key.
– (im = h∗m): It simply creates a normal key.

• Case ig > h: The keys are generated as normal.

Recall that if a0 +∑
`
i=k+1 b0ziIi = b0d0, then this HIBE private key is nominally semi-functional type-

1. Similarly, if a1 = b1d1, then this IBE private key is nominally semi-functional type-1.

Game H(hm,hc),2. This game H(hm,hc),2 is almost the same as H(hm,hc),1 except that the HIBE private key (or
the IBE private key) with the indexes (ig = h, im, ic) such that (im 6= h∗m)∧ (im = hm)∧ (ic = hc) is
generated with b0 = b1 = 0. In the game H(qm,qc),2, all HIBE private keys and IBE private keys with
the group index h are semi-functional type-2 except that HIBE private keys and IBE private keys with
the member index h∗m are normal.

Game H′(hm,hc),1. This game H′(hm,hc),1 is almost the same as H(hm,hc),1 except the generation of an HIBE
private key (or an IBE private key) with the indexes (ig = h, im, ic) such that (im 6= h∗m)∧ (im = hm)∧
(hc ≤ ic) or (im 6= hm)∧ (hm < im). These HIBE private keys (or IBE private keys) are generated as
follows:

31

• (im 6= h∗m)∧ (im = hm)∧ (ic = hc): Let δi, j be a random exponent in ZN that is fixed for this
member subset Si, j.
If this is an HIBE private key query, then it generates SK′′HIBE,Si, j

= (K′′0 ,K
′′
1 ,{K′′2,i}) as the same

as H(hm,hc),1 and creates a semi-functional HIBE private key SKID,Si, j =
(
K0 = K′′0 gδi, j

2 ,K1 =
K′′1 ,{K2,i = K′′2,i}

)
.

If this is an IBE private key query, then it generates SK′′IBE,Si, j
= (K′′0 ,K

′′
1) as the same as H(hm,hc),1

and creates a semi-functional IBE private key SKIBE,Si, j =
(
K0 = K′′0 gδi, j

2 ,K1 = K′′1
)
.

• (im 6= h∗m)∧ (im = hm)∧ (hc < ic) or (im 6= h∗m)∧ (hm < im): It creates a semi-functional key by
using the fixed δi, j for this member subset Si, j.

Game H′(hm,hc),2. This game H′(hm,hc),2 is almost the same as H′(hm,hc),1 except that the HIBE private key or
IBE private key with the indexes (ig = h, im, ic) such that (im 6= h∗m)∧(im = hm)∧(ic = hc) is generated
with b0 = b1 = 0. The modification is similar to the game H′(hm,hc),1. In the game H′(1,0),2, all HIBE
private keys and all IBE private keys with the group index h except the keys with the member index
h∗m are semi-functional where a fixed δi, j is used for each member.

Game H′′. This game H′′ is the same as G2,h. Compared to the game H′(1,0),2, the remaining HIBE private
keys and IBE private keys with the member index h∗m are changed to be semi-functional by using a
fixed δi, j for this member subset Si, j.

Let AdvHi
AI

be the advantage of AI in a game Hi. From the following Lemmas 5.10, 5.11, 5.12, 5.13,
and 5.14, we obtain the following equation

AdvH(1,0),2
AI

−AdvH ′′
AI

≤
qm

∑
hm=1

qc

∑
hc=1

∣∣AdvH(hm,hc−1),2
AI

−AdvH(hm,hc),1
AI

∣∣+ qm

∑
hm=1

qc

∑
hc=1

∣∣AdvH(hm,hc),1
AI

−AdvH(hm,hc),2
AI

∣∣+
qm

∑
hm=1

qc

∑
hc=1

∣∣Adv
H ′(hm,hc),2
AI

−Adv
H ′(hm,hc),1
AI

∣∣+ qm

∑
hm=1

qc

∑
hc=1

∣∣Adv
H ′(hm,hc),1
AI

−Adv
H ′(hm,hc−1),2
AI

∣∣+
∣∣Adv

H ′(1,0),2
AI

−AdvH ′′
AI

∣∣
≤ O(q)

qm

∑
hm=1

qc

∑
hc=1

AdvGSD
B (1λ).

For the Type-II adversary AII , we define hybrid games I(1,1),1,I(1,1),2, . . . ,I(qm,qc),1,I(qm,qc),2 = I′(qm,qc),2,

I′(qm,qc),1, . . . ,I
′
(1,1),2,I

′
(1,1),1,I

′
(1,0),2,I

′′ where G2,h−1 = I(1,0),2 and I′(1,0),2 = I′′=G2,h. The games are formally
defined as follows:

Game I(hm,hc),1. This game I(hm,hc),1 is almost the same as H(hm,hc),1 except that there is no case im = h∗m
since the adversary is Type-II.

Game I(hm,hc),2. This game I(hm,hc),2 is almost the same as H(hm,hc),2 except that there is no case im = h∗m
since the adversary is Type-II.

Game I′(hm,hc),1. This game I′(hm,hc),1 is almost the same as H′(hm,hc),1 except that there is no case im = h∗m
since the adversary is Type-II.

32

Game I′(hm,hc),2. This game I′(hm,hc),1 is almost the same as H′(hm,hc),1 except that there is no case im = h∗m
since the adversary is Type-II. In the game I′(1,0),2, all HIBE private keys and all IBE private keys with
the group index h are semi-functional where a fixed δi, j is used for each member.

Let AdvIi
AII

be the advantage ofAII in a game Ii. From the following Lemmas 5.15, 5.16, 5.17, and 5.18,

we can obtain the equation AdvI(1,0),2
AII

−AdvI′′
AII
≤ O(q)∑

qm
hm=1 ∑

qc
hc=1 AdvGSD

B (1λ).

Let EI,EII be the event such that an adversary behave like the Type-I, Type-II adversary respectively.
From the above three inequalities for three types, we have the following inequality

AdvG2,h−1
A −AdvG2,h

A ≤ Pr[EI](AdvH(1,0),2
AI

−AdvH ′′
AI
)+Pr[EII](AdvI(1,0),2

AII
−AdvI′′

AII
)

≤ O(q)
qm

∑
hm=1

qc

∑
hc=1

AdvGSD
B (1λ).

This completes our proof.

Lemma 5.7. If the GSD assumption holds, then no polynomial-time adversary can distinguish G2,qg from
G3 with a non-negligible advantage.

Lemma 5.8. If the GSD assumption holds, then no polynomial-time adversary can distinguish G3 from G4
with a non-negligible advantage.

Lemma 5.9. If the ComDH assumption holds, then no polynomial-time adversary can distinguish G4 from
G5 with a non-negligible advantage.

The proofs of Lemmas 5.7, 5.8 and 5.9 are the same as those of Lemmas 4.7, 4.8 and 4.11.

5.3.1 Type-I Adversary

Lemma 5.10. If the GSD assumption holds, then no polynomial-time Type-I adversary can distinguish
H(hm,hc−1),2 from H(hm,hc),1 with a non-negligible advantage.

Proof. Suppose there exists an adversary AI that distinguishes H(hm,hc−1),2 from H(hm,hc),1 with a non-
negligible advantage. A simulator B that solves the GSD assumption using AI is given: a challenge tu-
ple D = ((N,G,GT ,e),gp1 ,gp3 ,X1R1,R2Y1) and Z where Z = Z0 = X2Y2 or Z = Z1 = X2R3Y2. Then B that
interacts with AI is described as follows:

Setup: B first chooses random exponents h′,u′1, . . . ,u
′
L,v
′,w′,α ∈ ZN and random elements Λ1,Λ2 ∈ Gp3 .

Next, it builds PPHIBE =
(
(N,G,GT ,e),g = gp1 ,Y = gp3 ,h = gh′

p1
,u1 = gu′1

p1 , . . . ,uL = gu′L
p1 ,Λ1

)
and PPIBE =(

(N,G,GT ,e),g = gp1 ,Y = gp3 ,v = gv′
p1
,w = gw′

p1
,Λ2

)
. It sets MK = α and publishes PP =

(
PPHIBE ,PPIBE ,

Ω = e(g,g)α
)
.

Phase 1: Let h∗m be a member index of the group index h such that the HIBE private key for ID∗|k or the
IBE private key for T ∗ belong to the member index h∗m such that 1 ≤ h∗m ≤ qm where qm is the maximum
number of members in the group index h. As mentioned before, there is only one index h∗m in the Type-I
adversary. By randomly selecting an index, B can correctly guess h∗m with the probability of 1/qm. Note
that qm ≤ qsk +quk ≤ q since the private set of a private key is related with a path and the covering set of an
update key is a partition where qsk is the number of private key queries and quk is the number of update key
queries of the adversary.

33

For each query, B proceeds as follows: If this is a decryption key query, then it creates a normal one
since it knows MK. If this is an HIBE private key or an IBE private key query with indexes (ig, im, ic), then
it handles this query as follows:

• Case ig < h: It first builds a normal key by using MK and converts the key to a semi-functional one
with a fixed random exponent δ ′i, j for the subset Si, j by using R2Y1.

• Case ig = h: It generates the key as follows:

– (im 6= h∗m)∧ (im < hm) or (im 6= h∗m)∧ (im = hm)∧ (ic < hc):
If this is an HIBE private key query, then it builds a normal key and converts the key to a semi-
functional type-2 SKHIBE,Si, j with a new random exponent a′0 ∈ ZN by using R2Y1.
If this is an IBE private key query, then it builds a normal key and converts the key to a semi-
functional type-2 SKIBE,Si, j with a new random exponent a′1 ∈ ZN by using R2Y1.

– (im 6= h∗m)∧ (im = hm)∧ (ic = hc):
If this is an HIBE private key query, then it chooses random elements Y ′0,Y

′
1,{Y ′2,i} ∈ Gp3 and

creates an HIBE private key SKHIBE,Si, j =
(
K0 = g fGL(L j)(Z)h′+∑

k
i=1 u′iIiY ′0, K1 = (Z)−1Y ′1,{K2,i =

(Z)u′iY ′2,i}
)
.

If this is an IBE private key query, then it chooses random elements Y ′0,Y
′
1 ∈Gp3 and creates an

IBE private key SKIBE,Si, j =
(
K0 = g fGL(L j)(Z)v′+w′TY ′0, K1 = (Z)−1Y ′1

)
.

– (im 6= h∗m)∧(im = hm)∧(hc < ic) or (im 6= h∗m)∧(hm < im): It creates a normal key by using MK.

– (im = h∗m): It creates a normal key by using MK.

• Case ig > h: It creates a normal key by using MK.

Challenge: B first builds CHHIBE,ID∗|` =
(
C0 =X1R1, C1 =(X1R1)

h′+∑
`
i=1 u′iI

∗
i
)

and CHIBE,T ∗ =(C0 =X1R1, C1 =

(X1R1)
v′+w′T ∗). Next, it flips a random coin µ ∈ {0,1} and creates the semi-functional challenger ciphertext

CTID∗|`,T ∗ = (CHHIBE,ID∗|` ,CHIBE,T ∗ ,C = e(X1R1,g)α ·M∗µ).
Phase 2: Same as Phase 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

If Z = Z0 = X2Y2, then the simulation is the same as H(hm,hc−1),2 since the HIBE private key (or the IBE
private key) with (im 6= h∗m)∧(im = hm)∧(ic = hc) and the semi-functional challenge ciphertext are correctly
distributed. If Z = Z1 = X2R3Y2, then the simulation is almost the same as H(hm,hc),1 except that the HIBE
private key (or the IBE private key) with (im 6= h∗m)∧ (im = hm)∧ (ic = hc) is generated as nominally semi-
functional type-1 by implicitly setting a0 ≡ logg2

(R3)(h′+∑
k
i=1 u′iIi) mod p2 (or a1 ≡ logg2

(R3)(v′+w′T)
mod p2), b0 ≡ b1 ≡ logg2

(R3) mod p2, and zi ≡ u′i mod p2. Note that we solve the paradox of dual system
encryption by introducing the nominally semi-functional type-1 key.

Next, we should argue that the Type-I adversary cannot distinguish a nominally semi-functional type-1
key from a semi-functional type-1 key. For this argument, we show an information theoretic argument by
using the fact that ID|k 6∈ Prefix(ID∗|`) for all HIBE private key queries with indexes (ig = h, im, ic) such
that im 6= h∗m, and T 6= T ∗ for all IBE private key queries with indexes (ig = h, im, ic) such that im 6= h∗m.
The analysis of this information theoretic argument is the same as that in Lemma 4.12. This completes our
proof.

Lemma 5.11. If the GSD assumption holds, then no polynomial-time Type-I adversary can distinguish
H(hm,hc),1 from H(hm,hc),2 with a non-negligible advantage.

34

Proof. The proof of this lemma is almost the same as that of Lemma 5.10 except the generation of the key
with indexes ig = h and (im 6= h∗m)∧ (im = hm)∧ (ic = hc). This key with the group index h is generated as
follows:

• (im 6= h∗m)∧ (im = hm)∧ (ic = hc):

If this is an HIBE private key query, then it chooses random a′0 ∈ ZN , Y ′0,Y
′
1,{Y ′2,i} ∈ Gp3 and cre-

ates an HIBE private key SKHIBE,Si, j =
(
K0 = g fGL(L j)(Z)h′+∑

k
i=1 u′iIiY ′0(R2Y1)

a′0 , K1 = (Z)−1Y ′1, {K2,i =

(Z)u′iY ′2,i}
)
.

If this is an IBE private key query, then it chooses random a′1 ∈ ZN , Y ′0,Y
′
1 ∈ Gp3 and creates an IBE

private key SKIBE,Si, j =
(
K0 = g fGL(L j)(Z)v′+w′TY ′0(R2Y1)

a′1 , K1 = (Z)−1Y ′1
)
.

Note that this HIBE private key (or IBE private key) is no longer correlated with the challenge ciphertext
since K0 is randomized by (R2Y1)

a′0 (or (R2Y1)
a′1).

Lemma 5.12. If the GSD assumption holds, then no polynomial-time Type-I adversary can distinguish
H′(hm,hc−1),2 from H′(hm,hc),1 with a non-negligible advantage.

Lemma 5.13. If the GSD assumption holds, then no polynomial-time Type-I adversary can distinguish
H′(hm,hc),1 from H′(hm,hc),2 with a non-negligible advantage.

The proofs of Lemmas 5.12 and 5.13 are almost the same as those of Lemmas 5.10 and 5.11 respectively.
The only difference is that K0 of an HIBE private key and K0 of an IBE private key with indexes (ig = h, im, ic)
such that im 6= h∗m that are generated in Lemmas 5.10 and 5.11 respectively are additionally multiplied by
(R2Y1)

δ ′i, j where δ ′i, j is a fixed exponent that is related with the member subset Si, j. This modification is
possible since R2Y1 is given in the assumption. We omit the detailed proofs of these lemmas.

Lemma 5.14. If the GSD assumption holds, then no polynomial-time Type-I adversary can distinguish
H′(1,0),2 from H′′ with a non-negligible advantage.

Proof. The proof of this lemma is the important part of the security proof since it changes the HIBE private
key for ID∗|k ∈ Prefix(ID∗|`) and the IBE private key for T ∗ from a normal type to a semi-functional type.
It should be noted that this changes from normal to semi-functional cannot be handled by introducing a
nominally semi-functional type since an information theoretic argument for ID∗|k and T ∗ cannot be used.
Recall that h∗m be the member index that is related to ID∗|k and T ∗. To solve this problem, we directly
change normal keys for h∗m to semi-functional keys without introducing nominally semi-functional keys,
and then we argue that the paradox of dual system encryption can be solved by the property of the Lagrange
interpolation method.

Many parts of this proof is similar to that of Lemma 5.10 except the generation of HIBE private keys
and IBE private keys with the group index ig = h. These keys with the group index ig = h are generated as
follows:

• Case ig = h: Let δ ′i, j be a fixed exponent in ZN for each member Si, j in this group index h.

– (im 6= h∗m):
If this is an HIBE private key query, then it selects random r1 ∈ ZN , Y ′0,Y

′
1,{Y ′2,i} ∈ Gp3 and

creates an HIBE private key SKHIBE,Si, j =
(
K0 = (Z)L j gβID|k−1 (h∏

k
i=1 uIi

i)
r1Y ′0 · (R2Y1)

δ ′i, j , K1 =
g−r1Y ′1, {K2,i = ur1

i Y ′2,i}
)
.

If this is an IBE private key query , then it selects random r2 ∈ ZN , Y ′0,Y
′
1 ∈ Gp3 and creates an

IBE private key SKIBE,Si, j =
(
K0 = (Z)L j gβID|k−1 (vwT)r2Y ′0 · (R2Y1)

δ ′i, j , K1 = g−r2Y ′1
)
.

35

– (im = h∗m):
If this is an HIBE private key query, then it selects random r1 ∈ ZN , Y ′0,Y

′
1,{Y ′2,i} ∈Gp3 and cre-

ates an HIBE private key SKHIBE,Si, j =
(
K0 = (Z)L j gβID|k−1 (h∏

k
i=1 uIi

i)
r1Y ′0, K1 = g−r1Y ′1, {K2,i =

ur1
i Y ′2,i}

)
.

If this is an IBE private key query, then it selects random r2 ∈ ZN , Y ′0,Y
′
1 ∈ Gp3 and creates an

IBE private key SKIBE,Si, j =
(
K0 = (Z)L j gβID|k−1 (vwT)r2Y ′0, K1 = g−r2Y ′1

)
.

If Z = Z0 = X2Y2, then the simulation is the same as H′(1,0),2 since all HIBE private keys and IBE private
keys with the group index h implicitly uses a random polynomial fGL(x) ≡ logg(X2) · x+ βID|k−1 mod p1
and it implicitly sets δi, j ≡ loggp2

(R2)δ
′
i, j mod p2 for each member index im 6= h∗m. If Z = Z1 = X2R3Y2, then

the simulation is the same as H′′ since it implicitly sets δi, j = loggp2
(R3)L j mod p2 for the member index

h∗m. As mentioned before, the HIBE private key query for ID∗|k and the IBE private key query for T ∗ should
belong to the same member index h∗m by the restriction ID∗|k ∈ R∗ of the security model.

We now show that the paradox of dual system encryption can be solved. To check whether an HIBE
private key for h∗m and an IBE private key for h∗m are normal or semi-functional, the simulator may try to
decrypt a semi-functional ciphertext by deriving a decryption key from these keys for h∗m. However, the
simulator cannot derive a decryption key from those keys since the Lagrange interpolation method does not
work for the same h∗m since only one point of fGL(x) is revealed. Recall that the Lagrange interpolation
method requires two points of fGL(x) to derive fGL(0). Thus, the simulator cannot check whether these two
keys for the same h∗m are normal or semi-functional. This completes our proof.

5.3.2 Type-II Adversary

Lemma 5.15. If the GSD assumption holds, then no polynomial-time Type-II adversary can distinguish
I(hm,hc−1),2 from I(hm,hc),1 with a non-negligible advantage.

Lemma 5.16. If the GSD assumption holds, then no polynomial-time Type-II adversary can distinguish
I(hm,hc),1 from I(hm,hc),2 with a non-negligible advantage.

Lemma 5.17. If the GSD assumption holds, then no polynomial-time Type-II adversary can distinguish
I′(hm,hc−1),2 from I′(hm,hc),1 with a non-negligible advantage.

Lemma 5.18. If the GSD assumption holds, then no polynomial-time Type-II adversary can distinguish
I′(hm,hc),1 from I′(hm,hc),2 with a non-negligible advantage.

The proofs of Lemmas 5.15, 5.16, 5.17, and 5.18 are almost the same as those of Lemmas 5.10, 5.11,
5.12, and 5.13 respectively except that there is no case im = h∗m since the Type-II adversary does not request
an HIBE private key for ID∗|k ∈ Prefix(ID∗|`) and an IBE private key for T ∗. We omit the detailed proofs
of these lemmas.

6 Conclusion

In this work, we proposed two RHIBE schemes by combining LW-HIBE and LW-IBE schemes in composite-
order bilinear groups, and the CS (or SD) scheme in a modular way, and then we proved the adaptive security
of our RHIBE schemes by using the dual system encryption technique. As mentioned before, we carefully
re-designed hybrid games to use the dual system encryption technique since a naive approach of dual sys-
tem encryption does not work. Our RHIBE schemes are the first RHIBE schemes that achieve the adaptive
security.

36

References

[1] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John
Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption revisited: Con-
sistency properties, relation to anonymous ibe, and extensions. In Victor Shoup, editor, Advances in
Cryptology - CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages 205–222.
Springer, 2005.

[2] Josh Benaloh, Melissa Chase, Eric Horvitz, and Kristin E. Lauter. Patient controlled encryption:
ensuring privacy of electronic medical records. In Radu Sion and Dawn Song, editors, ACM Cloud
Computing Security Workshop - CCSW 2009, pages 103–114. ACM, 2009.

[3] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. Identity-based encryption with efficient
revocation. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM Conference on Computer
and Communications Security - CCS 2008, pages 417–426. ACM, 2008.

[4] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without random
oracles. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology - EUROCRYPT
2004, volume 3027 of Lecture Notes in Computer Science, pages 223–238. Springer, 2004.

[5] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with constant size
ciphertext. In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, volume 3494 of
Lecture Notes in Computer Science, pages 440–456. Springer, 2005.

[6] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In Joe Kilian,
editor, Advances in Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science,
pages 213–229. Springer, 2001.

[7] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. In
Eli Biham, editor, Advances in Cryptology - EUROCRYPT 2003, volume 2656 of Lecture Notes in
Computer Science, pages 255–271. Springer, 2003.

[8] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryp-
tion. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004,
volume 3027 of Lecture Notes in Computer Science, pages 207–222. Springer, 2004.

[9] Yevgeniy Dodis and Nelly Fazio. Public key broadcast encryption for stateless receivers. In Joan
Feigenbaum, editor, DRM 2002, volume 2696 of Lecture Notes in Computer Science, pages 61–80.
Springer, 2002.

[10] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In Yuliang Zheng, editor,
Advances in Cryptology - ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science,
pages 548–566. Springer, 2002.

[11] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J. ACM,
33(4):792–807, 1986.

[12] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In Lars R. Knudsen,
editor, Advances in Cryptology - EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer
Science, pages 466–481. Springer, 2002.

37

[13] Kwangsu Lee. Self-updatable encryption with short public parameters and its extensions. Designs
Codes Cryptogr., 79(1):121–161, 2016.

[14] Kwangsu Lee, Seung Geol Choi, Dong Hoon Lee, Jong Hwan Park, and Moti Yung. Self-updatable
encryption: Time constrained access control with hidden attributes and better efficiency. In Kazue
Sako and Palash Sarkar, editors, Advances in Cryptology - ASIACRYPT 2013, volume 8269 of Lecture
Notes in Computer Science, pages 235–254. Springer, 2013.

[15] Kwangsu Lee, Dong Hoon Lee, and Jong Hwan Park. Efficient revocable identity-based encryption via
subset difference methods. Cryptology ePrint Archive, Report 2014/132, 2014. http://eprint.
iacr.org/2014/132.

[16] Kwangsu Lee, Dong Hoon Lee, Jong Hwan Park, and Moti Yung. CCA security for self-updatable
encryption: Protecting cloud data when clients read/write ciphertexts. Cryptology ePrint Archive,
Report 2015/1202, 2015. http://eprint.iacr.org/2015/1202.

[17] Kwangsu Lee and Seunghwan Park. Revocable hierarchical identity-based encryption with shorter
private keys and update keys. Cryptology ePrint Archive, Report 2016/460, 2016. http://eprint.
iacr.org/2016/460.

[18] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully secure hibe
with short ciphertexts. In Daniele Micciancio, editor, Theory of Cryptography - TCC 2010, volume
5978 of Lecture Notes in Computer Science, pages 455–479. Springer, 2010.

[19] Benoı̂t Libert and Damien Vergnaud. Adaptive-id secure revocable identity-based encryption. In Marc
Fischlin, editor, Topics in Cryptology - CT-RSA 2009, volume 5473 of Lecture Notes in Computer
Science, pages 1–15. Springer, 2009.

[20] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for stateless receivers.
In Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 41–62. Springer, 2001.

[21] Seunghwan Park, Kwangsu Lee, and Dong Hoon Lee. New constructions of revocable identity-based
encryption from multilinear maps. IEEE Trans. Inf. Forensic Secur., 10(8):1564–1577, 2015.

[22] Amit Sahai, Hakan Seyalioglu, and Brent Waters. Dynamic credentials and ciphertext delegation for
attribute-based encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology
- CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 199–217. Springer, 2012.

[23] Jae Hong Seo and Keita Emura. Efficient delegation of key generation and revocation functionalities
in identity-based encryption. In Ed Dawson, editor, Topics in Cryptology - CT-RSA 2013, volume 7779
of Lecture Notes in Computer Science, pages 343–358. Springer, 2013.

[24] Jae Hong Seo and Keita Emura. Revocable identity-based encryption revisited: Security model and
construction. In Kaoru Kurosawa and Goichiro Hanaoka, editors, Public-Key Cryptography - PKC
2013, volume 7778 of Lecture Notes in Computer Science, pages 216–234. Springer, 2013.

[25] Jae Hong Seo and Keita Emura. Adaptive-id secure revocable hierarchical identity-based encryption.
In Keisuke Tanaka and Yuji Suga, editors, Advances in Information and Computer Security - IWSEC
2015, volume 9241 of Lecture Notes in Computer Science, pages 21–38. Springer, 2015.

38

http://eprint.iacr.org/2014/132
http://eprint.iacr.org/2014/132
http://eprint.iacr.org/2015/1202
http://eprint.iacr.org/2016/460
http://eprint.iacr.org/2016/460

[26] Jae Hong Seo and Keita Emura. Revocable hierarchical identity-based encryption: History-free update,
security against insiders, and short ciphertexts. In Kaisa Nyberg, editor, Topics in Cryptology - CT-RSA
2015, volume 9048 of Lecture Notes in Computer Science, pages 106–123. Springer, 2015.

[27] Elaine Shi, John Bethencourt, Hubert T.-H. Chan, Dawn Xiaodong Song, and Adrian Perrig. Multi-
dimensional range query over encrypted data. In IEEE Symposium on Security and Privacy - S&P
2007, pages 350–364. IEEE Computer Society, 2007.

[28] Brent Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions.
In Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009, volume 5677 of Lecture Notes in
Computer Science, pages 619–636. Springer, 2009.

39

	Introduction
	Our Results
	Our Techniques
	Related Work

	Preliminaries
	Notation
	Bilinear Groups of Composite Order
	Complexity Assumptions
	Pseudo-Random Functions
	Revocable HIBE

	Hierarchical IBE
	HIBE Scheme
	IBE Scheme

	Revocable HIBE with Complete Subtree
	The CS Scheme
	Construction
	Security Analysis
	Type-I Adversary
	Type-II Adversary

	Revocable HIBE with Subset Difference
	The SD Scheme
	Construction
	Security Analysis
	Type-I Adversary
	Type-II Adversary

	Conclusion

