
K T : fast hashing based on K -p

Guido Bertoni1, Joan Daemen1,2, Michaël Peeters1, Gilles Van Assche1, and
Ronny Van Keer1

1 STMicroelectronics
2 Radboud University

Abstract. Wepropose a fast and secure arbitrary output-length hash function aiming at a higher
speed than the FIPS 202’s SHA-3 and SHAKE functions,while retaining their flexibility and basis
of security. Furthermore, it can exploit a high degree of parallelism, whether using multiple
cores or the single-instruction multiple-data (SIMD) instruction set of modern processors. On
Intel’s® Haswell and Skylake architectures, K T tops at less than 1.5 cycles/byte
for longmessages on a single core. Short messages also benefit from about a factor two speed-up
compared to the fastest FIPS 202 instance SHAKE128.

1 Introduction

Symmetric cryptography involves careful trade-offs between performance and security.
The performance of a cryptographic primitive can be objectively measured, although it
can yield a wide spectrum of figures depending on the variety of hardware and so ware
platforms that the users may be interested in. Out of these, performance on widespread
processors is easily measurable and naturally becomes the most visible feature. Security
on the other hand cannot be measured. The best one can do is to obtain security assurance
by relying on public scrutiny by skilled cryptanalysts. This is a scarce resource and the
gaining of insight requires time and reflection. With the growing emphasis on provable
security reduction of modes, the fact that the security of the underlying primitives is still
based on this should not be overlooked.

In this note, we propose an extendable output function (XOF), i.e., a generalized crypto-
graphic hash function with arbitrary output length, called K T . It combines
the use of the K -p[1600, nr = 12] permutation defined in FIPS 202 with the sponge
construction, the parallelism of tree hashing, final node growing and S coding [9,3].

An a ractive feature of K T is that, for its security assurance, it directly in-
herits the security assurance built up for K and the FIPS 202 functions. In particular,
it uses the sponge constructionwith its simple and transparent indifferentiability proof [1].
The underlying permutations K -p on the other hand have a furnished track record of
public scrutiny since their publication in 2008. Its round function was never tweaked and
hence all cryptanalysis during and a er the SHA-3 competition remains relevant.

Our proposal gets its high speed, among other things, from using the K - f [1600] per-
mutation reduced to 12 rounds. Clearly, 12 rounds provide less safety margin than the full
24 rounds in SHA-3 and SHAKE functions. Still, the safety margin provided by 12 rounds
is comfortable as, e.g., the best published collision a acks at time of writing break K
only up to 5 rounds [6,7,11].

Another design choice that provides a significant speed-up is the use of a tree hash mode
transparently for the user. A tree hashmode typically cuts themessage into chunks, hashes
these chunks independently, and hashes again the resulting chaining values to produce the
final output. In April, the NIST posted on the hash forum two dra special publications,
which recently became the SP 800-185 dra , including proposals a parallelized hash mode

(Fast Parallel Hash, or FPH) [10]. We implemented FPH in the K Code Package and
found it to be significantly faster than SHAKE128 and SHAKE256 for long messages when
exploiting SIMD instruction sets such as Intel® AVX2™ [5].

Both FPH and K T offer a high degree of parallelism. The main advantage
of the final-node growing approach is that implementers can decide on the degree of par-
allelism their programs support. A simple implementation could compute everything se-
rially, while another would process two branches in parallel, or four, or more. Future pro-
cessors can even contain more cores or wider SIMD instruction sets, such as Intel® AVX-
512™, and K T will be readily able to exploit them. Another advantage is
that it improves interoperability: Implementations do not need to have matching degrees
of parallelism, although the function may need to be evaluated on different machines and
maybe some years apart.

Compared to FPH, K T improves on the speed for short messages. A tree
hash mode typically introduces some fixed overhead, which may be too costly for short
messages. In our proposal, we instead make use of kangaroo hopping, which merges the
hashing of the first chunk of the message and that of the chaining values [3]. As a result,
there is no overhead until the input grows into more than one chunk.

A er se ing up some notation conventions in Section 2, we specify K T in
Section 3. Section 4 gives a rationale and Section 5 introduces a closely related variant
calledM F . In Section 6, we discuss implementation aspects and display
benchmarks for recent processors. Finally, a reference implementation and test vectors are
given in Appendices A and B, respectively.

2 Notation

A bit is an element of Z2. A string of bits is denoted using single quotes, e.g., ‘0’ or ‘111’.
The length in bits of a string s is denoted |s|. The concatenation of two strings a and b is
denoted a||b. The truncation of a string s to its first n bits is denoted ⌊s⌋n. The empty string
is denoted as ∗.
A byte is a string of 8 bits. The byte (b0, b1, . . . , b7) can also be represented by the integer
value ∑i 2ibi wri en in hexadecimal. E.g., the byte ‘01100101’ can be equivalently wri en
as 0xA6.

The function enc8(x) encodes the integer x, with 0 ≤ x ≤ 255, as a byte with value x.

3 Specifications of K T

K T is an extendable output function (XOF). It takes as input a pair of strings
M and C, where

– M is the input message and

– C is a customization string.

Both M and C are assumed to be strings of bytes, i.e., |M| and |C| are multiples of 8.

K T produces unrelated outputs on two different pairs (M, C). Although it
is not restricted in length or value, the customization string C is meant to provide domain
separation. That is, for two different customization strings C1 ̸= C2, K T gives

2

two independent functions of M. In practice, C is typically a short string, such as a name,
an address or an identifier (e.g., URI, OID).

As a XOF, the output of K T is unlimited, and the user can request as many
output bits as desired. It becomes a traditional hash function by restricting its output length
to the desired digest size.

The core of K T is the K -p[1600, nr = 12] permutation, i.e., a version of
the one used in SHAKE and SHA-3 instances reduced to nr = 12 rounds [9]. We build a
sponge function F on top of this permutationwith capacity set to c = 256 bits and therefore
with rate r = 1600 − c = 1344, i.e.,

F = [K -p[1600, nr = 12], pad10∗1, r = 1344].

On top of the sponge function F, K T uses a S -compatible tree hash
mode, which we now describe.

First, we merge M and C to a single input string S in a reversible way by concatenating:

– the input message M;

– the customization string C;

– the length in bytes of C encoded using right_encode
(
|C|
8

)
as in Algorithm 1.

Algorithm 1 The function right_encode(x)
Input: a non-negative integer x < 256255

Output: a string of bytes

Let l be the smallest number such that x < 256l

Let x = ∑l−1
i=0 xi256i with 0 ≤ xi ≤ 255 for all i

return enc8(xl−1)|| . . . ||enc8(x1)||enc8(x0)||enc8(l)

Then, the input string S ̸= ∗ is cut into chunks of B = 8192 bytes, i.e.,

S = S0||S1|| . . . ||Sn−1,

with n =
⌈
|S|
8B

⌉
and where all chunks except the last one must have exactly B bytes.

When n > 1, K T builds a tree with the following final node Node∗ and inner
nodes Nodei with 0 ≤ i ≤ n − 2:

Nodei = Si+1||‘110’
CVi = ⌊F(Nodei)⌋256

Node∗ = S0||‘11062’||CV0|| . . . ||CVn−2||right_encode(n − 1)
||0xFF||0xFF||‘01’

K T (M, C) = F(Node∗).

The chaining values CVi have length c = 256 bits. This is illustrated in Figure 1.

When n = 1, the tree reduces to its single final node Node∗ and K T becomes:

Node∗ = S||‘11’
K T (M, C) = F(Node∗).

3

S0 110* CV CV CV … CV CV n-1 FFFF 01

S1

110

S2

110

S3

110

Sn-2

110

Sn-1

110

Fig. 1. Schematic of K T for |S| > B, with arrows denoting calls to F.

We make a flat sponge claim with 255 bits of claimed capacity as in Claim 1. In short, this
means that K T shall resist against all a acks with complexity up to 2128,
unless easier on a random oracle [2].

Claim 1 (Flat sponge claim [2]) The success probability of any a ack on K T shall
not be higher than the sum of that for a random oracle and

1 − e−
N2

2256 ,

with N the a ack complexity in calls to K -p[1600, nr = 12] or its inverse. We exclude from
the claim weaknesses due to the mere fact that the function can be described compactly and can be
efficiently executed, e.g., the so-called random oracle implementation impossibility [8], as well as
properties that cannot be modeled as a single-stage game [12].

Note that 1 − e−
N2

2256 < N2

2256 .

4 Rationale

In this section, we provide somemore in-depth explanations on the design choices in K -
T .

4.1 Security of the tree hash mode

The tree hashmode is S -compatible so that it automatically satisfies the conditions of
soundness and guarantees security against generic a acks [4,3]. Claim 1 takes into account
inner collisions both in F and in the chaining values of the tree hashmode, hence a claimed
capacity of 256 − 1 = 255 bits.

We use the terminology of S [3]. A hop is either a chunk of the message or a sequence
of chaining values. Multiple hops can be combined into nodes, namely, the strings that will
be subject to the underlying hash function. The encoding of the nodes is as follows.

– When n = 1, there is only the final node. Following S , the node contains the
input string S followed by ‘1’ to make a message hop, then followed by ‘1’ to make a
final node.

4

– When n > 1, there are inner nodes and the final node.

• Each inner node contains a chunk Si of the input string followed by ‘1’ to make
a message hop, then followed by ‘1’ for simple padding and ‘0’ to make an inner
node.

• The final node starts with the first chunk of the input string S0 followed by ‘1’ to
make a message hop, then followed by padding of the form ‘1’||‘0∗’ as part of the
kangaroo hopping and to align what follows to a multiple of 64 bits. The chaining
hop then contains the chaining values, followed by the coded number of chaining
values (right_encode(n − 1)), no interleaving (I = ∞, coded with two bytes 0xFF)
and the bit ‘0’. This is followed by ‘1’ to indicate it is the final node.

4.2 Choice of B

Although it could be defined as a user-chosen parameter, we decided to fix the size of the
message chunks to B = 8192 bytes. The exact value of B has some impact on the perfor-
mance, although we think that its importance is relatively small. Instead, we decided to
relieve the user from the burden of this technical choice and to facilitate interoperability.

We chose B = 8192 for the following reasons. First, we think that a power of two can help
bulk data input in time-critical applications. For instance, when hashing a large file, we
expect the implementation to be faster and easier if the chunks contain a whole number of
disk sectors.

The chaining values in the final node create an overhead, as the total length of the nodes
that F has to process grows relatively by c

B . In our case, it amounts to about 0.4%.

Another concern is the number of unused bytes in the last r-bit block of the input to F. We
have r = 1344 bits or R = r/8 = 168 bytes. When cu ing the chunk Si into blocks of R
bytes, it leaves W = −(B + 1) mod R unused bytes in the last block. It turns out that W
reaches aminimum for B = 27+6n with n ≥ 0 an integer. Its relative impact, W

B , decreases as
B increases. For small values, e.g., B ∈ {128, 256, 512}, this is about 30%, while for B = 8192
it drops below 0.5%.

Increasing Bwould further reduce these two overhead factors. However, they are relatively
small already and this would delay the benefits of parallelism to longer messages.

Finally, the choice of B bounds the degree of parallelism that an implementation can fully
exploit. An implementation can in principle compute the final node and leaves in parallel,
but if more than B/c leaves are processed at once, the final node grows faster than B bytes
at a time. The chosen value of B allows a parallelism up to degree B/c = 256.

5 If 256-bit security is desired, welcome M F

Defined in Section 3, K T provides 128-bit security, while some users may
wish to use a hash function in a consistent combination with cryptographic functions of
256-bit security strength.O en, this higher security strength is requested as away to achieve
a thicker safety margin. We feel that, as such, 256-bit security does not provide a practical
and tangible security improvement over 128-bit security. A cipher that stands by its claim
of 128-bit security provides enough protection against any adversary in the foreseeable
future.

5

To address both concerns, we propose a 256-bit security instance that also has some in-
creased safety margin, hence an increased number of rounds. Our proposal is M -

F ,with the same specifications as K T , except that (i) the capacity
and chaining values have c = 512 bits, (ii) the number of rounds is raised to nr = 14 and
(iii) we make a flat sponge claim with 511 bits of claimed capacity, i.e., M F -

shall resist against all a acks with complexity up to 2256, unless easier on a random
oracle.

Of course, for even thicker safetymargins, one can also use the standard FIPS 202 instances
or FPH [9,10].

6 Implementation

We implemented K T in C andmade it available in the K code package
(KCP) [5].

6.1 Structure

The implementation has an interface that accepts the input message M in pieces of arbi-
trary sizes. This is useful if a file, larger than the memory size, must be processed. The
customization string C can be given at the end.

Wehave integrated theK T code inKCP as illustrated on Figure 2. In particu-
lar, we instantiate the sponge construction on top of K -p[1600, nr = 12] to implement
the function F, at least to compute the final node. The function F on the leaves is computed
as much in parallel as possible, i.e., if at least 8B input bytes are given by the caller, it uses
a function that computes 8 times K -p[1600, nr = 12] in parallel; if it is not available
and if at least 4B bytes are given, it computes 4 ×K -p[1600, nr = 12] in parallel; and
so on. If no parallel implementation exists for the given platform, or if not enough bytes
are given by the caller, it falls back on a serial implementation like for the final node.

p[1600, 12] 2×p[1600, 12] 4×p[1600, 12] 8×p[1600, 12]

SnP PlSnP

KeccakSponge.c

KangarooTwelve.c

Fig. 2. The structure of the code implementing K T in the KCP.

TheKCP foresees that the serial and parallel implementations of theK -p permutation
can be optimized for a given platform. In contrast, the code for the tree hash mode and
the sponge construction is generic C, without optimizations for specific platforms, and it
accesses the optimized permutation-level functions through an interface called SnP (for a
single permutation) or PlSnP (for permutations computed in parallel) [5].

To input large messages M, the state to maintain between two calls internally uses two
queues: one for the final node and one for the current leaf. To save memory, each of these

6

queues directly uses the state of F, to which the input bytes are added. Of course, if a
message is known to be smaller than or equal to B bytes, one could further save one queue.

6.2 256-bit SIMD

Recent processors, in the Intel’s® Haswell and Skylake families, support a 256-bit SIMD
instruction set called AVX2™. We can exploit it to compute 4 × K -p[1600, nr = 12]
efficiently.

On an Intel®Core™ i5-6500 (Skylake), wemeasured that 1×K -p[1600, nr = 12] takes
about 530 cycles, while 2× about 730 cycles and 4 × K -p[1600, nr = 12] about 770
cycles. This does not include the time needed to add the input bytes to the state. Yet, this
clearly points out that the time per byte decreases with the degree of parallelism.

Figure 3 displays the number of cycles for input messages up to 150, 000 bytes. Microscop-
ically, the computation time steps up for every additional R = 168 bytes, but this is not
visible on the figure. Macroscopically, when |S| < B, the time is a straight line with a
slope of about 3.72 cycles/byte, i.e., the speed for F implemented serially. At |S| = B =
8192, there is a slight bump (a) as the tree gets a leaf, which causes an extra evaluation
of K -p[1600, nr = 12]. When |S| = 3B = 24, 576, two leaves can be computed in
parallel and the number of cycles drops. When |S| = 5B = 40, 960, four leaves can be
computed in parallel and we see another drop. From then on, the same pa ern repeats
and one can easily identify the slopes of serial, ×2 and ×4 parallel implementations of
K -p[1600, nr = 12].

Note that amore advanced implementation could in principle remove the peaks of Figure 3
andmake it monotonous. It could do so by using, e.g., the fast 4×K -p[1600, nr = 12]
implementation even if there are less than 4B bytes available, with some dummy input
bytes. However, at this point, we preferred code simplicity over speed optimization.

Figure 4 shows the implementation cost in cycles per bytes. To determine the speed in
cycles per byte for long messages in our implementation, we need to take into account
both the time to process 4B input bytes in 4 leaves (or a multiple thereof) and to process a
whole block of chaining values in the final node. Regarding the la er, 21 chaining values
fit in exactly 4 blocks of R = 168 bytes. Hence, we measure the time taken to process
an extra 84B = lcm(4B, 21B) bytes. These results are reported in Table 1, together with
measurement on short messages.

Processor Short messages Long messages
Intel® Core™ i5-4570 (Haswell) 4.15 c/b 1.44 c/b
Intel® Core™ i5-6500 (Skylake) 3.72 c/b 1.22 c/b

Table 1. The overall speed for short (|S| = nR ≤ B) and for long (|S| ≫ B) messages.

In our implementation, the final node is always processed with a serial implementation. In
principle, a more advanced implementation could buffer about B bytes of chaining values
and process them in parallel to the leaves. Again, we preferred to keep our code simple.

6.3 512-bit SIMD

Intel® announced the development of processors with the AVX-512™ instruction set. This
instruction set will support 512-bit SIMD instructions, enabling efficient implementations

7

cy
cl

es

input length (in bytes)

0

50000

100000

150000

200000

250000

300000

0 20000 40000 60000 80000 100000 120000 140000

×1

×2 ×4

(a)

Fig. 3. The number of cycles of K T on an Intel® Core™ i5-6500 (Skylake) as
a function of the input message size.

×1

×4

cy
cl

es
/b

y
te

input length (in bytes)

0

1

2

3

4

5

0 105 2×105 3×105 4×105 5×105 6×105

Fig. 4. The number of cycles per byte of K T on an Intel® Core™ i5-6500
(Skylake) as a function of the input message size.

8

of 8 × K -p[1600, nr = 12]. In addition to a higher degree of parallelism, we also ex-
pect that some new features of AVX-512™ will benefit to the implementation of K -

T , of FPH and of K in general.

– Rotation instructions. With the exception of AMD’s® XOP™, earlier SIMD instruction
sets did not include a rotation instruction. This means that the cyclic shi s in θ and ρ
had to be implementedwith a sequence of three instructions (shi le , shi right, XOR).
With a rotation instruction, cyclic shi s are thus reduced from three to one instruction.

– Three-input binary functions. AVX-512™ offers an instruction that produces an arbitrary
bitwise function of three binary inputs. In θ, computing the parity takes four XORs,
which can be reduced to two applications of this new instruction. Similarly, the non-
linear function χ can benefit from it to directly compute ax + (ax+1 + 1)ax+2.

– 32 registers. Compared to AVX2™, the new processors will increase the number of reg-
isters from 16 to 32. As K -p has 25 lanes, this will significantly decrease the need
to move data between memory and registers.

At this time of writing, we do not have access to a machine that supports it, but we nev-
ertheless developed an experimental implementation based on a simulation [5]. Romain
Dolbeau reported that it works correctly on the actual hardware, although we could not
measure it or optimize it yet.

References

1. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, On the indifferentiability of the sponge construction,
Advances in Cryptology – Eurocrypt 2008 (N. P. Smart, ed.), Lecture Notes in Computer Science, vol.
4965, Springer, 2008, http://sponge.noekeon.org/, pp. 181–197.

2. , Cryptographic sponge functions, January 2011, http://sponge.noekeon.org/.
3. , Sakura: A flexible coding for tree hashing, ACNS (I. Boureanu, P. Owesarski, and S. Vaude-

nay, eds.), Lecture Notes in Computer Science, vol. 8479, Springer, 2014, http://dx.doi.org/10.1007/
978-3-319-07536-5_14, pp. 217–234.

4. , Sufficient conditions for sound tree and sequential hashing modes, International Journal of Information
Security 13 (2014), 335–353, http://dx.doi.org/10.1007/s10207-013-0220-y.

5. G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer, K code package, June 2016, https:
//github.com/gvanas/KeccakCodePackage.

6. I. Dinur, O. Dunkelman, and A. Shamir, Collision a acks on up to 5 rounds of SHA-3 using generalized internal
differentials, Fast So ware Encryption - 20th International Workshop, FSE 2013, Singapore, March 11-13,
2013. Revised Selected Papers (S. Moriai, ed.), Lecture Notes in Computer Science, vol. 8424, Springer,
2013, pp. 219–240.

7. , Improved practical a acks on round-reduced Keccak, J. Cryptology 27 (2014), no. 2, 183–209.
8. U.Maurer, R. Renner, and C. Holenstein, Indifferentiability, impossibility results on reductions, and applications

to the random oracle methodology, Theory of Cryptography - TCC 2004 (M. Naor, ed.), Lecture Notes in
Computer Science, no. 2951, Springer-Verlag, 2004, pp. 21–39.

9. NIST, Federal information processing standard 202, SHA-3 standard: Permutation-based hash and extendable-
output functions, August 2015, http://dx.doi.org/10.6028/NIST.FIPS.202.

10. , NIST special publication 800-185, SHA-3 derived functions: cSHAKE, KMAC, TupleHash and Parallel-
Hash (dra), August 2016, http://csrc.nist.gov/publications/drafts/800-185/sp800_185_draft.
pdf.

11. K. Qiao, L. Song, M. Liu, and J. Guo, Solution to the 5-round collision challenge, 2016, http://keccak.
noekeon.org/crunchy_contest.html.

12. T. Ristenpart, H. Shacham, and T. Shrimpton, Careful with composition: Limitations of the indifferentiability
framework, Eurocrypt 2011 (K. G. Paterson, ed.), Lecture Notes in Computer Science, vol. 6632, Springer,
2011, pp. 487–506.

9

http://sponge.noekeon.org/
http://sponge.noekeon.org/
http://dx.doi.org/10.1007/978-3-319-07536-5_14
http://dx.doi.org/10.1007/978-3-319-07536-5_14
http://dx.doi.org/10.1007/s10207-013-0220-y
https://github.com/gvanas/KeccakCodePackage
https://github.com/gvanas/KeccakCodePackage
http://dx.doi.org/10.6028/NIST.FIPS.202
http://csrc.nist.gov/publications/drafts/800-185/sp800_185_draft.pdf
http://csrc.nist.gov/publications/drafts/800-185/sp800_185_draft.pdf
http://keccak.noekeon.org/crunchy_contest.html
http://keccak.noekeon.org/crunchy_contest.html

A Reference source code

In this section, we give (unoptimized) reference code wri en in Python, which can also
be downloaded from the KCP [5]. The pieces of code are organized in a bo om-up lay-
ering fashion. Listing 1.1 implements the K -p[1600, nr] permutations, which is then
used in Listing 1.2 to build the sponge function F. The right_encode function and K -

T are displayed in Listing 1.3.

Listing 1.1. The K -p[1600, nr] permutations
def ROL64(a, n):

return ((a >> (64−(n%64))) + (a << (n%64))) % (1 << 64)

def KeccakP1600onLanes(lanes, nrRounds):
R = 1
for round in range(24):

if (round + nrRounds >= 24):
θ
C = [lanes[x][0] ^ lanes[x][1] ^ lanes[x][2] ^ lanes[x][3] ^ lanes[x][4] for x in range(5)]
D = [C[(x+4)%5] ^ ROL64(C[(x+1)%5], 1) for x in range(5)]
lanes = [[lanes[x][y]^D[x] for y in range(5)] for x in range(5)]
ρ and π
(x, y) = (1, 0)
current = lanes[x][y]
for t in range(24):

(x, y) = (y, (2*x+3*y)%5)
(current, lanes[x][y]) = (lanes[x][y], ROL64(current, (t+1)*(t+2)//2))

χ
for y in range(5):

T = [lanes[x][y] for x in range(5)]
for x in range(5):

lanes[x][y] = T[x] ^((~T[(x+1)%5]) & T[(x+2)%5])
ι
for j in range(7):

R = ((R << 1) ^ ((R >> 7)*0x71)) % 256
if (R & 2):

lanes[0][0] = lanes[0][0] ^ (1 << ((1<<j)−1))
else:

for j in range(7):
R = ((R << 1) ^ ((R >> 7)*0x71)) % 256

return lanes

def load64(b):
return sum((b[i] << (8*i)) for i in range(8))

def store64(a):
return bytes((a >> (8*i)) % 256 for i in range(8))

def KeccakP1600(state, nrRounds):
lanes = [[load64(state[8*(x+5*y):8*(x+5*y)+8]) for y in range(5)] for x in range(5)]
lanes = KeccakP1600onLanes(lanes, nrRounds)
state = b’’ . join ([store64(lanes[x][y]) for y in range(5) for x in range(5)])
return bytearray(state)

10

Listing 1.2. The function F = [K -p[1600, nr = 12], pad10∗1, r = 1344]
def F(inputBytes, delimitedSuffix, outputByteLen):

outputBytes = b’’
state = bytearray([0 for i in range(200)])
rateInBytes = 1344//8
blockSize = 0
inputOffset = 0
=== Absorb all the input blocks ===
while(inputOffset < len(inputBytes)):

blockSize = min(len(inputBytes)−inputOffset, rateInBytes)
for i in range(blockSize):

state[i] = state[i] ^ inputBytes[i+inputOffset]
inputOffset = inputOffset + blockSize
if (blockSize == rateInBytes):

state = KeccakP1600(state, 12)
blockSize = 0

=== Do the padding and switch to the squeezing phase ===
state[blockSize] = state[blockSize] ^ delimitedSuffix
if (((delimitedSuffix & 0x80) != 0) and (blockSize == (rateInBytes−1))):

state = KeccakP1600(state, 12)
state[rateInBytes−1] = state[rateInBytes−1] ^ 0x80
state = KeccakP1600(state, 12)
=== Squeeze out all the output blocks ===
while(outputByteLen > 0):

blockSize = min(outputByteLen, rateInBytes)
outputBytes = outputBytes + state[0:blockSize]
outputByteLen = outputByteLen− blockSize
if (outputByteLen > 0):

state = KeccakP1600(state, 12)
return outputBytes

Listing 1.3. The right_encode function and K T
def right_encode(x):

S = b’’
while(x > 0):

S = bytes([x % 256]) + S
x = x//256

S = S + bytes([len(S)])
return S

def KangarooTwelve(inputMessage, customizationString, outputByteLen):
B = 8192
c = 256
S = inputMessage + customizationString + right_encode(len(customizationString))
=== Cut the input string into chunks of B bytes ===
n = (len(S)+B−1)//B
Si = [bytes(S[i*B:(i+1)*B]) for i in range(n)]
if (n == 1):

=== Process the tree with only a final node ===
return F(Si[0], 0x07, outputByteLen)

else:
=== Process the tree with kangaroo hopping ===
CVi = [F(Si[i+1], 0x0B, c//8) for i in range(n−1)]
NodeStar = Si[0] + b’\x03\x00\x00\x00\x00\x00\x00\x00’ + b’’.join(CVi) \

+ right_encode(n−1) + b’\xFF\xFF’
return F(NodeStar, 0x06, outputByteLen)

11

B Test vectors

In this section, we give some test vectors for K T , organized in three parts:

1. The input is empty, M = C = ∗, and the output size varies.

2. The customization string is empty, C = ∗, and the input message M is an arbitrary
string of length 17i for 0 ≤ i ≤ 6. The value M is constructed by repeating the pa ern
0x00, 0x01, 0x02, . . . , 0xFA as many as necessary and by truncating it to the specified
length.

3. The input message M is obtained by repeating 2i − 1 times 0xFF, while the customiza-
tion string C is constructed following the same pa ern as for M above, but with length
41i for 0 ≤ i ≤ 3.

KangarooTwelve(M=empty, C=empty, 32 output bytes):
1a c2 d4 50 fc 3b 42 05 d1 9d a7 bf ca 1b 37 51 3c 08 03 57 7a c7 16 7f 06 fe 2c e1 f0 ef 39 e5

KangarooTwelve(M=empty, C=empty, 64 output bytes):
1a c2 d4 50 fc 3b 42 05 d1 9d a7 bf ca 1b 37 51 3c 08 03 57 7a c7 16 7f 06 fe 2c e1 f0 ef 39 e5
42 69 c0 56 b8 c8 2e 48 27 60 38 b6 d2 92 96 6c c0 7a 3d 46 45 27 2e 31 ff 38 50 81 39 eb 0a 71

KangarooTwelve(M=empty, C=empty, 10032 output bytes), last 32 bytes:
e8 dc 56 36 42 f7 22 8c 84 68 4c 89 84 05 d3 a8 34 79 91 58 c0 79 b1 28 80 27 7a 1d 28 e2 ff 6d

KangarooTwelve(M=pattern 0x00 to 0xFA for 17^0 bytes, C=empty, 32 output bytes):
2b da 92 45 0e 8b 14 7f 8a 7c b6 29 e7 84 a0 58 ef ca 7c f7 d8 21 8e 02 d3 45 df aa 65 24 4a 1f

KangarooTwelve(M=pattern 0x00 to 0xFA for 17^1 bytes, C=empty, 32 output bytes):
6b f7 5f a2 23 91 98 db 47 72 e3 64 78 f8 e1 9b 0f 37 12 05 f6 a9 a9 3a 27 3f 51 df 37 12 28 88

KangarooTwelve(M=pattern 0x00 to 0xFA for 17^2 bytes, C=empty, 32 output bytes):
0c 31 5e bc de db f6 14 26 de 7d cf 8f b7 25 d1 e7 46 75 d7 f5 32 7a 50 67 f3 67 b1 08 ec b6 7c

KangarooTwelve(M=pattern 0x00 to 0xFA for 17^3 bytes, C=empty, 32 output bytes):
cb 55 2e 2e c7 7d 99 10 70 1d 57 8b 45 7d df 77 2c 12 e3 22 e4 ee 7f e4 17 f9 2c 75 8f 0d 59 d0

KangarooTwelve(M=pattern 0x00 to 0xFA for 17^4 bytes, C=empty, 32 output bytes):
87 01 04 5e 22 20 53 45 ff 4d da 05 55 5c bb 5c 3a f1 a7 71 c2 b8 9b ae f3 7d b4 3d 99 98 b9 fe

KangarooTwelve(M=pattern 0x00 to 0xFA for 17^5 bytes, C=empty, 32 output bytes):
84 4d 61 09 33 b1 b9 96 3c bd eb 5a e3 b6 b0 5c c7 cb d6 7c ee df 88 3e b6 78 a0 a8 e0 37 16 82

KangarooTwelve(M=pattern 0x00 to 0xFA for 17^6 bytes, C=empty, 32 output bytes):
3c 39 07 82 a8 a4 e8 9f a6 36 7f 72 fe aa f1 32 55 c8 d9 58 78 48 1d 3c d8 ce 85 f5 8e 88 0a f8

KangarooTwelve(M=0 times byte 0xFF, C=pattern 0x00 to 0xFA for 41^0 bytes, 32 output bytes):
fa b6 58 db 63 e9 4a 24 61 88 bf 7a f6 9a 13 30 45 f4 6e e9 84 c5 6e 3c 33 28 ca af 1a a1 a5 83

KangarooTwelve(M=1 times byte 0xFF, C=pattern 0x00 to 0xFA for 41^1 bytes, 32 output bytes):
d8 48 c5 06 8c ed 73 6f 44 62 15 9b 98 67 fd 4c 20 b8 08 ac c3 d5 bc 48 e0 b0 6b a0 a3 76 2e c4

KangarooTwelve(M=3 times byte 0xFF, C=pattern 0x00 to 0xFA for 41^2 bytes, 32 output bytes):
c3 89 e5 00 9a e5 71 20 85 4c 2e 8c 64 67 0a c0 13 58 cf 4c 1b af 89 44 7a 72 42 34 dc 7c ed 74

KangarooTwelve(M=7 times byte 0xFF, C=pattern 0x00 to 0xFA for 41^3 bytes, 32 output bytes):
75 d2 f8 6a 2e 64 45 66 72 6b 4f bc fc 56 57 b9 db cf 07 0c 7b 0d ca 06 45 0a b2 91 d7 44 3b cf

12

	KangarooTwelve: fast hashing based on Keccak-p

