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Abstract

We propose a new protocol for two-party computation, secure against malicious adversaries, that is
significantly faster than prior work in the single-execution (i.e., non-amortized) setting. In particular,
our protocol requires only O(ρ) public key operations and ρ garbled circuits, where ρ is the statistical
security parameter, whereas previous work with the same number of garbled circuits required either
O(ρ · n) public-key operations (where n is the input/output length) or another execution of a separate
malicious two-party protocol.

We implement our protocol to evaluate its performance. Our prototype is able to securely compute
AES in only 65 ms over a local-area network using a single thread without any pre-computation, only 3×
slower than a semi-honest execution of the same functionality, and 22× faster than the best prior work
in the single-execution setting. On a local-area network, our protocol requires around 20 µs to process
each input/output bit and around 4 µs to process each AND gate, along with a fixed cost of around
23 ms to compute the base oblivious transfers.

1 Introduction

Secure multi-party computation (MPC) allows multiple parties with private inputs to compute some agreed-
upon function such that all parties learn the output while keeping their inputs private. Introduced in the
1980s [Yao82], MPC has become more practical in recent years, with several companies using the technology:
e.g., Dyadic [dya] uses MPC to help secure cryptographic keys; Sharemind [sha] uses MPC to process
financial data [BKK+16], among other things; and Partisia [par] uses MPC for privacy-preserving auctions.
A particularly important subfield of MPC is that of two-party computation (2PC), which is the focus of this
work.

Many existing applications and implementations of 2PC assume that all participants are semi-honest,
that is, they follow the protocol but can try to learn sensitive information from the protocol transcript.
However, in real-world applications this assumption may not be justified. Although protocols with stronger
security guarantees exist, most 2PC protocols secure against malicious adversaries are far from practical,
especially when compared to protocols in the semi-honest setting. For example, one recent construction of
malicious 2PC reports about six seconds for two parties to securely compute an AES circuit [AMPR14]. In
the offline/online setting (where pre-processing is used) and timings are amortized over 1024 executions, it
is possible to achieve an online time of 9 ms [LR15] per execution, however the total amortized time per
execution (i.e., including the offline time) is still around 74 ms, with a latency of around 75,000 ms before the
first 2PC can be executed. By way of comparison, in the semi-honest setting AES can be securely computed
in just 22 ms.

On a related note, almost all existing 2PC schemes with security against malicious adversaries perform
poorly on even moderate-sized inputs or very large circuits. For example, the schemes of Lindell [Lin13] and
Afshar et al. [AMPR14] require a number of public-key operations at least proportional to the statistical

∗Work done while at University of Maryland.
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Protocol ρ Time Notes

PSSW09 [PSSW09] 40 1,114 s
sS11 [sS11] 40 192 s

NNOB12 [NNOB12] 55 4,000 ms
KsS12 [KSS12] 80 1,400 ms 256 nodes/party
FN13 [FN13] 39 1,082 ms GPU

AMPR14 [AMPR14] 40 5,860 ms
FJN14 [FJN14] 40 455 ms GPU

LR15 [LR15] 40 1,442 ms

Here 40 65 ms

Table 1: Two-party computation of AES, with security against malicious adversaries, in the single-execution
setting. The statistical security parameter is ρ. All numbers except for LR15 are taken directly from the
relevant paper, and are based on different hardware/network configurations. The numbers for LR15 are from
our own experiments. See §6 for more details.

security parameter times the sum of one party’s input length and the output length. Furthermore, the most
efficient scheme [LR15], which is tailored for an offline/online setting, does not scale to large circuits due to
memory constraints: the garbled circuits created during the offline phase need to either be stored in memory,
in which case evaluating very large circuits is almost impossible, or else must be written/read from disk,
in which case the online time incurs a huge penalty due to disk I/O (see §6), not included in the number
reported above or in [LR15].

Motivated by these issues, we design a new 2PC protocol for the malicious setting. Our protocol uses
the cut-and-choose paradigm [LP07] and the input-recovery approach introduced by Lindell [Lin13], but
does not need an extra 2PC protocol or a large number of public-key operations. We make the following
contributions.

• Our protocol is more efficient, and often much more efficient, than the previous best protocol with
malicious security in the single-execution setting (see Table 1). More concretely, our protocol takes
only 65 ms to evaluate an AES circuit over a local-area network, better than the most efficient prior
work in the same setting, and even better than the amortized total time per execution in [LR15].

• We identify and fix various bottlenecks in 2PC building blocks that may prove useful in subsequent
work. As an example, we use Streaming SIMD Extensions (SSE) instructions to improve the perfor-
mance of oblivious-transfer extension, and improve the efficiency of the XOR-tree technique to avoid
high (non-cryptographic) complexity when operating over large inputs. Our new construction reduces
the cost of processing the circuit evaluator’s input by 1000× for a 65,536-bit input.

• Our implementation is open sourced as a part of the EMP-toolkit1, with the aim of providing a
benchmark for secure computation and allowing other researchers to experiment with and extend our
code.

1.1 High-Level Approach

Our protocol is based on the cut-and-choose paradigm. Let f be the circuit the parties want to compute.
One party, denoted as the garbler, begins by generating s garbled circuits of f and sending these to the other
party, the evaluator. Some portion of those circuits are checked for correctness by the evaluator, and the
remaining circuits are evaluated in order to learn the output.

Input recovery. To achieve statistical security 2−ρ, early cut-and-choose protocols [sS13, sS11, LP11]
required s ≈ 3ρ. Lindell [Lin13] introduced the input-recovery technique and demonstrated a protocol

1https://github.com/emp-toolkit
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requiring only s = ρ garbled circuits. At a high level, the input-recovery technique allows P2 to obtain P1’s
input x if P1 cheats; in that case, P2 can compute the function itself to learn the output. For example, in
one way of instantiating this approach [Lin13] all the garbled circuits use output-wire labels with the same
XOR difference ∆. That is, for output wire i in every garbled circuit, the output-wire label corresponding to
‘0,’ say Zi,0, is random whereas the output-wire label corresponding to ‘1,’ Zi,1 is set to Zi,1 := Zi,0 ⊕∆. If
P2 learns different outputs for output wire i in two different gabled circuits—which means that P1 cheated—
then P2 recovers ∆. (The protocol is set up so that ∆ is not revealed by the check circuits.) The parties
then run a second 2PC protocol in which P2 learns x if it knows ∆; here, input-consistency checks are used
to enforce that P1 uses the same input x as before. Although this input-consistency protocol was further
optimized by Lindell and Riva [LR15], the fact remains that two phases of secure computation are required,
adding additional communication rounds and complexity.

Afshar et al. [AMPR14] addressed this issue by designing an input-recovery mechanism that does not
require a secondary 2PC protocol.2 In their scheme, P1 first commits to its input bit-by-bit using ElGamal
encryption; that is, for each bit x[i] of x, P1 sends (gr, hrgx[i]) to P2, where h := gω for some ω known only to
P1. Note that if P2 learns ω then it can decrypt everything and thus learn x. Now, for each output wire P1

secret shares ω as ω0 and ω1 with ω = ω0 +ω1, and sends {Zi,b +ωb}b∈{0,1} to P2 for each output-wire label
Zi,b. Thus, if P2 learns two different output-wire labels, P2 can recover ω. Afshar et al. are able to avoid
an extra 2PC protocol by using homomorphic properties of the ElGamal encryption scheme to efficiently
check that the encrypted values are valid. As this needs to be done per input bit, this incurs a multiplicative
overhead of ρ in terms of the number of public-key operations required.

Our construction uses this general idea, but the key innovation is that we are able to replace most of the
public-key operations required by Afshar et al. with symmetric-key operations; see §3 for details.

Input consistency. We also need a way to enforce that P1 uses the same input x across the different
garbled circuits. Afshar et al. address this issue by using efficient zero-knowledge proofs to prove that the
ElGamal ciphertexts sent by P1 all commit to the same bit across all the evaluation circuits. However, this
approach again requires many public-key operations.

We observe that it is not actually necessary to ensure that P1 uses the same input x across all evaluation
circuits and the input-recovery protocol. Rather, we only need to enforce that x is used in the input-recovery
protocol and at least one of the evaluation circuits. This results in much better efficiency; see §3 for details.

Preventing a selective-failure attack. One other standard attack that must be prevented is a selective-
failure attack whereby a malicious P1 uses one valid input-wire label and one invalid input-wire label (for
P2’s inputs) in the oblivious-transfer step. If care is not taken, P1 could potentially use this to learn a bit
of P2’s input by observing whether P2 aborts or not. Lindell and Pinkas [LP07] proposed to deal with this
using the XOR-tree approach in which P2 replaces each bit its input by ρ random bits that XOR to the
actual bit. By doing so, it can be shown that the probability with which P2 aborts is independent of its
actual input. The XOR-tree approach increases the number of oblivious transfers needed by a factor of ρ.
However, this can be improved by using a ρ-probe matrix [LP07, sS13], which only increases the number of
bits by a constant factor.

Nevertheless, this constant-factor blow-up in the number of input bits corresponds to a quadratic blow-
up in the number of XOR operations required. Somewhat surprisingly (given that these XORs are non-
cryptographic operations), this can become quite prohibitive. For example, for inputs as small as 4096 bits,
we find that the time to simply compute all the XORs required for the XOR-tree is more than 3 seconds. We
resolve this bottleneck by breaking P2’s input into small chunks and constructing smaller ρ-probe matrices
for each chunk. See §5 for details.

Results. Combining the above solutions, as well as other optimizations identified in §5, we present a new 2PC
protocol with provable security against malicious adversaries; see §4 for the full description. Implementing
this protocol, we find that it outperforms prior work by up to several orders of magnitude; see §6.

2While other approaches exist for avoiding this extra 2PC protocol [Bra13, FJN14], they require additional circuits to be
garbled, and thus we focus on the work of Afshar et al. here.
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1.2 Related Work

Secure two-party computation based on garbled circuits has seen much progress in recent years. In the
semi-honest setting, AES can be securely computed in 22 ms, whereas in the malicious setting AES can be
computed in 5.8 s [AMPR14] on a standard machine, 460 ms3 when using GPUs [FJN14], and 74 ms in the of-
fline/online setting [LR15]. Here we focus on malicious 2PC protocols based on the cut-and-choose paradigm.
We note that while other approaches exist for achieving malicious security (e.g., [FJN+13, NNOB12, DLT14]),
they often come at the cost of a high number of rounds and are not as efficient as cut-and-choose protocols
in the single-execution setting when preprocessing is not used.

The cut-and-choose approach. Lindell and Pinkas [LP07] first adopted the cut-and-choose technique to
garbled circuits to achieve malicious security. Their construction requires 680 garbled circuits for statistical
security 2−40, which has been improved over a sequence of works [sS11, LP11, HKE13, Lin13, AMPR14] to
the point where now only 40 circuits are required.

The first implementation of a 2PC protocol with malicious security was by Lindell et al. [LPS08]. Since
then, multiple systems [PSSW09, NNOB12, KSS12, sS13] have been proposed that further improved effi-
ciency, including using GPUs to accelerate the computation [FJN14, FN13].

Building blocks. One building block in our protocol is the garbling scheme formally defined by Bellare et
al. [BHR12]. It is improved by a series of works [PSSW09, KMR14, KS08, BHKR13], and the best garbling
scheme is by Zahur et al. [ZRE15]. Oblivious transfer (OT) is another important building block. Efficient
protocols have been proposed, some of which are by Peikert et al. [PVW08] and by Chou and Orlandi [CO15].
Ishai et al. [IKNP03] showed how to extend OT efficiently from smaller number of OTs, which has been
improved by some following works [NNOB12, ALSZ15, KOS15].

2 Preliminaries

Let κ be the security parameter, and let ρ be the statistical security parameter. For bitstring x, let x[i]
denote the ith bit of x. We use the notation a := f(· · · ) to denote the output of a deterministic function,
a← f(· · · ) to denote the output of a randomized function, and a ∈R S to denote choosing a uniform value
from set S. Let [n] = {1, . . . , n}. We use the notation (c, d) ← Com(x) for a commitment scheme, where
c and d are the commitment and decommitment of x, respectively. Due to space constraints, we refer the
reader to related papers [BHR12, LP09] for the basics of garbled circuits. Throughout this paper, we use P1

and P2 to denote the circuit garbler and circuit evaluator, respectively. We let n1, n2, and n3 denote P1’s
input length, P2’s input length, and the output length, respectively.

In Figure 2, we include the functionality of FOT and FcOT. FcOT is the weaker flavor of committing OT
that is also used by Jawurek et al. [JKO13]: in addition to the OT functionality, it also allows sender to
open all the messages sent to the functionality before.

Two-party computation. We use a (standard) ideal functionality for two-party computation in which the
output is only given to P2; this can be extended to deliver (possibly different) outputs to both parties using
known techniques [LP07, sS11].

ρ-probe matrix. A ρ-probe matrix, used to prevent selective-failure attacks, is a binary matrix M ∈
{0, 1}n2×m such that for any L ⊆ [n2], the Hamming weight of

⊕
i∈LMi (where Mi is the ith row of M)

is at least ρ. If P2’s actual input is y, then P2 computes its effective input by sampling a random y′ such
that y := My′.

The original ρ-probe matrix proposed by Lindell and Pinkas [LP07] requires m := max{4n2, 8ρ}. Shelat
and Shen [sS13] improved this to m := n2 + O(ρ + log(n2)). Lindell and Riva [LR15] proposed to append
an identity matrix to M to ensure that M is full rank, and to make it easier to find y′ such that y := My′.

3This does not include base OTs and GPU initialization.
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Functionality FOT

Private inputs: P1 has input x ∈ {0, 1}n and P2 has input {Xi,b}i∈[n],b∈{0,1} .

1. Receive x from P1 and {Xi,b}i∈[n],b∈{0,1} from P2, and send {Xi,x[i]}i∈[n] to P1.

Figure 1: Functionality FOT for oblivious transfer.

Functionality FcOT

Private inputs: P1 has input x ∈ {0, 1}n and P2 has input {Xi,b}i∈[n],b∈{0,1} .

1. Receive x from P1 and {Xi,b}i∈[n],b∈{0,1} from P2, and send {Xi,x[i]}i∈[n] to P1.

2. If receive open from P2, send {Xi,b}i∈[n],b∈{0,1} to P1, if receive abort from P2, send ⊥ to P1.

Figure 2: Functionality FcOT for committing oblivious transfer.

3 Protocol Intuition

We already presented a high-level description of the cut-and-choose approach in §1.1; here, we describe in
more detail the intuition behind the changes we introduce.

In our protocol, the two parties first run ρ instances of oblivious transfer (OT), where in instance j P1

sends a random key keyj and random seed seedj , while P2 chooses whether to learn keyj (thereby putting
j in the evaluation set) or seedj (thereby putting j in the check set). The protocol is designed such that
keyj can be used to recover the input-wire labels associated with P1’s input, whereas seedj can be used to
recover all the randomness used to generate the jth garbled circuit. Thus far, the structure of our protocol
is similar to that of Afshar et al. [AMPR14]. However, we differ in how we recover P1’s input if P1 is caught
cheating and how we ensure P1’s consistency.

Input recovery. Recall that we want to ensure that if P2 detects cheating by P1, then P2 can recover P1’s
input. This is done by encoding some trapdoor in the output-wire labels of the garbled circuit such that if
P2 learns both labels on some output wire then it can recover the trapdoor and thus learn P1’s input. In
more detail, input recovery consists of the following steps:

1. P1 commits to its input x using some trapdoor.

2. P1 sends garbled circuits and the input-wire labels associated with x, using an input-consistency
protocol (discussed below) to enforce that consistent input-wire labels for x are used.

3. P1 and P2 run some protocol such that if P2 detects cheating by P1, then P2 gets the trapdoor without
P1 learning this fact.

4. P2 either (1) detects cheating, recovers x using the trapdoor, and outputs f(x, y), or (2) outputs the
(consistent) output of all the garbled circuits, which is f(x, y).

In Afshar et al. [AMPR14] the above is done using ElGamal commitments and efficient zero-knowledge
checks to enforce input consistency. However, this approach leads to O(ρ(n1 + n3)) public-key operations.
In contrast, our protocol achieves the same functionality with only O(ρ) public-key operations.

Our scheme works as follows. Assume for ease of presentation that P1’s input x is a single bit and the
output of the function is also a single bit. The parties run an OT protocol in which P1 inputs x and P2

inputs two random labels X0, X1, with P1 receiving Xx. Then, for each j, P1 “commits” to x by computing
Rj,x := PRFseedj (“R”) ⊕ Xx and sending an encryption of Rj,x under keyj to P2. Note that P1 cannot
“commit” to 1− x unless P1 can guess X1−x. Also, x remains hidden from P2 because P2 knows either keyj
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Notation Meaning

E cut-and-choose set
E ρ-probe matrix

GCj jth garbled circuit
Aj,i,b ith input-wire labels for P1 in GCj
Bj,i,b ith input-wire labels for P2 in GCj
Zj,i,b ith output-wire labels in GCj
Tj,i,b ith output mapping table for GCj
Rj,i,b P1’s input commitment
Cj , Dj Input recovery elements

Table 2: Notation used in our protocol.

or seedj for each j, but not both. The trapdoor to recover x is seedj for any evaluation circuit j, which (in
conjunction with keyj that P2 already has) allows P2 to recompute Xx (and hence x) .

The next step is to devise a way for P2 to recover seedj if it learns inconsistent output-wire labels in two
different evaluation circuits. We do this as follows. Let Zj,0, Zj,1 be the two output-wire labels of the jth
circuit. P1 chooses some random value ∆ and secret shares this value as ∆0,∆1 such that ∆ = ∆0 ⊕ ∆1.
Next, it encrypts each share under the appropriate output-wire label and sends these encryptions to P2.
Thus, if P2 learns Zj,0 it can recover ∆0 and if it learns Zj,1 it can recover ∆1. If it learns both output-wire
labels, it can then of course recover ∆.

P1 and P2 then run a protocol which guarantees that if P2 knows ∆ then it recovers seedj , and otherwise
it learns nothing. This is done as follows. P2 sets Ω = ∆ if it learned ∆, and sets Ω := 1 otherwise. P2 then
computes (h, g1, g2) := (gω, gr, hrΩ), for random ω and r, and sends (h, g1, g2) to P1. Then, for each index j,
party P1 then computes Cj := gsjhtj and Dj := gsj (h/∆)tj , for random sj and tj , and sends Cj along with
an encryption of seedj under Dj . Note that if Ω = ∆, then Crj = Dj and thus P2 can recover seedj , whereas
if Ω 6= ∆ then P2 learns nothing.

Of course, the protocol as described does not account for the fact that P1 can send invalid messages
or otherwise try to cheat. However, by carefully integrating appropriate correctness checks as part of the
cut-and-choose, we can guarantee that if P1 tries to cheat then P2 either aborts (due to detected cheating)
or learns P1’s input.

Input consistency. As discussed in §1.1, prior schemes enforce that P1 uses the same input x in all garbled
circuits and the input-recovery mechanism. However, we observe that this is not necessary. Intuitively, we
only need to ensure that P1 uses the same input in the input-recovery mechanism and at least one evaluated
garbled circuit. Even if P1 cheats by using different inputs in two different evaluated garbled circuits, P2 can
always obtain the correct output: if P2 learns only one output then this is the correct output; if P2 learns
multiple outputs, then the input-recovery procedure helps P2 learn the correct output.

We ensure such consistency by integrating the consistency check with cut-and-choose as follows. Recall
that in our input-recovery scheme, P1 sends to P2 “commitments” Rj,x := PRFseedj (“R”) ⊕ Xx for each
index j. After these values are sent, P2 sends X0⊕X1 to P1, allowing P1 to learn both X0 and X1. P1 then
sends a random permutation of Com(Aj,0,PRFseedj (“R”)⊕X0) and Com(Aj,1,PRFseedj (“R”)⊕X1), where
Aj,0, Aj,1 are P1’s input-wire labels to the jth garbled circuit. P1 also sends Enckeyj (Decom(Com(Aj,x, Rj,x))).
Note that (1) if P2 chooses j as a check circuit then it can check the correctness of the commitment pair,
since everything is computed from seedj , and (2) if P2 choose j as an evaluation circuit then it can recover
P1’s input-wire label Aj,x and check if the Xx received before is the same as the label decommitted.

4 Scheme

We present the full details of our protocol in Figure 3. To aid in understanding the protocol, we also present
a graphical depiction in Figure 4. We summarize some important notations in Table 2 for reference.
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Protocol Π2pc

Private inputs: P1 has input x ∈ {0, 1}n1 and P2 has input y ∈ {0, 1}n2 .

Common inputs: ρ-probe matrix E ∈ {0, 1}n2×m, where m = O(n2); circuit f : {0, 1}n1 × {0, 1}n2 → {0, 1}n3 ; and
circuit f ′ : {0, 1}n1 × {0, 1}m → {0, 1}n3 such that f ′(x, y′) = f(x,Ey′)

Protocol:

1. P1 picks random κ-bit strings {keyj , seedj}j∈[ρ], and sends them to FOT. P2 picks E ∈R {0, 1}ρ and sends E to
FOT and receives {seedj}j /∈E and {keyj}j∈E .

2. P1 computes {Bj,i,b := PRFseedj (i, b, “B”)}j∈[ρ],i∈[m],b∈{0,1} and sends {B1,i,b‖ · · · ‖Bρ,i,b}i∈[m],b∈{0,1} to FOT.

P2 chooses random y′ ∈R {0, 1}m such that y = Ey′, sends y′ to FOT, and receives {B1,i,y′[i]‖ · · · ‖Bρ,i,y′[i]}i∈[m].

3. P2 sends random labels {Xi,b}i∈[n1],b∈{0,1} to FcOT. P1 sends x to FcOT and receives {Xi,x[i]}i∈[n1]. For j ∈
[ρ], i ∈ [n1], P1 computes Rj,i,x[i] := PRFseedj (i, “R”)⊕Xi,x[i], and sends Enckeyj ({Rj,i,x[i]}i∈[n1]) to P2. P2 sends

open to FcOT, which sends {Xi,0, Xi,1}i∈[n1] to P1, and for j ∈ E uses keyj to decrypt and learn Rj,i,x[i].

4. For j ∈ [ρ], i ∈ [n1], P1 computes Rj,i,1−x[i] := Rj,i,x[i] ⊕ Xi,0 ⊕ Xi,1, {Aj,i,b := PRFseedj (i, b, “A”)}b∈{0,1} ,

{(cRj,i,b, d
R
j,i,b) ← Com(Rj,i,b, Aj,i,b)}b∈{0,1} using randomness derived from seedj , and sends {(cRj,i,0, cRj,i,1)} (in

random permuted order) and Enckeyj ({dR
j,i,x[i]

}i∈[n1]) to P2. For j ∈ E, i ∈ [n1], P2 opens cR
j,i,x[i]

to obtain Rj,i,x[i]

and Aj,i,x[i], and checks that Rj,i,x[i] equals the value from Step 3. If any decommitment is invalid or any check
fails, P2 aborts.

5. P1 picks random κ-bit labels ∆, {∆i,0}i∈[n3], sets {∆i,1 := ∆i,0 ⊕ ∆}i∈[n3], and sends {H(∆i,b)}i∈[n3],b∈{0,1}
to P2. For j ∈ [ρ], P1 computes garbled circuit GCj for function f ′ using Aj,i,b, Bj,i,b as the input-wire labels
and randomness derived from seedj for internal wire labels. Let Zj,i,b denote the output-wire labels. P1 computes

{Tj,i,b := EncZj,i,b
(∆i,b)}i∈[n3],b∈{0,1} and (cTj , d

T
j )← Com({Tj,i,b}i∈[n3],b∈{0,1} ) using randomness derived from

seedj , and sends GCj , cTj , and Enckeyj (dTj ) to P2.

6. For j ∈ E, P2 decrypts to learn dTj and opens cTj to learn {Tj,i,b}i∈[n3],b∈{0,1} ; if any decommitment is invalid, P2

aborts. P2 evaluates GCj using labels {Aj,i,x[i]}i∈[n1] and {Bj,i,y′[i]}i∈[m], and obtains output-wire label Zj,i. P2

checks the validity of these labels by checking if H(DecZj,i
(Tj,i,b)) matches H(∆i,b) for some b ∈ {0, 1}, and if so

sets z′j [i] = b; else it sets z′j [i] =⊥.

• Invalid Circuits. If, for every j ∈ E, there is some i with z′j [i] =⊥, then P2 sets Ω := 1, z := ⊥.

• Inconsistent Output Labels. Else if, for some i ∈ [n3], j1, j2 ∈ E, P2 obtains z′j1 [i] = 0 and z′j2 [i] = 1, then P2

sets Ω := DecZj1,i
(Tj1,i,0)⊕ DecZj2,i

(Tj2,i,1). If different Ωs are obtained, P2 sets z := ⊥.

• Consistent Output Labels. Else, for all i, set z[i] = z′j [i] for the first index j such that z′j [i] 6=⊥, and set
Ω := 1.

7. P2 picks ω, r ∈R Fq , and sends (h, g1, h1) := (gω , gr, hrΩ) to P1. P1 sends ∆ and {∆i,b}i∈[n3],b∈{0,1} to P2, who
checks that {∆ = ∆i,0 ⊕ ∆i,1}i∈[n3] and that H(∆i,b) matches the values P1 sent in Step 5; if any check fails,

P2 aborts. For j ∈ [ρ], P1 picks sj , tj ∈R Fq using randomness derived from seedj , computes Cj := gsjhtj , Dj :=

g
sj
1

(
h1
∆

)tj
, and sends Cj and EncDj

(seedj) to P2. For j ∈ E, P2 uses Crj to decrypt and obtains some seed′j .

8. If Ω 6= 1, P2 recovers x as follows: For j ∈ E, i ∈ [n1], if Rj,i,x[i] = PRFseed′j
(i, “R”) ⊕ Xi,0, P2 sets xj [i] := 0; if

Rj,i,x[i] = PRFseed′j
(i, “R”)⊕Xi,1, P2 sets xj [i] := 1; and otherwise, P2 sets xj [i] := ⊥. If no valid xj is obtained,

or more than two different xj are obtained, P2 sets z := ⊥; otherwise P2 sets z := f(xj , y).

9. If any of the following checks fail for any j /∈ E, P2 aborts; otherwise P2 outputs z.

(a) For i ∈ [m], the Bj,i,y′[i] value received in Step 2 equals PRFseedj (i, y′[i], “B”).

(b) GCj is computed correctly using Aj,i,b := PRFseedj (i, b, “A”) and Bj,i,b := PRFseedj (i, b, “B”) as input-wire
labels and randomness derived from seedj .

(c) Compute Tj,i,b using Zj,i,b from GCj and ∆i,b sent by P1, and check that cTj is computed correctly with
randomness derived from seedj .

(d) The Cj ,EncDj
(seedj) values in Step 7 are correctly computed, using ∆ and seedj .

(e) For i ∈ [n1], b ∈ {0, 1}, cRj,i,b is correctly computed using seedj , Aj,i,b, and Rj,i,b, which are also computed

from seedj .

Figure 3: The full description of our malicious 2PC protocol.
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Common Input: E ∈ {0, 1}n2×mP1 : x ∈ {0, 1}n1 P2 : y ∈ {0, 1}n2

FOT

{seedj , keyj}j∈[ρ] E

{seedj}j /∈E , {keyj}j∈E

E ∈R {0, 1}ρkeyj , seedj ∈R {0, 1}
κ

FOT

{B1,i,b‖ · · · ‖Bρ,i,b}i∈[m] y′ s.t. y = Ey′

{B1,i,y′[i]‖ · · · ‖Bρ,i,y′[i]}i∈[m]

Bj,i,b := PRFseedj (i, b, “B”)

FcOT
x {Xi,b}i∈[n1]

{Xi,x[i]}i∈[n1]

Xi,b ∈R {0, 1}κ

{Enckeyj ({Rj,i,x[i]}i∈[n1])}j∈[ρ]
Rj,i,x[i] := PRFseedj (i, “R”)⊕Xi,x[i]

FcOT

{Xi,0, Xi,1}i∈[n1] open

{cRj,i,0, cRj,i,1}j∈[ρ],i∈[n1](randomly permuted)

{Enckeyj ({dj,i,x[i]}i∈[n1])}j∈[ρ]
Rj,i,1−x[i] := Rj,i,x[i] ⊕Xi,0 ⊕Xi,1

Aj,i,b := PRFseedj (i, b, “A”)

(cRj,i,b, d
R
j,i,b)← Com(Rj,i,b, Aj,i,b)

Use {dRj,i,b}j∈E to obtain {Rj,i,x[i], Aj,i,x[i]}j∈E
Check Rj,i,x[i] same as received

{GCj , cTj ,Enckeyj (dTj )}j∈[ρ]Tj,i,b := EncZj,i,b
(∆i,b)

(cTj , d
T
j )← Com({Tj,i,b}i∈[n3],b∈{0,1} )

{GCj , Aj,i,x[i], Bj,i,y′[i]}
Eval−−−→ Zj,i,z[i]

{Zj,i,z[i], Tj,i,z[i]}
V alidate−−−−−−→ z or Ω := ∆

Details in Step 6

h, g1, h1
(h, g1, h1) := (gω , gr, hrΩ)

∆, {∆i,b}i∈[n3],b∈{0,1}
{Cj ,EncDj

(seedj)}j∈[ρ]Cj := gsjhtj

Dj := g
sj
1

(
h1
∆

)tj Check ∆ = ∆i,0 ⊕∆i,1

seed′j := DecCr
j

(EncDj
(seedj))

Other computation in Steps 7–9

Figure 4: Graphical depiction of Π2pc.

Our protocol, including the optimizations detailed in §5, requires O(ρ(n1 + n2 + n3 + |C|)) symmetric
operations and O(ρ) group element operations. Furthermore, most of the symmetric operations, including
circuit garbling and computing the PRFs, can be accelerated using hardware AES.

Theorem 4.1. Let (Com,Open) be a computational hiding and binding commitment scheme, let the gar-
bling scheme satisfy authenticity, privacy, and obliviousness, let H be a one-way, collision-resistant hash
function, and assume the decisional Diffie-Hellman assumption holds. Then the protocol in Figure 3 securely
computes f in the (FOT,FcOT)-hybrid model with security 2−ρ + neg(κ).

Proof. We consider separately the case where P1 or P2 is malicious.

Malicious P1. Our proof is based on the fact that with all but negligible probability, P2 either aborts or
learns the output f(x, y), where x is the input P1 sent to FcOT in Step 3, and y is P2’s input. Given this,
the simulator essentially acts as an honest P2 using y = 0, extracts P1’s input x from the call to FcOT, and
outputs f(x, y) if no party aborts.
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We now proceed to the formal details. Let A be an adversary corrupting P1; we construct a simulator S
interacting with an ideal functionality F evaluating f , defined as follows.

1–2 S acts as an honest P2, using input y := 0.

3 S acts as an honest P2, and obtains the input x that A sends to FcOT. It sends x to F .

4–6 S acts as an honest P2, where if P2 would abort then S sends abort to F and halts, outputting whatever
A outputs.

7–8 S acts as an honest P2 using Ω := 1, where if P2 would abort then S sends abort to F and halts,
outputting whatever A outputs.

9 S acts as an honest P2, except that after the check in Step 9a, S also checks if {Bj,i,b}j /∈E,i∈[m],b∈{0,1} are
correctly computed and aborts if, for at least ρ different i ∈ [m], {Bj,i,b}j /∈E,b∈{0,1} contains incorrect
values. If P2 would abort then S sends abort to F and halts, outputting whatever A outputs; otherwise,
S sends continue to F .

We now show that the views in the hybrid and ideal worlds are indistinguishable.

H1. Same as the hybrid-world protocol, where S plays the role of an honest P2 using the actual input y.

H2. Same as H1, except that S extracts the input x that A sends to FcOT, uses y := 0 throughout the
protocol, except as explained below, and sends x to F if no party aborts. S also performs the additional
checks as described above in Step 9 of the simulator. Moreover, S sets the value of Ω to what it would
obtain if it was using its actual input y (rather than what it would obtain using y := 0).

There are two cases on how A would cheat here, and we address each in turn. For simplicity, we denote
I ⊂ [m] as the set of indices used in the selective failure attack, that is I is the set of indices i such
such that Bj,i,b is not honestly computed.

1. A launches a selective-failure attack with |I| < ρ. Lemma 4.4 ensures that in H1 S either aborts

or learns f(x, y) with probability at least 1 − 2−ρ. In H2, S either aborts or learns f(x, y) with
probability 1. Further, since less than ρ wires are corrupted, the probability of abort due to the
selective-failure attack is exactly the same in both hybrids. Therefore the distribution between
H1 and H2 is different by at most 2−ρ.

2. A launches a selective-failure attack with |I| ≥ ρ. By the security of the ρ-probe matrix [LR15],

S aborts in H1 with probability at least 1− 2−ρ. If A cheats elsewhere, the probability of abort
would be even higher than 1− 2−ρ.

In H2, S aborts with probability 1, therefore there is at most 2−ρ difference between H1 and H2.

Thus, in any case the H1 and H2 can be distinguished by at most 2−ρ probability.

H3. Same as H2, except S always sets Ω := 1 in Step 7.

In H3, P2 sends (h, g1, h1) := (gω, gr, gωr), which is indistinguishable from (gω, gr, gωrΩ) by the deci-
sional Diffie-Hellman problem. Thus, the views in H2 and H3 are computationally indistinguishable.

As H3 is the same as the ideal world protocol, the proof is complete.

Malicious P2. Here, we need to simulate the correct output f(x, y) towards P2. Rather than simulate the
actual garbled circuit, as is done in most prior work, we modify the output mapping tables {Tj,i,b} to encode
the correct output. At a high level, the simulator acts as an honest P1 with x = 0, which lets P2 learn f(0, y)
when evaluating the garbled circuits. The simulator then “tweaks” the output mapping tables {Tj,i,b} such
that if the ith bit of f(0, y) and f(x, y) are different then P2 learns the opposite value.

We now proceed to the formal details. Suppose there exists an adversary A corrupting P2; we construct
a simulator S as follows.
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1 S acts as an honest P1 and obtains the set E that A sends to FOT.

2 S acts as an honest P1, and obtains the input y′ that A sends to FOT. S computes y from y′, sends
(input, y) to F, which sends back z := f(x, y) to S.

3–4 S acts as an honest P1 with input x := 0. If A send abort to FcOT, S aborts, outputting whatever A
outputs.

5 S acts as an honest P1, except as follows. S computes z′ := f(0, y) and for j ∈ E , i ∈ [n3], and
b ∈ {0, 1}, sets Tj,i,b := EncZj,i,b

(∆1−b) if z[i] 6= z′[i].

6–7 S acts as an honest P1.

We now show that the views in the hybrid and ideal worlds are indistinguishable.

H1. Same as the hybrid-world protocol, where S plays the role of an honest P1.

H2. Same as H1, except as follows. S extracts P2’s input y from FOT and sends (input, y) to F, receiving
back z. S uses x := 0 throughout the simulation and modifies the “tweaks” {Tj,i,b} as is done by the
simulator using knowledge of z.

The view between H1 and H2 are the same expect that in H1, P2 gets Zj,i,z[i] and Tj,i,z[i] :=
EncZj,i,z[i]

(∆i,z[i]), while in H2, if z[i] 6= z′[i], P2 gets Zj,i,1−z[i] and Tj,i,1−z[i] := EncZj,i,1−z[i]
(∆i,z[i])

instead. In both hybrids, P2 cannot learn the other output label due to authenticity of the garbled
circuit.

By the obliviousness property of the garbling scheme, Zj,i,0 and Zj,i,1 are indistinguishable. Likewise,
by the security of the encryption scheme the values Tj,i,0 and Tj,i,1 are indistinguishable.

As H2 is the same as the ideal world protocol, the proof is complete.

4.1 Additional Lemmas

We now build a series of lemmas towards proving Lemma 4.4, which we use above to prove security for a
malicious P1. We begin with a definition of what it means for an index j ∈ [ρ] to be “good”.

Definition 4.1. Consider an adversary A corrupting P1, and denote {seedj} as the labels A sent to FOT.
An index j ∈ [ρ] is good if and only if all of the following hold.

1. The Bj,i,y′[i] values A sent to FOT in Step 2 are computed honestly using seedj.

2. The commitments {cRj,i,b}i∈[n1],b∈{0,1} that A sent to P2 in Step 4 are computed honestly using seedj.

3. GCj is computed honestly using {Aj,i,b} and {Bj,i,b} as the input-wire labels and seedj.

4. The values Cj and EncDj
(seedj) are computed honestly using seedj and the ∆ value sent by A in Step 7.

5. The commitment cTj is computed honestly using ∆i,b and seedj.

It is easy to see the following.

Fact 4.1. If an index j ∈ [ρ] is not a good index then it cannot pass all the checks in Step 9.

Our first Lemma shows that P2 is able to recover the correct output-wire labels for a good index.

Lemma 4.1. Consider an adversary A corrupting P1, and denote x as the input A sent to FcOT. If an
index j ∈ E is a good index and P2 does not abort, then P2 learns output labels Zj,i,z[i], where z = f(x, y),
with all but negligible probability.
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Proof. Since j is good, we know that P2 receives an honestly computed GCj and Tj,i,b from A and honest
Bj,i,y′[i] from FOT. However, it is still possible that P2 does not receive correct input labels for P1’s input
that corresponds to the input x that A sent to FcOT. We will show that this can only happen with negligible
probability.

Note that if j is good, then the commitments {cRj,i,b} are computed correctly. Since P2 obtains the Aj,i,x[i]

labels by decommitting one of these commitments, the labels P2 gets are valid input-wire labels, although
they may not be consistent with the input x that A sent to FcOT.

Assume that for some i ∈ [n1], P2 receives Aj,i,1−x[i]. This means P2 also receives Rj,i,1−x[i] from the
same decommitment, since cj,i,b is computed honestly. However, if P2 does not abort, then we know that P2

receives the same label Rj,i,1−x[i] in Step 3 since the checks pass. We also know that

Rj,i,1−x[i] = PRFseedj (i, “R”)⊕Xi,1−x[i].

Therefore A needs to guess Xi,1−x[i] correctly before P2 sends both labels, which happens with probability
at most 2−κ.

Our next lemma shows that P2 can recover x if P1 tries to cheat on a good index.

Lemma 4.2. Consider an adversary A corrupting P1, and denote x as the input A sent to FcOT. If an
index j ∈ E is a good index, and P2 learns Ω = ∆, then P2 can recover xj = x in Step 8 if no party aborts.

Proof. Since j is a good index, we know that Cj and EncDj
(seedj) are constructed correctly, where seedj is

the one P1 sent to FOT in Step 1. Therefore, P2 can recompute seedj from them. We just need to show that
P2 is able to recover x from a good index using seedj .

Using a similar argument as the previous proof, we can show that the label Rj,i,x[i] that P2 learns in Step 4
is a correctly computed label using x that P1 sent to FcOT in Step 3: Since j is good, the cRj,i,b values are
all good, which means that the Rj,i,x[i] labels P2 learns are valid. However, P1 cannot “flip” the wire label
unless P1 guesses a random label correctly, which happens with negligible probability.

In conclusion, P2 has the correct Rj,i,x[i] = PRFseedj (i, “R”)⊕Xi,x[i] and the seedj used in the computa-
tion. Further P2 has Xi,0, Xi,1. Therefore P2 can recover x that P1 sent to FcOT if P2 has Ω = ∆.

Note that given the above lemma, it may still be possible that a malicious P1 acts in such a way that
P2 recovers different x’s from different indices. In the following we show this only happens with negligible
probability.

Lemma 4.3. Consider an adversary A corrupting P1 and denote x as the input P1 sends to FcOT in Step 3.
If P2 does not abort, then P2 recovers some x′ 6= x with at most negligible probability.

Proof. We do a proof by contradiction and start by assuming that P2 does not abort while P2 recovers some
x′ 6= x for some j ∈ E . Let i be an index at which x′[i] 6= x[i].

Since P2 does not abort at Step 4, we can denote Rj,i,x[i] as the label P1 learns in Step 3, which also
equals the one decommitted to in Step 4. P2 recovering some x′ means that

Rj,i,x[i] = PRFseed′j
(i, “R”)⊕Xi,x′[i],

where seed′j is the seed P2 recovers in Step 7. Therefore we conclude that

PRFseed′j
(i, “R”) = Rj,i,x[i] ⊕Xi,x′[i]

= Rj,i,x[i] ⊕Xi,1−x[i].

Although A receives Xi,x[i] in Step 3, Xi,1−x[i] remains completely random before A sends Rj,i,x[i]. Further,
A receives Xi,b only after sending Rj,i,x[i]. Therefore, the value of Rj,i,x[i] ⊕Xi,1−x[i] is completely random
to A. If A wants to “flip” a bit in x, A needs to find some seed′j such that {PRFseed′j

(i, “R”)}i∈[n1] equals a
randomly chosen string, which is information theoretically infeasible if n1 > 1.
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Finally, the last lemma shows that P2 either aborts or learns f(x, y), regardless of P1’s behavior.

Lemma 4.4. Consider an adversary A corrupting P1 and denote x as the input P1 sends to FcOT in Step 3.
With probability at least 1− (2−ρ + ε(κ)), P2 either aborts or learns f(x, y) for some negligible function ε(·).

Proof. Denote the set of P1’s good circuits as E ′ and consider the following three cases:

• Ē ∩ Ē ′ 6= ∅. In this case P2 aborts because P2 checks some j /∈ E ′ which is not a good index.

• E ∩ E ′ 6= ∅. In this case, there is some j ∈ E ∩ E ′, which means P2 learns z := f(x, y) and Zj,i,z[i] from
the jth garbled circuit (by Lemma 4.1). However, it is still possible that P2 learns more than one valid
z. If this is the case, P2 learns ∆. Lemma 4.2 ensures that P2 obtains x; Lemma 4.3 ensures that P2

cannot recover any other valid x′ even from bad indices.

• E = E ′. This only happens when A guesses E correctly, which happens with at most 2−ρ probability.

This completes the proof.

5 Optimizations

We now discuss several protocol optimizations we discovered in the course of implementing our protocol,
some of which may be applicable to other malicious 2PC implementations.

5.1 Optimizing the XOR-tree

We noticed that when using a ρ-probe matrix to reduce the number of OTs needed for the XOR-tree,
we incurred a large performance hit when P2’s input was large. In particular, processing the XOR gates
introduced by the XOR-tree, which are always assumed to be free due to the free-XOR technique [KS08],
takes a significant amount of time. The naive XOR-tree [LP07] requires ρn OTs and ρn XOR gates; on the
other hand, using a ρ-probe matrix of dimension n × cn, with c � ρ, requires cn OTs but cn2 XOR gates.
We observe that this quadratic blowup becomes prohibitive as P2’s input size increases: for a 4096-bit input,
it takes more than 3 seconds to compute just the XORs in the ρ-probe matrix of Lindell and Riva [LR15]
across all circuits. Further, it also introduces a large memory usage: it takes gigabytes of memory just to
store the matrix for 65,536-bit inputs.

In the following we introduce two new techniques to both asymptotically reduce the number of XOR
gates required and the hidden constant factor in the ρ-probe matrix.

A general transformation to a sparse matrix. We first reduce the number of XORs needed. Assuming
a ρ-probe matrix with dimensions n × cn, we need cρn2 XOR gates to process the ρ-probe matrices across
all ρ circuits. Our idea to avoid this quadratic growth in n is to break P2’s input into small chunks, each of
size k. When computing the random input y′, or recovering y in the garbled circuits, we process each chunk
individually. By doing so, we reduce the complexity to ρ · nk c(k)2 = ckρn. By choosing k = 2ρ, this equates
to a 51× decrease in computation even for just 4096-bit inputs. This also eliminates the memory issue, since
we only need a very small matrix for any input size.

A better ρ-probe matrix. After applying the above technique, our problem is reduced to finding an
efficient ρ-probe matrix for k-bit inputs for some small k, while maintaining a small blowup c. We show
that a combination of the previous solutions [LP07, LR15] with a new tighter analysis results in a better

solution, especially for small k. Our solution can be written as A = [M‖Ik], where M ∈ {0, 1}k×(c−1)k
is a

random matrix and Ik as an identity matrix of dimension k. The use of Ik makes it easy to find a random
y′ such that y = Ay′ for any y, and ensures that A is full rank [LR15]. However, we show that it also helps
to reduce c. The key idea is that the XOR of any i rows of A has Hamming weight at least i, contributed
by Ik, so we do not need as much Hamming weight from the random matrix as the prior work [LP07].
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k 40 65 80 103 143 229 520

LP07 [LP07] 6.66 4.1 4 4 4 4 4
sS13 [sS13] 7.95 5.2 4.5 4.1 3.2 2.4 1.6

This work 5.675 4 3.5 3 2.5 2 1.5

Table 3: Choices for c for ρ-probe matrix for ρ = 40, where k is the chunk size after applying the sparse
matrix transformation.

In more detail, for each S ⊆ [k], denote MS :=
⊕

i∈SMi and use random variable XS to denote the
number of ones in MS . In order to make A a ρ-probe matrix, we need to ensure that XS + |S| ≥ ρ for any
S ⊆ [k], because XORing any |S| rows from Ik gives us a Hamming weight of |S|.

Note that XS is a random variable following a binomial distribution Bin(ck − k, 1
2 ). Therefore, we can

compute the probability that A is not a ρ-probe matrix as follows:

Pr[A is bad] = Pr

 ⋃
S⊆[k]

XS < ρ− |S|


≤
∑
S⊆[k]

Pr[XS < ρ− |S|]

=
∑
S⊆[k]

cdf(ρ− |S| − 1) =

k∑
i=1

(
k

i

)
cdf(ρ− i− 1),

where cdf() is the cumulative distribution function for Bin(ck − k, 1
2 ). Now, for each k we can find the

smallest c numerically such that Pr[A is bad] ≤ 2−ρ. We include some results in Table 3, and can see that
our new probe matrix has smaller c than prior work [LP07, sS13]. Note that number of XOR to perform is
cρkn and number of OT needed is cn. Therefore we need to have a trade off between them, since a smaller
c requires a larger k. In our implementation we use k = 232 and c = 2 to achieve the maximum overall
efficiency.

Performance results. See Figure 5 for a comparison between our approach and the best previous
scheme [sS13]. When the input is large, the cost of computing the ρ-probe matrix over all circuits dominates
the overall cost. As we can see, our design is about 10× better for just 1,024-bit inputs and can be 1000×
better for 65,536-bit inputs. We are not able to compare beyond this point, because just storing the ρ-probe
matrix for 262,144 bits takes at least 8.59 GB of memory for the prior work.

5.2 Other Optimizations

Oblivious transfer with hardware acceleration. As observed by Asharov et al. [ALSZ13], matrix trans-
position takes a significant amount of the time during the execution of OT extension. Rather than adopting
their solution using cache-friendly matrix transposition, we found that a better speedup can be obtained by
using matrix transposition routines based on Streaming SIMD Extensions (SSE) instructions [mis]. The use
of SSE-based matrix transposition in the OT extension protocol is also independently studied in a concurrent
work by Keller et al. [KOS16] in multi-party setting.

Given a 128-bit vector of the form a[0], . . . , a[15] where each a[i] is an 8-bit number, the instruction
mm movemask epi8 returns the concatenation of the highest bits from all a[i]s. This makes it possible

to transpose a matrix of dimension 8 × 16 very efficiently in 15 instructions (8 instructions to “assemble
the matrix” and 7 instructions to shift the vector left by one bit). By composing such an approach, we
achieve very efficient matrix transposition, which leads to highly efficient OT extension protocols; see §6.1
for performance results.

Reducing OT cost. Although our protocol requires three instantiations of OT, we only need to construct
the base OTs once. The OTs in Steps 1 and 2 can be done together, and further, by applying the observation

13



128 1024 8192 65536
Number of Bits in P2 's input

101

102

103

104

105

106

R
un

in
g 
Ti
m
e 
(m

ill
is
ec
on

ds
)

OT Cost in Our Construction
ρ-probe Matrix Cost in Our Construction
OT Cost in sS13
ρ-probe Matrix Cost in sS13

Figure 5: Comparing the cost of our ρ-probe matrix design with the prior best scheme [sS13]. When used in
a malicious 2PC protocol, computing the ρ-probe matrix needs to be done ρ times, and OT extension needs
to process a cn-bit input because of the blowup of the input caused by the ρ-probe matrix.

n1 n2 n3 |C| localhost LAN WAN

SE Offline Online SE Offline Online SE Offline Online

ADD 32 32 33 127 29 60 6 (0.2) 39 27 12 (0.2) 1060 474 697 (0.2)
AES 128 128 128 6,800 50 82 14 (2) 65 62 21 (3) 1513 867 736 (2)
SHA1 256 256 160 37,300 136 156 48 (32) 200 206 52 (27) 3439 2705 820 (20)

SHA256 256 256 256 90,825 277 356 85 (144) 438 497 92 (128) 6716 5990 856 (99)

Table 4: Performance of common functions over various networks. SE stands for “single execution”. All
numbers are in milliseconds. Offline time includes disk I/O. For online time, disk I/O is shown separately
in the parentheses.

by Asharov et al. [ALSZ13] that the “extension phase” can be iterated, we can perform more random OTs
along with the OTs for Steps 1 and 2 to be used in the OTs of Step 3.

Pipelining. Pipelining garbled circuits was first introduced by Huang et al. [HEKM11] to reduce memory
usage and hence improve efficiency. We adopt a similar idea for our protocol. While as written we have P2

conduct most of the correctness checks at the end of the protocol, we note that P2 can do most of the checks
much earlier. In our implementation, we “synchronize” P1 and P2’s computation such that P2’s checking is
pipelined with P1’s computation. Pipelining also enables us to evaluate virtually any sized circuit (as long
as the width of the circuit is not too large). As shown in §6.4, we are able to evaluate a 4.3 billion-gate
circuit without any memory issue, something that offline/online protocols [LR15] cannot do without using
lots of memory or disk I/O.

Pushing computation offline. One desired property for secure computation protocols is the ability of
pre-compute before knowing the inputs. Our protocol can be modified such that all garbled circuits and
most of the group element operations are done in an offline stage as follows:

1. In addition to base OT, most of the remaining public key operations can also be done offline. P2 can
send (h, g1) := (gω, gr) before knowing the input to P1, who can compute the Cj values and half of the
Dj values. During the online phase, P1 and P2 only need to do ρ exponentiations.

2. All garbled circuits can be computed and sent in an offline stage, with all check circuits checked. P2

can also decommit cTj to learn the output translation tables for the evaluation circuits.
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Building block localhost LAN WAN

ρ-probe matrix for 215-bit input 5.8 ms — —
Garble 104 AES circuits 3.42 s — —

Garble and send 104 AES circuits 4.83 s 7.53 s 87.4s
210 malicious base OTs 113 ms 133 ms 249 ms

8 mil semi-honest OT extension 1.52 s 2.56 s 18.1 s
8 mil malicious OT extension 4.99 s 5.64 s 25.6s
10 mil malicious OT extension 6.20 s 7.02 s 31.5 s

Table 5: Performance of our building blocks. The first row gives the running time of P2 recovering its input
when using a ρ-probe matrix. The second row gives the running time of garbling, and the third row gives
the running time when both garbling and sending. The remaining rows give the performance of OT and
both semi-honest and malicious OT extension.

Our Protocol LR15 [LR15] AMPR [AMPR14]

ADD 39 1034 —
AES 65 1442 5860

SHA1 200 2007 —
SHA256 438 2621 7580

Table 6: Single execution performance. All numbers are in milliseconds. Numbers for LR15 [LR15] were
obtained by tuning their implementation to work for single execution, using the same hardware as our results.
Numbers for AMPR [AMPR14] were for single execution, not including any I/O time, and taken from their
paper.

6 Implementation and Evaluation

We implemented the protocol in C++, using RELIC [AG] for group element operations, libssl for instan-
tiating the hash function, and libgarble [Mal] for garbling. We adopted most of the recent advances in
the field [BHKR13, ZRE15, ALSZ15, CO15, LR15] as well as various optimizations introduced in §5. The
implementation is open sourced at EMP-toolkit4.

We instantiate the commitment scheme as (SHA-1(x, r), r) ← Com(x). When x is random and has
enough entropy we use the hash of x as both the commitment and decommitment.

Evaluation setup. All evaluations were performed with a single-threaded program with computational
security parameter κ = 128 and statistical security parameter ρ = 40. We evaluated our system over three
different network settings:

1. localhost. Experiments were run over the same machine using the loopback network interface.

2. LAN. Experiments were run over two c4.2xlarge Amazon EC2 instances with 2.32 Gbps bandwidth
measured by iperf and less than 1 ms latency measured by ping.

3. WAN. Experiments were run over two c4.2xlarge Amazon EC2 instances with 200 Mbps bandwidth
and 75 ms latency.

All numbers are average results of 10 runs. We observed very small variance between multiple executions
which we believe is due to Amazon EC2 instances having dedicated bandwidth.

6.1 Subprotocol Performance

Because of the various optimizations mentioned in §5, as well as a carefully engineered implementation, many
parts of our system perform better than previously reported implementations. We summarized these results

4https://github.com/emp-toolkit
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Figure 6: The performance of our protocol while modifying the input lengths, output length and the circuit
size. Numbers in the figure show the slope of the lines, namely the cost to process an additional bit or gate.

Example n1 n2 n3 |C| Running Projected Total Non-GC
Time Time Comm. Comm.

16384-bit cmp 16,384 16,384 1 16,383 0.67 s 0.72 s 128 MB 84%
128-bit sum 128 128 128 127 0.04 s 0.03 s 1.8 MB 91%
256-bit sum 256 256 256 255 0.05 s 0.04 s 3.4 MB 90%
1024-bit sum 1024 1,024 1,024 1,023 0.08 s 0.09 s 11.2 MB 88%
128-bit mult 128 128 128 16,257 0.13 s 0.1 s 22.4 MB 7%
256-bit mult 256 256 256 65,281 0.4 s 0.37 s 86.6 MB 3%

Sort 1024 32-bit ints 32,768 32,768 32,768 1,802,240 9.43 s 9.8 s 2.6 GB 11.5%
Sort 4096 32-bit ints 131,072 131,072 131,072 10,223,616 53.7 s 52.7 s 14.2 GB 7.7%
1024-bit modular exp 1,024 1,024 1,024 4,305,443,839 5.3 h 5.26 h 5.5 TB 0.0002%

Table 7: Performance of our implementation on additional examples. Running Time reports the performance
of our single execution over LAN; Projected Time is calculated using the formula in §6.3; Total Comm. is
the total communication as measured by our implementation; and Non-GC Comm. is the percentage of
communication not used for garbled circuits.

in Table 5.
The libgarble library is able to garble about 20 million AND gates per second. When both garbling and

sending through localhost, this reduces to 14 million AND gates per second due to the overhead of sending
all the data through the loopback interface. Over LAN the speed is roughly 9.03 million gates per second,
reaching the theoretical upper bound of 2.32 · 109/256 = 9.06 · 106 gates per second.

For oblivious transfer, Asharov et al. [ALSZ15] report a running time of 11.9 seconds to compute around
8 million random OTs, whereas our implementation requires only around 5.64 seconds for standard OTs on
128-bit inputs. Keller et al. [KOS15] present a more efficient OT extension protocol, achieving 10 million
OTs in around 9.5 seconds; even though we implement the scheme of Asharov et al., our performance is still
better than that reported by Keller et al. Our semi-honest OT extension also reports the best number we
are aware of: Asharov et al. [ALSZ13] report 11.4 seconds for 8 million OTs over a Gigabit LAN, about 4
times slower than the running time of our semi-honest implementation.

6.2 General Performance

We now discuss the overall performance of our protocol. Table 4 presents the running time of our protocol on
several standard 2PC benchmark circuits for various network settings. For each network condition, we report
a single execution running time, which includes all computation for one 2PC invocation, and an offline/online
running time. In order to be comparable with Lindell and Riva [LR15], the offline time includes disk I/O and
the online time does not; the time to preload all garbled circuits before the online stage starts is reported
separately in parentheses.

Comparing single execution implementations. In Table 6, we compare the performance of our protocol
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Our Protocol LR15 (1024 executions)

Offline Online Total Offline Online Amortized

ADD 27 12 (0.2) 89,492 5 (2.7) 92
AES 62 21 (3) 132,276 9 (5) 138

SHA1 206 52 (27) 226,570 20 (11) 241
SHA256 497 92 (128) 338,927 44 (22) 374

Table 8: Offline/online performance. All numbers are in milliseconds. Numbers for LR15 [LR15] are obtained
by running their implementation on c4.8xlarge instances over LAN using a single thread. Online denote
the running time of a single execution, and Amortized denotes the combined offline and online running time
of a single execution. The disk I/O time is given in parentheses, and is not included in the total online time.

localhost LAN WAN

Time per P1’s input bit 9.8 16 191.4
Time per P2’s input bit 16.4 22.5 146.9

Time per output bit 13.3 20.3 131.1
Time per AND gate 1.7 4.4 63.1

Table 9: Scalability of our protocol. All numbers are in microseconds per bit or microseconds per gate.

with the existing state-of-the-art implementations. The most efficient implementation for single execution
of malicious 2PC without massive parallelization or GPUs we are aware of is by Afshar et al. [AMPR14].
They reported 5860 ms of computation time for AES and 7580 ms for SHA256, with disk and network I/O
excluded, whereas we achieve 65 ms and 438 ms, respectively, with all I/O included. Thus our result is 17×
to 90× better than their result, although ours includes network cost while theirs does not.

We also evaluated the performance of the implementation by Lindell and Riva [LR15] using the same
hardware with one thread and parameters tuned for single execution, i.e., 40 main circuits and 132 circuits
for input recovery. Their implementation is about 3× to 4× better than Afshar et al., but still 6× to 26×
slower than our LAN results.

Comparing offline/online implementations. Although our protocol is not designed for an offline/online
setting, it is possible to perform a pre-computation stage as described in §5.2. We compare such a protocol
with the best-known offline/online implementation [LR15]. The detailed comparison can be found in Table 8.
Note that the numbers for the comparison work were obtained by running their protocol using c4.8xlarge

instances with a single thread and much higher bandwidth, due to their protocol requiring a significant
amount of memory. Our online time is about twice as slow as the prior work, mainly due to the need to
evaluate 20 garbled circuits whereas the prior work only needs to evaluate 4 circuits. However, our protocol
does not require an expensive offline phase, which means we have a much smaller latency. Furthermore, even
amortized over 1024 executions, the amortized cost per 2PC invocation (i.e., the combined offline/online
cost) is worse than ours for AES. That said, we view it as an interesting direction to modify our protocol to
support amortization.

6.3 Scalability

In order to understand the cost of each component of our construction, we investigated the scalability as one
modifies the input lengths, output length, and circuit size. We set input and output lengths to 128 bits and
circuit size as 16,384 AND gates and increase each the variables separately. In Figure 6, we show how the
performance is related to these parameters.

Not surprisingly, the cost increases linearly for each parameter. We can thus provide a realistic estimate
of the running time (in µs) of a given circuit of size |C| with input lengths n1 and n2 and output length n3

through the following formula (which is specific to the LAN setting):

T = 16n1 + 22.5n2 + 20.3n3 + 4.4|C|+ 23, 000.
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The coefficients for other network settings can be found in Table 9, with the some constant cost of the base
OTs.

6.4 More Examples

Finally, in Table 7 we report the performance of our implementation in the LAN setting on several additional
examples. We also show the projected time calculated based on the formula in the previous section. We
observe that over different combinations of input, output and circuit sizes, the projected time calculated
using the formula mentioned previously matches closely to the real results we get.

We further report the total communication and the percentage of the communication not spent on garbled
circuits. We can see the percentage stays low except when the circuit is linear to the input lengths.

Acknowledgments

Work of Alex J. Malozemoff conducted in part with Government support through the National Defense
Science and Engineering Graduate (NDSEG) Fellowship, 32 CFG 168a, awarded by DoD, Air Force Office of
Scientific Research. Work of Xiao Wang and Jonathan Katz was supported in part by NSF awards #1111599
and #1563722.

References
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