
Key Recovery for MANTIS5

Christoph Dobraunig, Maria Eichlseder, and Florian Mendel

Graz University of Technology, Austria
maria.eichlseder@iaik.tugraz.at

Abstract. MANTIS is a tweakable block cipher recently published at
CRYPTO 2016. While the full version MANTIS7 has 14 rounds, the au-
thors claim security against “practical attacks” for the 10-round version,
MANTIS5. Here, “practical” is defined as related-tweak attacks with data
complexity 2d less than 230 chosen plaintexts (or 240 known plaintexts),
and computational complexity at most 2126−d.
We present a key-recovery attack against MANTIS5 with 228 chosen
plaintexts and a computational complexity of about 252 block cipher
calls, which violates this claim.

Keywords: Cryptanalysis · MANTIS · PRINCE-like ciphers

1 Introduction

MANTIS is a tweakable block cipher recently published at CRYPTO 2016 by
Beierle et al. [2]. The designers’ goal is to optimize this versatile building block
for low-latency implementations. To this end, they use the same α-reflective
structure as PRINCE by Borghoff et al. [3], but combine it with the round function
of Midori by Banik et al. [1] in order to improve the latency and security. The
tweak is incorporated using an adapted version of the TWEAKEY framework by
Jean et al. [4].

The full version MANTIS7 has 14 rounds, but the authors also give a re-
duced security claim for the 10-round version, MANTIS5. They claim security
against practical attacks, which they define as related-tweak attacks with data
complexity 2d less than 230 chosen plaintexts (or 240 known plaintexts), and
computational complexity at most 2126−d, similar to the PRINCE challenge.

We present a key-recovery attack against MANTIS5 with 228 chosen plaintexts
and a computational complexity of about 252 block cipher calls, which violates
this claim. Note that the computational complexity can easily be reduced further
by using a slightly more complicated key recovery approach.

Our attack exploits the lightweight near-MDS mixing layer and certain dif-
ferential properties of the involutive S-box, both inherited from Midori. These
properties make it relatively easy to find a differential characteristic with the
claimed optimal probability in the related-tweak setting. Using the same prop-
erties, this characteristic can then be expanded to a family of trails with a cor-
responding initial structure that makes efficient use of the low data complexity
limit of only 230 chosen plaintexts. Furthermore, the choice to keep the original

Midori order of linear operations (first permute, then mix) makes the PRINCE-
like middle rounds differentially less effective than the ordering used by PRINCE
(first mix, then permute).

Outline. In Sect. 2, we give a description of the tweakable block cipher MANTIS
and highlight some properties relevant for our attack. In Sect. 3, we introduce a
family of differential trails and a corresponding initial structure of messages for
MANTIS5 that lead to a good filter after 9 rounds. Finally, in Sect. 4, we use
this initial structure and filter to mount a key recovery attack on MANTIS5.

2 Description of MANTIS

2.1 The Tweakable Block Cipher

MANTIS is a tweakable block cipher recently published at CRYPTO 2016 by
Beierle et al. [2]. The designers propose several variants MANTISr that differ
only in the number of rounds. All variants operate on a 64-bit message block
M = m0‖m1‖ · · · ‖m15 and work with a (64 + 64)-bit key K = k0‖k1 and 64-bit
tweak T = t0‖t1‖ · · · ‖t15. All values are mapped to 4× 4 states of 4-bit cells, for
example,

T =

t0 t1 t2 t3

t4 t5 t6 t7

t8 t9 t10 t11

t12 t13 t14 t15

.

The cipher’s structure is similar to PRINCE, with r forward rounds Ri and r
backward roundsR−1i , separated by an involutive, unkeyed middle layer S◦M◦S.
The 64-bit subkey k1 is used as round key for the outer forward and backward
rounds, while the other 64-bit subkey k0 and the derived k′0 = (k0 ≫ 1)+(k0 �
63) serve as whitening keys. The tweak T is added together with k1 in every
round according to the TWEAKEY construction, with a simple cell permutation
h as a tweak schedule. The construction is illustrated in Fig. 1.

2.2 The Round Functions Ri and R−1
i

The round function Ri is very closely related to that of Midori [1]. It updates
the 4× 4 state of 4-bit cells by means of the sequence of transformations

Ri = MixColumns ◦ PermuteCells ◦ AddRoundTweakeyi ◦ AddConstanti ◦ SubCells,

or for the inverse rounds

R−1i = SubCells◦AddConstanti◦AddRoundTweakey′i◦PermuteCells−1◦MixColumns,

as illustrated in Fig. 2. In the following, we briefly describe the individual op-
erations. For a more detailed description of the MANTIS family, we refer to the
design paper [2].

M

T

C

k1

k1+α

k0

k′0

R1

R−1
1

h

R2

R−1
2

h

R3

R−1
3

h

R4

R−1
4

h

R5

R−1
5

h

S

M

S

Fig. 1: PRINCE-like structure of MANTISr, illustrated for MANTIS5.

Ri

S P M

Ci hi(T) k1

R−1
i

SP−1M

Cihi(T)k1+α

Fig. 2: The MANTIS round functions Ri and R−1i .

SubCells (S). The following involutive 4-bit S-box S is applied to each cell of
the state. For our attack, we are only interested in the differential behaviour of
S, which is illustrated in Fig. 3a.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

AddRoundTweakeyi (A) and AddConstanti (C). Several round-dependent
values are added to the state: The round constant Ci, the subkey k1 (for Ri) or
k1 +α (for R−1i), and the round tweakey hi(T). The tweakey update function h
simply permutes the order of cells using the permutation h:

0 61 52 143 15

4 05 16 27 3

8 79 1210 1311 4

12 813 914 1015 11

h

PermuteCells (P). The cells of the state are permuted as follows:

0 01 112 63 13

4 105 16 127 7

8 59 1410 311 8

12 1513 414 915 2

P

MixColumns (M). Each column of the state is multiplied with the following
involutive near-MDS matrix M over F24 , whose truncated differential behaviour
per column is illustrated in Fig. 3b:

M =


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

 .

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f prob.
1
1
4
1
8

(a) DDT of SubCells.

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f prob.≈
1
15
16
3
4
1
16
1

256

(b) Truncated DDT of MixColumns.

Fig. 3: Differential properties of the MANTIS round operations.

3 Differential Trail

3.1 Bounds and Security Claim

The designers of MANTIS analyze the security of the cipher against differential
cryptanalysis by modelling the differential behaviour (truncated to state cells) as
a mixed-integer linear program [2]. They analyzed the minimum number of active
S-boxes for different round numbers, both in a fixed-tweak and a related-tweak
setting. The design document provides lower bounds for full and round-reduced
MANTIS.

For MANTIS5, the minimum number of active S-boxes in the related-tweak
setting is 34 (for the full MANTIS7: 50), and the maximum differential probability
of the S-box is 2−2. The designers conclude that “no related tweak linear or
differential distinguisher based on a characteristics is possible for MANTIS5” [2].
In particular, they claim that MANTIS5 is secure against “practical attacks”, here
defined as related-tweak attacks with data complexity 2d at most 230 chosen
plaintexts (or 240 known plaintexts), and computational complexity at most
2126−d.

3.2 A Family of Differential Trails

Our attack is based on a truncated differential trail for the related-tweak setting
that meets this lower bound of 34 active S-boxes. The trail is illustrated in Fig. 4.
Instead of considering only a single fixed input difference and characteristic, we
cluster several related trails following the same truncated trail, thus obtaining a
much better probability.

An optimal trail. To analyze the probability, we first construct a trail that
matches the claimed optimal differential probability of 2−34·2 = 2−68. Consider
the differential distribution table of SubCells, given in Fig. 3a. Observe that
SubCells is an involution, so the table is symmetric. There is one input/output
difference, a, such that all transitions from or to difference a have the maximum
probability of 1

4 . Furthermore, these possible transitions include a 7→ a. Since
MixColumns only has binary coefficients, all transitions that match the branch
number of 4 for MixColumns (1 → 3, 2 → 2, 3 → 1) are valid when all active
cells have a fixed difference of a.

Since all non-trivial MixColumns transitions of the trail in Fig. 4 match its
branch number, setting all active cells to a results in a valid differential charac-
teristic with the claimed optimal probability of 2−34·2 = 2−68.

Clustering trails. We will now relax some of these constraints, and also con-
sider trails with cell differences other than a in selected sections of the trail.
Interesting candidates are all differences that can be mapped from and to a by
SubCells, i.e., the differences 5, a, d, and f.

Rounds 9 and 2. First, consider Round 9. The SubCells layer at the end of
Round 8 has 2 active S-boxes, at positions S6 and S10. Assume we allow all pos-
sible output differences {5, a, d, f} for the two S-boxes, marked 5 in Fig. 4. Then,
the trail will follow the same truncated differential, with the same probability
of 2−4·2 to transition to the all-a state at the end of Round 9, as long as both
S-boxes map to the same difference. The probability for this is 2−2, instead of
the original 2−4 of the all-a trail.

A similar observation applies for the two S-boxes S3 and S12 of Round 2,
marked 4 in Fig. 4. However, as we want to relax also the input differences
to Round 2, we will consider only output differences {a, f}. These have the
additional advantage of allowing transitions with probability 2−2 not only to a,
but each to both a and f, so this relaxation can be used in multiple consecutive
rounds. The probability for Round 2 improves from 2−8 to 2−2·2 ·2−1 ·2−2 = 2−7.

Inner Part. Second, consider the inner part. Similar as for Round 9, we can
allow all 4 output differences for the first SubCells operation of the inner part,
as long as both S-boxes map to the same difference, marked 6 in Fig. 4. This
seems to improve the probability for the inner part from 2−4 · 2−4 to 2−2 · 2−4.
However, note that there is no tweakey addition between the two SubCells layers

∆ = a
∆ ∈ {a, f}
∆ ∈ {a, f, d, 5}
∆↔ ∆+ a

i ∆ identical
Key recovery

M

T

C

243.26

Initialization

Finalization

k0

k′0

k1

k1+α

Round 1

Round 10

1

1
2

2
2

=

=
8

9

6
6

6

7
7

7

·2−15.51

S

S

h ◦ C

1

1
2

2
2

=

=
8

9

6
6

6

7
7

7

k1

k1+α

1
1

2
2
2

=
=

8
9

6
6
6

7
7
7

P

P

M

M

6

78
9

1
1

2

· · ·

· · ·

· · ·

6

78
9

1
1

2

Round 2

Round 9

4

4

5

5

· · ·

· · ·

·2−7

·1

S

S

· · · h ◦ C

4

4

5

5

k1

k1+α

4
4

5
5

P

P

M

M

4
4

5
5

Round 3

Round 8

4
4

5
5

·2−4

·2−2

S

S

h ◦ C

k1

k1+α

P

P

M

M

· · ·

· · ·

· · ·

Round 4

Round 7

· · ·

· · ·

·2−4

·2−4

S

S

· · · h ◦ C

k1

k1+α

Round 5

Round 6

h ◦ C

k1

k1+α

P-M-S

P-M-S

P

P

M

M

Inner

Inner

6

6

6

6

·2−2

·2−2

S

S

M

Fig. 4: Trail for MANTIS5.

of the inner part, so the probabilities for the S-box transitions are certainly
not independent. Since there is also no PermuteCells operation, we can simply
compute the exact Superbox transition probability for the entire second column
of the state. This reveals that the probability for the inner part is in fact 2−4.

Initialization and Round 1. Like Round 2, we relax some of the differences of
Round 1 to {a, f}. The estimated probability for Round 2 will remain valid
for the output cells cells of Round 1 (1 , 2 ,). Again, MixColumns adds several
constraints for the output differences of the SubCells layer of Round 1.

Finally, we relax the input differences. In addition to {a, f}, we also allow
{5, d} in order to generate more message pairs, while retaining a reasonable
differential probability. For message cells S10 and S14, marked in Fig. 4, we
need to compensate the AddRoundTweakey operation of the initialization part
by considering input differences ∆ such that ∆+a ∈ {a, f, 5, d}, or equivalently,
∆ ∈ {0, 5, f, 7}. The probability for the SubCells layer of Round 1, assuming
uniformly distributed input differences, is then

2−3·2︸ ︷︷ ︸
→
→
→

·
(

1

4
· 2−3 +

3

4
· 2−4

)
︸ ︷︷ ︸

, → 1 , 1

·
(

1

8
· 2−5 +

7

8
· 2−6

)
︸ ︷︷ ︸

, , → 2 , 2 , 2

≈ 2−15.51.

Consequently, the overall probability of the trail up to Round 9 (or more pre-
cisely, up to AddRoundTweakey of Round 10) is at least about

2−15.51−7−4−4−2−2−4−2 = 2−40.51.

Round 10. If a pair followed the trail up to Round 9, the output of the Ad-
dRoundTweakey operation of Round 10 will have several properties that can be
used as a filter for key recovery.

– Cells S1, S4, S11, S13, S15 have zero difference, which will also be immediately
visible in the ciphertexts (though not useful for key recovery).

– Cell S14 (marked) has difference a (2-bit filter).
– Cells S0, S5, S10 (marked 6) will have the same difference (8-bit filter), as

will cells S2, S7, S8 (marked 7) after compensating for the tweak difference
(8-bit filter).

– Cells S6 and S12 (marked 8 , 9) will have differences {a, f, 5, d}, and addi-
tionally, due to the properties of MixColumns, cells S3 and S9 (marked =)
will have the same difference, which is the sum of the differences of S6, S12

(12-bit filter).

Overall, the trail provides a 30-bit filter with probability 2−40.51.

3.3 Initial Structure

We now want to generate enough message pairs to expect at least one valid
pair, while staying well below the data complexity limit of 230 chosen plaintexts.

Obviously, the trail’s probability is not good enough for a straightforward so-
lution with 229 suitable pairs. However, we can use the set {a, f, d, 5} of valid
differences for each cell to our advantage.

We repeat the following for two random base plaintext-tweak pairs. For each
of the two plaintext-tweak pairs, we query two sets of derived plaintext-tweak
pairs: one for the base tweak, and one for the modified tweak with a difference
of a in two cells, as specified by the trail in Fig. 4. The first set for the base
tweak contains the following 88 modified messages. Each of the 8 active cells (,

) varies over 8 values: the base plaintext plus differences {0, a, f, 5, d, 8, 7, 2}.
The second set for the modified tweak contains the same 88 messages. In total,
the number of chosen plaintext-tweak pairs we query is

2 · 2 · 88 = 226.

Thus, we could repeat this up to 24 = 16 times and still stay below the data
complexity limit.

Set 1

Set 2

0

0

5

5

a

a

f

f

d

d

8

8

7

7

2

2

(a) Differences {a, f, d, 5} ().

Set 1

Set 2

0

0

5

5

a

a

f

f

d

d

8

8

7

7

2

2

(b) Differences {0, 5, 7, f} ().

Fig. 5: Initial structure with 8 · 4 pairs from 2 · 8 queries per cell.

To see how many suitable pairs we can generate from these queries, note that
for each value of a cell in the first set, there are exactly 4 (out of 8) values for
this cell in the second set that give a valid difference {a, f, d, 5} () or {0, 5, 7, f}
(), as illustrated in Fig. 5. Here, we exploited that a + 5 = f, where all these
three values are suitable for our trail. Thus, the number of pairs we get is

2 · 88 · 48 = 241,

and the expected number of valid pairs is at least

241 · 2−40.51 = 20.49 ≈ 1.40 .

By repeating this up to 24 times, we can increase the expected number of valid
pairs up to

24.49 ≈ 22.47 .

We evaluated the initial structure practically for 1024 random keys, and found
that the average number of valid pairs is significantly higher than the estimated
22.47, around 26.28 ≈ 78.

4 Key Recovery

We can now use the trail family and initial structure from Sect. 3 to recover the
two 64-bit secret keys k0 and k1.

4.1 Pre-Filtering Ciphertexts for Wrong Pairs

Before starting with the key guessing, we can filter for pairs which definitely do
not follow the trail given in Fig. 4. The necessary conditions for valid ciphertext
pairs are that 5 cells (S1, S4, S11, S13, S15) have a zero difference (marked),
while the difference in cell S14 is in {a, f, d, 5} after removing the last tweak
addition (marked). The reason for the restriction of the differences in cell S14

lies in the tweak addition in this cell before the last S-box application.
If we assume that plaintext pairs which do not follow our trail produce a

randomly distributed difference pattern for corresponding ciphertext pairs, these
conditions are fulfilled with a probability of 2−22. Hence, we reduce the set of
241 pairs from the initial structure to a set of 241−22 = 219 pairs. This set of
219 pairs is still expected to contain 20.49 > 1 valid pairs that follow the trail of
Fig. 4.

4.2 Recovery of 44-bit k′0 + k1

The first step of the attack is the partial recovery of 44 bits of the final whitening
key k′0 + k1. We want to check our key guesses against the differential pattern
we get before the last application of MixColumns in Round 10 for our filtered
ciphertext pairs. The probability that a 44-bit key guess leads to this pattern
before the application of MixColumns is 2−30:

– 1st column: Here, only cell S12 has a difference at the input of MixColumns,
while the others have none. The requirements that lead to this pattern are
that a key guess on the ciphertext cells S0, S5, S10 (6) leads to an equal
difference after an S-box application, which happens with a probability of
2−8 per ciphertext pair and key guess.

– 2nd column: This column is inactive. The only condition we have to fulfill
here is that the difference introduced in cell S14 () of the ciphertext is
canceled by the tweak addition that happens before the S-box application
of the last round (right after the last application of PermuteCells). Since our
filtering ensures that only ciphertext pairs with differences {a, f, d, 5} in cell
S14 () after the last SubCells are considered, this happens with a probability
of 2−2.

– 3rd column: For this column, cells S2 (8) and S6 (9) must have a differ-
ence {a, f, d, 5}, while cells S10, S14 have zero difference (). The necessary
conditions for this to happen are that a key guess on cells S3, S6, S9, S12 of
the ciphertext pair leads to an input difference {a, f, d, 5} on cells S6, S12 (8 ,
9) before the last SubCells (2−2 per cell), and that the differences in S3, S9

(=) each equal the difference between S6 and S12 (2−4 per cell). The overall
probability for this is 2−12 per ciphertext pair and key guess.

– 4th column: For this column, the same reasoning as for the 1st column
applies, now for ciphertext and key cells S3, S7, S8 (7) after compensating
for the last tweak addition. Again, the probability is 2−8.

If we now decrypt one ciphertext pair backwards for one round under 211·4 =
244 key guesses, 244−30 = 214 key guesses remain which satisfy all these condi-
tions for this ciphertext pair. If we repeat this for all 219 pairs, where we expect
that one of them follows the trail in Fig. 4, we expect at most 214 · 219 = 233

candidates for the right subkey which lead to at least one valid ciphertext pair.
Hence, we effectively reduce our keyspace by 2−11. So, repeating the attack a
total of 4 times with fresh initial structures is sufficient to recover the correct 44
bits of k′0 + k1 with a data complexity of 4 · 226 = 228 chosen plaintexts.

Note that it is not actually necessary to guess all 44 bit of the subkey at once
per ciphertext pair. Instead, we can split up the key guesses column-wise in one
16-bit, two 12-bit, and one 4-bit guess, and combine this information to the 214

key candidates we get for each pair.

4.3 Recovery of 32-bit k0 + k1

With the help of the recovered 44 bits of k′0 + k1, we can filter our plaintext
pairs so that only the valid plaintext pairs following the trail in Fig. 4 remain.
The probability that the right key identifies a wrong pair as correct one is 2−30.
Therefore, it is likely that only correct pairs (approximately 4) remain after fil-
tering 4 ·219 pairs. We now use those 4 valid pairs to recover 32 bits of the initial
whitening key k0 + k1. We guess the key bits for all plaintext cells with differ-
ences, S0, S5, S6, S7, S8, S10, S12, S14. Then we can compute forward through the
SubCells layer of Round 1, and check if the resulting difference pattern matches
the trail. As shown in Fig. 4, a wrong key matches the pattern with a probability
of 2−15.51. So, the probability that a wrong key matches for all 4 correct pairs is
2−62.04. Therefore, we expect that only the correct subkey out of the 232 possible
candidates remains.

4.4 Recovery of k0 and k1

Up to this point, we have recovered 32 bits of information about k0 + k1 and
44 bits of information about k′0 + k1 = (k0 ≫ 1) + (k0 � 63) + k1. This
gives us a system of 76 linearly independent linear equations for k0 and k1. To
recover the full key, we have to guess 52 bits and identify the right key using
trial encryptions.

4.5 Attack Complexities

Plaintext Pair Generation and Filtering. To generate the 4 · 241 = 243

plaintext pairs, we need to query 4 · 226 = 228 chosen plaintext with chosen
tweaks, well below the complexity limit of 230 for MANTIS5. Pre-filtering costs
243 state xor operations, and will reduce the relevant pairs to 221 for the remain-
ing attack.

Recovery of 44-bit k′0 +k1. To get the possible key candidates per ciphertext
pair, we need 2·(216 ·4+2·212 ·3+24) = 219.13 S-box look-ups, which corresponds
roughly to 211.54 MANTIS5 encryptions (based on the total number of 16 · 12 S-
boxes in MANTIS5). In total, we have to generate key candidates for 4 ·219 pairs,
corresponding to a total of about 232.54 MANTIS5 encryptions.

In total, we get four lists, each containing 233 key candidates, which domi-
nates our memory requirements. We need to find matches between the four lists,
which adds a computational complexity of roughly 233 operations, depending on
the implementation.

Recovery of 32-bit k0 + k1. Here, we make a 32-bit key guess for 4 pairs,
leading to a total of 2 ·4 ·8 ·232 = 238 S-box look-ups. This corresponds to about
230.42 MANTIS5 encryptions.

Recovery of k0 and k1. Finally, we have to recover the remaining 52 bits of
key information to recover the original 64-bit keys k0 and k1. To do this, we have
to make 252 trial encryptions, which dominates our attack complexity.

Summarizing, we recover the full key for MANTIS5 with a computational
complexity of 252 encryptions, memory requirements of 233 MANTIS states, and
a data complexity of 228 chosen plaintexts with chosen tweaks. This violates the
security claims for MANTIS5.

The computational complexity can be further reduced by using a slightly
different initial structure with an active cell S2 in the message, or by guessing
additional cells of the round key k1 in Round 1 to add more linear equations.

Acknowledgements. We thank the MANTIS designers for verifying our results
and providing useful comments.

References

1. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T., Regaz-
zoni, F.: Midori: A block cipher for low energy. In: Iwata, T., Cheon, J.H. (eds.) Ad-
vances in Cryptology – ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer
(2015)

2. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sas-
drich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency vari-
ant MANTIS. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology – CRYPTO
2016. LNCS, vol. 9815, pp. 123–153. Springer (2016)

3. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçin, T.: PRINCE – A low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) Advances in Cryptology – ASIACRYPT
2012. LNCS, vol. 7658, pp. 208–225. Springer (2012)

4. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: The TWEAKEY
framework. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology – ASIACRYPT
2014. LNCS, vol. 8874, pp. 274–288. Springer (2014)

	Key Recovery for [5]

