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Abstract

We construct efficient protocols for several tasks related to private matching of
k-mers (sets of k length strings). These are based upon the evaluation of functionalities
in the levelled homomorphic encryption scheme YASHE which supports addition and
multiplication as SIMD operations. We analyse the correctness and security properties
of these protocols as well their resource costs in terms of the underlying task parameters.

While personal genome sequencing projects have opened up many exciting possibilities,
significant challenges are posed in reconciling the conflicting goals of broad accessiblity to
diverse genomic data sets and the need for privacy. Dystopic threats from unfettered access
to genomic data range from genetic prescreening to government surveillance of dissidents
by the amassing of individuals’ genomic profiles in rogue DNA databases [SBLK08]. While
legislation is in place to protect against discrimination on genetic grounds for health insurance
and employability, for example the Health Insurance Portability and Accountability Act
(HIPAA) and Genetic Information Nondiscrimination Act (GINA) in the United States, in
other contexts breaches of privacy are known to occur [HAHT13].

At first glance it may seem that protection of individuals’ genomic data should be similar
to that of any other personally identifiable information such as social security and medicare
numbers, in reality the former poses many more complex and nuanced challenges that the
latter does not. The problem is two-fold: firstly genomic information can find itself exploited
in myriad contexts beyond the purpose for which it was originally collected and secondly
exposure of genomic information poses a much more enduring risk to the individual than
other forms of identifiable material.

Considering the first issue, researchers have consistently demonstrated [SAW13, Mal06]
the feasibility of linking real-world identities to the supposedly deidentified profiles present
in projects such as the Personal Genome Project [PGP] and HapMap [HP]. While in this
case the attacks exploited non-genomic information such as demographic attributes and
familial relationships, attacks exploiting the uniqueness of genomic information also exist.
Malin and Sweeney [MS00] have showed that phenotypic information (gender, hair colour
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etc.) may be extracted from DNA databases such as those publically available on the
internet or those compiled for clinical and research purposes, while Gymrek et al. [GMG+13]
demonstrated the possibility of recovering surnames by profiling short tandem repeats on
the Y chromosome and querying recreational genealogy databases. Furthermore Homer et
al. [HSR+08] show how to determine an individual’s presence in a case or control group from
aggregate allele frequencies such as those found in Genome Wide Association Studies (GWAS).
Even publishing aggregate statistics such as p-values and coefficients of determination can
serve to identify DNA markers unique to an individual [WLW+09]. Evidencing the second
problem, genomic information via a phenomenon called linkage disequilibrium has been used
to infer SNPs1 of relatives [HAHT13] as well as predict genetic risk for disease even when
the genomic region surrounding the associated transcript has been redacted [NYV09].

Homomorphic Encryption to the Rescue

Homomorphic encryption is a powerful new tool that promises to eliminate privacy leaks asso-
ciated with the disclosure and manipulation of individuals’ genomes. The concept resembles
that of computing blind-folded by enciphering data while still permitting computational op-
erations. While initial constructions [Gen09] were prohibitively expensive, recently numerous
schemes [BGV12, GHS12, LTV12, SS11, FV12, BLLN13] have come to light that promise
to enable general purpose computing on encrypted information. A key feature of these
schemes has been the adoption of encryption routines that permit a pre-specified number
of levels of computation, called levelled homomorphic encryption. This design trick avoids
bootstrapping [Gen09] a procedure which enables “refreshing” of a ciphertext to enable an
unlimited number of operations, but is typically too expensive to perform frequently.

Another trend in recent years has been the construction of efficient maps supporting batch
encryption of plaintext data with corresponding homomorphic single instruction multiple
data (SIMD) operations. The availability of simple generic SIMD routines for computing
on encrypted data promises to make homomorphic encryption an integral part of privacy
preserving computing, much like the existence of such routines in hardware for parallel
computing has already become the mainstay of computer graphics and high performance
scientific computing communities.

Privately Mining Genomes

While previous works on homomorphic computation for genomic computations have typically
focused on the representation of genotype as a list of deltas from a reference genome, such
as one found in a variation call format (VCF) file, in this work we adopt a fundamentally
different representation. The format we use is that of raw k-mers of nucleotides, i.e., all
DNA subsequences of length k from a DNA sequence. This representation is particularly
useful for representing short reads produced by next generation sequencing technologies and

1Single Nucleotide Polymorphisms
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can capture more complex structural variations than SNPs alone [BGWZ16]. The particular
tasks that we compute privately are discussed in more detail in the contributions section.

Offline/Online Computation

A particularly convenient feature of homomorphic encryption is the ability to enable trusted
computing by untrusted parties. As a particular example, a computationally weak client, such
as a smart phone, can via homorphic encryption, securely delegate a computation to a public
cloud platform such as Microsoft Azure or Amazon AWS, which by its distributed nature,
may not necessarily be trustworthy. For our purposes, we envisage a client as a patient
who wishes to receive a diagnosis based upon a set of raw k-mers of their DNA provided by
a genomic sequencing service. Such a client generates a public key under a homomorphic
encryption scheme and then publishes online encryptions of all k-mers under this key to a
diagnostic service (provider), for example a pathology lab or hospital. The provider having
received all necessary input is then able to compute homomorphically offline and return the
result, still in encrypted form, to the patient. The patient uses their secret key to decrypt
the ciphertext, yielding the diagnosis. The provider, on the other hand, learns nothing about
either the diagnosis nor the input used to determine it.

Related Works

Prior work on Private Genomic Computation Kim et al. [KL15] showed how to
privately compute minor allele frequencies and a chi-squared test on case and control groups
in Genome-Wide Associate Studies. Additionally they showed how to privately compute
the Hamming distance and approximate Edit distance between two encrypted genome
sequences encoded from VCF files. Cheon et al. [CKL15] showed how to compute exact edit
distance on homomorphically encrypted data. Yasuda et al. [YSK+13] described a packing
method for efficiently computing multiple Hamming distance values on encrypted data.
Ayday et al. [ARM+13] privately computed genetic risk for disease using the Damg̊ard-Jurik
cryptosystem.

Prior work on Homomorphic Evaluation of Circuits Gentry et al. [GHS12] were
the first to apply homomorphic encryption to evaluating a block cipher. In their original
implementation, they showed that the full AES circuit could be evaluated in a practical
amount of time, while subsequent optimizations have yielded substantially better results.
Since then several works have shown how to evaluate AES and other block ciphers in other
levelled homomorphic encryption schemes. Lepoint et al. [LN14] show to evaluate SIMON-
64/128 using the Fan-Vercauteren [FV12] and YASHE [BLLN13] cryptosystems, as well
as how to choose securely choose parameters for their implementations. Alperin-Sheriff
et al. [AP14] show how to circumvent evaluation of the boot-strapping circuit as a long
branching program, by replacing decryption with a simple arithmetic circuit over a large
modulus q. A key feature of their construction is the computation of addition over the cyclic
group Zq as multiplication of q × q permutation matrices. This idea is a core concept in
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the efficient homomorphic computation and comparison of Hamming weights in our third
protocol.

Our Contributions

We consider several tasks related to private matching of k-mers using the levelled homomorphic
scheme YASHE. These tasks are as follows:

• Set Intersection with labelling Here a patient (client) holds a set of k-mers X,
while the provider (server) holds a set of k-mers Y . Associated with each k-mer in the
provider set is a label holding diagnostic information. The problem is for the patient to
learn the labels associated with the k-mers in the mutual intersection of the two sets.

• Fuzzy Matching with labelling The client holds a set of k-mers X, while the
provider holds a set of k-mers Y . There is a label associated with each k-mer in the
provider set. The problem is for the patient to learn the labels associated with the
k-mers in the provider set which are at most some fixed Hamming distance D from
those k-mers in the patient set.

• Minimum Matching The client holds a k-mer x, while the server holds a set of k-mers
Y . The problem is for the client to learn the k-mer in Y with minimum Hamming
distance from x.

For the first task, we construct simple low-depth circuits based upon adapation of protocols
for private set intersection by Freedman et al. [FNP04] and Kissner and Song [KS05]
respectively. The latter protocol requires only a sublinear number of client SIMD operations.
For the second task we describe a novel circuit computing the underlying functionality based
upon an equivalence between Hamming distance and the component-wise sum over the
integers of the cylic shifts of the xor-sum of the inputs. This circuit is low-depth (depth
two in fact), and is amenable to homomorphic SIMD operations, requiring only O(k) SIMD
sums, differences and multiplications. For the final task we describe an efficient circuit
based upon the addition of Hamming weights by permutation matrices and a binary tree
search with a custom comparison operation. All of the circuits above are, via homomorphic
encryption, ported to the two-party private function evaluation context. The evaluation of
the corresponding circuits yields simple and efficient protocols for these functionalities which,
with suitable de-randomization techniques [FNP04] can be made secure against malicious
adversaries. The use of an arbitrary labelling function for the first two tasks allows significant
flexibility in accommodating distinct but related tasks. For example substituting diagnostic
labels with actual k-mers, yields protocols for private set intersection and private fuzzy
matching respectively. We analyse the security and correctness properties as well as the
resource consumption of these protocols when evaluated in the levelled homomorphic scheme
YASHE [BLLN13].
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1 Preliminaries

We first survey the necessary background to work with the levelled homomorphic scheme
YASHE [BLLN13] as well as the coding theory background required to understand our second
and third protocols on fuzzy matching with labelling and minimum matching.

Cryptography [BLLN13]

Let R be the cyclotomic ring Z[X]/(Φd(x)) for d a positive integer. The degree of Φd is
n = φ(d), where φ is Euler’s totient function. The elements of R can be uniquely represented
by all polynomials in Z[X] of degree at most n − 1. An arbitrary element a ∈ R can be
written as a =

∑n−1
i=0 aiX

i with ai ∈ Z and we identify a with its vector of coefficients
(a0, a1, . . . , an−1). Thus a can be viewed as an element of real vector space Rn. The maximum
norm on Rn is used to the measure the size of elements in R. The maximum norm of a is
defined as |a|∞ = maxi{|ai|}. Let χ be a probability distribution on R. Assume an efficient
sampler for elements of R according to χ and use the notation a← χ to denote that a ∈ R
is sampled from χ. The distribution χ on R is called B-bounded from some B > 0 if for
all a← χ we have ‖a‖∞ < B, i.e., a is B-bounded. As an example, let DZ,σ be the discrete
Gaussian over the integers with mean 0 and standard deviation σ, which assigns a probability
proportional exp(−π|x|2/σ2) to each x ∈ Z. When d is a power of 2, whence Φd(X) = Xn+1,
we can take χ to be the spherical discrete Gaussian χ = DZn,σ where each coefficient of the
polynomial is sample according to the one-dimensional distribution DZ,σ.

In addition to the ring R we require the ring Rq which is simply the set of polynomials
R taken modulo q. We denote the map that reduces an integer x modulo q and uniquely
represents the result by an element in the interval (−q/2, q/2] by [·]q. We extend this map
to polynomials in Z[X] and thus also to elements of R by applying it to their coefficients
separately, i.e., [·]q : R ← R, a =

∑n−1
i=0 aiX

i 7→
∑n−1

i=0 [ai]qX
i. Furthermore we extend this

notation to vectors of polynomials by applying to the entries of the vectors separately. A
polynomial f ∈ R is invertible modulo q if there exists a polynomial f−1 ∈ R such that
ff−1 = f̃ , where f̃(X) =

∑
i aiX

i with a0 = 1 (mod q) and aj = 0 (mod q) for all j 6= 0.
In addition to the modulus q that is used to reduce the coefficients of the elements that
represent ciphertexts, there is a second modulus t < q that determines the message space
Rt = R/tR. Let Berr be the bound on the support of the truncated Gaussian, χerr, from
which noise is sampled.

Coding Theory

For two strings x and y over an alphabet Σ, we denote the Hamming distance of x and
y by ∆Σ(x, y). In the case that Σ = {0, 1}, we drop the subscript and simply denote the
distance by ∆(x, y). The Hamming weight of a binary string x is the number of ones in x, or
equivalently ∆(x, 0n), we denote this quantity by Hamm-weight(x). The Hamming ball of
radius D around a string x is defined as {y : ∆Σ(x, y) < D} and is denoted BΣ(x,D). For a
set X, by abuse of notation we define BΣ(X,D) = ∪x∈XBΣ(x,D).
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Levelled Homomorphic Encryption

We recall the more practical variant of the levelled homomorphic encryption scheme YASHE [BLLN13].
Fix a word size w. Then, an element x ∈ R with coefficients in (−q/2, q/2] can be written

as
∑`w,q−2

i=0 [xi]ww
i where [xi]w ∈ (−w/2, w/2] and `w,q = blogw(q)c+ 2. The scheme follows.

• ParamsGen(λ) : Given the security parameter λ, fix a positive integer d that deter-
mines R, moduli q and t with 1 < t < q, and distributions χkey, χerr on R. Output
(d, q, t, χkey, χerr).
• Keygen(d, q, t, χkey, χerr) : Sample f ′, g ← χkey and let f = [tf ′ + 1]q. If f is not

invertible modulo q, choose a new f ′. Compute the inverse f−1 ∈ R of f modulo q and
set h = [tgf−1]q. Output (pk, sk) = (h, f).
• Enc(h,m) : For message m+ tR, sample s, e← χerr and output ciphertext [bq/tc][m]t +
e+ hs]q ∈ R.
• Enc∗(h,m) : For message m+ tR, output ciphertext [bq/tc][m]t]q ∈ R.
• Dec(f s, c): To decrypt ciphertext c, compute

[b t
q
· [f sc]qc]t ∈ R

• Add(c1, c2) : Output [c1 + c2]q.
• Mult(c1, c2) : Output the ciphertext c̃mult = [b t

q
c1c2c]q

For ciphertexts c1, c2 ∈ R that encrypt m1,m2 ∈ R, the ciphertext c̃mult during homomor-
phic multiplication satisfies f 2 = c̃mult = ∆[m1m2]t + ṽmult mod q, this implies that c̃mult is
an encryption of [m1m2]t under f 2.

Batch representation In the case that q ≡ 1 (mod t) and t ≡ 1 (mod 2n), for prime t,
the Chinese remainder theorem yields

Zt[X]

(Xn + 1)
∼=

n∏
i=1

Zt[X]

(Qi(X))
(mod t)

where Qi(X) are linear polynomials. This yields an efficient map which takes n elements
from the right hand side and produces a single plaintext polynomial. We denote this map by
CRT.

Selecting Parameters Let λ be the security parameter. Let q be the coefficient modulus,
i.e., the modulus used to reduce the coefficients of ciphertexts. Let χkey be the uniform
distribution of length 2n strings over {−1, 0, 1} and let χerr be the discrete Gaussian DZ,σ

with maximal deviation from the mean Berr, where Berr > σ
√
λ. In that case the following

bounds hold with 1− negl(λ) probability, (see Appendix K [BLLN13] and the refinements in
Appendix A [DGBL+15]). In all cases let v1 and v2 be the inherent noise [BLLN13, DGBL+15]
associated with input ciphertexts c1 and c2 and let v be the inherent noise associated with
the output c produced by the respective homomorphic operation.
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• Encryption: ‖v‖∞ < 2tn1/2Berr

• Addition: ‖v‖∞ < ‖v1‖∞ + ‖v2‖∞ + t
• Multiplication without relinearization: ‖v‖∞ < t2

2
n3/2(‖v1‖∞ + ‖v2‖∞)

• Addition by plain: ‖v‖∞
• Multiplication by plain:

√
deg(p) + 1‖v‖∞‖p‖∞

• Negation: ‖v‖∞

These bounds are used to determine correctness, while semantic security of the scheme
follows from the following assumptions [Reg05, LTV12] after taking an appropriately large
coefficient modulus q, relative to the lattice dimension n.

Definition 1 (Decision-RLWE Assumption). Given security parameter λ, let d and q be
integers depending on λ, R = Z[X]/(Φd(X)) and Rq = R/qR. Given a distribution χ
over Rq that depends on λ, the Decision-RLWEd,q,χ problem is to distinguish the following
two distributions. The first distribution consists of pairs (a, u), where a, u← Rq are drawn
uniformly at random from Rq. The second distribution consists of pairs of the form (a, a·s+e).
The element s ← Rq is drawn uniformly at random and is fixed for all samples. For each
sample a← Rq is drawn uniformly at random and e← χ. The Decision-RLWEd,q,χ assumption
is that the Decision-RLWEd,q,χ problem is hard.

Definition 2 (Decision-SPR Assumption). For security parameter λ, let d and q be integers,
R = Z[X]/(Φd(X)), Rq = R/qR and χ be a distribution over Rq, all depending on λ. Let
t ∈ R×q be invertible in Rq, yi ∈ Rq and zi = −yit−1 mod q for i ∈ {1, 2}. The Decision-
SPRd,q,χ problem is to distinguish elements of the form h = a/b where a← y1 + t · χz1 , b←
y2 + t · χz2 from uniformly random elements of Rq. The Decision-SPRd,q,χ assumption is that
the Decision-SPRd,q,χ problem is hard.

2 Problems

We consider three tasks involving private matching of k-mers held by a consumer (client) and
k-mers held by a provider (server). In all cases, the threat model we consider in the main body
of our work is that of static semi-honest adversaries, while modifications to achieve security
against malicious adversaries are detailed in the Appendix. We assume that the cardinalities
of the client set and server set may be shared and are effectively public information. We use
the notation of Hazay and Lindell [HL10] to describe the two-party ideal functionality in each
scenario. For our purposes a k-mer is a string of length k over the alphabet Σ = {A,C,G, T}.

Scenario 1 The client holds a set of k-mers X, while the server holds a set of k-mers
Y . Associated with each k-mer in the server set is a label holding diagnostic information,
this provided by a labelling function `(·). The problem is for the client to learn the labels
associated with the k-mers in common with the server set. Nothing else should be revealed
by the computation, in particular the server set and associated labels not in the intersection
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must remain private. Formally we wish to compute the functionality

(X, (Y, `(·)))→ (`(y) : y ∈ X ∩ Y, λ)

Scenario 2 As in Scenario 1, the client holds a set of k-mers X, while the server holds a set
of k-mers Y . In this case, however, exact-matching is not practicable, and a tolerance for error
must be allowed. We model this as matching those k-mers in the client set within Hamming
distance D of the server set, over the alphabet Σ. As in Scenario 1, there is a set of labels
associated with server k-mers, and the problem is for the client to learn the labels associated
with those k-mers in the server set for which a fuzzy match with the client set exists. As in
Scenario 1, the server set and associated labels must remain private. Additionally we assume
the threshold distance used may be provider specific and thus should also remain hidden.
Formally we wish to compute the functionality

(X, (Y, `(·), D))→ (`(y) : y ∈ BΣ(X,D), λ)

Scenario 3 In this task, the server holds a set of k-mers Y , while the client holds a single
k-mer x. The client wishes to compute a match between x and the server set Y , however
as in Scenario 2, exact matching is not possible. Therefore the problem is for the client to
compute the k-mer in Y with smallest Hamming distance from x. As in Scenarios 1 and 2,
the server set must remain private. Formally, we wish to compute the functionality

(x, Y )→ (arg min
y∈Y

∆Σ(x, y), λ)

These functionalities are designed for the specific genomics problems described in the
introduction, though the use of a generic labelling function in Scenarios 1 and 2 allows
significant flexibility in accommodating distinct but related tasks. As an example, if `(·) is
taken not to be a function providing diagnostic information, but instead to be the identity
function, one may compute functionalities corresponding to private intersection of X and Y ,
and the private intersection of X and Hamming ball around Y of radius D.

Representation

Two-bit-base In this representation we use exactly two bits to represent each nucleotide.
Therefore each k-mer is efficiently represented as 2k-bit string.

Indicator variable In this representation we use indicator variables to represent each
nucleotide, yielding four orthogonal bit strings. Therefore each k-mer is efficiently represented
as a 4k-bit string of Hamming weight k.

The first representation leads to a concise representation of consumer/provider sets as
sets of strings in {0, 1}2k. The latter is much more convenient for computing Hamming
distances, in particular the weight of two xor-ed k-mers in this representation is exactly twice
the corresponding Hamming distance over the alphabet Σ = {A,C,G, T}.
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A =


a0, · · · , a0

a1, · · · , a1
...,

... ,
...

a|X|−1, · · · , a|X|−1

B =


y0

1, · · · , y0
n

y1
1, · · · , y1

n
...,

... ,
...

y
|X|−1
1 , · · · , y

|X|−1
n


Figure 1: Matrices A and B used to evaluate client polynomial P (·) on a batch of server
plaintexts y1, . . . , yn.

3 Set Intersection

In this section, we describe an efficient scheme for set intersection using batched homomorphic
cryptography. We first describe a protocol for set membership, before showing how to adapt
this protocol to set intersection.

The starting point for our private set intersection protocol is that described in Section
4.1 [FNP04]. In this protocol the client computes a polynomial P which vanishes on their
input set. The coefficients of its polynomial, (a0, . . . , a|X|−1) are sent in encrypted form to the

server. The server then homomorphically computes
∑|X|−1

i=0 Enc(ai) n yi = Enc(P (y)). Let u
be a random scalar. Then Enc(P (y)) n u + Enc(y) is an encryption of y if y is an element
of X, otherwise a uniformly distributed element y′ otherwise. Our challenges are two-fold,
firstly we need to transform this protocol into one which operates on batches of set elements,
and secondly we have to accommodate the transference of labels as described in Scenario 1,
Section 2.

The first problem we solve as follows. Given the matrices A and B described in Figure 1,
the homomorphic row sum of the component wise product A ◦ B results in an encryption
of the vector P (y1), . . . , P (yn) for a chunk of n elements y1, . . . , yn ∈ Y . On the other hand,
this product is readily computed by SIMD multiplication of the corresponding rows of A and
B followed by |X| many SIMD sums. By looping over distinct chunks of n elements of Y at
a time, we can efficiently determine membership in X of every element in Y . To solve the
second problem, one may conveniently transfer a label ` rather than k-mer y, by computing
Enc(P (y)) n u+ `, where ` is contained in 2k bits and is therefore more than ample for this
problem. The SIMD form of this scales the vector of evaluations (P (yi)) with a vector of
randomizers followed by a translation by the vector of corresponding labels.

Protocol Description – Scenario 1

Using the two-bits-per base representation, we may assume that all k-mers can be embedded
into a plaintext modulus, t, greater than 22k. All algebraic operations take place modulo t.

The client begins by encoding their set as a polynomial P of degree |X| with coefficients
a0, . . . , a|X|−1. The client then generates a sequence of ciphertexts ct1, . . . , ct|X| where the ith

ciphertext is a batch encryption of (ai−1, . . . , ai−1). These ciphertexts are sent to the server.
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The server then splits their private set into a sequence of batches 1, . . . , I. For the
ith batch, y(i−n)+1, . . . , yin, the server generates plaintext polynomials (p

(j)
i )j∈[|X|] where p

(j)
i

encodes the sequence yj−1
(i−n)+1, . . . , y

j−1
in , i.e., (j − 1)th powers of k-mers in that batch. It also

a prepares a label vector p`i corresponding to the labels of k-mers in this batch, as well as a
randomizer vector pi.

For each i, the server computes
∑|X|

j=1 cti n p
(j)
i , which due to the SIMD properties of

encryption is equivalent to evaluating the client polynomial on this batch of k-mers. This
ciphertext is finally blinded with pi and translated by qi.

Set Intersection with Labelling I

procedure Set-Intersection-I(X, Y, `(·))
P1,P2 : I ← |Y |

n
, t← p≥22k

P1 :

Enumerate X as {x1, . . . , x|X|}
Construct P (·) =

∑|X|−1
i=0 aix

i such that P (xi) = 0 for i = 1, . . . , |X|.
for i← 1 to |X| do

ct′i ← Enc(CRT(ai−1, . . . , ai−1), pk)
end for
Send (ct′1, . . . , ct

′
|X|).

P2 :

Enumerate Y as {y1, . . . , y|Y |}
for i← 1 to I do

for j ← 1 to |X| do

p
(j)
i ← CRT(yj−1

(i−1)n+1, . . . , y
j−1
in )

end for
Pick ui1, . . . , uin ∈R Zt
pi ← CRT(ui1, . . . , uin)
qi ← CRT(`(y(i−1)n+1), . . . , `(yin))

cti ← (
∑|X|

j=1 ct
′
i n p

(j)
i ) n pi + qi

end for
Send (ct1, . . . , ctI).

end procedure

Correctness and Security

Lemma 1. The protocol Set-Intersection-I correctly computes set intersection with labelling
if 8 · |X| · 26k+3 · n3/2 ·Berr < q except with negl(λ) probability.
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Proof. Let nfresh be the noise in a fresh ciphertext. We have that cti is computed as a sum of
|X| terms, each with noise nfresh · t · n1/2, yielding noise |X| · nfresh · t · n1/2. This term then
incurs a final multiplicative factor of t · n1/2, yielding total noise 4 · |X| · t3 · n3/2 ·Berr. This
term is bounded by q

2
(minus a small term we may safely ignore), yielding the result.

Lemma 2. The protocol Set-Intersection-I achieves security against statically chosen semi-
honest adversaries if the Decision-LWE2n,q,χ and Decision-SPR2n,q,χ assumptions hold.

Proof. Simulator S proceeds as follows. Generate |X| random ciphertexts and forwards them

to P2. On receipt of the ciphertexts by P2, S generates |Y |
n

random ciphertexts and forwards
them to P1. By a hybrid argument for any PPT adversary A with advantage ε distinguishing
the real protocol from the simulation, we can construct a PPT adversary A′ with advantage at
least ε

|X|+|Y |/n in breaking either the Decision-LWE2n,q,χ assumption or the Decision-SPR2n,q,χ

assumption. Since |X| and |Y | are constants, the claim follows.

In Appendix A we describe a private set intersection scheme with quasi-linear complexity
based upon the multi-round protocol of Kissner and Song [KS05].

4 Fuzzy Matching

In this section, we describe an efficient scheme for matching the set of k-mers submitted by a
patient to that of a reference set provided by the lab when exact matching is not possible.

The difficulty in solving this problem is that a näıve solution based upon homomorphic
evaluation of the binary circuit computing fuzzy matching does not necessarily yield a very
efficient solution when translated to homomorphic computation. To see this, observe that
computing the Hamming distance between two 4k-bit strings requires O(log k) depth as a
binary circuit. Not only does this incur logarithmic overhead in homomorphic operations
but the circuit is not very amenable to SIMD arithmetic operations. To solve this problem
we consider augmenting a ciphertext corresponding to a set element x with encryptions of
every possible cyclic shift of x. A similar expansion was previously used [GG05, BMN+09]
in the context of cryptographic counters for preferential voting. Given this expanded
list, computing the Hamming distance homomorphically is possible using the observation∑4k

j=1(x
(j) ⊕ y(j)) = ∆(x, y)4k, where x(j) and y(j) correspond to x and y cyclically shifted

j positions respectively i.e., the component-wise sum over the integers of all cyclic shifts
of x and y xor-ed yields a vector containing 4k copies of ∆(x, y). Recall from Section 2,
that x and y are in indicator variable format, thus the binary Hamming distance ∆(x, y)
is twice the corresponding distance over the alphabet Σ = {A,C,G, T}. It follows that
Enc(

∑4k
j=1(x(j) ⊕ y(j)))− Enc(0, 2, . . . , 2(D − 1), 0, . . . , 0) is a ciphertext containing a zero iff

∆Σ(x, y) < D, thus one can transfer a label `y corresponding to y using the “affine” trick
on the ciphertext, described in the previous section. By batch encrypting cyclic shifts of
elements of X and homomorphically summing against the corresponding cyclic shifts of
an element y we get an efficient fuzzy membership protocol for y. Iterating over every
element in the server set thus yields an efficient fuzzy matching protocol. One wrinkle we
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have ignored in this description is what happens when a label `y does not fit in base field
provided by the plaintext modulus, which is typically small and therefore likely inadequate
for embedding of meaningful labels. We solve this problem by replacing the comparison
vector with (0, 2, . . . , 2(D − 1), 0, 2, . . .), i.e., repeating the target distance set sequentially
until all slots in the target ciphertext are filled. This enables us to cram n

D
zeroes into the

differenced ciphertext, thus with appropriate dissection of labels to fit individual slots – and
assuming n greater than k2, one can transfer a label of at least k bits.

Protocol Description – Scenario 2

Using indicator variable format, we may assume that all k-mers are represented by strings of
4k bits. To compute Hamming weights/distances in this representation we require a plaintext
modulus counting even values up to and including 2k.

The client first splits their k-mer set into a sequence of batches 1, . . . , I. Let n′ = n
4k

.

The ith batch of k-mers x(i−1)n′+1, . . . , xin′ is encoded as a ciphertext ct
(1)
i as well as all the

sequences of k-mers shifted j positions, x
(j)
(i−1)n′+1, . . . , x

(j)
in′+1 : j ∈ [4k], which are encoded in

ct
(2)
i , . . . , ct

(4k)
i . These ciphertexts are sent to the server.

For each k-mer y in their set, the server will perform the following operations. The
server generates palintext polynomials (p

(j)
y )j∈[4k] encoding the jth shift of y duplicated n′

times. The server generates a target vector containing the set of possible Hamming distances
{0, 2, . . . , 2(D − 1)} duplicated to fill up all n slots in the ciphertext. The server generates
label vector `y and randomizer vector pi.

For the ith batch of received ciphertexts, the server computes
∑4k

j=1(ct
(j)
i − p

(j)
y )2 this

computes a vector containing ∆(x(i−1)n′+1, y)4k‖ . . . ‖∆(xin′+1, y)4k. The target vector is
subtracted and the result then blinded with pi and then as usual, translated by p`y .

Fuzzy Matching with Labelling

procedure Fuzzy-Matching(X, Y, `(·), D)
P2 : Enumerate Y as {y1, . . . , y|Y |}
for i← 1 to |Y | do

P2 : Fuzzy-Membership(X, yi, `(yi), D)
end for

end procedure

One can transfer a matching k-mer of θ(k) bits directly by replacing the plaintext modulus
with a prime greater than 2θ(k)/4 and taking `(·) to be the identity function.

In addition to transferring matching k-mers rather than labels, it is also possible to
solve the problem when the target distances are taken from an arbitrary set S rather than
a threshold set. The solution is no more expensive than the threshold case and involves

12



procedure Fuzzy-Membership(X, y, `y, D ∈ [k + 1])

P1,P2 : n′ ← n
4k
, I ← |X|

n′
, t ∼ 2n log 2n

P1 :

Enumerate X as {x1, . . . , x|X|}
for i← 1 to I do

for j ← 1 to 4k do
ct

(j)
i ← Enc(CRT(x

(j)
(i−1)n′+1‖ . . . ‖x

(j)
in′︸ ︷︷ ︸

n′

), pk)

end for
Send (ct

(1)
i , . . . , ct

(4k)
i ).

end for
P2 :

for j ← 1 to 4k do
ct

(j)
y ← Enc∗(CRT(y(j)‖ . . . ‖y(j)︸ ︷︷ ︸

n′

), pk)

end for
cttgt ← Enc∗(CRT(0, . . . , 2(D − 1), 0, . . . , 2(D − 1), . . . , 0, . . . , 2(D − 1), 0, 2, . . .︸ ︷︷ ︸

n

), pk)

Write `y = `1‖ . . . ‖`v where v = b4k
D
c

ct`y ← Enc∗(CRT(

D︷ ︸︸ ︷
`1, . . . , `1, . . . ,

D︷ ︸︸ ︷
`v, . . . , `v,

4k−vD︷ ︸︸ ︷
0, . . . , 0

D︷ ︸︸ ︷
`1, . . . , `1, . . . ,

D︷ ︸︸ ︷
`v, . . . , `v,

4k−vD︷ ︸︸ ︷
0, . . . , 0, . . .︸ ︷︷ ︸

n

), pk)

for i← 1 to I do
Pick ui1, . . . , uin ∈R Zt
pi ← CRT(ui1, . . . , uin)

cti ← (
∑4k

j=1(ct
(j)
i − ct

(j)
y )2 − cttgt) n pi + ct`y

end for
Send (ct1, . . . , ctI).

end procedure
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replacing the target plaintext with the set 2 · S as a vector, repeated sequentially to fill all
slots.

Correctness and Security

Lemma 3. The protocol Fuzzy-Matching for fuzzy matching with labelling is correct if
211 · k · n13/2 · log4 n ·Berr < q except with negl(λ) probability.

Proof. We have that cti is computed as the sum of 4k terms, where each term has noise
exactly equivalent to the product of two freshly encrypted ciphertexts (the subtractions
by cleartext terms leave the noise unchanged). Considering the noise contribution in each
product, the noise in this sum is thus 4k · (2 · n3/2 · t2 · nfresh). Considering the multiplication
by randomiser pi, this term incurs a final multiplicative factor of t · n1/2. In all, we have that
16 · k · n5/2 · t4 ·Berr should be bounded by q

2
. Finally, the Prime Number Theorem implies

that t ∼ 2n log 2n to achieve t ≡ 1 mod 2n, completing the proof.

Lemma 4. The protocol Fuzzy-Matching achieves security against statically chosen semi-
honest adversaries if the Decision-LWE2n,q,χ and Decision-SPR2n,q,χ assumptions hold.

Proof. Simulator S proceeds as follows. Generate 16k2|X|
n

random ciphertexts and forwards

them to P2. On receipt of the ciphertexts by P2, S generates 4k|Y |
n

random ciphertexts and
forwards them to P1. By a hybrid argument for any PPT adversary A with advantage ε
distinguishing the real protocol from the simulation, we can construct a PPT adversary A′
with advantage at least ε

16k2|X|/n+4k|Y |/n in breaking either the Decision-LWE2n,q,χ assumption

or the Decision-SPR2n,q,χ assumption. Since |X| and |Y | are constants, the claim follows.

5 Minimum Matching

One possible approach to solving this problem is to modify the protocol for fuzzy matching
in the previous section to transfer k-mers from the provider set, rather than their labels
(this is readily achieved by the remarks in the bottom paragaph of the preceding section).
One then iterates this protocol with increasing threshold distance, until a match is found.
Although this approach has the advantage of following from our protocol, or indeed any other
protocol for private fuzzy matching, it does not meet our goal of low overall round complexity
corresponding to the online/offline paradigm described in the introduction. Consequently we
abandon it in favor of other approaches.

For our second attempt, we observe that finding a minimum match is equivalent to
computing Hamming weights of xor-ed client/provider k-mers, and then comparing these
weights until a minimum is found. Unfortunately it is far from clear either a) how to compute
these weights b) how to compare them in encrypted form. For the second problem, we turn
to encoding integer weights as indicator vectors. The advantage of this representation is
that it allows comparison to be computed homomorphically in constant depth rather than
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the linear depth that would be required by such comparison on binary strings. Specifically,
given indicator vectors W1, W2 encoding integer weights w1, w2 in the interval [0, 2k + 1),
one first enumerates all pairs (W1[i],W2[j]) where i and j are indices in [2k + 1] and where
i > j. It can be seen that the sum Σi>jW1[i] ·W2[j], evaluates the function w1 > w2, i.e., the
comparison operation.

With this format, let’s see how the approach of Alperin-Sherrif et al. [AP14] for computing
addition by rotation matrices can be adapated to solve the first problem of determining
Hamming weights of the xor-ed k-mers. Let the bits of the client k-mer be b1, . . . b4k. In
that case, the client can send permutation matrices (Pj,bj , Pj,bj)j∈[4k+1] of dimension 2k + 1
corresponding to shifts bj, 1−bj in Z2k+1. Now the server, for each of their k-mers y, computes

the product
∏4k

j=1 Pj,y[j] corresponding to the shift
∑4k

j=1(x[j]⊕ y[j]) ∈ Z2k+1, which is in fact
the Hamming weight of x⊕ y.

A major drawback of this approach however is that O(k) aggregate multiplication op-
erations are required to compute the result leading to an exponential noise level which is
infeasible to decrypt. Fortunately we can overcome this obstacle. The solution turns out to be
for the client to first split their k-mer into O(

√
k) chunks each of O(

√
k) bits, then for every

possible xor-mask of each chunk, the client computes the Hamming weight of corresponding
masked chunk. These “sub-weights” are sent in encrypted indicator vector format to the
server. For each k-mer y, the server splits it into chunks y(1), . . . , y(O(

√
k) and is able to

compute the total Hamming weight of x⊕ y by retrieving the weight corresponding to x(j)

xor-ed with y(j) for each j and summing these weights using the usual expand-and-multiply
procedure. This entails multiplying only O(

√
k) permutation matrices, thus the noise is

reduced to O(
√
k) aggregate multiplications.

Protocol Description – Scenario 3

The client begins by splitting their query k-mer into M =
√

4k chunks, x(1), . . . , x(M) each
of 4k

M
bits. Now for every possible provider mask of M bits, msk, the client computes the

Hamming weight of x(j)⊕msk and stores the result as an encrypted indicator vector of length
M + 1. The list of encrypted weights corresponding to each chunk is sent to ther server.

The server, for every k-mer yi in their set, retrives the encrypted indicator vectors
corresponding to msk1 = y

(1)
i , . . . ,mskM = y

(M)
i . These vectors are expanded into rotation

matrices Pi1, . . . , PiM of dimension 2k + 1. The product of these matrices yields a single
rotation matrix Pi corresponding to the Hamming weight of yi ⊕ x. The first column, of this
matrix, Wi contains this weight in indicator vector format. Associated to this vector is the
encryption of the corresponding k-mer, encrypted in batch format for efficiency, which we
denote cti.

To find the minimum match we need a comparison function between different weight
vectors. For inputs W and W ′ this is effected by summing over the products W [a] ·W ′[b] :
a > b, a, b ∈ {0, 2, . . . , 2k}.

Given this homomorphic comparison function, finding the minimum match is possible
simply by imposing a binary tree on the array of pairs (cti,Wi) and searching pair-wise
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from leaves to root using this procedure. This entails an overhead of log2 |Y | aggregate
multiplication operations.

Minimum Matching

procedure Expand(W, 2k + 1)

P ←


W T 0 · · · 0

0 W T · · · 0
...

...
. . .

...
0 0 · · · W T




2k+1︷ ︸︸ ︷
2k+1

return P
end procedure

In general one can efficiently tradeoff space/time by changing the number of chunks M to
(4k)c for a constant 0 < c < 1. A larger value of c requires a larger data transfer but results
in less time to find the match and accommodates an encryption scheme with lower noise
tolerance.

Correctness and Security

Lemma 5. Take M = (4k)c. The protocol Minimum-Matching correctly computes minimum
matching if 8 · (4k)(1−c)(4k)c · (k + 1)2 log2 |Y | · (4 · n3/2)(4k)c+2 log2 |Y |+1 · Berr < q except with
negl(λ) probability.

Proof. We analyze the cumulative noise in the weight vector W1, associated to the minimum
matching ciphertext ct1, in two phases. In the first phase we compute the noise incurred by
multiplying the M rotation matrices (recall that W1 is taken as the first column of P1). In
the second phase, we compute the additional noise on W1 incurred by the tree search. Let nl
be the maximum noise in any ciphertext in the partial product Pl =:

∏l
j=1 P1j. Since Pl+1 is

computed as the dot product of up to 4k
M

ciphertexts of noise level nl and 4k
M

ciphertexts of
noise level nfresh, we have that nl+1 = a · (nl + nfresh)) where a = 4k

M
· n3/2 · t2. Solving this

recurrence yields nM = aM−1 ·n1 +
∑M−1

l=1 al ·nfresh. As n1 = nfresh, we have nM < 2 ·aM ·nfresh.
For the second phase, we let n′h be the maximum noise in any ciphertext in W1 at level h
of the search tree. We have that W1 at level h is computed as the sum of (k + 1)2 sums of
products of noise level n′h−1 · (n3/2 · t2)2 (i.e., each sum is a product of two ciphertexts of
noise level n′h−1). Thus n′log2 |Y |−1 = ((k + 1) · (n3/2 · t2)2 log2 |Y | · n′0. Taking n′0 = nM , yields

n′log2 |Y |−1 < (k + 1)2 log2 |Y | · (4 · n3/2)2 log2 |Y | · 2 · (4 · (4k)1−c · n3/2)(4k)c · 2 · (4 · n1/2 ·Berr) <
q
2
,

yielding the result.

Lemma 6. The protocol Minimum-Matching achieves security against statically chosen
semi-honest adversaries if the Decision-LWE2n,q,χ and Decision-SPR2n,q,χ assumptions hold.
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procedure Minimum-Matching(x, Y )
P1,P2 : M ←

√
4k, t← 2

P1 :

Write x = x(1)‖ . . . ‖x(M) with |x(j)| = 4k
M

for j ← 1 to M do
for msk ∈ {0, 1} 4k

M do
I ← 1Hamm-weight(x(j)⊕msk)

Wj,msk ← (Enc(I[0], pk), . . . ,Enc(I[4k
M

], pk))
end for

end for
Send (Wj,msk)

j∈1+[M ],msk∈{0,1}
4k
M

.

P2 :

Enumerate Y as {y1, . . . , y|Y |}
for i← 1 to |Y | do

Write yi = y
(1)
i ‖ . . . ‖y

(M)
i

for j ← 1 to M do
Pij ← Expand(W

j,y
(j)
i
, 2k + 1)

end for
Pi ←

∏M
j=1 Pij

Wi ← Pi[1]
cti ← Enc(CRT(yi[1], . . . , yi[4k]), pk)

end for
N ← |Y |

2

for h← 0 to log2 |Y | − 1 do
for i← 1 to N do

ct(<) ←
∑

(a,b):b>aWi[a] ·Wi+2h [b]

cti ← cti+2h + ct(<) · (cti − cti+2h)
Wi ← Wi+2h + ct(<) · (Wi −Wi+2h)
N ← N

2

end for
end for
Send ct1.

end procedure
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Protocol Encryption cost Evaluation cost Transfer size

Set Intersection
with labelling I

|X|α |X||Y |(β + γ)

n
(|X|+ |Y |

n
)σ

Set Intersection
with labelling II

4k|X|α
n

8k|Y | log2(k|Y |)(2β + γ) 8k|Y |σ

Fuzzy Matching
with labelling

16k2|X|α
n

4k|X||Y |(4k(β + δ) + γ))

n

4k|X||Y |σ
n

Minimum
Matching

(4k)c · 2(4k)1−cα k2(|Y |+ 16k)(β + δ) (4k)c · 2(4k)1−cσ

Table 1: Time and space costs for the three protocols for fixed parameters t, n and q. Labels
assumed to be θ(k) bits.

Proof. Simulator S proceeds as follows. Generate (4k)1/2 · 2(4k)1/2 random ciphertexts and
forwards them to P2. On receipt of the ciphertexts by P2, S generates O(1) random ciphertexts
and forwards them to P1. By a hybrid argument for any PPT adversary A with advantage ε
distinguishing the real protocol from the simulation, we can construct a PPT adversary A′
with advantage at least ε

(4k)1/2·2(4k)1/2+O(1)
in breaking either the Decision-LWE2n,q,χ assumption

or the Decision-SPR2n,q,χ assumption. Since k is a constant, the claim follows.

6 Performance

In this section, we evaluate the theoretical resource costs of the protocols described in the
previous three sections. Since key generation and decryption are one-time procedures and
susbstantially less expensive than homomorphic evaluation, we omit them from our analysis.
We also omit composition by CRT from our analysis because it can performed independently
of encryption. We note that Lemmas 1, 3 and 5 enable selection of suitable parameters to
guarantee correctness of the protocols with all but negligible probability for corresponding
input sizes, while our analysis assumes a fixed set of such parameters.

Comparison of Protocols

Table 1 shows the time measured in aggregate atomic homomorphic operations and space mea-
sured in number of ciphertexts. For encryption parameters t, n and q let α(t,n,q), β(t,n,q), γ(t,n,q)

and δ(t,n,q) be the time taken for encryption, ciphertext addition, ciphertext multiplication by
a plaintext polynomial and ciphertext multiplication without relinearization respectively. Let
σ(t,n,q) be the associated ciphertext size.
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A Set Intersection with Quasilinear Complexity

In this section, we describe a private set intersection protocol from homomorphic encryption
with quasilinear complexity, based upon the linear time protocol by Kissner and Song [KS05].
Let s be the maximum of |X| and |Y |. In this protocol the client and server proceed
by constructing polynomials α and β which vanish on their respective input sets, the
coefficients of these polynomials are encrypted under a threshold cryptosystem with an
additive homomorphism. Additionally the client and server generate random polynomials
µ and ν of degree s. Using the additive homomorphism, the client and server compute an
encryption of the polynomial q = α ·µ+β ·ν. Both players then decrypt to recover q. Lemma
2 [KS05] establishes that q = gcd(α, β) · u where u is a random polynomial of degree m with
overwhelming probability. Thus both parties learn the zeroes in common of their polynomials,
i.e., the intersection of their sets – and nothing else.

Starting with this framework we construct a non-interactive private set intersection
scheme with quasilinear complexity as follows. Firstly the client encodes the coefficients
of the polynomial α as individual ciphertexts, the list is padded with dummy encryptions
of zero to form an array of length 2s. They send this list to the server. The server then
chooses random polynomials µ and ν of degree s and computes the product polynomials
α · µ and β · ν. Crucially this step can be performed in sub-quadratic time, for example
using a fast number-theoretic transform. These products, still in coefficient form are then
homomorphically added, yielding their sum α · µ+ β · ν, which is then returned to the client.
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Having adapted [KS05] to the non-interactive case, our solution to the problem of
transferring labels uses a bit-by-bit approach. Let k′ be the maximum length of diagnostic
labels. The client uses their private set X to generated the expanded set X∗ = {x‖i‖0, x‖i‖1 :
x ∈ X, i ∈ [k′]}. The server on the other hand generates the set Y ∗ = {y‖i‖`(y)i : y ∈ Y, i ∈
[k′]}. Given the intersection of the sets X∗ and Y ∗, the client can reconstruct the k-mers
in common and their corresponding labels, by extracting the latter one bit at a time. The
overhead to the original protocol is only a multiplicative factor k′.

Batching Noting that all operations described so far are linear, we may efficiently batch this
protocol as follows. The client spits their expanded set X∗ into n equal size sets, constructing
interpolating polynomials for each sets. These polynomials, say α(1), . . . , α(n) are stored
in batch co-efficient representation in |X∗|

n
ciphertexts. The server generates corresponding

random polynomials µ(1), . . . , µ(n) and ν(1), . . . , ν(n). The server then computes α(j)µ(j) +βν(j)

for j = 1, . . . , n. In this way the client obtains (gcd(α(j), β))nj=1, thus deducing the total
intersection as a union of n smaller intersections.

Protocol Description – Scenario 1

The client and server begin by constructing their expanded sets X∗ and Y ∗. Let I = |X∗|
n

.

The server splits X∗ into n batches, constructing the polynomials α(j) =
∑I−1

i=0 a
(j)
i xi for

j = 1, . . . , n. These polynomials are encrypted in batch form in I ciphertexts. The server
then constructs β for their expanded set |Y ∗|, as well as random polynomials µ(j) and ν(j) of

degree s = max{ |X
∗|
n
, |Y ∗|}. The client sends the encrypted coefficients of their polynomials

to the server. The server uses a fast number theoretic transform to homomorphically compute
α(j)µ(j), for j = 1, . . . , n in a quasilinear number of homomorphic SIMD operations. The
server also encrypts the individual coefficients of the polynomials (βν(j))nj=1 as an array

of ciphertexts. In linear time they batch homomorphically add the polynomials α(j)µ(j)

and βν(j), for j = 1, . . . , n together and return the resulting encrypted coefficients of the
polynomials to the client.

For the fast polynomial multiplication step, we use a modified form of the in-place,
bottom-up version of the Fast Fourier Transform described on page 436, Chapter 12 [Sto02].
In the bit-reversal phase of the modified algorithm, we will use iR to denote the integer
corresponding to the reversed bit representation of index i ∈ [2s].

Set Intersection with Labelling II

Correctness and Security

Lemma 7. Let k′ = maxy∈Y |`(y)|. The protocol Set-Intersection-II for set intersection
with labelling is correct if 4 · 2(2k+log2 k

′+1)(2 log2(k|X|)+5) · nlog2(k|X|)+2 · Berr < q except with
negl(λ) probability.
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procedure Set-Intersection(X, Y, `(·))
P1,P2 : k′ = maxy∈Y |`(y)|, s← max{ |X

∗|
n
, |Y ∗|}, t← p≥22k+log2 k

′+1 : t ≡ 1 mod 2s
P1 :

Let X∗ = ∪x∈X,i∈[k′],b∈{0,1}x‖i‖b
Enumerate X∗ as {x1, . . . , x|X∗|}
for j ← 1 to n do

I ← |X∗|
n

Construct α(j) =
∑I−1

i=0 a
(j)
i xi such that α(j)(xi) = 0 for l = 1, . . . , I.

end for
A← (Enc(CRT(a

(1)
0 , . . . , a

(n)
0 ), pk), . . . ,Enc(CRT(a

(1)
I−1, . . . , a

(n)
I−1)), pk),

Enc∗(0, pk), . . . ,Enc∗(0, pk)︸ ︷︷ ︸
2s−I

)

Send A.
P2 :

Let Y ∗ = ∪y∈Y,i∈[k′]y‖i‖`(y)i
Enumerate Y ∗ as {y1, . . . , y|Y ∗|}
Choose w ∈ Z∗t : ordt(w) = 2s

Construct β =
∑|Y ∗|−1

i=0 bix
i such that β(yi) = 0 for i = 1, . . . , |Y ∗|.

for j ← 1 to n do
Let µ(j)(x) =

∑s
i=0 m

(j)
i xi where m

(j)
i ∈R Zt for i = 1, . . . , s and j = 1, . . . , n

Let ν(j)(x) =
∑s

i=0 n
(j)
i xi where n

(j)
i ∈R Zt for i = 1, . . . , s and j = 1, . . . , n

Compute υ(j)(x) = β(x)ν(j)(x) =
∑2s−1

i=0 u
(j)
i xi, for j = 1, . . . , n.

end for
A′ ← Hom-Transform(A, 2s, false)
for i← 1 to 2s do

T ′i ← A′i n CRT(µ(1)(wi−1), . . . , µ(n)(wi−1))
end for
T ← Hom-Transform(T ′, 2s, true)

U ← (Enc(CRT(u
(1)
0 , . . . , u

(n)
0 ), pk), . . . ,Enc(CRT(u

(1)
2s−1, . . . , u

(n)
2s−1), pk))

for i← 1 to 2s do
cti ← Ti + Ui

end for
Send (ct1, . . . , ct2s).

end procedure
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procedure Hom-Transform(A, nA, inv)
for i← 0 to nA − 1 do

if i < iR then
Ai+1 ↔ AiR+1

end if
end for
if inv then

z ← wnA−1

else
z ← w

end if
for h← 0 to log2(nA)− 1 do

for i← 0 to nA − 2h+1 step 2h+1 do
for j ← 1 to 2h+1 do

ct(n) ← Ai+j+2h n CRT((z(nA/2
h+1))j−1, . . . , (z(nA/2

h+1))j−1)
Ai+j+2h ← Ai+j − ct(n)

Ai+j ← Ai+j + ct(n)

end for
end for

end for
if inv then

for i← 1 to nA do
Ai ← Ai n CRT(n−1

A , . . . , n−1
A )

end for
end if

end procedure
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Proof. We consider the noise contribution to the output ciphertexts (ct1, . . . , ct2s) correspond-
ing to each of the calls to the homomorphic Fast Fourier Transform (FFT) procedure. In
the first call the FFT circuit is batch evaluated homomorphically on the array A, which
contains input ciphertexts of noise level nfresh. The ciphertexts produced at the output of
this circuit, are then batch multiplied by plaintext evaluations of the polynomials µ(j) at
the 2s powers of the 2sth root of unity w, yielding the batch transforms of α(j)µ(j) as an
array of ciphertexts T ′. In the second stage the inverse FFT is evaluated homomorphically
on T ′, yielding T . Clearly the noise contribution from this stage is identical to the that
of the first stage. Let L = log2(2s) and let n1, . . . , nL+1, n

′
1, . . . , n

′
L+1 be the maximum

noise level of the ciphertexts at each level of the forward and inverse homomorphic FFT

stages, respectively. We have that nl+1 ≤ nl + nl · zl,j · n1/2 + t where zl,j = w
2s(j−1)

2l . Since
zl,j is simply a scalar in Zt, it holds that, regardless of the values of l and j, zl,j ≤ t.

Then nL+1 ≤ n1(1 + t)LnL/2 + t
∑L−1

l=1 (1 + t)lnL/2 ≤ n1(1 + t)LnL/2 + t(1 + t)LnL/2. Thus
nL+1 ≤ (n1 + t)(1 + t)LnL/2. Also n′1 ≤ (1 + t)nL+1n

1/2, corresponding to a simple multi-
plication by the plaintexts (µ(wi))2s

i=1. Finally, by symmetry, n′L+1 ≤ (n′1 + t)(1 + t)LnL/2.
It follows that n′L+1 ≤ (1 + t)2L+1nL(n1 + t). Now, since n1 = nfresh, we have n′L+1 ≤
t(1 + t)2L+1nL(1 + 2n1/2Berr). Thus n′L+1 ≤ 2(1 + t)2L+2nL+(1/2)Berr ≤ 2t2L+3nL+1Berr ≤
2 · 2(2k+log2 k+1)(2L+3) · nL+1 ·Berr <

q
2
, yielding the result.

Lemma 8. The protocol Set-Intersection-II achieves security against statically chosen
semi-honest adversaries if the Decision-LWE2n,q,χ and Decision-SPR2n,q,χ assumptions hold.

Proof. Simulator S proceeds as follows. Generate 2k′|X|
n

random ciphertexts and forward them
to P2. On receipt of the ciphertexts by P2, S generates 4k′max{|X|, |Y |} random ciphertexts
and forwards them to P1. By a hybrid argument for any PPT adversary A with advantage
ε distinguishing the real protocol from the simulation, we can construct a PPT adversary
A′ with advantage at least ε

2k′|X|
n

+4k′max{|X|,|Y |}
in breaking either the Decision-LWE2n,q,χ

assumption or the Decision-SPR2n,q,χ assumption. Since |X|, |Y | and k′ are constants, the
claim follows.

B Protocols Secure against Malicious Adversaries

B.1 Set Intersection with Labelling

In this section, we describe a protocol for set intersection with labelling secure against
malicious adversaries, following a similar procedure to the modifications to the semi-honest
protocols in Section 4, [FNP04] described in Section 5.3 of the same work.

Our protocol works as follows. The client generates N copies of their input for use in a
cut-and-choose protocol with the server. Each copy is constructed by the client first mapping
their input to pseudonyms via a random oracle applied to a seed concatenated with the
input k-mer. Each copy of the input set utilises a different seed. To achieve the challenge
phase in our offline/online setting, we exploit the Fiat-Shamir heuristic [FS87]. Specifically
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the client applies a strong hash function to the entire set of copies to produce the subset
that will be opened. Along the with openings of this subset of encrypted pseudonyms, the
client also sends the corresponding seeds. Together, this enables the server to verify that
the majority of the input sets are correctly constructed, with overwhelming probability. To
achieve security against a malicious server, the server transfers in place of a matching k-mer
a short seed to third hash function. The output of this hash function is used to de-randomize
the rest of the computation. Specifically let t be a random λ-bit value and H(t) = u′‖u′′
and let (Enc(ai))

|X|−1
i=0 be an encryption of client polynomial P (·). For k-mer y, the server

homomorphically computes Enc(u′ · P (y) + t) as well as the value z = H(u′′, y). In the
event that y is also a client k-mer, the seed t is recoverable by decryption, from which y is
determined to be matching k-mer by brute-force testing of H on every k-mer in the client
set against z. Security against a malicious server thus follows from the improbability that
random oracle H produces the same output on two different 2k-bit suffixes. We require the
following notation.

Notation Let N be a security parameter dictating the number of cut-and-choose copies.
Let H1 : {0, 1}2k+λ → {0, 1}2k+λ, H2 : {0, 1}N ·|X|·|ct| → {0, 1}N , H3 : {0, 1}λ+log2 |Y | →
{0, 1}2k+2λ, H4 : {0, 1}2k+λ → {0, 1}2k+λ be random oracles. Let FL−Set−Int be the function-
ality corresponding to Task 1, as it is defined in Section 2. Let F iRO be the functionality
corresponding to the random oracle Hi, for i = 1, . . . , 4.

Security of our protocol follows from Theorem 9, assuming the Decision-LWE2n,q,χ and
Decision-SPR2n,q,χ assumptions hold.

Theorem 9. Assume that H1−H4 are random oracles and that Enc is a message encryption
function of a semantically secure cryptosystem. Then the protocol Set-Intersection-I∗

achieves security against statically chosen malicious adversaries.

Proof. We analyse security of the protocol in the hybrid world where a trusted third party
computes the functionalities F1

RO −F4
RO for both client and server.

Security against malicious P1 : Simulator B in the ideal world proceeds as follows.

1. In each call to the hash function H1, B learns the input of A, namely (sι, xi) for
i ∈ 1 + [|X|], ι ∈ [N ]. It sends A the value h1

(i,ι) = F1
RO(sι, xi) and stores (sι, xi, h(i,ι))

locally.
2. Let X(ι) = (h1

(i,ι))
|X|
i=1. B sends X(ι) to FL−Set−Int and receives L(ι) = (l

(ι)
i )
|X∩Y |
i=1 .

3. In the call to hash function H2, B learns ciphertext set C, sends A the value J = F2
RO(C)

and stores C locally.
4. B receives from A the set (sι)ι∈[N ]\J ′ and openings of (ct

(ι)
i )i∈1+[|X|],ι∈J ′ for some set

J ′ ⊂ [N ]. It verifies that J ′ = J and that the received seeds are consistent with those
received in Step 1 and that the opened ciphertexts are consistent with C|J . Output ⊥
if any of these checks fail.
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procedure Set-Intersection-I*(X, Y, `(·))
P1,P2 : I ← |Y |

n
, t← p≥22k+λ

P1 :

Enumerate X as {x1, . . . , x|X|}
Choose s0, . . . , sN−1 ∈R {0, 1}λ
for ι← 0 to N − 1 do

Construct P (ι)(·) =
∑|X|−1

i=0 a
(ι)
i x

i : P (ι)(H1(sι, xi)) = 0 for i = 1, . . . , |X|.
for i← 1 to |X| do

ct′
(ι)
i ← Enc(CRT(a

(ι)
i−1, . . . , a

(ι)
i−1), pk)

end for
end for
Send (ct′

(ι)
1 , . . . , ct

′(ι)
|X|)

N−1
ι=0 .

J ← H2((ct′
(ι)
1 , . . . , ct

′(ι)
|X|)

N−1
ι=0 ).

Send (sι)ι∈[N ]\J .

Send openings of (ct′
(ι)
i )i∈1+[|X|], ι∈J .

P2 :

Enumerate Y as {y1, . . . , y|Y |}
Verify openings and correctness of J . Output ⊥ if verification fails.
for ι ∈ [N ]\J do

Pick t(ι) ∈R {0, 1}λ
for i← 1 to I do

for j ← 1 to |X| do

p
(ι,j)
i ← CRT(H1(sι, y(i−1)n+1)j−1, . . . , H1(sι, yin)j−1)

end for
Write H3(t(ι)‖i‖1) = u′i1

(ι)‖u′′i1
(ι), . . . , H3(t(ι)‖i‖n) = u′in

(ι)‖u′′in
(ι)

p
(ι)
i ← CRT(u′i1

(ι), . . . , u′in
(ι))

z
(ι)
i ← CRT(H4(u′′i1

(ι), y(i−1)n+1), . . . , H4(u′′in
(ι), yin))

q
(ι)
i ← CRT(`(y(i−1)n+1)‖t(ι), . . . , `(yin)‖t(ι))
ct

(ι)
i ← (

∑|X|
j=1 ct

′(ι)
i n p

(ι,j)
i ) n p

(ι)
i + q

(ι)
i

end for
end for
Send (ct

(ι)
1 , . . . , ct

(ι)
I )ι∈[N ]\J and (z

(ι)
1 , . . . , z

(ι)
I )ι∈[N ]\J .

P1 :
Decrypt (ct

(ι)
i )i∈1+[I],ι∈[N ]\J , and verify correctness w.r.t (z

(ι)
i )i∈1+[I],ι∈[N ]\J .

end procedure
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5. Let a = n·|X∩Y |
|Y | . Perform the following for ι ∈ [N ] and i = 1, . . . , I. Construct q

(ι)
i

as a batch encryption of a values from L(ι) and n − a random 2k + λ-bit strings.
Generate p

(ι,j)
i and p

(ι)
i as the honest server would. Compute ct

(ι)
i using p

(ι,j)
i , p

(ι)
i and

q
(ι)
i . Compute z

(ι)
i honestly. Send (ct

(ι)
i )i∈1+[|X|],ι∈[N ]\J and (z

(ι)
i )i∈1+[|X|],i∈[N ]\J to A.

6. Output whatever A outputs.

That the above simulation against a malicious client in the ideal world is indistinguishable
from the real-world execution in the hybrid model, follows from the fact that the only place
where the simulation differs from the real world is in Step 5. Here the input ciphertext ct

(ι)
i ,

where i ∈ 1 + [I] and ι ∈ [N ], is computed directly using q
(ι)
i constructed from the output

of the trusted party computing FL−Set−Int in Step 2. This is possible without A noticing,
because in the (F3

RO,F4
RO)-hybrid model, the output of H3 and H4 is indistinguishable from

the uniform distribution on {0, 1}2k+2λ and {0, 1}2k+λ, respectively.

Security against malicious P2 : Simulator B in the ideal world proceeds as follows.

1. Generate random strings h1
(i,ι,l) in {0, 1}2λ+k for each (i, ι, l) ∈ (1+[|X|])× [N ]×(1+[n]).

Compute (ct′
(ι)
i )i∈1+[|X|],ι∈[N ] using inputs h(i,ι,l) and compute J as the honest client

would. Send (sι)ι∈[N ]\J and openings of (ct′
(ι)
i )i∈1+[|X|],ι∈J to A.

2. In each call to hash function H1, B replaces the output of F1
RO with the string h1

(i,ι,l)

for input (sι, y(i−1)n+l) iff y(i−1)n+l = x(i−1)n+l.
3. In each call to hash function H3, B learns (t(ι)‖i‖l)i∈1+[I],l∈1+[n]. It sends A the values
uil = F3

RO(t(ι)‖i‖l)i∈1+[I],l∈1+[n]. It stores, for i = 1, . . . , I and l = 1, . . . , n, the values
(t(ι), (ui1, . . . , uin)) locally.

4. In each call to hash function H4, B learns the values (u′′il, y(i−1)n+l). It sends A
the values h4

(i,ι,l) = F4
RO(u′′il, y(i−1)n+l). It stores ((u′′i1, y(i−1)n+1), . . . , (u

′′
in, yin)) and

(h4
(i,ι,l))i∈1+[I],ι∈[N ],l∈1+[n] locally.

5. Let Y (ι) = {h4
(i,ι,l)}i∈1+[I],ι∈[N ],l∈[n]. For ι ∈ [N ] it forwards the set of inputs Y (ι) to

FL−Set−Int and receives L(ι) = (`
(ι)
i )
|X∩Y |
i=1 .

6. B receives (ct
(ι)
i )i∈1+[I],ι∈[N ]\J and (z

(ι)
i )i∈1+[I],ι∈[N ]\J . It verifies the ιth batch of ci-

phertexts corresponds to label set L(ι) and outputs 1 if (z
(ι)
i )i∈1+[I],ι∈[N ]\J are formed

correctly.

We argue the real world and ideal world executions are indistinguishable in F1
RO-hybrid

model as follows. The only place where the simulation differs from the protocol is in Step 1,
where the ciphertexts are computed using plaintext polynomial P (ι) interpolated over the
strings {h1

(i,ι,l)}(i∈1+[|X|],ι∈[N ],l∈1+[n]) rather than as {H1(sι, x(i−1)+l)}i∈1+[I],ι∈[N ],l∈1+[n]. This is
possible because the semantic security of the homomorphic cryptosystem implies that the
output of Enc is indistinguishable to A on polynomials of degree n.
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B.2 Set Intersection with Labelling II

In this section we describe a similar set of modifications for our second protocol for set inter-
section with labelling to achieve security against malicious adversaries. In the following de-
scription let H1 : {0, 1}2k+λ+log2(k′+λ) → {0, 1}2k+log2(k′+λ), H3 : {0, 1}λ+log2 |Y ∗|+n→2k+log2(k′+λ)

be random oracles.

Theorem 10. Assume that H1−H3 are random oracles and that Enc is a message encryption
function of a semantically secure cryptosystem. Then the protocol Set-Intersection-II∗

achieves security against statically chosen malicious adversaries.

Proof. The proof is analogous to that of Theorem 9.

B.3 Fuzzy matching with Labelling

In this section we describe a protocol for fuzzy matching with labelling secure against mali-
cious adversaries, using a similar strategy to that outlined in the previous sections. Let H1 :

{0, 1}λ+4k → {0, 1}λ+4k, H2 : {0, 1}
(16k2+4kλ)·N·|X|·|ct|

n → {0, 1}N , H3 : {0, 1}λ+log2((4k+λ)|X|)−log2 n →
{0, 1}n·(log 2n+log log 2n) be random oracles.

Theorem 11. Assume that H1−H3 are random oracles and that Enc is a message encryption
function of a semantically secure cryptosystem. Then the protocol Fuzzy-Matching∗ achieves
security against statically chosen malicious adversaries.

Proof. The proof is analogous to that of Theorem 9.

B.4 Minimum Matching

In this section we describe a protocol for minimum matching secure against malicious
adversaries, using a similar strategy to that outlined in the previous sections. In the following
description let H1 : {0, 1}4k+λ → {0, 1}4k, H2 : {0, 1}

√
4k·N ·|ct| → {0, 1}N be random oracles.

Theorem 12. Assume that H1 and H2 are random oracles and that Enc is a message encryp-
tion function of a semantically secure cryptosystem. Then the protocol Minimum-Matching∗

achieves security against statically chosen malicious adversaries.

Proof. The proof is analogous to that of Theorem 9.

30



procedure Set-Intersection-II*(X, Y, `(·))
P1,P2 : k′ = maxy∈Y |`(y)|, s ← maxι{ |X

∗(ι)|
n

, |Y ∗(ι)|}, t ← p≥22k+log2(k
′+λ)+1 : t ≡ 1 mod

2s
P1 :

for ι← 0 to N − 1 do
Let X∗(ι) = ∪x∈X,i∈[k′+λ],b∈{0,1}x‖i‖b
Enumerate X∗(ι) as {x1, . . . , x|X∗(ι)|}
for j ← 1 to n do

I(ι) ← |X∗(ι)|
n

Construct α(ι,j) =
∑I(ι)−1

i=0 a
(ι,j)
i xi such that α(ι,j)(H1(sι, xi)) = 0 for l ∈ 1+[I].

end for
A(ι) ← (Enc(CRT(a

(ι1)
0 , . . . , a

(ι,n)
0 ), pk), . . . ,Enc(CRT(a

(1)

I(ι)−1
, . . . , a

(n)

I(ι)−1
)), pk),

Enc∗(0, pk), . . . ,Enc∗(0, pk)︸ ︷︷ ︸
2s−I(ι)

)

end for
Send (A(ι))ι∈[N ].
J ← H2((A(ι))ι∈[N ]).
Send (sι)ι∈[N ]\J .
Send openings of (A(ι))ι∈J .

P2 :

Verify openings and correctness of J . Output ⊥ if verification fails.
Choose w ∈ Z∗t : ordt(w) = 2s
for ι ∈ [N ]\J do

Pick t(ι) ∈R {0, 1}λ.
Let Y ∗(ι) = ∪y∈Y,i∈[k′+λ]y‖i‖(`(y)‖t(ι))i
Enumerate Y ∗(ι) as {y1, . . . , y|Y ∗(ι)|}
Construct β(ι) =

∑|Y ∗(ι)|−1
i=0 b

(ι)
i x

i such that β(ι)(H1(sι, yi)) = 0 for i ∈ 1 + |Y ∗(ι)|.
for j ← 1 to n do

Let µ(ι,j)(x) =
∑s

i=0m
(ι,j)
i xi where m

(ι,j)
i = H3(t

(ι)‖i‖j) for i ∈ 1 + [n] and
j ∈ 1 + [n]

Let ν(ι,j)(x) =
∑s

i=0 n
(ι,j)
i xi where n

(ι,j)
i ∈R Zt for i ∈ 1 + [s] and j ∈ 1 + [n]

Compute υ(ι,j)(x) = β(ι)(x)ν(ι,j)(x) =
∑2s−1

i=0 u
(ι,j)
i xi, for j ∈ 1 + [n].

end for
A′(ι) ← Hom-Transform(A(ι), 2s, false)
for i← 1 to 2s do

T ′
(ι)
i ← A′

(ι)
i n CRT(µ(ι,1)(wi−1), . . . , µ(ι,n)(wi−1))

end for
T (ι) ← Hom-Transform(T ′(ι), 2s, true)

U (ι) ← (Enc(CRT(u
(ι,1)
0 , . . . , u

(ι,n)
0 ), pk), . . . ,Enc(CRT(u

(ι,1)
2s−1, . . . , u

(ι,n)
2s−1), pk))

for i← 1 to 2s do
ct

(ι)
i ← T

(ι)
i + U

(ι)
i

end for
Send (ct

(ι)
1 , . . . , ct

(ι)
2s )ι∈[N ]\J .

end for
P1 :
Decrypt and verify correctness of (ct

(ι)
i )i∈1+[2s],ι∈[N ]\J .

end procedure
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procedure Fuzzy-Matching*(X, Y, `(·), D)
P2 : Enumerate Y as {y1, . . . , y|Y |}
for i← 1 to |Y | do

P2 : Fuzzy-Membership*(X, yi, `(yi), D)
end for

end procedure
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procedure Fuzzy-Membership*(X, y, `y, D ∈ [k + 1])

P1,P2 : n′ ← n
4k+λ

, I ← |X|
n′
, t ∼ 2n log 2n

P1 :

Enumerate X as {x1, . . . , x|X|}
Choose s0, . . . , sN−1 ∈R {0, 1}λ
for ι← 0 to N − 1 do

for i← 1 to I do
for j ← 1 to 4k do

ct
(ι,j)
i ← Enc(CRT(H1(sι, x(i−1)n′+1)(j)‖ . . . ‖H1(sι, xin′)

(j)︸ ︷︷ ︸
n′

), pk)

end for
Send (ct

(ι,1)
i , . . . , ct

(ι,4k)
i ).

end for
end for
J ← H2((ct

(ι,j)
i )i∈1+[I],j∈[4k],ι∈[N ]).

Send (sι)ι∈[N ]\J .

Send openings of (ct
(ι,j)
i )i∈1+[I],j∈[4k],ι∈J .

P2 :

Verify openings and correctness of J . Output ⊥ if verification fails.
cttgt ← Enc∗(CRT(0, . . . , 2(D − 1), 0, . . . , 2(D − 1), . . . , 0, . . . , 2(D − 1), 0, 2, . . .︸ ︷︷ ︸

n

), pk)

for ι ∈ [N ]\J do
for j ← 1 to 4k do

ct
(ι,j)
y ← Enc∗(CRT(H1(sι, y)(j)‖ . . . ‖H1(sι, y)(j)︸ ︷︷ ︸

n′

), pk)

end for
Pick t(ι) ∈R {0, 1}λ.
Write `y‖t(ι) = `1‖ . . . ‖`v where v = b4k+λ

D
c

ct
(ι)
`y
← Enc∗(CRT(

D︷ ︸︸ ︷
`1, . . . , `1, . . . ,

D︷ ︸︸ ︷
`v, . . . , `v,

4k+λ−vD︷ ︸︸ ︷
0, . . . , 0

D︷ ︸︸ ︷
`1, . . . , `1, . . . ,

D︷ ︸︸ ︷
`v, . . . , `v,

4k+λ−vD︷ ︸︸ ︷
0, . . . , 0, . . .︸ ︷︷ ︸

n

),

pk)
for i← 1 to I do

Write H3(t(ι), i) = u
(ι)
i1 ‖ . . . ‖u

(ι)
in .

p
(ι)
i ← CRT(u

(ι)
i1 , . . . , u

(ι)
in )

ct
(ι)
i ← (

∑4k
j=1(ct

(ι,j)
i − ct

(ι,j)
y )2 − cttgt) n p

(ι)
i + ct

(ι)
`y

end for
end for
Send (ct

(ι)
1 , . . . , ct

(ι)
I )ι∈[N ]\J .

P1 :
Decrypt and verify correctness of (ct

(ι)
i )i∈1+[I],ι∈[N ]\J .

end procedure
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procedure Minimum-Matching*(x, Y )
P1,P2 : M ←

√
4k, t← 2

P1 :

Choose s0, . . . , sN−1 ∈R {0, 1}λ
for ι← 0 to N − 1 do

Write H1(sι, x) = x(ι,1)‖ . . . ‖x(ι,M) with |x(ι,j)| = 4k
M

for j ← 1 to M do
for msk ∈ {0, 1} 4k

M do
I(ι) ← 1Hamm-weight(x(ι,j)⊕msk)

W
(ι)
j,msk ← (Enc(I(ι)[0], pk), . . . ,Enc(I(ι)[4k

M
], pk))

end for
end for

end for
Send (W

(ι)
j,msk)

j∈1+[M ],msk∈{0,1}
4k
M ,ι∈[N ]

.

J ← H2((W
(ι)
j,msk)

j∈1+[M ],msk∈{0,1}
4k
M ,ι∈[N ]

).

Send (sι)ι∈[N ]\J .

Send openings of (W
(ι)
j,msk)

j∈1+[M ],msk∈{0,1}
4k
M ,ι∈J

.

P2 :

Enumerate Y as {y1, . . . , y|Y |}
Verify openings and correctness of J . Output ⊥ if verification fails.
for ι ∈ [N ]\J do

for i← 1 to |Y | do

Write H1(sι, yi) = y
(ι,1)
i ‖ . . . ‖y(ι,M)

i

for j ← 1 to M do
P

(ι)
ij ← Expand(W

(ι)

j,y
(ι,j)
i

, 2k + 1)

end for
P

(ι)
i ←

∏M
j=1 P

(ι)
ij

W
(ι)
i ← P

(ι)
i [1]

ct
(ι)
i ← Enc(CRT(yi[1], . . . , yi[4k]), pk)

end for
N ← |Y |

2

for h← 0 to log2 |Y | − 1 do
for i← 1 to N do

ct
(ι)
(<) ←

∑
(a,b):b>aW

(ι)
i [a] ·W (ι)

i+2h
[b]

ct
(ι)
i ← ct

(ι)

i+2h
+ ct

(ι)
(<) · (ct

(ι)
i − ct

(ι)

i+2h
)

W
(ι)
i ← W

(ι)

i+2h
+ ct

(ι)
(<) · (W

(ι)
i −W

(ι)

i+2h
)

N ← N
2

end for
end for

end for
Send (ct

(ι)
1 )ι∈[N ]\J .

P1 :
Decrypt and verify correcntess of (ct

(ι)
1 )ι∈[N ]\J .

end procedure
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