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Abstract. We give one- and two-dimensional scalar multiplication al-
gorithms for Jacobians of genus 2 curves that operate by projecting to
Kummer surfaces, where we can exploit faster and more uniform pseudo-
multiplication, before recovering the proper “signed” output back on the
Jacobian. This extends the work of López and Dahab, Okeya and Saku-
rai, and Brier and Joye to genus 2, and also to two-dimensional scalar
multiplication. The technique is especially interesting in genus 2, because
Kummer surfaces can outperform comparable elliptic curve systems.
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1 Introduction

In this article we show how to exploit Gaudry’s fast, uniform Kummer surface
arithmetic [15] to carry out full scalar multiplications on genus 2 Jacobians.
This brings the speed and side-channel security of Kummers, so far only used
for Diffie–Hellman implementations, to implementations of other discrete-log-
based cryptographic protocols including signature schemes.4

To make things precise, let JC be the Jacobian of a genus 2 curve C over a
finite field Fq of characteristic > 3 (with ⊕ denoting the group law on JC , and
	 the inverse). We want to compute scalar multiplications

(m,P ) 7−→ [m]P := P ⊕ · · · ⊕ P︸ ︷︷ ︸
m times

for m ∈ Z≥0 and P ∈ JC(Fq) ,

which are at the heart of all discrete logarithm and Diffie–Hellman problem-
based cryptosystems. If the scalar m is secret, then [m]P must be computed in

4 This article supersedes the much longer unpublished manuscript [9], which can
be found at http://eprint.iacr.org/2015/983. The longer version includes algo-
rithms for scalar multiplication for general genus 2 Jacobians that are not equipped
with fast Kummer surfaces, and proposes a signature scheme based on these results.

http://eprint.iacr.org/2015/983


a uniform and constant-time way to protect against even the most elementary
side-channel attacks. This means that the execution path of the algorithm must
be independent of the scalar m (we may assume that the bitlength of m is fixed).

The quotient Kummer surface KC := JC/ 〈±1〉 identifies group elements with
their inverses (this is the genus-2 analogue of projecting elliptic curve points onto
the x-coordinate). If P is a point on JC , then ±P denotes its image in KC . Scalar
multiplication on JC induces a well-defined pseudomultiplication

(m,±P ) 7−→ ±[m]P for m ∈ Z≥0 and P ∈ JC(Fq) ,

which can be computed using differential addition chains in the exact analogue
of x-only arithmetic for elliptic curves. This suffices for implementing protocols
like Diffie–Hellman key exchange which only involve scalar multiplication, as
Bernstein’s Curve25519 software did for elliptic curves [1]. But we emphasize
that KC is not a group, and its lack of a group operation prevents us instantiating
many group-based protocols in KC (see [26, §5]).

It has long been known that x-only pseudomultiplication can be used for
full scalar multiplication on elliptic curves: López and Dahab [20] (followed by
Okeya and Sakurai [23] and Brier and Joye [4]) showed that the auxiliary values
computed by the x-only Montgomery ladder can be used to recover the missing
y-coordinate, and hence to compute full scalar multiplications on elliptic curves.
The main innovation of this paper is to extend this technique from elliptic curves
to genus 2, and from one- to two-dimensional scalar multiplication. This allows
cryptographic protocols instantiated in genus-2 Jacobians to delegate their scalar
multiplications to faster, more uniform Kummer surfaces.

In the abstract, our algorithms follow the same common pattern:

1. Project the inputs from JC to KC ;
2. Pseudomultiply in KC using a differential addition chain, such as the Mont-

gomery ladder [22] or Bernstein’s binary chain [2];
3. Recover the correct preimage for the full scalar multiplication in JC from

the outputs of the pseudomultiplication, using our new Algorithm 2.

More concretely, if JC is a genus-2 Jacobian admitting a fast Kummer surface
as in §2, and B ⊂ JC(Fq) is the set of Definition 1, then our main results are

Theorem 1 (Project + Montgomery ladder + Recover): If P is a point in
JC(Fq) \ B then for any β-bit integer m, Algorithm 3 computes [m]P in
(7β + 115)M + (12β + 8)S + (12β + 4)mc + (32β + 79)a + 2I.

Theorem 2 (Project + Bernstein’s binary chain + Recover): If P and Q are
points in JC(Fq)\B with P ⊕Q and P 	Q not in B and m and n are positive
β-bit integers, then Algorithm 4 computes [m]P ⊕ [n]Q in (14β + 203)M +
(20β + 16)S + (16β + 16)mc + (56β + 138)a + 3I.

Both algorithms are uniform with respect to their scalars. The two-dimensional
multiscalar multiplications of Theorem 2 appear explicitly in many crypto-
graphic protocols (such as Schnorr signature verification), but they are also a



key ingredient in endomorphism-accelerated one-dimensional scalar multiplica-
tion techniques like GLV [14] and its descendants.5

There are two key benefits to this approach: speed and uniformity. For speed,
we note that Gaudry’s Kummer arithmetic is markedly faster than full Jacobian
arithmetic, and competitive Diffie–Hellman implementations have shown that
Kummer-based scalar multiplication software can outperform its elliptic equiv-
alent [3]. Our results bring this speed to a wider range of protocols, such as
ElGamal and signature schemes. Indeed, the methods described below (includ-
ing Algorithms 2 and 3) have already been successfully put into practice in a fast
and compact implementation of Schnorr signatures for microcontrollers [24], but
without any proof of correctness or explanation of the algorithms6; this article
provides that proof, and detailed algorithms to enable further implementations.

The second benefit is side-channel protection. Fast, uniform, constant-time
algorithms for elliptic curve scalar multiplication are well-known and widely-
used. In contrast, for genus 2 Jacobians, the uniform and constant-time require-
ments are problematic: conventional Cantor arithmetic [6] and its derivatives [17]
are highly susceptible to simple side-channel attacks. The explicit formulæ de-
rived for generic additions in Jacobians fail to compute correct results when
one or both of the inputs are so-called “special” points (essentially, those corre-
sponding to degree-one divisors on C). While special points are rare enough that
random scalar multiplications never encounter them, they are plentiful enough
that attackers can easily mount exceptional procedure attacks [18], forcing soft-
ware into special cases and using timing variations to recover secret data. It has
appeared impossible to implement traditional genus 2 arithmetic in a uniform
way without abandoning all hope of competitive efficiency [11]. The Jacobian
point recovery method we present in §3 solves the problem of uniform genus 2
arithmetic (at least for scalar multiplication): rather than wrestling with the spe-
cial cases of Cantor’s algorithm on JC , we can pseudomultiply on the Kummer
and then recover the correct image on JC .

Remark 1. Robert and Lubicz [21] use similar techniques to speed up their arith-
metic for general abelian varieties based on theta functions, viewing the results
of the Montgomery ladder on a g-dimensional Kummer variety K as a point on
the corresponding abelian variety A embedded in K2. In contrast to our method,
Robert and Lubicz cannot treat A as a Jacobian (since general abelian varieties
of dimension g > 3 are not Jacobians); so in the case of genus g = 2, there is no
explicit connection with any curve C, and the starting and finishing points do not
involve the Mumford representation. Kohel [19] explores similar ideas for elliptic
curves, leading to an interesting interpretation of Edwards curve arithmetic.

Remark 2. Since our focus here is on fast cryptographic implementations, for
lack of space, in this article we restrict our attention to curves and Jacobians
whose Kummer surfaces have so-called “fast” models (see §2). This implies that

5 Our techniques should readily extend to the higher-dimensional differential addition
chains described by Brown [5]. We do not investigate this here.

6 The implementation in [24] was based on our longer manuscript [9].



all of our Jacobians have full rational 2-torsion. Our techniques generalize with-
out any difficulty to more general curves and Kummer surfaces, and then re-
placing the fast Kummer operations described in Appendix A with more general
methods wherever they appear in Algorithms 3 and 4 yields efficient, uniform
scalar multiplication algorithms for any genus 2 Jacobian.

Notation As usual, M, S, I, and a denote the costs of one multiplication, squar-
ing, inversion, and addition in Fq, respectively; for simplicity, we assume sub-
traction and unary negation in Fq also cost a. We let mc denote the cost of multi-
plication by the theta constants a, b, c, d, A,B,C,D of §2 and their inverses (we
aim to make these as small as possible). We assume we have efficient constant-
time conditional selection and swap routines: SELECT(b, (X0, X1)) returns Xb,
and SWAP(b, (X0, X1)) returns (Xb, X1−b) (see Appendix B for sample code).

2 Genus 2 Jacobians with fast Kummer Surfaces

Suppose we have a, b, c, and d in Fq \ {0} such that if we set

A := a+ b+ c+ d , B := a+ b− c− d ,
C := a− b+ c− d , D := a− b− c+ d ,

then abcdABCD 6= 0 and CD/(AB) = α2 for some α in Fq. Setting

λ := a/b · c/d , µ := c/d · (1 + α)/(1− α) , ν := a/b · (1 + α)/(1− α) ,

we define an associated genus 2 curve C in Rosenhain form:

C : y2 = f(x) = x(x− 1)(x− λ)(x− µ)(x− ν) ,

so f(x) = x5 + f4x
4 + f3x

3 + f2x
2 + f1x with f4 = −(λ + µ + ν + 1), f3 =

λµ + λν + λ + µν + µ + ν, f2 = −(λµν + λµ + λν + µν), f1 = λµν. (The
techniques in this paper extend to far more general genus 2 curves—see the
manuscript [9]—but every fast Kummer is associated with a curve in this form.)

Elements of JC(Fq) are presented in their standard Mumford representation:

P ∈ JC(Fq)←→ 〈a(x) = x2 + a1x+ a0, b(x) = b1x+ b0〉

where a1, a0, b1, and b0 are in Fq and b(x)2 ≡ f(x) (mod a(x)). The group law
on JC is typically computed using Cantor’s algorithm, specialized to genus 2.
Here we suppose we have a function JacADD : (P,Q) 7→ P ⊕Q which computes
the group law as in [17, Eq. (12)] at a cost of 22M + 2S + 1I + 27a.

The fast Kummer surface for C is the quartic surface Kfast
C ⊂ P3 defined by

Kfast
C :

(
(X2 + Y 2 + Z2 + T 2)

−F (XT + Y Z)−G(XZ + Y T )−H(XY + ZT )

)2

= EXY ZT (1)



where

F =
a2 − b2 − c2 + d2

ad− bc
, G =

a2 − b2 + c2 − d2

ac− bd
, H =

a2 + b2 − c2 − d2

ab− cd
,

and E = 4abcd (ABCD/((ad− bc)(ac− bd)(ab− cd)))
2
. These surfaces were al-

gorithmically developed by the Chudnovskys [8], and introduced in cryptography
by Gaudry [15]; here we use the “squared-theta” model of [10, Ch. 4]. Cryp-
tographic parameters for genus-2 Jacobians equipped with fast Kummers can
be (and have been) computed: the implementation of [24] uses the parameters
from [16] in the algorithms presented below.

The map Project : JC → Kfast
C mapping P to ±P is classical (cf. [10, §5.3]),

and implemented by Algorithm 1. It is not uniform or constant-time, but it does
not need to be: in most applications the input points are already public.

Algorithm 1: Project: JC → Kfast
C .

Input: P ∈ JC(Fq)
Output: ±P ∈ Kfast

C (Fq)
Cost: 8M + 1S + 4mc + 14a, assuming precomputed λµ, λν.

1 if P = 0 then return (a : b : c : d)
2 else if P = 〈x− u, v〉 then
3 (t1, t2, t3, t4)← (u− 1, u− λ, u− µ, u− ν) // 4a

4 return (a · t1 · t3 : b · t2 · t4 : c · t1 · t4 : d · t2 · t3) // 4M+4mc

5 else (generic case P = 〈x2 + a1x+ a0, b1x+ b0〉)
6 (t1, t2, t3)← (a1 + λ, a1 + 1, b20) // 1S+2a

7 (t4, t5)← (a0 · (a0 − µ) · (t1 + ν), a0 · (a0 − λν) · (t2 + µ)) // 4M+4a

8 (t6, t7)← (a0 · (a0 − ν) · (t1 + µ), a0 · (a0 − λµ) · (t2 + ν)) // 4M+4a

9 return (a · t4 + t3, b · t5 + t3, c · t6 + t3, d · t7 + t3) // 4mc+4a

Table 1 summarizes the key standard operations on Kfast
C and their costs

(for detailed pseudocode, see Appendix A). The pseudo-doubling xDBL is correct
on all inputs; the pseudo-additions xADD∗, xADD and combined pseudo-double-
and-add xDBLADD are correct for all inputs provided the difference point has
no coordinate equal to zero. Since almost all difference points are fixed in our
algorithms, and these “bad” points are extremely rare (there are only O(q) of
them, versus O(q2) other points), we simply prohibit them as input: Definition 1
identifies their preimages in JC for easy identification and rejection.

Definition 1. Let B ⊂ JC(Fq) be the set of elements P whose images ±P in
Kfast
C have a zero coordinate; or equivalently, P = 〈x2 + a1x+ a0, b1x+ b0〉 with

1. (µa1 + a0)(1(a1 + λ+ ν) + a0) + (λµ− λν + µν − 1µ)a0 + λµν = 0, or
2. (νa1 + a0)(λ(a1 + 1 + µ) + a0)− (λν − µν + 1µ− 1ν)a0 + λµν = 0, or
3. (νa1 + a0)(1(a1 + λ+ µ) + a0)− (λµ− λν − µν + 1ν)a0 + λµν = 0, or
4. (µa1 + a0)(λ(a1 + 1 + ν) + a0)− (λµ− µν − 1µ+ 1ν)a0 + λµν = 0.



Table 1. Operations on Kfast
C and JC . All but JacADD are uniform. The operations

xADD∗, xADD, and xDBLADD require P 	Q /∈ B.

Algorithm Operation: Input 7→ Output M S mc a I

JacADD (P,Q) 7→ P ⊕Q 22 2 0 27 1
xDBL ±P 7→ ±[2]P 0 8 8 16 0
xADD∗ (±P,±Q,±(P 	Q)) 7→ ±(P ⊕Q) 14 4 4 24 0
xADD (±P,±Q, Wrap(±(P 	Q))) 7→ ±(P ⊕Q) 7 4 4 24 0

xDBLADD (±P,±Q, Wrap(±(P 	Q))) 7→ (±[2]P,±(P ⊕Q)) 7 12 12 32 0
Wrap (x : y : z : t) 7→ (x/y, x/z, x/t) 7 0 0 0 1
Wrap4 (±Pi)4i=1 7→ (Wrap(±Pi))4i=1 37 0 0 0 1

To optimize pseudo-additions, we define a mapping Wrap : (x : y : z : t) 7→
(x/y, x/z, x/t) (for (x : y : z : y) not in B). To Wrap one Kummer point costs
7M+ 1I, but saves 7M in every subsequent pseudo-addition with that point as its
difference. In Algorithm 4 we need to Wrap four points; Wrap4 does this with a
single shared inversion, for a total cost of 37M + 1I.

3 Point recovery in genus 2

Our aim is to compute scalar multiplications (m,P ) 7→ R = [m]P on JC .
Projecting to KC yields ±P , and then pseudomultiplication (which we will
describe below) gives ±R = ±[m]P ; but it can also produce ±(R ⊕ P ) as an
auxiliary output. We will reconstruct R from this data, by defining a map

Recover : (P,±P,±R,±(R⊕ P )) 7−→ R for P and R ∈ JC .

The map JC → Kfast
C factors through the “general Kummer” Kgen

C , another
quartic surface in P3 defined (as in [7, Ch. 3], taking f6 = f0 = 0 and f5 = 1,
and using coordinates ξi, to avoid confusion with Kfast

C ) by

Kgen
C : K2(ξ1, ξ2, ξ3)ξ24 +K1(ξ1, ξ2, ξ3)ξ4 +K0(ξ1, ξ2, ξ3) = 0 (2)

where K2 = ξ22 − 4ξ1ξ3, K1 = −2(f1ξ
2
1 + f3ξ1ξ3 + f5ξ

2
3)ξ2 − 4ξ1ξ3(f2ξ1 + f4ξ3),

and K0 = (f1ξ
2
1 − f3ξ1ξ3 + f5ξ

2
3)2 − 4ξ1ξ3(f1ξ2 + f2ξ3)(f4ξ1 + f5ξ2). While fast

Kummers offer significant gains in performance and uniformity, this comes at
the price of full rational 2-torsion: hence, not every Kummer can be put in
fast form. But the general Kummer exists for all genus 2 curves, not just those
admitting a fast Kummer; roughly speaking, Kgen

C is the analogue of the x-line of
the Weierstrass model of an elliptic curve, while Kfast

C corresponds to the x-line
of a Montgomery model.7 As such, Kgen

C is much more naturally related to the

7 The use of Kgen
C in cryptography was investigated by Smart and Siksek [26] and

Duquesne [13]. The polynomials defining pseudo-operations on Kgen
C (see [7, §3.4])

are hard to evaluate quickly, and do not offer competitive performance. However,
they are completely compatible with our Project-pseudomultiply-Recover pattern,
and we could use them to construct uniform and constant-time scalar multiplication
algorithms for genus 2 Jacobians that do not admit fast Kummers.



Mumford model of JC ; so it makes sense to map our recovery problem from Kfast
C

into Kgen
C and then recover from Kgen

C to JC .
The map π : JC → Kgen

C is described in [7, Eqs. (3.1.3–5)]; it maps generic
points 〈x2 + a1x+ a0, b1x+ b0〉 in JC to (ξ1 : ξ2 : ξ3 : ξ4) in Kgen

C , where

(ξ1 : ξ2 : ξ3 : ξ4) = (1 : −a1 : a0 : b21 + (a21 − a0)a1 + a1(f3 − f4a1)− f2) . (3)

Projecting onto the (ξ1 : ξ2 : ξ3)-plane yields a natural double cover ρ : Kgen
C →

P2; comparing with (3), we see that ρ ◦ π corresponds to projecting onto the
a-polynomial of the Mumford representation.

Proposition 1. Suppose P = 〈x2 + aP1 x+ aP0 , b
P
1 x+ bP0 〉 and R = 〈x2 + aR1 x+

aR0 , b
R
1 x + bR0 〉 are in JC(Fq). Let (ξR1 : ξR2 : ξR3 : ξR4 ) = π(R) in Kgen

C , and let
(ξ⊕1 : ξ⊕2 : ξ⊕3 ) = ρ(π(P ⊕ R)) and (ξ	1 : ξ	2 : ξ	3 ) = ρ(π(P 	 R)) in P2. Let
Z1 = ξR2 + aP1 ξ

R
1 , Z2 = ξR3 − aP0 ξR1 , and Z3 = −(aP1 ξ

R
3 + aP0 ξ

R
2 ). Then

(ξR1 )2(bR1 , b
R
0 ) = (G3, G4)

(
ξR2 Z1 − ξR1 Z2 −ξR1 Z1

−ξR3 Z1 ξR1 Z2

)
(4)

where G3 and G4 satisfy

C(G3, G4) = D(G1, G2)

(
ξ⊕1 ξ

	
3 − ξ

⊕
3 ξ
	
1 ξ⊕2 ξ

	
3 − ξ

⊕
3 ξ
	
2

ξ⊕2 ξ
	
1 − ξ

⊕
1 ξ
	
2 ξ⊕3 ξ

	
1 − ξ

⊕
1 ξ
	
3

)
(5)

where ξR1 D = Z2
2 − Z1Z3 and G1 and G2 satisfy

D(G1, G2) = (bP1 , b
P
0 )

(
Z2 aP0 Z1

Z1 −aP1 Z1 − Z2

)
(6)

and

C =
−2D

(
2ξ⊕1 ξ

	
1 G

2
2 − (ξ⊕2 ξ

	
1 + ξ⊕1 ξ

	
2 )G1G2 + (ξ⊕3 ξ

	
1 + ξ⊕1 ξ

	
3 )G2

1

)
G2

1 +G2
3

.

Proof. This is a disguised form of the geometric group law on JC (cf. [7, §1.2]).
The points P and R correspond to unique degree-2 divisor classes on C: say,

P ←→ [(uP , vP ) + (u′P , v
′
P )] and R←→ [(uR, vR) + (u′R, v

′
R)] .

(We do not compute the values of uP , vP , u
′
P , v

′
P , uR, vR, u

′
R, and v′R, which are

generally in Fq2 ; they are purely formal devices here.) Let

E1 =
vP

(uP − u′P )(uP − uR)(uP − u′R)
, E2 =

v′P
(u′P − uP )(u′P − uR)(u′P − u′R)

,

E3 =
vR

(uR − u′P )(uR − uP )(uR − u′R)
, E4 =

v′R
(u′R − uP )(u′R − u′P )(u′R − uR)

.

The functions G1 := E1 + E2, G2 := u′PE1 + uPE2, G3 := E3 + E4, and
G4 := u′RE3 +uRE4 are functions of P and R, because they are symmetric with



respect to (uP , vP ) ↔ (u′P , v
′
P ) and (uR, vR) ↔ (u′R, v

′
R). Now, the geometric

expression of the group law on JC states that the cubic polynomial8

l(x) = E1(x− u′P )(x− uR)(x− u′R) + E2(x− uP )(x− uR)(x− u′R)

+ E3(x− uP )(x− u′P )(x− u′R) + E4(x− uP )(x− u′P )(x− uR)

= (G1x−G2)(x2 + aR1 x+ aR0 ) + (G3x−G4)(x2 + aP1 x+ aP0 )

satisfies `(x) ≡ b(x) mod a(x) when 〈a(x), b(x)〉 is any of P , R or 	(R ⊕ P ).
Together with b(x)2 ≡ f(x) (mod a(x)), which is satisfied by every 〈a(x), b(x)〉
in JC , this gives (after some tedious symbolic manipulations, or, alternatively,
by Littlewood’s principle) the relations (4), (5), and (6). ut

The two Kummers are related by a linear projective isomorphism τ : Kfast
C

∼→
Kgen
C , which maps (X : Y : Z : T ) to (ξ1 : ξ2 : ξ3 : ξ4) = (X : Y : Z : T )Mτ

where

Mτ =


1 λ−µν

λ−ν
λν(1−µ)
λ−ν

λν(λ−µν)
λ−ν

a(1−µ)
b(λ−ν)

a(λ−µν)
b(λ−ν)

a
bµ

aµ(λ−µν)
b(λ−ν)

a(µ−λ)
c(λ−ν)

a(µν−λ)
c(λ−ν)

aλµ(ν−1)
c(λ−ν)

aλµ(µν−λ)
c(λ−ν)

a(ν−1)
d(λ−ν)

a(µν−λ)
d(λ−ν)

aν(µ−λ)
d(λ−ν)

aν(µν−λ)
d(λ−ν)

 .

The map ρ◦τ : Kfast
C → P2 is defined by the matrix M ′τ formed by the first three

columns of Mτ . The inverse isomorphism τ−1 : Kgen
C → Kfast

C is defined by any
scalar multiple of M−1τ , and then ±P = τ−1(π(P )) for all P in JC .

Proposition 2. Let P and R be in JC(Fq). Given (P,±P,±R,±(R⊕ P )), Al-
gorithm 2 computes R in 107M + 11S + 4mc + 81a + 1I.

Proof. We have aR1 = −ξR2 and aR0 = ξR3 ; it remains to compute bR1 and bR0 us-
ing Proposition 1, maintaining the notation of its proof. Let E := ξR1 ((DG1)2 +
(DG3)2), ∆ := D2

(
2ξ⊕1 ξ

	
1 G

2
2 − (ξ⊕2 ξ

	
1 + ξ⊕1 ξ

	
2 )G1G2 + (ξ⊕3 ξ

	
1 + ξ⊕1 ξ

	
3 )G2

1

)
, and

F := −2(ξR1 )2D∆. Note that C = F/(ξR1 E) and ξR1 (DG3)2 = ξR1 (ξR4 D +
f1Z1Z2 + f2Z

2
2 + f3Z2Z3 + f4Z

2
3 ) + (ξR3 Z2 + ξR2 Z3)Z3. Now, to Algorithm 2:

Lines 1-4 compute π(R), ρ(π(P ⊕R)), and ρ(π(P 	R)).9 Then Lines 5-6 com-
pute D(G1, G2) from (bP1 , b

P
0 ); Lines 7-8 compute C(G3, G4) from D(G1, G2);

Lines 9-13 compute F (bP1 , b
P
0 ) from EC(G3, G4). Finally, Lines 14-19 compute

F and its inverse and renormalize, yielding R. ut

Remark 3. Algorithm 2 assumes that P is not a special point in JC , and that
±R is not the image of a special point R ∈ JC . This assumption is reasonable
for all cryptographic intents and purposes, since P is typically an input point to

8 The cubic curve y = `(x) is analogous to the line through P , R, and 	(R ⊕ P ) in
the classic elliptic curve group law.

9 Okeya and Sakurai noticed that the formulæ for y-coordinate recovery on Mont-
gomery curves are simpler if ±(R	P ) is also known [23, pp. 129–130]; here, we take
advantage of an analogous simplification in genus 2.



Algorithm 2: Recover: Recovery from Kfast
C to JC .

Input: (P,±P ,±R,±(R⊕P )) ∈ JC × (Kfast
C )3 for P and (unknown) R in JC .

Output: R ∈ JC .
Cost: 107M + 11S + 4mc + 81a + 1I, assuming precomputed Mτ .

1 ±(R	 P )← xADD∗(±R,±P,±(R⊕ P )) // 14M+8S+4mc+24a

2 (ξR1 : ξR2 : ξR3 : ξR4 )← ±R ·Mτ // 15M+12a

3 (ξ⊕1 : ξ⊕2 : ξ⊕3 )← ±(R⊕ P ) ·M ′τ // 11M+9a

4 (ξ	1 : ξ	2 : ξ	3 )← ±(R	 P ) ·M ′τ // 11M+9a

5 (Z1,Z2,Z3)← (aP1 · ξR1 + ξR2 , ξ
R
3 − aP0 · ξR1 ,−(aP0 · ξR2 + aP1 · ξR3 )) // 4M+4a

6 (DG1,DG2)← (Z2 · bP1 + Z1 · bP0 , (Z1 · aP0 · bP1 − Z1 · aP1 + Z2) · bP0 ) // 6M+3a

7 (Y13,Y21,Y23)← (ξ⊕1 · ξ
	
3 − ξ

⊕
3 · ξ

	
1 , ξ

⊕
2 · ξ

	
1 − ξ

⊕
1 · ξ

	
2 , ξ

⊕
2 · ξ

	
3 − ξ

⊕
3 · ξ

	
2 ) // 6M+3a

8 (CG3,CG4)← (DG1 · Y13 + DG2 · Y21,DG1 · Y23 − DG2 · Y13) // 4M+2a

9 xiD← Z2
2 − Z1 · Z3 // 1M+1S+1a

10 E← ξR1 · ((f3 · Z3 + f2 · Z2 + f1 · Z1) · Z2 + DG2
1) + ξR4 · xiD // 6M+1S+4a

11 E← E + Z3 · (Z3 · (f4 · ξR1 + ξR2 ) + Z2 · ξR3 ) // 4M+3a

12 xiFb1 ← E · ((Z1 · ξR2 − Z2 · ξR1 ) · CG3 − Z1 · ξR3 · CG4) // 6M+2a

13 xiFb0 ← E · (Z2 · ξR1 · CG4 − Z1 · ξR1 · CG3) // 5M+1a

14 Delta← DG1 ·
(
CG3 + 2ξ⊕1 · (DG1 · ξ	3 + DG2 · ξ	2 )

)
+ 2DG2

2 · ξ⊕1 · ξ
	
1 // 6M+1S+5a

15 F← −2xiD · ξR1 · Delta // 2M+2a

16 invxiF← 1/(F · ξR1 ) // 1M + 1I

17 invxi← F · invxiF // 1M

18 (aR1 , a
R
0 , b

R
1 , b

R
0 )← (−invxi · ξR2 , invxi · ξR3 , invxiF · xiFb1, invxiF · xiFb0) // 4M+1a

19 return 〈x2 + aR1 x+ aR0 , b
R
1 x+ bR0 〉



a scalar multiplication routine (that, if special, can be detected and rejected),
and R is a secret multiple of P (that will be special with negligible probability).
For completeness, we note that if either or both of P or R is special, then we can
still use Algorithm 2 by translating the input points by a well-chosen 2-torsion
point, and updating the output appropriately by the same translation (we recall
that on the fast Kummer, all 16 of the two-torsion points are rational, which
gives us plenty of choice here). A fully-fledged implementation could be made
to run in constant-time (for all input and output points) by always performing
these translations and choosing the correct inputs and outputs using bitmasks.

Remark 4. Gaudry computes the preimages in JC for points in Kfast
C in [15,

§4.3]; but this method (which is analogous to computing (x, y) and (x,−y) on
an elliptic curve given x and y2 = x3 + ax + b) cannot tell us which of the two
preimages is the correct image for a given scalar multiplication on JC .

4 Uniform one-dimensional scalar multiplication

We are finally ready for scalar multiplication. Algorithm 3 lifts the Montgomery
ladder [22] pseudomultiplication (m,±P ) 7→ ±[m]P on Kfast

C to a full scalar
multiplication (m,P ) 7→ [m]P on JC , generalizing the methods of [20], [23],
and [4]. It is visibly uniform with respect to (fixed-length) m.

Algorithm 3: One-dimensional uniform scalar multiplication on JC via
Project, the Montgomery ladder, and Recover

Input: An integer m =
∑β−1
i=0 mi2

i ≥ 0, with mβ−1 6= 0; a point P ∈ JC(Fq) \ B
Output: [m]P
Cost: (7β + 115)M + (12β + 8)S + (12β + 4)mc + (32β + 79)a + 2I

1 ±P ← Project(P ) // 8M+1S+4mc+14a

2 xP← Wrap(±P ) // 7M+1I

3 (t1, t2)← (±P, xDBL(±P )) // 8S+8mc+16a

4 for i = β − 2 down to 0 do
5 (t1, t2)← SWAP(mi, (t1, t2))
6 (t1, t2)← xDBLADD(t1, t2, xP) // 7M+12S+12mc+32a

7 (t1, t2)← SWAP(mi, (t1, t2))

8 end
9 return Recover(P,±P, t1, t2) // 107M+11S+4mc+81a+1I

Theorem 1 (Project + Montgomery ladder + Recover). Let m > 0 be a
β-bit integer, and P a point in JC(Fq). Algorithm 3 computes [m]P using one
Project, one Wrap, one xDBL, β − 1 xDBLADDs, and one Recover; that is, in
(7β + 115)M + (12β + 8)S + (12β + 4)mc + (32β + 79)a + 2I.



Proof. Lines 3-7 are the Montgomery ladder; after each of the β−1 iterations we
have t1 = ±[bm/2ic]P and t2 = ±[bm/2ic+1]P , so (t1, t2) = (±[m]P,±[m+1]P )
at Line 8, and Recover(P,±P, t1, t2) = [m]P . ut

If the base point P is fixed then we can precompute Lines 1-3 in Algorithm 3,
thus saving 15M + 9S + 10mc + 30a + 1I in subsequent calls.

5 Uniform two-dimensional scalar multiplication

Algorithm 4 defines a uniform two-dimensional scalar multiplication for com-
puting [m]P ⊕ [n]Q, where P and Q (and P ⊕ Q and P 	 Q) are in JC \ B
and m =

∑β−1
i=0 mi2

i and n =
∑β−1
i=0 ni2

i are β-bit scalars (with mβ−1 and/or
nβ−1 not zero). The inner pseudomultiplication on Kfast

C is based on Bernstein’s
binary differential addition chain [2, §4].10 It is visibly uniform with respect to
(fixed-length) multiscalars (m,n); while this is unnecessary for signature verifi-
cation, where multiscalars are public, it is useful for GLV-style endomorphism-
accelerated scalar multiplication with secret scalars.

Recall the definition of Bernstein’s chain: for each pair of non-negative inte-
gers (A,B), we have two differential chains C0(A,B) and C1(A,B) with

C0(0, 0) = C1(0, 0) := ((0, 0), (1, 0), (0, 1), (1,−1)) ,

and then defined mutually recursively for A 6= 0 and/or B 6= 0 by

CD(A,B) := Cd(bA/2c, bB/2c) || (O,E,M)

where || is concatenation, d = (D+ 1)(A−bA/2c+ 1) +D(B−bB/2c) (mod 2),
and O, E, and M (the “odd”, “even”, and “mixed” pairs) are

O := (A+ (A+ 1 mod 2), B + (B + 1 mod 2)) , (7)

E := (A+ (A+ 0 mod 2), B + (B + 0 mod 2)) , (8)

M := (A+ (A+D mod 2), B + (B +D + 1 mod 2)) . (9)

By definition, (O,E,M) contains three of the four pairs (A,B), (A + 1, B),
(A,B + 1), and (A+ 1, B + 1); the missing pair is (A+ (A+D+ 1 mod 2), B +
(B +D mod 2)). The differences M −O, M −E, and O−E depend only on D
and the parities of A and B, as shown in Table 2.

Theorem 2 (Project + Bernstein’s binary chain + Recover). Let P
and Q be in JC(Fq); let m and n be positive integers, with β the bitlength of
max(m,n). Algorithm 4 computes [m]P⊕[n]Q using one JacADD, three Projects,
one Wrap4, one xADD∗, β − 1 xADDs, β xDBLADDs, and one Recover; that is,
(14β + 203)M + (20β + 16)S + (16β + 16)mc + (56β + 138)a + 3I.

10 The elliptic curve x-line version of this pseudomultiplication was used in [12].



Table 2. The differences between M , O, and E as functions of D and A,B (mod 2).

A (mod 2) B (mod 2) O − E M −O M − E
0 0 (1, 1) (D − 1,−D) (D, 1−D)
0 1 (1,−1) (D − 1, D) (D,D − 1)
1 0 (−1, 1) (1−D,−D) (−D, 1−D)
1 1 (−1,−1) (1−D,D) (−D,D − 1)

Algorithm 4: Two-dimensional uniform scalar multiplication on JC via
Project, Bernstein’s two-dimensional “binary” differential addition chain,
and Recover.

Input: m =
∑β−1
i=0 mi2

i and n =
∑β−1
i=0 ni2

i with mβ−1nβ−1 6= 0;
P,Q ∈ JC(Fq) \ B such that P ⊕Q /∈ B and P 	Q /∈ B

Output: [m]P ⊕ [n]Q
Cost: (14β + 203)M + (20β + 16)S + (16β + 16)mc + (56β + 138)a + 3I

1 S ← JacADD(P,Q) // 28M+2S+35a+1I

2 (±P,±Q,±S)← (Project(P ), Project(Q), Project(S)) // 24M+3S+12mc+42a

3 ±D ← xADD∗(±P,±Q,±S) // 14M+8S+4mc+24a

4 (xP, xQ, xS, xD)← Wrap4(±P,±Q,±S,±D) // 37M+1I

5 d0 ← m0

6 for i← 1 up to β − 1 do di ← di−1 + (di−1 + 1)(mi−1 +mi) + di−1(ni−1 + ni)
7 U0 ← SELECT(nβ−1, (xP, xQ))
8 U1 ← SELECT(mβ−1nβ−1, (U0, xS))
9 (U2,U3)← SWAP(dβ−1, (xP, xQ))

10 (U4,U5)← SELECT(dβ−1(mβ−1 + nβ−1) +mβ−1 + 1, ((xP,U3), (xQ, xD)))
11 (U6,U7)← SELECT(mβ−1(nβ−1 + 1), ((xS,U2), (U4, xS)))
12 (Eβ−1,U8)← xDBLADD(U1,U7,U5) // 7M+12S+12mc+32a

13 (Oβ−1,Mβ−1)← SWAP(dβ−1(mβ−1 + nβ−1) +mβ−1 + 1, (U6,U8))
14 for i← β − 2 down to 0 do
15 Oi ← xADD(Oi+1,Ei+1, SELECT(mi + ni, (xS, xD))) // 7M+8S+4mc+24a

16 V0 ← SELECT((di + 1)(mi+1 +mi) + di(ni+1 + ni), (Oi+1,Ei+1))
17 (V1,V2)← SWAP(mi +mi+1 + ni + ni+1, (V0,Mi+1)))
18 (Ei,Mi)← xDBLADD(V1,V2, SELECT(di, (xP, xQ))) // 7M+12S+12mc+32a

19 end
20 (W0,W1)← SWAP(m0, (O0,E0))
21 (W2,W3,W4,W5)← SELECT(m0 + n0, ((S, xS,W0,W1), (P, xP,M0,W0)))
22 return Recover(W2,W3,W4,W5) // 107M+11S+4mc+81a+1I



Table 3. The state of Algorithm 4 after the main loop.

(m0, n0) O0 E0 M0 if d0 = 0 M0 if d0 = 1 R = [m]P ⊕ [n]Q

(0, 0) ±(R⊕ S) ±R ±(R⊕Q) ±(R⊕ P ) Recover(S,±S,E0, O0)
(0, 1) ±(R⊕ P ) ±(R⊕Q) ±R ±(R⊕ S) Recover(P,±P,M0, O0)
(1, 0) ±(R⊕Q) ±(R⊕ P ) ±(R⊕ S) ±R Recover(P,±P,M0, E0)
(1, 1) ±R ±(R⊕ S) ±(R⊕ P ) ±(R⊕ S) Recover(S,±S,O0, E0)

Proof. Consider Cm0(m,n) = C0(0, 0)||(Oβ−1, Eβ−1,Mβ−1)|| · · · ||(O0, E0,M0).
It follows from (7), (8), and (9) that (m,n) is one of O0, E0, or M0 (and parity
tells us which one). On the other hand, we have

Cdi(bm/2ic, bn/2ic) = Cdi+1(bm/2i+1c, bn/2i+1c) || (Oi, Ei,Mi) (10)

for 0 ≤ i ≤ β − 2, where the bits di are defined by d0 = m0 and di := di−1 +
(di−1 + 1)(mi−1 +mi) + di−1(ni−1 + ni) for i > 0. The definition of the chains,
Table 2, and considerations of parity yield the following relations which allow us
to construct each triple (Oi, Ei,Mi) from its antecedent (Oi+1, Ei+1,Mi+1):

1. Oi = Oi+1 + Ei+1, with Oi+1 − Ei+1 = ±(1, 1) if mi = ni and ±(1,−1) if
mi 6= ni.

2. Ei = 2Ei+1 if (mi, ni) = (mi+1, ni+1); or 2Oi+1 if mi+1 6= mi and ni+1 6= ni;
or 2Mi+1 otherwise.

3. If di = 0 then Mi = Mi+1 + X, where X = Ei+1 if mi+1 = mi, or Oi+1 if
mi+1 6= mi; and Mi+1 −X = ±(0, 1).

4. If di = 1 then Mi = Mi+1 + X, where X = Ei+1 if ni+1 6= ni, or Oi+1 if
ni+1 = ni; and Mi+1 −X = ±(1, 0).

We can therefore compute ±R = ±([m]P ⊕ [n]Q) by mapping each pair (a, b)
in Cm0(m,n) to ±([a]P ⊕ [b]Q). Lines 1–4 (pre)compute the required difference
points ±P , ±Q, ±S = ±(P ⊕Q), and ±D = ±(P 	Q). Lines 5–6 compute all
of the di. After initializing the first nontrivial segment (Oβ−1, Eβ−1,Mβ−1) in
Lines 7–13, the main loop (Lines 14–18) derives the following segments using the
rules above. Table 3 gives the state of the final segment (O0, E0,M0) immediately
after the loop. In each case, we can recover [m]P⊕[n]Q using the call to Recover

specified by the corresponding row, as is done in Lines 19–21. ut

If the points P and Q are fixed then we can precompute Lines 1-4 in Algo-
rithm 4, thus saving 103M + 13S + 16mc + 101a + 2I in subsequent calls.

Remark 5. There are faster two-dimensional differential addition chains that are
non-uniform, such as Montgomery’s PRAC algorithm [27, Ch. 3], which might
be preferred in scenarios where the multiscalars are not secret (such as signa-
ture verification). However, PRAC is not well-suited to our recovery technique,
because its outputs do not “differ” by an element with known preimage in JC .
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A Fast Kummer arithmetic

We recall the formulæ for operations on fast Kummers from [15, §3.2]. To simplify
the presentation of our algorithms, we define three operations on points in P3

(or more precisely, on 4-tuples of elements of Fq). First, M : P3 × P3 → P3

multiplies the corresponding coordinates of a pair of points:

M : ((x1 : y1 : z1 : t1), (x2 : y2 : z2 : t2)) 7−→ (x1x2 : y1y2 : z1z2 : t1t2) ,

costing 4M. The special case (x1 : y1 : z1 : t1) = (x2 : y2 : z2 : t2) is denoted by

S : (x : y : z : t) 7−→ (x2 : y2 : z2 : t2) ,

costing 4S. Finally, the Hadamard transform11 is defined by

H : (x : y : z : t) 7−→ (x′ : y′ : z′ : t′) where


x′ = x+ y + z + t ,
y′ = x+ y − z − t ,
z′ = x− y + z − t ,
t′ = x− y − z + t .

The Hadamard transform can easily be implemented with 8a.
The basic (unoptimized) pseudo-addition operation is xADD∗ (Algorithm 5).

The pseudo-doubling operation is xDBL (Algorithm 6).

Algorithm 5: xADD∗: Differential addition on Kfast
C .

Input: (±P,±Q, (x	 : y	 : z	 : t	) = ±(P 	Q)) for some P,Q in JC(Fq) with
P 	Q /∈ B.

Output: ±(P ⊕Q) ∈ Kfast
C .

Cost: 14M + 8S + 4mc + 24a
1 (V1,V2)← (H(S(±P )),H(S(±Q))) // 8S+16a

2 V3 ←M(V1,V2) // 4M

3 V4 ← H(M(V3, (1/A : 1/B, 1/C, 1/D)) // 4mc+8a

4 (C1,C2)← (x	 · y	, z	 · t	) // 2M

5 returnM(V4, (y	 · C2, x	 · C2, t	 · C1, z	 · C1)) // 8M

Lines 4 and 5 of Algorithm 5 compute the point (y	z	t	 : x	z	t	 : x	y	t	 :
x	y	z	), which is projectively equivalent to (1/x	 : 1/y	 : 1/z	 : 1/t	), but
requires no inversions (note that this is generally not a point on KC). This is the
only point in our pseudoarithmetic where the third argument (x	 : y	 : z	 : t	)
appears. In practice, the pseudoadditions used in our scalar multiplication all
use a fixed third argument, so it makes sense to precompute this “inverted”
point and to scale it by x	 so that the first coordinate is 1, thus saving 7M in
each subsequent pseudo-addition for a one-off cost of 1I. The resulting data can

11 Note (A : B : C : D) = H((a : b : c : d)); dually, (a : b : c : d) = H((A : B : C : D)).



Algorithm 6: xDBL: Pseudo-doubling on Kfast
C .

Input: ±P in Kfast
C for P in JC(Fq).

Output: ±[2]P
Cost: 8S + 8mc + 16a

1 V1 ← H(S(±P )) // 4S+8a

2 V2 ← S(V1) // 4S

3 V3 ← H(M(V2, (1/A : 1/B : 1/C : 1/D))) // 4mc+8a

4 returnM(V4, (1/a : 1/b : 1/c : 1/d)) // 4mc

be stored as the 3-tuple (x	/y	, x	/z	, x	/t	), ignoring the trivial first coor-
dinate: this is the wrapped form of ±(P 	Q). The function Wrap (Algorithm 7)
applies this transformation; we also include Wrap4 (Algorithm 8), which simul-
taneously Wraps four points using a single shared inversion.

Algorithm 7: Wrap: (x : y : z : t) 7→ (x/y, x/z, x/t).

Input: (xP : yP : zP : tP ) = ±P for P in JC(Fq) \ B
Output: (x/y, x/z, x/t) ∈ F3

q.
Cost: 7M + 1I

1 V1 ← y · z // 1M

2 V2 ← x/(V1 · t) // 2M+1I

3 V3 ← V2 · t // 1M

4 return (V3 · z,V3 · y,V1 · V2) // 3M

We can now define xADD (Algorithm 9), an optimized pseudo-addition using
a Wrapped third argument, and xDBLADD (Algorithm 10), which is an optimized
combined pseudo-doubling-and-addition.



Algorithm 8: Wrap4: four simultaneous Kummer point wrappings

Input: (±P,±Q,±S,±D) for P,Q, S,D in JC(Fq) \ B
Output: Wrap(±P ), Wrap(±Q), Wrap(±S), Wrap(±D)
Cost: 37M + 1I

1 (c1, c2, c3, c4)← (yP · zP , yQ · zQ, yS · zS , yD · zD) // 4M

2 (f1, f2, f3, f4)← (c1 · tP , c2 · tQ, c3 · tS , c4 · tD) // 4M

3 (g1, g2)← (f1 · f2, f3 · f4) // 2M

4 I← 1/(g1 · g2) // 1M+1I

5 (h1, h2)← (g1 · I, g2 · I) // 2M

6 (e1, e2, e3, e4)← (xP · f2 · h2, xQ · f1 · h2, xS · f4 · h1, xD · f3 · h1) // 8M

7 (r1, r2, r3, r4)← (e1 · tP , e2 · tQ, e3 · tS , e4 · tD) // 4M

8 return (r1 · zP , r1 · yP , c1 · e1), (r2 · zQ, r2 · yQ, c2 · e2), (r3 · zS , r3 · yS , c3 · e3),

(r4 · zD, r4 · yD, c4 · e4) // 12M

Algorithm 9: xADD: Differential addition on Kfast
C with wrapped difference.

Input: (±P,±Q, (x	/y	, x	/z	, x	/t	) = Wrap(±(P 	Q))) for P , Q in
JC(Fq) with P 	Q /∈ B

Output: ±(P ⊕Q) ∈ Kfast
C .

Cost: 7M + 8S + 4mc + 24a
1 (V1,V2)← (H(S(±P )),H(S(±Q))) // 8S+16a

2 V3 ←M(V1,V2) // 4M

3 V4 ← H(M(V3, (1/A : 1/B, 1/C, 1/D)) // 4mc+8a

4 returnM(V4, (1 : x	/y	, x	/z	, x	/t	)) // 3M

Algorithm 10: xDBLADD: Combined differential double-and-add on Kfast
C .

Input: (±P,±Q, (x	/y	, x	/z	, x	/t	) = Wrap(±(P 	Q))) for P , Q in
JC(Fq) with P 	Q /∈ B.

Output: (±[2]P,±(P ⊕Q))
Cost: 7M + 12S + 12mc + 32a

1 (V1,V2)← (H(S(±P )),H(S(±Q))) // 8S + 16a
2 (V1,V2)← (S(V1),M(V1,V2)) // 4M + 4S
3 (V1,V2)←

(
M(V1, (

1
A

: 1
B

: 1
C

: 1
D

)),M(V2, (
1
A

: 1
B

: 1
C

: 1
D

))
)

// 8mc
4 (V1,V2)← (H(V1),H(V2)) // 16a
5 return (M(V1, (

1
a

: 1
b

: 1
c

: 1
d
)),M(V2, (1 :

x	
y	

:
x	
y	

:
x	
t	

))) // 3M + 4mc



B Constant-time conditional swaps and selects

Our algorithms are designed to be a basis for uniform and constant-time imple-
mentations. As such, to avoid branching, we require constant-time conditional
swap and selection routines. These are standard techniques, and can be imple-
mented in many ways; Algorithms 11 and 12 give example pseudocode as an
illustration of these techniques.

Algorithm 11: SWAP: Constant-time conditional swap.

Input: b ∈ {0, 1} and a pair (X0, X1) of objects encoded as n-bit strings
Output: (Xb, X1−b)

1 b← (b, . . . , b)n
2 V← b and (X0 xor X1) // bitwise and, xor; do not short-circuit and

3 return (X0 xor V, X1 xor V)

Algorithm 12: SELECT: Constant-time conditional selection.

Input: b ∈ {0, 1} and a pair (X0, X1) of objects encoded as n-bit strings
Output: Xb

1 b← (b, . . . , b)n
2 V← b and (X0 xor X1) // bitwise and, xor; do not short-circuit and

3 return X0 xor V


	 Fast, uniform scalar multiplication  for genus 2 Jacobians with fast Kummers 

