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Abstract

We present a probabilistic polynomial-time reduction from the lattice
Bounded Distance Decoding (BDD) problem with parameter 1/(

√
2 · γ)

to the unique Shortest Vector Problem (uSVP) with parameter γ for any
γ > 1 that is polynomial in the lattice dimension n. It improves the
BDD to uSVP reductions of [Lyubashevsky and Micciancio, CRYPTO,
2009] and [Liu, Wang, Xu and Zheng, Inf. Process. Lett., 2014], which rely
on Kannan’s embedding technique. The main ingredient to the improve-
ment is the use of Khot’s lattice sparsification [Khot, FOCS, 2003] before
resorting to Kannan’s embedding, in order to boost the uSVP parameter.

Keywords: Lattices, Bounded Distance Decoding Problem, Unique Short-
est Vector Problem, Sparsification

1 Introduction

A (full-rank) lattice L in dimension n is the set of all integer linear relations of
n linearly independent vectors b1, . . . ,bn ∈ Qn. The minimum λ1(L) quanti-
fies the discreteness of L: the smallest Euclidean distance between two distinct
lattice vectors is λ1(L). A standard computational problem on lattices is the
so-called Bounded Distance Decoding problem (BDDα): Given as inputs a ba-
sis B = (bi)i of a lattice L and a vector t ∈ Qn (called target vector) within
distance α ·λ1(L) of L, the goal is to find a vector b ∈ L closest to t. Here α > 0
is a problem parameter, which may be a function of the lattice dimension n.
The hardness of BDD was initially studied in the context of linear codes by
Vardy in [22], and later in the context of lattices by Liu et al. in [14].

In communications theory, BDD models the task of decoding in the context
of continuous channels with white Gaussian noise [6]. The information to be
transmitted is stored in a lattice vector, and the receiver should recover this
vector from a noisy version thereof. The knowledge of the signal-to-noise ratio
implies a bound on the distance from the noisy vector to the lattice. Decoding
a white Gaussian noise channel can be seen as a version of BDD in which the
distance to the lattice follows a prescribed distribution.

In cryptography, BDD is closely related to the Learning With Errors problem
(LWE) [19], which serves as a security foundation for numerous cryptographic
primitives. When the number of requested LWE samples is bounded (which is
most often the case in cryptographic constructions), LWE may be viewed as a
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Figure 1: Comparison between prior reductions from BDDα to uSVPγ , and
ours.

variant of BDD in which the offset from t to L is Gaussian (like in the decoding
context), and L is randomly sampled.

A common approach to solve BDD is via Kannan’s embedding technique [9,
Se. 6]. The principle is to map the offset between t and a closest lattice vector
to t, to a shortest non-zero vector in an (n + 1)-dimensional lattice. Lattice
reduction [12, 20] and short lattice vector enumeration [8, 7] may then be used
to find shortest non-zero vectors in the (n + 1)-dimensional lattice. Formally,
Kannan’s embedding technique is a reduction from BDD to a variant of the
Shortest Vector Problem (SVP) in which the pair of shortest non-zero vectors
in the lattice under scope are known to be much shorter than any other lattice
vector not parallel to them. For a lattice L, we define the second minimum λ2(L)
as the minimal radius of a zero-centered ball that contains two or more linearly
independent vectors from L. The unique Shortest Vector Problem (uSVPγ) of
parameter γ ≥ 1 consists in finding a shortest non-zero vector in a lattice L de-
scribed by an input basis B = (bi)i, under the promise that λ2(L) ≥ γ · λ1(L).
This reduction was analyzed by Lyubashevsky and Micciancio in [15], who
showed that BDD1/(2γ) reduces to uSVPγ for any γ ≥ 1. Later, Liu et al. [13]
refined the analysis of Lyubashevsky and Micciancio and proved that BDD1/γ1

reduces to uSVPγ with γ1 =
√

3/(4− γ2)γ + 1, for any γ ∈ (1, 1.9318). It is
folklore [3, 17] that the analysis can be tightened even more, resulting in a proof
that BDD1/γ1 reduces to uSVPγ with γ1 = (2γ2 + 2bγcbγ + 1c)/(2bγc+ 1), for
any γ ≥ 1. For the sake of completeness, we give a proof in Appendix A.1.
Note that in the case of γ = 1 (and in fact all integral γ), all three results are
identical: BDD1/2 reduces to uSVP1.

Our result. We give a probabilistic polynomial-time reduction from BDD1/(
√
2γ)

to uSVPγ , for any γ ≥ 1 that is polynomially bounded as a function of n. As
clearly visible in Figure 1, this reduction supersedes all prior results with respect
to the BDD problem parameter. In particular, we reduce BDD1/

√
2 to uSVP1.

Our improvement comes with two weaknesses: the reduction is probabilistic and
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restricted to polynomially bounded γ. Like prior reductions, the dimension of
the uSVP instance is only one more than the dimension of the BDD instance.

Technical overview. We illustrate our improvement with the case of BDD1/2.
Given the BDD1/2 instance (B, t), Kannan’s embedding consists in constructing
the following uSVP1 instance:

B′ =

(
B t
0 d

)
∈ Qn+1,

with d = dist(t,L) ≤ λ1(L)/2, where L is the lattice spanned by B (in fact, the
reduction does not know d, but this is a mere technical problem which can be
handled easily, as explained in Section 2). If c denotes a closest vector to t in L
then it may be proved that the vector s′ = ((c−t)T,−d)T is a shortest non-zero
vector of lattice L′ of basis B′. Now, let s denote a shortest non-zero vector
in L and assume that t is exactly halfway between c and c + s. Then both s′

and s′+(sT, 0)T in L′ have norm
√

2·d but are linearly independent. This shows
that we can have λ2(L′) = λ1(L′) and obtain a uSVPγ instance with γ = 1.
This is a limitation of Kannan’s embedding and hence of its analyzes.

We modify the reduction to increase the ratio λ2(L′)/λ1(L′). To achieve this,
we use lattice sparsification on L. It provides a full-rank sublattice Lsparse ⊆ L
that still contains a closest vector c ∈ L to t, but no other close-by vector. We
consider the vectors of L whose coordinates with respect to a basis B satisfy
a linear equation modulo some prime integer p: Lsparse = Lp,z = {b ∈ L :
〈z,B−1b〉 = 0 mod p}, for some vector z ∈ Znp . This technique was first in-
troduced by Khot in [10, 11]. To guarantee that vectors in L remain in the
sparsified set with probability close to 1/p, a uniform coset of Lp,z (modulo L)
was considered in [4, 5]. Technically, we use the formulation from [21] of the
latter variant.

The aim of sparsification in our context is to keep a closest vector c ∈ L to t,
and remove as many as nearby vectors of L as possible. After sparsification,
vector c remains in the sparse lattice (with non-negligible probability), and
all other remaining vectors are much further away from t. For BDD1/2, a
simple example of sparsification is shown in Figure 2: there are two points
simultaneously closest to the target point; then sparsification is used to remove
one of the closest points (either is fine); in the sparse lattice, the closest vector
is much closer than any other lattice vector. In Figure 2, after sparsification,
all the lattice vectors labelled with filled dots are kept, e.g., vector c + w, and
other vectors labelled with hollow dots are removed, e.g., vector c + s + w.

The probability of keeping a vector of L in the sparsified set is essentially 1/p.
As we want the probability of keeping c to be non-negligible, we are hence
restricted to taking p ≤ poly(n). As a result, we cannot remove more than
polynomially many close-by vectors, because each one individually is removed
with probability ≈ 1−1/p (a precise statement is given in Lemma 8). To assess
the limitation of our reduction, we are hence interested in the largest value of α
such that for any lattice L and any vector t, there are at most poly(n) vectors
within distance α · λ1(L) from t. The quantity α · λ1(L) can be viewed as
the worst-case list-decoding radius. Interestingly, this problem was studied by
Ajtai [1] and Micciancio [16] in the context of proving hardness of SVP. Proofs
of the following two statements may be found in [18, Chap. 5]:

3



0

w

c

c+w

c+ s

c+ s+w

t

t+w

Figure 2: An example of sparsification for BDD1/2 (here w ∈ Lp,z/L).

• For any lattice L and vector t, there are ≤ 2n vectors of L within dis-
tance λ1(L)/

√
2 from t.

• For any α > 1/
√

2, there exists ε > 0 such that for any sufficiently large n
we can find an n-dimensional lattice L and a vector t such that there are
≥ 2n

ε

vectors of L within distance α · λ1(L) from t.

The overall reduction consists in first sparsifying L to Lp,z and shifting t (as
we use a coset of Lp,z), and then resorting to Kannan’s embedding. To increase
the ratio λ2(L′)/λ1(L′), we decrease the bottom-right entry in B′ from d to k ·d
for some k < 1. Geometrically, this has the effect of limiting the contribution of
the extra dimension. This idea was already used in [13], but we decrease k even
further, to 1/poly(n). An additional difficulty, related to this decrease of k, is
that short vectors in L′ may be obtained by using multiples of t. Let m ≥ 2
and d ∈ L closest to mt. Then, vector ((d −mt)T,mkd)T may be very short
(if very unlucky, it has norm mkd). We remove such annoying vectors with
sparsification.

Open problems. In [15], Lyubashevsky and Micciancio considered the rela-
tive hardness of BDD and uSVP. They obtained a reduction from BDD1/(2γ)

to uSVPγ , and a reduction from uSVPγ to BDD1/γ (for all γ ≥ 1). This
led them to conjecture that it may be possibly to show that (i)- uSVPγ/2 re-
duces to BDD1/γ , or (ii)- BDD1/γ reduces to uSVPγ , or (iii)- uSVPγ reduces
to BDD1/(

√
2γ) and BDD1/(

√
2γ) reduces to uSVPγ . By showing the second half

of (iii), (i) becomes very unlikely.
Independently, it would be interesting to make our reduction deterministic

and let it work even for parameters γ that are not ≤ poly(n).

Notation. For a lattice L, a point t, a radius r, we define B(t, r) = {x :
‖x − t‖≤ r}. We let dist(t,L(B)) denote the distance between t and lattice
L(B). We always represent the basis of lattice in column form. If S is a finite
set, we let #S denote its cardinality.

2 Reminders

In this section, we recall basic facts on lattices and lattice problems. We
then consider lattice sparsification and its use in the context of BDD instances.
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2.1 Lattice problems

We refer the reader to [18] for an introduction to the computational aspects of
lattices.

Definition 1 (Lattice). An n-dimensional lattice L ⊆ Qm (m ≥ n) is a discrete
additive subgroup of Rm. The lattice L is the set of all integral linear combina-
tions of n linearly independent basis vectors B = {b1, · · · ,bn} ⊆ Qm. In other
words, we have

L(B) =

∑
i∈[n]

uibi : u ∈ Zn
 .

Definition 2 (Successive minima). For any lattice L, the i-th minimum λi(L) is
the radius of the smallest ball with center 0 and containing i linearly independent
lattice vectors:

λi(L) = inf{r : dim(span(L ∩ B(0, r))) ≥ i}.

In this work, we investigate the respective hardness of uSVPγ and BDDα

defined below, when the lattice dimension n goes to infinity. The problem
parameters γ and α can be functions of n.

Definition 3 (Unique Shortest Vector Problem (uSVPγ)). Let γ ≥ 1. Given
as input a lattice basis B such that λ2(B) ≥ γ ·λ1(B), the goal is to find a non-
zero vector v ∈ L(B) of norm λ1(L(B)). The Shortest Vector Problem (SVP)
corresponds to γ = 1.

In the literature (in [15], for example), uSVP is sometimes be defined with
a strict lower bound on λ2(B). We allow equality (as in [13]), as it is more
convenient in our proofs. Note that Lemma 5 below implies that these two
variants are equivalent.

Definition 4 (Bounded Distance Decoding (BDDα)). Let α > 0. Given as
inputs a lattice basis B and a vector t such that dist(t,L(B)) ≤ α · λ1(B), the
goal is to find a lattice vector v ∈ L(B) closest to t.

Note that in some works, the range of α is restricted to (0, 1/2). This is to
guarantee that there is exactly one element of L in the ball of radius α · λ1(L)
centered on t. The problem is well-defined even for large α, and in this work
we actually consider α ≥ 1/2.

In the next lemma, it is stated that BDDα is equivalently hard for any
parameter α′ that is within a factor (1− 1/n)c of α, for any constant c.

Lemma 5 ([15, Cor. 2]). For any α > 0, any constant c > 0, there is a
polynomial-time reduction from BDDα to BDDα(1−1/n)c .

2.2 Approximation results

Given as input an n-dimensional lattice basis B ∈ Qn×n, it is possible to find a
non-zero vector that has norm at most 2n/2 · λ1(L(B)) in time polynomial in n
and also the bit-sizes of the entries of B, by using the LLL algorithm [12]. Fur-
ther, by using the Babai round-off algorithm [2] with inputs an n-dimensional
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lattice basis B ∈ Qn×n and a target vector t ∈ Qn, one obtains an approxima-
tion of the distance between t and L(B) within a factor 2n/2 in time polynomial
in n and also the bit-sizes of the entries of B and t.

Lemma 6 ([12, Prop. 1.6]). There exists a polynomial-time algorithm that,
given as input an n-dimensional lattice basis B ∈ Qn×n, outputs ` ∈ λ1(L) ·
[1, 2n/2).

Lemma 7 ([2, Thm. 3.1]). There exists a polynomial-time algorithm that, given
as input an n-dimensional lattice basis B ∈ Qn×n and a target vector t ∈ Qn,
outputs d ∈ dist(t,L(B)) · [1, 2n/2).

We will rely on much tighter approximations to λ1(L(B)) (resp. dist(t,L(B)))
than provided by Lemmata 6 and 7. We explain here why we may assume that
we know ` ∈ λ1(L(B)) · [1, 1/(1 − 1/n)) (resp. d ∈ dist(t,L(B)) ∈ [1, 1/(1 −
1/n))).

Our reduction is from BDD, whose candidate solutions can be compared in
polynomial time. Assume the reduction finds the optimal solution in one case
among polynomially many, but that we do not know which one. Then we may
call the reduction this polynomially many times, and keep a best solution among
the returned ones. Concretely, our reduction will be proved correct if we know
a tight approximation to λ1(L(B)) and dist(t,L(B)), where (B, t) is the BDD
instance. We can assume without loss of generality that we have these tight
approximations, as the interval [1, 2n/2) may be covered by polynomially many
intervals of the form x · [1, 1/(1− 1/n)) for well-chosen rational x’s.

2.3 Lattice sparsification

Our techniques rely on lattice sparsification, and, more concretely, on the fol-
lowing lemma.

Lemma 8 ([21, Cor. 2.16]). For any prime p, collection of vectors v1, · · · ,vN ∈
Znp \ {0}, and x /∈ {vi}i≤N , we have

1

p
− N

p2
− N

pn−1
≤ Pr

z,u←↩U(Znq )

[
∀i, 〈z,vi + u〉 6= 0 mod p

〈z,x + u〉 = 0 mod p

]
≤ 1

p
+

1

pn
.

The upper bound in Lemma 8 is not used in this work, but we keep it to
show that the difference between the upper and lower bound is small, and thus
that the lower bounds is almost tight. Lemma 8 leads to the definition of a
sublattice that will be used in our reduction from BDD to uSVP. The lemma
below explains that we can efficiently compute a basis of the sublattice.

Lemma 9. There exists a polynomial-time algorithm which, given as inputs a
basis B ∈ Qn×n of an n-dimensional lattice L, an integer p and a vector z ∈
Znp , outputs a basis Bp,z of the lattice Lp,z = {x ∈ L | 〈z,B−1x〉 = 0 mod p}.

Proof. According to the definition of the lattice Lp,z, we have

〈z,y〉 = 0 mod p,

where y = B−1x and x ∈ Lp,z. We can obtain a basis S of the kernel y over
Zn. We compute the column Hermite normal form of

[
S pIn

]
∈ Zn×2n; and
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obtain the nonzero columns S′ ∈ Zn×n. The columns of S′ generate the lattice
orthogonal to z (mod p). In the end, we compute Bp,z = BS′, which is a basis
for the lattice Lp,z.

Below, we state that for any two lattice vectors in L with distance smaller
than p · λ1(L) where p is an integer, the coordinates of these two lattice vectors
differ modulo p.

Lemma 10. For any basis B, any integer p and any pair of lattice vectors
x 6= v with ‖x− v‖< p · λ1(L(B)), we have that B−1x 6= B−1v mod p.

Proof. For all lattice vector a, we let ã denote its coordinate vector under the
basis B. Assume by contradiction that x̃ = ṽ mod p. Equivalently, we have
x− v ∈ p · L(B).

Combined with x 6= v, we have ‖x−v‖≥ p ·λ1(L), which is in contradiction
with ‖x− v‖< p · λ1(L). As a result, we have x̃ 6= ṽ mod p.

The proof from [18] of the lemma below is by induction. It goes fast over
a subtle counting argument when reducing the problem in dimension n + 1 to
dimension n. We briefly recall the proof and give more explanations on the
counting argument in Appendix A.2.

Lemma 11 ([18, Th. 5.2]). For any n-dimensional lattice L and any vector t ∈
Qn, we have #L ∩ B(t, λ1(L)/

√
2) ≤ 2n.

We will use the above three lemmas in the following way to tackle BDD.
Consider the coordinate vectors (with respect to some arbitrary basis) of all
lattice vectors in B(t, r) with r = λ1(L)/

√
2 and some arbitrary target vector t.

First, according to Lemma 10 with p > 2
√

2, we can obtain that one of the
coordinate vectors differs from all the others modulo p. Further, by Lemma 8,
a uniformly chosen vector z over Zp is orthogonal to exactly one of the coordi-
nate vectors (shifted by another uniformly chosen vector u) with non-negligible
probability. Assume that this orthogonal coordinates vector is the coordinates
vector of a closest lattice vector to t: this occurs with non-negligible probability
as #L ∩ B(t, r) ≤ 2n. We can consider the sublattice Lp,z, which contains just
this BDD solution and none of the other vectors of L ∩ B(t, r). This will help
us ensuring a large gap between the first two minima of the uSVP lattice in the
BDD to uSVP reduction.

Note that u is necessary, as otherwise some superfluous vectors (including
vector 0) could be multiples of the solution vector and hence always stay in Lp,z
if the solution vector does.

3 Reducing BDD1/(
√

2γ) to uSVPγ(1+ε)

In this section, we use a uSVPγ(1+ε) solver with ε = Ω(1/n) to solve BDD1/(
√
2γ).

Theorem 12. Let γ(n) ≤ poly(n). There is a probabilistic polynomial-time
reduction from BDD1/(

√
2γ) to uSVPγ(1+ε), where ε = Ω(1/n).

Thanks to Lemma 5, it suffices to reduce BDD(1−1/n)/(
√
2γ) to uSVPγ(1+ε).

Let us first describe the reduction.
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Algorithm 1. The BDD(1−1/n)/(
√
2γ) to uSVPγ(1+ε) reduction.

Input: a basis B = {bi}i∈[n] of an n-dimensional lattice L ⊆ Qn, and a
target point t ∈ Qn.

Output: a lattice point c such that ‖c− t‖= dist(t,L).
0. Guess d0 ∈ [d, d/(1− 1/n)) and `0 ∈ [`, `/(1− 1/n)), where d = dist(t,L)

and ` = λ1(L)
(see Section 2.2).

1. Compute p the smallest prime greater than 4γn2.
Sample z,u uniformly and independently in Znp .
Compute w = Bū ∈ L, such that ū = u mod p and ‖t + w‖≥ (n +
1)`0/

√
2.

Use the algorithm of Lemma 9 to compute a basis Bp,z of Lp,z = {b ∈
L : 〈z,B−1b〉 = 0 mod p}.

2. Set k = 1/(n− 1). Define

B′ =

(
Bp,z t + w
0 kd0

)
.

3. Run the uSVPγ(1+ε) solver on input B′. Let s′ = ((s′1)T, s′2)T be its
output. Output s′1 + t.

It may be checked that the above algorithm runs in polynomial time. The
rest of the section is devoted to proving its correctness.

In this reduction, we are given a BDD(1−1/n)/(
√
2γ) instance (B, t). Let c ∈ L

be a closest vector to t. In order to construct a uSVP instance, our strategy
is to use lattice sparsification to keep only one closest vector c + w for some
lattice shift w closest to t+w (the shift vector w comes from Lemma 8). As the
sparsification results in a lattice, we not only keep c+w, but also the m·(c+w)’s
for all m ≤ γn. Simultaneously, all other vectors inside the balls with centers
{m · (t + w)}m≤γn and radius λ1(L)/

√
2 are regarded as superfluous vectors

and removed through sparsification. For the first γ balls, we have m · (c + w)
∈ B(m · (t + w), λ1(L)/

√
2). We can keep exactly one vector inside every ball

with sparsification over these balls. However, for m > γ, all closest points to
m · (t + w) may fall out of the corresponding ball, but may end up in another
relevant ball: vector i · (c + w) may belong to B(j · (t + w), λ1(L)/

√
2) for some

j 6= i. As a consequence, there can be more than one lattice vector inside a ball,
which may result in no gap between first two minima of the uSVP oracle input
lattice. In order to avoid this, we make every two balls far away from each other
by choosing w such that t + w is long.

Lemma 13. Consider a basis B of an n-dimensional lattice L, a vector c ∈ L
and a vector t ∈ Rn such that ‖c− t‖≤ r = λ1(L)/(

√
2γ) for some γ > 0. Let p

prime with p ≥ n+ 1. For any z ∈ Znp , We have

Pr
u,z←↩U(Znp )

[
c + w ∈ Lp,z ∩ B(t + w, γ · r)

Z · (c + w) ⊇ Lp,z ∩ ∪
i≤γn
B(i · (t + w), γ · r)

]
≥ 1

p
−N
p2
− N

pn−1
,

where w is arbitrary such that B−1w = u mod p and N = #L ∩ ∪
i≤γn
B(i · (t +

w), γ · r).
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Further, if w is chosen such that ‖t + w‖> γ(n + 1)r, we have, for all
i ∈ [γn],

i · (c + w) 6∈
⋃

j 6=i,j∈[γn]

B (j · (t + w), γ · r) .

Proof. For i ∈ [γn], we define Ni = #L∩B(i · t, γ · r) \ {i · c} and {vij}j∈[Ni] =
(L∩B(i · t, γ · r)) \ {i · c}. For any v ∈ L, we use ṽ to denote the coordinate of
v under the basis B. We claim that, with probability ≥ 1/p−N/p2 −N/pn−1,
the vector z is orthogonal (modulo p) to c̃, and at the same time not orthogonal
to any ṽij for i ∈ [γn] and j ∈ [Ni].

We have, for all i ∈ [γn] and j ∈ [Ni],

‖i · c− vij‖≤ i · ‖c− t‖+‖i · t− vij‖≤ (n+ 1)(γr) =
n+ 1√

2
· λ1(L).

By choice of p, this is smaller than p · λ1(L). Thanks to Lemma 10, we have
i · c̃ 6= ṽij mod p. Moreover, as p is prime and p ≥ γn + 1 > i, we have
c̃ 6= 1

i · ṽij mod p.
Now we apply Lemma 8 with c̃ and { 1i · ṽij}i∈[γn],j∈[Ni]. We have

Pr
z,u←↩U(Znp )

[
∀i, j : 〈z, 1i · ṽij + u〉 6= 0 mod p

〈z, c̃ + u〉 = 0 mod p

]
≥ 1

p
− N

p2
− N

pn−1
.

As p is prime and sufficiently large, the inequality 〈z, 1i · ṽij + u〉 6= 0 mod p
is equivalent to 〈z, ṽij + i · u〉 6= 0 mod p. Therefore

Pr
z,u←↩U(Znp )

[
∀i, j : 〈z, ṽij + i · u〉 6= 0 mod p

〈z, c̃ + u〉 = 0 mod p

]
≥ 1

p
− N

p2
− N

pn−1
.

This proves the first claim of the lemma.
Let i 6= j ≤ γn. Then, by the triangle inequality and the assumption on w,

we have:

‖i · (c + w)− j · (t + w)‖≥ |j − i|·‖t + w‖−i‖c− t‖> γ(n+ 1)r − (γn)r = γr.

This completes the proof of the lemma.

As we have p > 4γn2 ≥ 2N (thanks to Lemma 11), with non-negligible
probability, none of the vectors of L belonging to the γn balls is in the sparser
lattice Lp,z, except possibly those in {i·(c+w)}i∈[γn]. In the rest of the reduction
analysis, we assume that we are in this situation and do not repeatedly state
that this occurs with non-negligible probability.

As an illustration of Lemma 13, we include Figure 3. In the case of γ = 1
(left subfigure), there are several plain balls with radius λ1(L), centered in t,
t + w and 2(t + w). The dashed balls illustrate the distance between i · (c + w)
and i · (t + w) for all i ∈ [γn]. We can see that c + w (within the dashed ball)
is inside the plain ball, and 2 · (c + w) (within the dashed ball) is outside of
its corresponding plain ball. Similarly, in the case of γ = 2 (right subfigure),
vector i · (c + w) is outside of its corresponding plain ball only when i > 2.
Note in particular that in the case of γ = 2, vector 0 is not the closest point
to the target vector, but belongs to the plain ball with center t. Thus vector
0 should be removed via sparsification. As it is kept in any sparsified lattice,
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Figure 3: Sparsification for a BDD1/
√
2 instance (left) and for a BDD1/(2

√
2)

instance (right).

this is impossible to achieve. This illustrates why center t is shifted to a new
point t + w (then the shift w of 0 may be removed via sparsification). In both
figures, the red crosses denote the points that are removed from the lattice via
sparsification.

In Step 2 of the reduction, we construct a basis B′ of an (n+ 1)-dimensional
lattice L′ by using Kannan’s embedding technique. In Step 3, we call the
uSVPγ(1+ε) oracle with input basis B′. The correctness of the reduction is
provided by Lemmata 14, 15 and 16.

Any vector in lattice L′ can be written as b′ = ((b + m(t + w))T,mkd0)T

with b ∈ Lp,z and m ∈ Z. We claim that the vector s′ = (((c + w) − (t +
w))T,−kd0)T = ((c − t)T,−kd0)T is a shortest non-zero vector in L′ and also
that λ2(L′)/λ1(L′) = γ(1+Ω(1/n)). Thus ±s′ will be output by the uSVPγ(1+ε)
oracle. We can then obtain the vector c = (c + w) − (t + w) + t ∈ L. In the
following, we give lower bounds for the norm of b′ = ((b +m(t + w))T,mkd0)T

not parallel to s′, which depend on the value of m. Without loss of generality,
we restrict ourselves to m ≥ 0.

The following lemma is analogous to the ‘m = 0 case’ of the Lyubashevsky-
Micciancio reduction [15]. Note that the lower bound in the statement is essen-
tially 2γ2.

Lemma 14. If m = 0 and b′ 6= 0, then ‖b′‖2/‖s′‖2≥ 2γ2/(1 + 1/(n− 1)2).

Proof. As m = 0 and b′ 6= 0, we must have b 6= 0. As a result, we have

‖b′‖2 = ‖b‖2 ≥ λ21(L) ≥ 2γ2d2

(1− 1
n )2

≥ 2γ2d20.

Thus, in this case, we have the gap

‖b′‖2
‖s′‖2 ≥

2γ2d20
d2 + d20k

2
≥ 2γ2

1 + k2
=

2γ2

1 + 1
(n−1)2

.

10



The second lemma bounds the gap for small m’s. It is where our improve-
ment over prior reductions stems from. Note that the lower bound in the state-
ment is essentially γ2.

Lemma 15. If m ≤ γn and b′ is linearly independent with s′, then ‖b′‖2/‖s′‖2≥
(γ2 + 1/n2)/((1− 1/n)2 + 1/(n− 1)2).

Proof. By Lemma 13, we have

c + w ∈ Lp,z
⋂ ⋃

i≤γn

B
(
i · (t + w),

λ1(L)√
2

)
⊆ Z · (c + w).

Thus, as b 6∈ Z · (c + w) (by assumption), we have

‖b′‖2= ‖b−m · (t + w)‖2+m2d20k
2 ≥ λ21(L)

2
+m2d20k

2 ≥
(

dγ

1− 1
n

)2

+m2d20k
2.

Thus, in this case, we have the gap

‖b′‖2
‖s′‖2 ≥

( dγ
1− 1

n

)2 +m2d20k
2

d2 + d20k
2

≥
( dγ
1− 1

n

)2 +m2d2k2

d2 + ( d
1− 1

n

)2k2
=

γ2 + m2

n2

(1− 1
n )2 + 1

(n−1)2
.

The gap is an increasing function in m and hence it suffices to consider m =
1.

The third lemma bounds the gap for larger m’s. This corresponds to the
‘large m case’ of the Lyubashevsky-Micciancio reduction. As in the previous
case, the lower bound in the statement is essentially γ2.

Lemma 16. If m > γn, then ‖b′‖2/‖s′‖2≥ γ2/((1− 1/n)2 + 1/(n− 1)2).

Proof. For any b ∈ L, we have ‖b′‖2≥ m2k2d20. Thus, in this case, we have the
gap

‖b′‖2
‖s′‖2 ≥

m2k2d20
d2 + k2d20

≥ m2k2d2

d2 + ( d
1− 1

n

)2k2
=

m2

(n− 1)2 + n
(n−1)2

.

The gap is an increasing function in m and hence it suffices to consider the
m = γn.

Now, we complete the proof of Theorem 12. According to Lemmata 14, 15
and 16, the uSVP gap satisfies, for large enough n

λ22(L′)
λ21(L′) ≥ min

(
2γ2

1 + 1
(n−1)2

,
γ2 + 1

n2

(1− 1
n )2 + 1

(n−1)2
,

γ2

(1− 1
n )2 + 1

(n−1)2

)
≥ γ2

(
1 + Ω

(
1

n

))
.

We include Figure 4 to geometrically illustrate the overall reduction. For con-
venience, we take k = −1/(n−1) in the figure. We use filled dots to label points
of 2-dimensional lattice L, and hollow dots to label points of 3-dimensional lat-
tice L′ that are not in L (recall that L ⊆ L′). With Kannan’s embedding tech-
nique, the offset between the vectors of L (e.g., c + w) and the shifted target
t+w are mapped to L′ (e.g., ((c−t)T,−kd0)T). Thanks to sparsification, all the
points of L′ belonging to the drawn cylinder (of height |2γnkd0|) are multiples
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t
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t+w

m = 1

c+w

2(t+w)

2(c+w)

m = 2

|γnkd0|

|γnkd0|

((c− t)T,−kd0)T

(−(c− t)T, kd0)
T

(2(c− t)T,−2kd0)T

(−2(c− t)T, 2kd0)
T

((a1 − (t+w))T,−kd0)T
((a2 − (t+w))T,−2kd0)T

a1

a2

x

y

z

Figure 4: Geometric illustration of the reduction.

of the shortest non-zero vector s′ = ((c− t)T,−kd0)T, e.g., ±((c− t)T,−kd0)T

and ±(2(c − t)T,−2kd0)T. All other points in L′ that are linearly indepen-
dent from s′ lie outside of the cylinder, e.g., ((a1 − (t + w))T,−kd0)T and
((a2 − (t + w))T,−2kd0)T. This cylinder forces the second minimum λ2(L′)
to be large, and, more concretely, larger than γλ1(L′). This corresponds to
Lemma 15 (Lemma 14 handles the points of L and Lemma 16 handles the
points of L′ whose z-component is large).
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A Missing proofs.

A.1 Improved analysis of the Lyubashevsky-Micciancio
BDD to uSVP reduction

Theorem 17. There is a polynomial-time reduction from BDD1/γ1 to uSVPγ ,

where γ1 = 2γ2+2bγcbγ+1c
2bγc+1 for γ ≥ 1.

Proof. We prove here that for 1 ≤ γ < 2, there is a polynomial reduction from
BDD1/γ1 to uSVPγ , where γ1 = 2(γ2 + 2)/3. The extension to γ ≥ 2 can be
obtained using a similar method.

Given (B, t) an instance of BDD1/γ1 , we have d = dist(t,L(B)) ≤ λ1(L(B))/γ1.
We assume for the moment that we know the exact value d. We consider the
embedded lattice

B′ =

(
B t
0 kd

)
.

Any vector in this lattice can be written as b′ = ((b + mt)T,mkd)T with
b ∈ L(B) and m ∈ Z. We claim that any shortest non-zero vector s′ has the
form ((c +mt)T,mkd)T with c ∈ L(B) and m = ±1, where ‖c +mt‖= d (i.e.,
vector −mc is a closest vector to t in L(B)).

We give lower bounds on the norm of any vector b′ = ((b + mt)T,mkd)T

that is not parallel to ((c− t)T,−kd)T. The bounds depend on the value of m.

Case 1: If m ≤ bγ1c, we have ‖b−mt‖ ≥
∣∣∣ ‖b−mc‖ − m ‖c− t‖

∣∣∣ =∣∣∣ ‖b−mc‖ − md
∣∣∣ = ‖b−mc‖ − md. Because b′ is not parallel to ((c −

t)T,−kd)T, we have ‖b−mc‖ ≥ ` ≥ γ1d ≥ md, hence justifying the last
equality. In this case, ‖b−mt‖ ≥ γ1d−md. It is sufficient to have

‖b′‖2= (γ1d−md)2 +m2k2d2 ≥ (γ
√

1 + k2d)2.

It is sufficient to check m = 1, 2 (in the general case m = bγc and m = bγ+ 1c),
which leads to k =

√
(4γ2 − 1)/9. Hence it suffices to take γ1 = 2γ

2+2
3 .

Case 2: If m > bγ1c, we have

‖b′‖2≥ m2k2d2 ≥ γ21k2d2.

By taking k and γ1 as above, we obtain that the latter is ≥ (γ
√

1 + k2d)2.

We can extend the above result to larger γ, with

γ1 ≥
2γ2 + 2bγcbγ + 1c

2bγc+ 1
.

The exact value of d may be unknown, but we could modify the proof with
an approximated value of d = dist(t,L(B)) using a guess d0 ∈ [d, d/(1− 1/n)).
We use the reduction with the approximated value d0. The reduction and its
analysis above provide a reduction from BDD(1−1/n)c/γ1 to uSVPγ for some
constant c. Further, combined with Lemma 5, we obtain the claimed reduction
from BDD1/γ1 to uSVPγ .
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A.2 On the proof of Lemma 11

The statement in [18, Thm. 5.2] is stronger than our statement in Lemma 11.
In [18, Thm. 5.2], it is proved that the maximum number of points at distance
at least ` from each other that can be placed in a sphere of radius `/

√
2 is 2n.

By taking the lattice minimum as a lower bound on the distance of every two
points, we obtain the statement in Lemma 11.

Now we give an overview of the proof of [18, Thm. 5.2]. It proceeds by
induction. It is assumed that the statement is true for some dimension n, and
then is proved for dimension n+ 1. For dimension n+ 1, we consider N points
x1, · · · ,xN in Qn+1 such that ‖xi − xj‖≥ ` and ‖xi‖≤ `/

√
2 for all i, j ∈ [N ].

Take xN as the north pole. The idea is to adjust the N points to the poles or the
equator of an (n + 1)-dimensional sphere of radius `/

√
2. As a result, we have

exactly one point in south pole and north pole respectively. Then we proceed
by induction on the points that are on the n-dimensional equator: there are at
most 2n of these. Thus, after adjustment, we have at most 2n + 2 = 2(n + 1)
points to be placed in Qn+1.

However, the proof of [18, Thm. 5.2] is incomplete. We also need to prove
that N is not bigger than 2(n+ 1), or, in another words, that any two distinct
points of the N initial points will not be adjusted to the same point of the (n+1)-
dimensional sphere. In order to present the orthogonalization underlying the
adjustment more naturally, we also modify the maps used in the proof of [18,
Thm. 5.2], as follows:

f(xi) =

{
xi − 〈xi,xN 〉‖xN‖2 xN , if 〈xi,xN 〉 6= ±‖xi‖‖xN‖
xi, otherwise

and

g(x′i) =

√
2

‖x′i‖
x′i

for all i ∈ [N ]. We let x′i denote f(xi) and let x′′i denote g(x′i). The map
g(f(xi)) = x′′i is a bijection as all the points xi are far away from each other,
according to the assumption. We prove this missing statement here.

Proof. First, we claim that 〈xi,xj〉 ≤ 0 for any i 6= j. We will use that claim
several times in the proof. For any i 6= j, we have ‖xi−xj‖≥ ` and ‖xi‖≤ `/

√
2,

thus

〈xi,xj〉 =
1

2

(
‖xi‖2+‖xj‖2−‖xi − xj‖2

)
≤ 1

2

(
`2

2
+
`2

2
− `2

)
= 0.

As a result, we have 〈xi,xj〉 ≤ 0 is true for all i 6= j.

We show that for any i 6= j, if x′i and x′j are collinear, then 〈x′i,x′j〉 < 0.
Thus, even after applying the second map, the relation between the xi’s and
the x′′i ’s is one-to-one. We consider three cases.

Assume first that 〈xi,xN 〉 = ±‖xi‖‖xN‖ and 〈xj ,xN 〉 = ±‖xj‖‖xN‖. In
this case, we have x′i = xi and x′j = xj . As we have 〈xi,xj〉 ≤ 0, thus x′i and
x′j are collinear but with 〈x′i,x′j〉 ≤ 0.

Assume now that 〈xi,xN 〉 6= ±‖xi‖‖xN‖ and 〈xj ,xN 〉 = ±‖xj‖‖xN‖. In
this case, we have 〈x′i,xN 〉 = 0 and 〈x′j ,xN 〉 = ±‖xj‖‖xN‖6= 0. Thus, we
obtain that x′i is not collinear with x′j .
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For the rest of the proof, we assume that 〈xi,xN 〉 6= ±‖xi‖‖xN‖ and
〈xj ,xN 〉 6= ±‖xj‖‖xN‖. Then we assume by contradiction that there exists
t > 0 such that

x′i = xi −
〈xi,xN 〉
‖xN‖2

xN = t ·
(

xj −
〈xj ,xN 〉
‖xN‖2

xN

)
= t · x′j . (1)

Write xj = xi + (1/t) · v for some vector v and use it to substitute xj in
Equation (1). Without loss of generality, we may assume that 〈v,xN 〉 ≤ 0 (if it
is not the case, then we exchange xi and xj). By substitution in Equation (1),
we obtain

v = (1− t) · (xi − 〈xi,xN 〉xN/‖xN‖2) + 〈v,xN 〉xN/‖xN‖2.

We have

〈xi,xj〉 =

〈
xi,xi +

1− t
t
·
(

xi −
〈xi,xN 〉
‖xN‖2

xN

)
+

1

t

〈v,xN 〉
‖xN‖2

xN

〉
= ‖xi‖2+

1− t
t

(
‖xi‖2−

〈xi,xN 〉2
‖xN‖2

)
+

1

t

〈v,xN 〉〈xi,xN 〉
‖xN‖2

≥ 1

t
‖xi‖2+

1

t

〈v,xN 〉〈xi,xN 〉
‖xN‖2

≥ 1

t
‖xi‖2

> 0.

As we have 〈xi,xj〉 ≤ 0, Thus we obtain a contradiction.
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