
Challenges for Ring-LWE

Eric Crockett* Chris Peikert†

February 21, 2017

Abstract

As lattice cryptography becomes more widely used in practice, there is an increasing need for further
cryptanalytic effort and higher-confidence security estimates for its underlying computational problems.
Of particular interest is a class of problems used in many recent implementations, namely, Learning With
Errors (LWE), its more efficient ring-based variant Ring-LWE, and their “deterministic error” counterparts
Learning With Rounding (LWR) and Ring-LWR.

To facilitate such analysis, in this work we give a broad collection of challenges for concrete Ring-LWE
and Ring-LWR instantiations over cyclotomics rings. The challenges cover a wide variety of instantiations,
involving two-power and non-two-power cyclotomics; moduli of various sizes and arithmetic forms; small
and large numbers of samples; and error distributions satisfying the bounds from worst-case hardness
theorems related to ideal lattices, along with narrower errors that still appear to yield hard instantiations.
We estimate the hardness of each challenge by giving the approximate Hermite factor and BKZ block size
needed to solve it via lattice-reduction attacks.

A central issue in the creation of challenges for LWE-like problems is that dishonestly generated
instances can be much harder to solve than properly generated ones, or even impossible. To address this,
we devise and implement a simple, non-interactive, publicly verifiable protocol which gives reasonably
convincing evidence that the challenges are properly distributed, or at least not much harder than claimed.
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1 Introduction

Lattice-based cryptosystems are some of the leading “post-quantum” candidates that are plausibly secure
against potential large-scale quantum computers. As lattice cryptography begins a transition to widespread
deployment (see, e.g., [Ste14, LS16, Bra16]), there is a pressing need for increased cryptanalytic effort and
higher-confidence hardness estimates for its underlying computational problems. Of particular interest is a
class of problems used in many recent implementations (e.g., [HS, GLP12, DDLL13, BCNS15, ADPS16,
CP16a, BCD+16]), namely:

∙ Learning With Errors (LWE) [Reg05],

∙ its more efficient ring-based variant Ring-LWE [LPR10], and

∙ their “deterministic error” counterparts Learning With Rounding (LWR) and Ring-LWR [BPR12].

Informally, the search version of the Ring-LWE problem is to find a secret ring element 𝑠 given multiple
random “noisy ring products” with 𝑠, while the decision version is to distinguish such noisy products from
uniformly random ring elements. More precisely, Ring-LWE is actually a family of problems, with a concrete
instantiation given by the following parameters:1

1. a ring 𝑅, which can often (but not always) be represented as a polynomial quotient ring 𝑅 =
Z[𝑋]/(𝑓(𝑋)) for some irreducible 𝑓(𝑋), e.g., 𝑓(𝑋) = 𝑋2𝑘 + 1 or another cyclotomic polynomial;

2. a positive integer modulus 𝑞 defining the quotient ring 𝑅𝑞 := 𝑅/𝑞𝑅 = Z𝑞[𝑋]/(𝑓(𝑋));

3. an error distribution 𝜒 over 𝑅, which is typically concentrated on “short” elements (for an appropriate
meaning of “short”);

4. a number of samples provided to the attacker.

The Ring-LWE search problem is to find a uniformly random secret 𝑠 ∈ 𝑅𝑞, given independent samples of
the form

(𝑎𝑖 , 𝑏𝑖 = 𝑠 · 𝑎𝑖 + 𝑒𝑖) ∈ 𝑅𝑞 ×𝑅𝑞,

where each 𝑎𝑖 ∈ 𝑅𝑞 is uniformly random and each 𝑒𝑖 ← 𝜒 is drawn from the error distribution. The decision
problem is to distinguish samples of the above form from uniformly random samples over 𝑅𝑞 ×𝑅𝑞.

Ring-LWR is a “derandomized” variant of Ring-LWE in which the random errors are replaced by
deterministic “rounding” to a smaller modulus 𝑝 < 𝑞. Specifically, the search problem is to find a random
secret 𝑠 ∈ 𝑅𝑞 given independent samples

(𝑎𝑖 , 𝑏𝑖 = ⌊𝑠 · 𝑎𝑖⌉𝑝) ∈ 𝑅𝑞 ×𝑅𝑝,

where each 𝑎𝑖 ∈ 𝑅𝑞 is uniformly random, and ⌊·⌉𝑝 : 𝑅𝑞 → 𝑅𝑝 denotes the function that rounds each
coefficient 𝑐𝑗 ∈ Z𝑞 of the input (with respect to an appropriate basis) to ⌊𝑝𝑞 · 𝑐𝑗⌉ ∈ Z𝑝. The decision problem
is to distinguish such samples from (𝑎𝑖, ⌊𝑢𝑖⌉𝑝), where 𝑎𝑖, 𝑢𝑖 ∈ 𝑅𝑞 are uniformly random and independent.
(Notice that ⌊𝑢𝑖⌉𝑝 ∈ 𝑅𝑝 itself is uniformly random when 𝑝 divides 𝑞, but otherwise is biased.)

1This description is of a syntactically “tweaked” form of Ring-LWE, which for convenience avoids a special ideal denoted 𝑅∨.
This form is equivalent to the original “untweaked” form under a suitable change to the error distribution; see Section 2.3 for details.
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Hardness. A main attraction of Ring-LWE (and Ring-LWR) is their worst-case hardness theorems, also
known as worst-case to average-case reductions. Essentially, these say that solving certain instantiations is at
least as hard as quantumly solving a corresponding approximate Shortest Vector Problem (approx-SVP) on
any “ideal lattice,” i.e., a lattice corresponding to an ideal of the ring. (Interestingly, the converse is unclear:
it is unknown how to solve Ring-LWE using an oracle for even exact-SVP on any ideal lattice of the ring.)
See [LPR10, PRS17] and [BPR12] for precise theorem statements, Section 1.2 below for further discussion,
and [CDPR16, CDW17] for the status of approx-SVP on ideal lattices for quantum algorithms.2

As long as the underlying approx-SVP problem is actually hard in the worst case, the above-described
theorems give strong evidence of cryptographic hardness, at least asymptotically (i.e., for large enough 𝑛).
For practical purposes, though, the following property of (Ring-)LWE and related problems has been noticed,
studied, and exploited for many years (see, e.g., [LMPR08, MR09, Lyu09, LP11, BBL+14, HKM15]):
even instantiations that are not supported by known worst-case hardness theorems, or that have too-small
dimensions 𝑛 to draw any meaningful conclusions from them, can still appear very hard—as measured
against all known classes of attack. Indeed, almost every implementation of lattice cryptography to date
has used considerably smaller dimensions and errors than what worst-case hardness theorems alone would
recommend. However, care is needed in following this approach: e.g., some instantiations involving especially
small errors turn out to be broken or seriously weakened by various attacks (see, e.g., [AG11, CLS15, Pei16]).

Given this state of affairs, and especially the common usage in practice of parameters that lack much (if
any) theoretical support, we believe that a deeper understanding of how the different aspects of Ring-LWE
affect concrete hardness is a critically important direction of research.

1.1 Contributions

This work provides a broad collection of cryptanalytic challenges for concrete instantiations of the search-
Ring-LWE/LWR problems over cyclotomic rings, which are the most widely used and studied class of rings
in this context. Our challenges cover a wide range and variety of parameterizations and conjectured security
levels, ranging from “toy” to “very hard” (see Section 1.2 for details). We hope that these challenges will
provide a focal point for theoretical and practical cryptanalytic effort on Ring-LWE/LWR, and will help to
more precisely quantify the concrete security of their instantiations.3

A central issue in the creation of challenges for problems like (Ring-)LWE is that a dishonest challenger
can publish instances that are much harder to solve than honestly generated ones—or even impossible. This is
because (properly instantiated) Ring-LWE is conjectured to be pseudorandom, so it is difficult to distinguish
between a correctly generated challenge and a harder one with much larger errors, or even a uniformly

2In brief: the fastest known quantum algorithms for the poly(𝑛)-approx-SVP problems underlying many cryptographic construc-
tions, in any class of rings covered by the hardness theorems, perform essentially no better than algorithms for arbitrary lattices
of the same dimension 𝑛, and take at least exponential 2Ω(𝑛) time. Under plausible number-theoretic conjectures, 2𝑂(

√
𝑛 log𝑛)-

approx-SVP is solvable in quantum polynomial time in certain rings, such as prime-power cyclotomics and their maximal totally real
subrings [CDPR16, CDW17]; however, the main algorithmic technique used in these works meets a barrier at 2Ω(

√
𝑛/ log𝑛)-factor

approximations [CDPR16, Section 6].
3The challenges and their parameters can be obtained via the Ring-LWE challenges website [RLW16]. The archive

rlwe-challenges-v1.tar.gz contains challenges for 516 different instantiations, and has a SHA-256 hash value 07cd
f744 5c9d 178c 8b13 5a42 47ca a143 5320 c104 8ee8 c634 8914 a915 5757 dcef. All our challenge-
related archives are digitally signed under the PGP/GPG public key having ID b8b2 45f5, which has fingerprint 8126 1e02
fc1a 11c9 631a 65be b5b3 1682 b8b2 45f5.
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random one, which has no solution. A dishonest challenger could therefore publish unsolvable challenges,
and point to the absence of breaks as bogus evidence of hardness.4

To deal with this issue, we design and implement a simple, non-interactive, and publicly verifiable
“cut-and-choose” protocol that gives reasonably convincing evidence that the challenge instances are properly
distributed, or at least not much harder than claimed. In short, for each Ring-LWE/LWR instantiation the
challenger announces many timestamped instances. At a later time, the challenger reveals the secrets for all
but a random one of the instances, as determined by a publicly verifiable source of randomness. (Concretely,
we use the NIST randomness beacon [NIS11].) Anyone can then verify that all the revealed instances look
“proper,” which makes it likely that the remaining instance is proper as well—otherwise, the challenger would
have had been caught with rather larger probability (as long as it cannot predict or influence the randomness
source). See Section 3 for further details and discussion of potential alternatives, such as zero-knowledge
proofs for lattice problems, which turn out not to give the kind of guarantees we desire.

Search versus decision. We stress that our challenges are for search versions of Ring-LWE/LWR, whereas
many cryptographic applications rely on the conjectured hardness of solving decision with noticeable
advantage. Unfortunately, it appears impractical to give meaningful challenges for the latter regime. This is
because detecting a tiny advantage requires a very large number of instances, and a corresponding increase in
effort by the attacker. And even for relatively large advantages, the naïve method of confirming the solutions
would require the challenger to retain the correct answers and honestly compare them to the attacker’s,
because the attacker cannot confirm its own answers (unlike with the search problem, where it can).5

Nevertheless, we gain confidence in the usefulness of search challenges from the fact that the known
classes of attack against decision either proceed by directly solving search, or can be adapted to do so with
relatively little or no extra overhead. (See [LP11, LN13, ADPS16].) In addition, there are search-to-decision
reductions [LPR10, Section 5] which provide evidence that decision cannot be much easier than search
(though the known reductions incur some as-yet unoptimized overhead). Finally, we note that practical
constructions of, e.g., key exchange as in [BCD+16] can use “hashed” variants, for which hardness of search
can be sufficient for a reductionist security analysis in the random oracle model.

Implementation. Our free and open-source challenge generator and verifier are implemented using the
recent Λ∘𝜆 (pronounced “L O L”) framework for lattice- and ring-based cryptography [CP16a, CP16b].
In particular, Λ∘𝜆 supports arbitrary cyclotomics and sampling from the theory-recommended Ring-LWE
distributions we use in our instantiations (see Section 1.2 for details). We stress that while Λ∘𝜆 is written in
the functional, strongly typed language Haskell, all the challenge data is serialized using Google’s platform-
and language-neutral protocol buffers (protobuf) framework [Goo08]. This allows the challenges to be
read using most popular programming languages, via parsers that are automatically generated from our
protobuf message specifications. (These specifications are given in Appendix C, and with the challenges
themselves.) In addition, Λ∘𝜆 includes C++ code for cyclotomic ring operations, which can be used by
alternative implementations written in other languages.

4This appears qualitatively different from problems like integer factorization and discrete logarithms, where deviating from the
prescribed distributions seems like it can only make challenges easier to solve, or at least no harder.

5We considered more sophisticated non-interactive methods for confirming answers, like using a “fuzzy extractor” [DORS04] to
encrypt a secret that can only be recovered by solving a large enough fraction of decision challenges. Such methods seem tantalizing,
but are complex to implement and bandwidth-intensive in our setting, so we leave this direction to future work.
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1.2 Challenge Instantiations

Our challenge instantiations cover a wide range of parameters for several aspects of the Ring-LWE/LWR
problems, including: size and form of the cyclotomic index and corresponding dimension; width of the error
distribution; size and arithmetic form of the modulus; and number of samples. Each of these parameters has
some degree of influence on the conjectured hardness of a Ring-LWE instantiation, as we discuss below.

For each challenge instantiation we give a qualitative hardness estimate, ranging from “toy” and “easy”
to “very hard,” along with an approximate block size that should allow the Block Korkin-Zolotarev (BKZ)
basis-reduction algorithm to solve the instantiation. The easier categories represent instantiations that
should be breakable using standard lattice algorithms on desktop-class machines in somewhere between a
few minutes and a few months, whereas the hardest category should be out of reach even for nation-state
adversaries—based on the current state of public cryptanalysis, at least. We deduce our hardness estimates by
approximating the Hermite factors and BKZ block sizes needed to solve the instantiations via lattice attacks,
which usually represent the most practically efficient attacks against Ring-LWE/LWR. See Section 5 for
details.

1.2.1 Cyclotomic Index

A primary parameter influencing Ring-LWE’s conjectured hardness is the degree (or dimension) of the
ring 𝑅, which in the cyclotomic case is the totient 𝑛 = 𝜙(𝑚) of the index (or conductor) 𝑚. Thus far,
most implementations have used two-power cyclotomic rings, because they have the computationally and
analytically simplest form 𝑅 ∼= Z[𝑋]/(𝑋𝑛 + 1), where 𝑛 is a power of two. Moreover, sampling from a
spherical Gaussian in their “canonical” geometry is equivalent to sampling independent identically distributed
Gaussian coefficients for the powers of 𝑋 .

Nevertheless, we believe that Ring-LWE over non-two-power cyclotomics is deserving of more crypt-
analytic effort. First, powers of two are rather sparse, especially in the relevant range of 𝑛 in the several
hundreds or more. In addition, two-power cyclotomics are incompatible with some advanced features of fully
homomorphic encryption (FHE) schemes, such as “plaintext packing” [SV11] and asymptotically efficient
“bootstrapping” algorithms [GHS12, AP13] for characteristic-two plaintext rings like F2𝑘 . Finally, non-two-
power cyclotomic rings lack orthogonal bases (in the canonical geometry), so sampling from recommended
error distributions and error management are more subtle [LPR13], and it is interesting to consider what
effect (if any) this has on concrete hardness.

Our challenges are weighted toward the popular two-power case, but they also include indices of a variety
of other forms, including powers of other small primes, those that are divisible by many small primes, and
moderately large primes. We are particularly interested in whether there are any cryptanalytic attacks that can
take special advantage of any of these forms. Our choices of indices 𝑚 correspond to dimensions 𝑛 ranging
from 128 to 4,096 for Ring-LWE, and from 16 to 162 for Ring-LWR.

1.2.2 Error Width

The absolute error of a (Ring-)LWE instantiation is, very informally, the “width” of the coefficients of the
error distribution, with respect to an appropriate choice of basis. The main worst-case hardness theorems for
(Ring-)LWE (e.g., [Reg05, Pei09, LPR10]) apply to Gaussian-like error distributions whose widths exceed
certain Ω(

√
𝑛) bounds. Conversely, there are algebraic attacks that can exploit significantly narrower errors,

if enough samples are available (see, e.g., [AG11, ACFP14, EHL14, CLS15, CLS16, Pei16]). However,
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there is still a poorly understood gap between the theoretical bounds and parameters that plausibly fall to
such attacks, especially in the low-sample regime (see Section 1.2.4 below for further details).

Following the original definition and recommended usage of Ring-LWE [LPR10, LPR13], our challenge
instantiations use spherical Gaussian error (in the canonical geometry), relative to the “dual” fractional
ideal 𝑅∨ of the ring 𝑅. More specifically, the products 𝑠 · 𝑎𝑖 reside in the quotient group 𝑅∨/𝑞𝑅∨, and we
add Gaussian error 𝐷𝑟 of some parameter 𝑟 > 0. We emphasize that 𝑅∨ corresponds to a much denser lattice
than Z𝑛; in particular, 𝐷𝑟 yields errors having (not necessarily independent) Gaussian coefficients of width
𝑟
√
𝑛 with respect to the “decoding” basis of 𝑅∨. Therefore, our setting is closely analogous to plain LWE

with Gaussian error of parameter 𝑟
√
𝑛.

Our challenge instantiations use four qualitative categories of error parameter 𝑟:

Trenta corresponds to a bound from the main “worst-case hardness of decision-Ring-LWE” theorem [LPR10,
Theorem 3.6], namely, 𝑟 ≥ (𝑛ℓ/ ln(𝑛ℓ))1/4 ·

√︀
ln(2𝑛/𝜀)/𝜋, where ℓ is the number of revealed samples

and (say) 𝜀 ≈ 2−80 is a bound on the statistical distance in the reduction.6 We pose this class of
challenges to give some insight into instantiations that conform to the error bounds from known worst-
case hardness theorems (though not necessarily for large enough dimensions 𝑛 to obtain meaningful
hardness guarantees via the reductions alone).

Grande corresponds to some 𝑟 ≥ 𝑐 = Θ(1) (i.e., coefficients of width 𝑐
√
𝑛) that satisfies the lower bound

from Regev’s worst-case hardness theorem [Reg05] for plain LWE, and that also suffices for provable
immunity to the class of “ring homomorphism” attacks defined in [EHL14, ELOS15, CLS15, CLS16],
as shown in [Pei16, Section 5]. We note that while the theorems from [Reg05] and [Pei16] are stated
for 𝑐 = 2, an inspection of the proofs and tighter analysis reveal that the constant can be improved
to nearly 1/(2

√
𝜋) ≈ 0.282 in the former case [Reg16], and to 𝑐 =

√︀
8/(𝜋𝑒) ≈ 0.968 or better in

the latter case, depending on the dimension and desired time/advantage lower bound (see Section 4.1
for details). We pose this class of challenges to give instantiations which might someday conform to
significantly improved worst-case hardness theorems for Ring-LWE, and which in any case satisfy the
bounds from known hardness theorems in the absence of ring structure.

Tall corresponds to 𝑟 ∈ {6, 9}/
√
𝑛, i.e., error coefficients of width 6 or 9. Errors of roughly this size have

been used in prior concrete analyses of LWE instantiations (e.g., [MR09, LP11]) and in practical
implementations of (Ring-)LWE cryptography (e.g., [ADPS16, BCD+16]).

Short corresponds to 𝑟 ∈ {1, 2}/
√
𝑛, i.e., error coefficients of width 1 or 2. In light of the above-mentioned

small-error and homomorphism attacks, we consider such parameters to be riskier, at least when a large
number of Ring-LWE samples are available. But at present it is unclear whether the attacks are feasible
when only a small or moderate number of samples are available, as is the case in our challenges and in
many applications (see Section 1.2.4 below for further discussion).

Finally, for each setting of the error parameter we give challenges for both continuous error and its
corresponding discretized version, where each real coefficient (with respect to the decoding basis) is rounded
off to the nearest integer. Cryptographic applications almost always use discrete forms of Ring-LWE, but
continuous forms are also cryptanalytically interesting. In particular, rounding yields a tight reduction from
any continuous form to its corresponding discrete form, i.e., the latter is at least as hard as the former.

6It is very likely that the bound can be improved by a small constant factor within the same proof framework; in addition, the
(𝑛ℓ/ ln(𝑛ℓ))1/4 factor might be an artifact of the proof. However, we use the bound as stated for our challenges.
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1.2.3 Modulus

Another main quantity that strongly influences Ring-LWE’s apparent hardness is the error rate, which
is, informally, the ratio of the (absolute) error width to the modulus 𝑞. There is much theoretical and
practical cryptanalytic evidence that, all else being equal, Ring-LWE becomes harder as the error rate
increases. E.g., there are tight reductions from smaller to larger rates; worst-case hardness theorems yield
stronger conclusions for larger error rates; and lattice-based attacks perform worse in practice. Therefore,
cryptographic applications typically aim to use the smallest possible modulus that can accomodate the
accumulated error terms without mod-𝑞 “wraparound” (so as to avoid, e.g., incorrect decryption). However,
other considerations can introduce additional subtleties in the choice of modulus.

The initial worst-case hardness theorem for search-Ring-LWE [LPR10, Theorem 4.1] applies to any
sufficiently large modulus 𝑞 and absolute error. However, the search-to-decision reduction [LPR10, The-
orems 5.1 and 5.2] requires 𝑞 to be a prime integer that “splits well” in 𝑅, i.e., the ideal 𝑞𝑅 factors into
distinct prime ideals of small norm.7 Subsequent work [BV11, BLP+13] used the “modulus switching”
technique to obtain a reduction for essentially any modulus, at the cost of an increase in the error rate. Finally,
recent work [PRS17] gave a worst-case hardness theorem for decision-Ring-LWE for any modulus, which
either matches or improves upon the just-described results in terms of parameters. On the cryptanalytic side,
the above-mentioned homomorphism attacks of [EHL14, ELOS15, CLS15, CLS16] can take advantage of
moduli 𝑞 for which the ideal 𝑞𝑅 has small-norm ideal divisors, but only when the error is insufficiently “well
spread” relative to those ideals. (See [Pei16] for further details.)

With these considerations in mind, our challenge instantiations include moduli of a variety of sizes and
arithmetic forms. We include moduli that split completely, others that split very poorly, and some that “ramify”
(e.g., two-power moduli for two-power cyclotomics). Each instantiation uses a modulus that is large enough,
relative to the absolute error, to yield correct decryption with high probability in public-key encryption and
key-exchange protocols following the template from [LPR10, Pei14]. See Section 4.2 for further details.

1.2.4 Number of Samples

Finally, each of our challenge instantiations consist of either a small or moderate number of samples
(specifically, three or 100) for Ring-LWE, and 500 samples for Ring-LWR. These choices are motivated
by the following considerations: while simple cryptographic constructions like key exchange and digital
signatures reveal only a few samples (per fresh secret) to the adversary, other constructions like FHE,
identity/attribute-based encryption, and pseudorandom functions can reveal a much larger (possibly even
adversary-determined) number of samples.

Clearly, revealing more samples cannot increase the hardness of an instantiation, because the attacker can
just ignore some of them. There is also evidence that in certain parameter regimes, such as small bounded
errors, increasing the number of samples can significantly reduce concrete hardness [AG11, ACFP14]. At
the same time, the main worst-case hardness theorems for Ring-LWE place mild or no conditions at all on
the number of samples [LPR10, Theorem 3.6], and the same goes for plain LWE [Reg05, Pei09, BLP+13].
(Worst-case hardness theorems for less-standard LWE instantiations [MP13], and for (Ring-)LWR [BPR12,
AKPW13, BGM+16, AA16], do have a strong dependence on the number of samples, however.) There are
also standard techniques to generate fresh (Ring-)LWE samples from a fixed number of given ones, though at
a cost in the error rate of the new samples [Lyu05, GPV08, ACPS09].

7Such moduli also enable FFT-like algorithms over Z𝑞 , also called Chinese Remainder Transforms, which yield fast multiplication
algorithms for 𝑅/𝑞𝑅 using just Z𝑞 operations.
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In summary, the practical effect of the number of samples on concrete hardness is unclear, and seems to
depend heavily on the other parameters of the instantiation. Therefore, we separately consider both the small-
and moderate-sample regime for our challenge instantiations.

1.3 Other Related Work

In a recent concurrent and independent work, Buchmann et al. [BBG+16] describe a method and implemen-
tation for creating challenges for LWE (but not Ring-LWE). Both their work and ours encounter a common
issue—that naïve methods of generating challenges require knowing the solutions—but their main goal is to
not exclude anybody from participating in the cryptanalysis of the resulting challenges. They accomplish this
by generating the challenges using a multi-party computation protocol, so that the solutions never reside with
any single party. (Their implementation uses three parties, although this is not inherent to the approach.) In
addition, their protocol allows for retroactively verifying the players’ honest behavior after a challenge has
been solved. However, we observe that if a majority of the parties collude, then they can obtain the solutions
“semi-honestly” (i.e., without deviating from the protocol), or even maliciously create invalid instances that
have no solutions. In either case, the cheating would not be detectable; in particular, the lack of a solution
means that the players would never have to demonstrate honest behavior. By contrast, our protocol gives
good evidence that the challenges are properly generated, although the secrets are generated in one place.

Over the years there have been many analyses of various LWE parameterizations, in both the asymptotic
and concrete settings, against various kinds of attacks, e.g., [MR09, LP11, AFG13, ACFP14, ACF+15,
APS15, HKM15]. All of these apply equally well to Ring-LWE, which can be viewed as a specialized form
of LWE, although they do not attempt to exploit the ring structure.

Cryptanalytic challenges have been provided for many other kinds of problems and cryptosystems,
including integer factorization [RSA91], discrete logarithm on elliptic curve groups [Cer97], short-vector
problems on ad-hoc distributions of ideal lattices [PS13], the NTRU cryptosystem [NTR15], and multivariate
cryptosystems [YDH+15].

1.4 Organization

The remainder of the paper is organized as follows:

Section 2 recalls the necessary mathematical background for the Ring-LWE and Ring-LWR problems.

Section 3 describes our non-interactive, publicly verifiable “cut-and-choose” protocol for giving evidence
that the challenge instances are properly distributed.

Section 4 gives further details on how we choose our instantiations’ parameters, specifically their Gaussian
widths and moduli.

Section 5 describes how we obtain approximate hardness estimates for our challenge instantiations.

Appendix A gives some lower-level technical details about our implementation and the operational security
measures we used while creating the challenges.

Appendices B and C describe the directory layouts and file formats for the challenges.

Acknowledgments. We thank Oded Regev for helpful discussions, and for initially suggesting the idea of
publishing Ring-LWE challenges.
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2 Background

We now recall the relevant mathematical background and definitions of the Ring-LWE and Ring-LWR
problems; see [LPR10, LPR13, CP16a] for many more mathematical and computational details.

2.1 Lattices and Gaussians

In cyclotomic ring-based lattice cryptography, we use the space 𝐻 ⊆ C𝑛 for some even integer 𝑛, defined as

𝐻 := {x = (𝑥1, . . . , 𝑥𝑛) ∈ C𝑛 : 𝑥𝑖 = 𝑥𝑖+𝑛/2, 𝑖 ∈ {1, . . . , 𝑛/2}}.

It is easy to check that 𝐻 , with the inner product ⟨x,y⟩ =
∑︀

𝑖 𝑥𝑖𝑦𝑖 of the ambient space C𝑛, is an 𝑛-
dimensional real inner product space, i.e., it is isomorphic to R𝑛 via an appropriate rotation. Therefore, the
reader may mentally replace 𝐻 with R𝑛 in all that follows. We let ℬ = {x ∈ 𝐻 : ‖x‖ ≤ 1} denote the
closed unit ball in 𝐻 (in the Euclidean norm).

For the purposes of this work, a lattice ℒ is discrete additive subgroup of 𝐻 that is full rank, i.e.,
spanR(ℒ) = 𝐻 . A lattice is generated as the set of integer linear combinations of some linearly independent
basis vectors B = {b1, . . . ,b𝑛}:

ℒ = ℒ(B) :=
{︁∑︁

𝑖

𝑧𝑖b𝑖 : 𝑧𝑖 ∈ Z
}︁
.

The volume (or determinant) of a lattice ℒ is vol(ℒ) := vol(𝐻/ℒ) = |det(B)|, where B denotes any basis
of ℒ. The minimum distance of ℒ is 𝜆1(ℒ) := min0 ̸=v∈ℒ‖v‖, the length of a shortest nonzero lattice vector.
The dual lattice ℒ∨ of a lattice ℒ is the set of all points in 𝐻 having integer inner products with every vector
of the lattice: ℒ∨ := {w ∈ 𝐻 : ⟨w,ℒ⟩ ⊆ Z}.

Gaussians. The Gaussian function 𝜌 : 𝐻 → R+ is defined as 𝜌(x) := exp(−𝜋‖x‖2), and is scaled to
have parameter (or width) 𝑟 > 0 by defining 𝜌𝑟(x) := 𝜌(x/𝑟). The (spherical) Gaussian probability
distribution 𝐷𝑟 over 𝐻 is defined to have probability density function 𝑟−𝑛 ·𝜌𝑟. (We usually omit the subscript
when 𝑟 = 1.)

The following bounds use the function

𝑓(𝑥) =
√

2𝜋𝑒 · 𝑥 · exp(−𝜋𝑥2), (2.1)

which is strictly decreasing and at most 1 for 𝑥 ≥ 1/
√

2𝜋.

Lemma 2.1 ([Ban93, Lemma 1.5]). For any 𝑐 > 1/
√

2𝜋 defining 𝐶 = 𝑓(𝑐) < 1, and any lattice ℒ ⊂ 𝐻 ,

𝜌(ℒ ∖ 𝑐
√
𝑛ℬ) < 𝐶𝑛 · 𝜌(ℒ).

The analogous continuous bound 𝐷(𝐻 ∖ 𝑐
√
𝑛ℬ) < 𝐶𝑛 follows by taking an arbitrarily dense lattice ℒ and

using a limiting argument. The following is a result of rearranging terms.

Corollary 2.2. If 𝜋𝑐2−ln 𝑐 ≥ 1
𝑛 ln(1𝜀 )+ 1

2 ln(2𝜋𝑒) for some 𝑐 > 1/
√

2𝜋 and 𝜀 > 0, then𝐷(𝐻∖𝑐
√
𝑛ℬ) < 𝜀.

The following is an immediate corollary of Lemma 2.1 and [MR04, Lemma 4.1].

Lemma 2.3. For any lattice ℒ ⊂ 𝐻 and 𝑟 >
√︀
𝑛/2𝜋/𝜆1(ℒ∨) defining 𝐶 = 𝑓(𝑟𝜆1(ℒ∨)/

√
𝑛) < 1, the

statistical distance between 𝐷𝑟 mod ℒ and the uniform distribution over 𝐻/ℒ is less than 1
2𝐶

𝑛/(1− 𝐶𝑛).
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2.2 Cyclotomic Rings and Ideal Lattices

Two-power cyclotomics. As a warm-up, we start with the necessary background for two-power cyclotomic
rings, which have especially simple representations and are widely used in practical applications of Ring-LWE.
This background is sufficient to understand the remainder of the paper (from Section 2.3 onward) and our
challenges in the specialized case of two-power cyclotomics.

When 𝑚 = 2𝑘 ≥ 2 is a power of two, the 𝑚th cyclotomic polynomial is Φ𝑚(𝑋) = 𝑋𝑛 + 1, where
𝑛 = 𝜙(𝑚) = 2𝑘−1. The 𝑚th cyclotomic field can be represented as 𝐾 = Q[𝑋]/(𝑋𝑛 + 1), and the 𝑚th
cyclotomic ring as 𝑅 = Z[𝑋]/(𝑋𝑛 + 1). The power basis (which is identical to the powerful basis 𝑝 and
the “tweaked” decoding basis 𝑡 · 𝑑 of 𝑅; see below) consists of the powers 1, 𝑋,𝑋2, . . . , 𝑋𝑛−1. That is, an
element of 𝐾 (respectively, 𝑅) can be uniquely represented as a rational (resp., integral) polynomial in 𝑋 of
degree less than 𝑛.

The canonical embedding 𝜎 : 𝐾 → 𝐻 can be viewed as a linear transform from the power-basis
coefficient vector in Q𝑛 to 𝐻 ⊂ C𝑛, where 𝐻 is as defined above in Section 2.1. Under this view, 𝜎 is just a
scaling by a

√
𝑛 factor, followed by a rigid rotation (an isometry). Therefore, the Gaussian distribution 𝐷𝑟

over 𝐻 (and over 𝐾, via 𝜎−1) corresponds to independent power-basis coefficients, each drawn from 𝐷𝑟/
√
𝑛.

The fractional codifferent ideal of 𝑅 is 𝑅∨ = 𝑛−1𝑅. The decoding basis 𝑑 of 𝑅∨ turns out to be
the powerful basis, scaled down by the “tweak” factor 𝑡 = 𝑛, i.e., 𝑡 · 𝑑 = 𝑝. Therefore, the Gaussian
distribution 𝐷𝑟 over 𝐾 corresponds to independent decoding-basis coefficients, each drawn from 𝐷𝑟

√
𝑛.

Tautologically, the same goes for the power-basis coefficients for the “tweaked” distribution 𝑡 ·𝐷𝑟 = 𝐷𝑟𝑛.

General cyclotomics. For a positive integer 𝑚, the 𝑚th cyclotomic number field is 𝐾 = Q(𝜁𝑚), the field
extension of the rationals Q obtained by adjoining an element 𝜁𝑚 having multiplicative order 𝑚, i.e., a
primitive 𝑚th root of unity. The ring of algebraic integers in 𝐾 is 𝑅 = Z[𝜁𝑚], the 𝑚th cyclotomic ring. The
minimal polynomial of 𝜁𝑚 has degree 𝑛 = 𝜙(𝑚), so deg(𝐾/Q) = deg(𝑅/Z) = 𝑛.

There are 𝑛 distinct ring embeddings (i.e., injective ring homomorphisms) 𝜎𝑖 : 𝐾 → C, indexed by
𝑖 ∈ Z*

𝑚, which are defined by 𝜎𝑖(𝜁𝑚) = 𝜔𝑖𝑚 where 𝜔𝑚 = exp(2𝜋
√
−1/𝑚) ∈ C is the principal 𝑚th

complex root of unity. These embeddings come in conjugate pairs (𝜎𝑖, 𝜎𝑚−𝑖), because 𝜔𝑖𝑚 is the complex
conjugate of 𝜔𝑚−𝑖

𝑚 = 𝜔−𝑖
𝑚 . The canonical embedding is the concatenation of all the embeddings (under a

suitable reindexing of Z*
𝑚 as {1, . . . , 𝑛}), i.e., the injective function

𝜎 : 𝐾 → 𝐻

𝜎(𝑎) = (𝜎𝑖(𝑎))𝑖∈Z*
𝑚

where 𝐻 ⊂ C𝑛 is the subspace defined above in Section 2.1.
We endow 𝐾 and 𝑅 with a geometry using the canonical embedding 𝜎. For example, we define

the ℓ2 norm on 𝐾 as ‖𝑥‖2 = ‖𝜎(𝑥)‖2 =
√︀
⟨𝜎(𝑥), 𝜎(𝑥)⟩, and use this to define the continuous Gaussian

distribution 𝐷𝑟 over 𝐾.8

Representations. Often, the 𝑚th cyclotomic ring is represented as 𝑅 ∼= Z[𝑋]/(Φ𝑚(𝑋)), where Φ𝑚(𝑋) is
the 𝑚th cyclotomic polynomial, using the natural “power basis:” every element of 𝑅 is uniquely represented
as a Z-linear combination of the powers 1, 𝑋, . . . ,𝑋𝑛−1. When 𝑚 = 𝑝 is prime, we have Φ𝑝(𝑋) =
1 +𝑋 + · · ·+𝑋𝑝−1, and when 𝑚 is a power of a prime 𝑝, we have Φ𝑚(𝑋) = Φ𝑝(𝑋

𝑚/𝑝), but in other cases

8To be formal, the continuous Gaussian is defined over 𝐾R := 𝐾 ⊗Q R, which is analogous to 𝐾 as the reals R are to the
rationals Q, and which is in bijective correspondence with 𝐻 via the natural extension of 𝜎. Because precision is always finite in any
computational context, in this work we ignore the formal distinction between 𝐾 and 𝐾R.
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the𝑚th cyclotomic polynomial need not have such a nice form, which makes computations more cumbersome.
An alternative “tensored” representation, which was shown in [LPR13] to have better computational and
geometric properties for cryptography, uses a multivariate polynomial ring with one variable per distinct prime
divisor of 𝑚. For example, Z[𝑋1, 𝑋2]/(Φ𝑚1(𝑋1),Φ𝑚2(𝑋2)) when 𝑚 = 𝑚1𝑚2 is the factorization of 𝑚
into powers of two distinct primes. The powerful basis 𝑝 ∈ 𝑅𝑛 is the corresponding Z-basis of monomials in
this representation, i.e., the tensor product of the power bases of the individual prime-power cyclotomics.
See [LPR13, Section 4] for further details. (Note that Λ∘𝜆, which our implementation is based upon, defines
the powerful basis in “digit reversed” order; see [CP16a].)

Ideal lattices. An ideal ℐ ⊆ 𝑅 is a nontrivial additive subgroup that is also closed under multiplication
by 𝑅, i.e., 𝑥 · 𝑟 ∈ ℐ for any 𝑥 ∈ ℐ, 𝑟 ∈ 𝑅. The norm is defined as N(ℐ) := |𝑅/ℐ|, the index of ℐ in 𝑅.

A fractional ideal 𝒥 ⊂ 𝐾 is a set that can be expressed as 𝒥 = 𝑑−1 · ℐ for some ideal ℐ ⊆ 𝑅 and
𝑑 ∈ 𝑅. (We sometimes omit the word “fractional” when it is clear from context.) Its norm is defined as
N(𝒥 ) := N(ℐ)/N(𝑑). The fractional ideals form a group under multiplication (with𝑅 as the identity), where
ideal multiplication is defined by ℐ𝒥 = {

∑︀
𝑖 𝑥𝑖𝑦𝑖 : 𝑥𝑖 ∈ ℐ, 𝑦𝑖 ∈ 𝒥 }. The norm map is then multiplicative:

N(ℐ𝒥 ) = N(ℐ) N(𝒥 ).
Any (fractional) ideal ℐ yields a lattice 𝜎(ℐ) ⊂ 𝐻 under the canonical embedding. As usual, we often

leave 𝜎 implicit and refer to ℐ itself as a lattice. The following lower bound on the minimum distance of an
ideal lattice is an immediate consequence of the arithmetic-mean/geometric-mean inequality.

Lemma 2.4. For any fractional ideal ℐ ⊂ 𝐾, we have 𝜆1(ℐ) ≥
√
𝑛 ·N(ℐ)1/𝑛.

Duality. Any fractional ideal ℐ ⊂ 𝐾 has a dual (fractional) ideal ℐ∨, which under the canonical embedding
corresponds to (the complex conjugate of) the dual lattice of ℐ , i.e., 𝜎(ℐ) and 𝜎(ℐ∨) are duals. An important
object in algebraic number theory and for the definition of Ring-LWE is the codifferent ideal 𝑅∨ ⊂ 𝐾, the
dual of the entire ring. The dual ideal is related to the inverse ideal via the codifferent: ℐ∨ = ℐ−1𝑅∨. (See,
e.g., [Con09] for further details and proofs.)

In the 𝑚th cyclotomic, 𝑅∨ = 𝑡−1𝑅 for special elements 𝑡, 𝑔 ∈ 𝑅 satisfying 𝑡 · 𝑔 = �̂�, where �̂� = 𝑚/2
when 𝑚 is even, and �̂� = 𝑚 otherwise. (See [LPR13, Section 2.5.4] for further details and proofs.) The
decoding basis 𝑑 is a certain Z-basis of 𝑅∨, which is the dual of (the complex conjugate of) the powerful
basis 𝑝 described above. It therefore has an analogous tensorial factorization, and good geometric properties:
in particular, spherical Gaussians have relatively small coefficients with respect to 𝑑. Because 𝑡𝑅∨ = 𝑅,
it follows that 𝑡 · 𝑑 is a Z-basis of 𝑅, which we call the decoding basis of 𝑅. (See [LPR13, Section 6] for
further details.)

2.3 (Tweaked) Ring-LWE

Ring-LWE is a family of computational problems that was defined and analyzed in [LPR10, LPR13]. Those
works use a form of Ring-LWE involving the dual ideal𝑅∨. More specifically, the search-𝑅-LWE𝑞,𝜓 problem,
for an integer modulus 𝑞 > 1 defining 𝑅𝑞 := 𝑅/𝑞𝑅 and 𝑅∨

𝑞 := 𝑅∨/𝑞𝑅∨, and an error distribution 𝜓 over 𝐾,
is to find a uniformly random secret 𝑠 ∈ 𝑅∨

𝑞 given many independent “noisy” products

(𝑎𝑖 ∈ 𝑅𝑞 , 𝑏𝑖 = 𝑠 · 𝑎𝑖 + 𝑒𝑖 mod 𝑞𝑅∨),

where each 𝑎𝑖 is uniformly random (note that 𝑎𝑖 · 𝑠 ∈ 𝑅∨
𝑞 ), and each 𝑒𝑖 is drawn from 𝜓. Typically, 𝜓 is either

a continuous spherical Gaussian or its discretization to 𝑅∨; these respectively give us continuous (where
𝑏𝑖 ∈ 𝐾/𝑞𝑅∨) and discrete (where 𝑏𝑖 ∈ 𝑅∨

𝑞 ) forms of the problem.
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For cryptographic applications and implementations, it can be convenient to use a form of Ring-LWE
that does not involve 𝑅∨. Following [AP13, CP16a], this can be done with no loss in security or efficiency
by using an equivalent “tweaked” form of the problem, which is obtained by implicitly multiplying the noisy
products 𝑏𝑖 by the “tweak” factor 𝑡 = �̂�/𝑔 ∈ 𝑅, which satisfies 𝑡 ·𝑅∨ = 𝑅. Doing so yields new values

𝑏′𝑖 := 𝑡 · 𝑏𝑖 = (𝑡 · 𝑠) · 𝑎𝑖 + (𝑡 · 𝑒𝑖) = 𝑠′ · 𝑎𝑖 + 𝑒′𝑖 mod 𝑞𝑅,

where 𝑎𝑖, 𝑠′ = 𝑡 · 𝑠 ∈ 𝑅𝑞, and the errors 𝑒′𝑖 = 𝑡 · 𝑒𝑖 come from the “tweaked” error distribution 𝑡 · 𝜓. Note
that when 𝜓 corresponds to a spherical Gaussian, its tweaked form 𝑡 · 𝜓 may be highly non-spherical, but
this is not a problem: tweaked Ring-LWE is entirely equivalent to the above one involving 𝑅∨, because the
tweak is reversible. (See [CP16a] for further details on the recommended usage of tweaked Ring-LWE in
cryptographic applications.)

In this paper, our exposition primarily uses the original form of Ring-LWE involving 𝑅∨, so that we can
use sharp concentration bounds on spherical Gaussians. Our implementation, however, uses the tweaked
form, where equivalent bounds follow by ‖𝑔 · 𝑒′‖ = ‖𝑔 · 𝑡 · 𝑒‖ = �̂� · ‖𝑒‖, where 𝑒 is the original error term
and 𝑒′ = 𝑡 · 𝑒 is its tweaked counterpart.

3 Cut-and-Choose Protocol

A central issue in the creation of challenges for LWE-like problems is that a dishonest challenger could
publish improperly generated instances that are much harder than honestly generated ones, or even impossible
to solve, because they have larger error than claimed or are even uniformly random. Because both the proper
and improper distributions are conjectured to be pseudorandom, such misbehavior would be very difficult to
detect. This stands in contrast to other types of cryptographic challenges for, e.g., the factoring or discrete
logarithm problems, where improper distributions like unbalanced factors or non-uniform exponents seem
like they can only make the instances easier to solve (or at least no harder), so the challenger has no incentive
to use them.

To deal with this issue, we use a simple, non-interactive, publicly verifiable “cut-and-choose” protocol
to give reasonably convincing evidence that the challenge instances are properly distributed, or at least not
much harder than claimed. The protocol uses a timestamp service and a randomness beacon. The former
allows anyone to verify that a given piece of data was generated and submitted to the service before a certain
point in time. The latter is a source of public, timestamped, truly random bits. Concretely, for timestamps
we use the Bitcoin blockchain via the OriginStamp service [GB14], and for randomness we use the NIST
beacon [NIS11].9

3.1 Protocol Description and Properties

At a high level, our protocol proceeds as follows:

1. For each challenge instantiation (i.e., type of problem and concrete parameter set), the challenger
commits by generating and publishing a moderately large number 𝑁 (e.g., 𝑁 = 32) of independent

9The use of a centralized beacon means that verifiers must trust that the challenger cannot predict or influence the beacon values,
e.g., by collusion. This is obviously suboptimal from a security standpoint. Unfortunately, there appear to be few if any decentralized
and practically usable alternatives that meet our needs. For example, while the Bitcoin blockchain has been proposed and analyzed
as a source of randomness, it turns out to be relatively easy and inexpensive to introduce significant bias [BCG15, PW16].
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instances, along with a distinct beacon address indicating a time in the near future, e.g., a few days
later. The challenger also timestamps the commitment.10

2. At the announced time, the challenger obtains from the beacon a random value 𝑖 ∈ {0, . . . , 𝑁 − 1}.
3. The challenger then publicly reveals the secrets (which also implicitly reveals the errors) underlying

all the instances except for the 𝑖th one. The one unrevealed instance is then considered the “official”
challenge instance for its instantiation, and the others are considered “spoiled.”

4. Anyone who wishes to verify the challenge checks that:

(a) the original commitment was timestamped sufficiently in advance of the beacon address (and all
beacon addresses across multiple challenges are distinct);

(b) secrets for the appropriate instances were revealed, as indicated by the beacon value; and

(c) the revealed secrets appear “proper.” For Ring-LWE, one checks that the errors are short enough,
potentially along with other statistical tests, e.g., on the errors’ covariance. For Ring-LWR one
recomputes the rounded products with the revealed secret and compares them to the challenge
instance.

Importantly, a verifier does not need to witness the challenger’s initial commitment firsthand, because it can
just check the timestamp. In addition, the beacon’s random outputs are cryptographically signed, and can be
downloaded and verified at any time, or even provided by the challenger in the reveal step (which is what our
implementation does).

Under the reasonable assumptions that the challenger cannot backdate timestamps, nor predict or influence
the output of the randomness beacon, the above protocol provides the following guarantee: if one or more of
the instances in a particular challenge are “improper,” i.e., they lack a secret that would convince the verifier,
then the challenger has probability at most 1/𝑁 of convincing the verifier. (Moreover, if two or more of the
instances are improper, then the challenger can never succeed.)

Potential cheats and countermeasures. It is important to notice that as described, the protocol does not
prove that the instances were correctly sampled according to the claimed Ring-LWE distribution, only that the
revealed errors satisfy the statistical tests (i.e., they are short enough, etc.). Below in Section 3.2 we describe a
supplementary (but platform- and implementation-specific) test, which we also include in our implementation,
that gives a stronger assurance of correct sampling. However, the above protocol already seems adequate
for practical purposes, because there does not appear to be any significant advantage to the challenger in
choosing non-uniform 𝑎𝑖 ∈ 𝑅𝑞 or 𝑠 ∈ 𝑅∨

𝑞 , nor in deviating from spherical Gaussian errors within the required
error bound. In particular, spherical Gaussians are rotationally invariant, and have maximal entropy over all
distributions bounded by a given covariance.

Another way the challenger might try to cheat is a variant of the “perfect prediction” stock market
scam: the challenger could prepare and timestamp a large number of different initial commitments (Step 1)
containing various invalid instances. The challenger’s goal is for at least one of these commitments to be
successfully revealable once the beacon values become available; the challenger would then publish only that
(timestamped) commitment as the “official” one, and discard the rest. The more commitments it prepares
in advance, the more invalid (but unrevealed) instances it can hope to sneak past the verifier. However, the
number of commitments it must prepare grows exponentially with the number of invalid instances.

10All the challenger’s public messages are cryptographically signed under a known public key. This is for the challenger’s
protection, so that other parties cannot publish bogus data in its name.
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In order to rule out this kind of misbehavior, we prove that there is a single commitment by widely
announcing it (or its hash value under a conjectured collision-resistant hash function) before the beacon values
become available, in several venues where it would be hard or impossible to make multiple announcements or
suppress them at a later time. For example, on the IACR ePrint archive we have created one dated submission
for this paper, every version of which contains the same hash value of the commitment (in Footnote 3). Also,
we announced the hash value at the IACR Crypto 2016 Rump Session, which was streamed live on the
Internet and is available for replay on YouTube.

3.2 Alternative Protocols

Here we describe some potential alternative approaches for validating Ring-LWE challenges, and analyze
their strengths and drawbacks.

Publishing PRG seeds. As noted above, revealing the secrets and errors does not actually prove that the
instances were sampled from the claimed Ring-LWE distribution. To address this concern, the challenger
could generate each instance deterministically, making its random choices using the output of a crypto-
graphically secure pseudorandom generator (PRG) on a short truly random seed. Then to reveal an instance,
the challenger would simply reveal the corresponding seed, which the verifier would use to regenerate the
instance and check that it matches the original one. We caution that this method still does not guarantee that
the instances are properly sampled, because the challenger could still introduce some bias by generating many
instances and suppressing ones it does not like, or even choosing seeds maliciously. However, publishing
PRG seeds seems to significantly constrain a dishonest challenger’s options for misbehavior. (Using a public
randomness beacon is not an option, because some of the PRG seeds must remain secret.)

There are a few significant practical drawbacks to this approach. First, establishing any reasonable
level of assurance requires the verifier to understand and run the challenger-provided code of the instance
generator, rather than just checking that its outputs appear “proper,” as the above protocol does. This also
makes it difficult to write an alternative verification program (e.g., in a different programming language)
without specifying exactly how the PRG output bits are consumed by the instance generator, which is
cumbersome for continuous distributions like Gaussians. Second, even the provided verification code might
be platform-specific: using different compiler versions or CPUs could result in different outputs on the same
seed, due to differences in how the PRG output bits are consumed.11

Despite the above drawbacks, however, using and revealing PRG seeds does not need to replace the above
protocol, but can instead supplement it to provide an extra layer of assurance. Therefore, our challenger
and verifier also implement this method (and allow for very small ≤ 2−20 differences in floating-point
values, to account for compiler differences). A failed match does not necessarily indicate misbehavior on the
challenger’s part, but is output as a warning by the verifier.

Zero-knowledge proofs. Another possibility is to view a Ring-LWE instance as a Bounded Distance
Decoding (BDD) problem on a lattice, and have the challenger give a non-interactive zero-knowledge
proof that it knows a solution within a given error bound. This can be done reasonably efficiently via, e.g.,
the public-coin protocol of [MV03] or Stern-style protocols for LWE-like problems [LNSW13], using a
randomness beacon to provide the public coins. While at first glance this appears to provide exactly what we

11We actually witnessed this phenomenon during development: different compilers yielded very small differences in the floating-
point values of our continuous Ring-LWE instances, but not our discrete ones. We attribute this to the compilers producing different
orders of instructions, and the non-associativity/commutativity of floating-point arithmetic.
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need, it turns out not to give any useful guarantee, due to the approximation gap between the completeness
and soundness properties.

In more detail, for a BDD error bound 𝐵, an honest prover can always succeed in convincing the
verifier that the error is at most 𝐵. However, the soundness guarantees only prevent a dishonest prover from
succeeding when the BDD error is significantly larger than 𝐵. Specifically, the protocol from [MV03] has a
bound of ≈ 𝐵

√
𝑑 where 𝑑 is the lattice dimension, and the protocol from [LNSW13] only proves that the

largest coefficient (in some basis) of the error is bounded. For our Gaussian error distributions, this bound
would need to be about 2–3 times larger than the size of a typical coefficient. In summary, these protocols
can only guarantee that the error is bounded by (say) 2𝐵, which can correspond to a much harder Ring-LWE
instance than one with error bound 𝐵. By contrast, our protocol has a gap of only 10-15%, as shown next.

3.3 Verifier and Error Bounds

Here we describe our verifier in more detail, including some relevant aspects of its implementation, and
describe how we compute rather sharp error bounds for our Ring-LWE instantiations.

Recall that each of our Ring-LWE instantiations is parameterized by a cyclotomic index 𝑚 defining the
𝑚th cyclotomic number field 𝐾 and cyclotomic ring 𝑅, which have degree 𝑛 = 𝜙(𝑚); a positive integer
modulus 𝑞 defining 𝑅𝑞 := 𝑅/𝑞𝑅 and 𝑅∨

𝑞 := 𝑅∨/𝑞𝑅∨; and a Gaussian error parameter 𝑟 > 0. (The number
of samples is also a parameter, but it plays no role in the bounds.)

Verification. To verify a (continuous) Ring-LWE instance consisting of samples (𝑎 ∈ 𝑅𝑞, 𝑏 ∈ 𝐾/𝑞𝑅∨) for
a purported secret 𝑠 ∈ 𝑅∨

𝑞 and given error bound 𝐵, one does the following for each sample:

1. compute 𝑒 := 𝑏− 𝑠 · 𝑎 ∈ 𝐾/𝑞𝑅∨,

2. express 𝑒 with respect to the decoding basis 𝑑 = (𝑑𝑗) of 𝑅∨, as 𝑒 =
∑︀

𝑗 𝑒𝑗𝑑𝑗 where each 𝑒𝑗 ∈ Q/𝑞Z.

3. “lift” 𝑒 ∈ 𝐾/𝑞𝑅∨ to a representative 𝑒 ∈ 𝐾, defined as 𝑒 =
∑︀

𝑗 𝑒𝑗𝑑𝑗 where each 𝑒𝑗 ∈ Q ∩ [− 𝑞
2 ,

𝑞
2) is

the distinguished representative of 𝑒𝑗 .

4. check that ‖𝑒‖ ≤ 𝐵 (where recall that ‖𝑒‖ := ‖𝜎(𝑒)‖, the length of the canonical embedding of 𝑒).

For a discrete instance one does the same, but with 𝐾 replaced by 𝑅∨ and Q replaced by Z. In either case,
properly generated Ring-LWE samples for our instantiations will correctly verify (with high probability)
because the original errors 𝑒 ∈ 𝐾 have coefficients of magnitude smaller than 𝑞/2 with respect to the
decoding basis, hence they are correctly recovered from 𝑏− 𝑠 · 𝑎 = 𝑒 mod 𝑞𝑅∨. Moreover, we show below
that they have Euclidean norms below the error bound 𝐵 with high probability.

Implementation. As mentioned in Section 2.3, our Λ∘𝜆-based implementation actually uses the “tweaked”
form of Ring-LWE, in which 𝑅∨ is replaced by 𝑅 by implicitly multiplying each 𝑏 component, and thereby
the secret 𝑠 and each error term 𝑒, by the “tweak” factor 𝑡 (where 𝑡𝑅∨ = 𝑅). Correspondingly, the basis 𝑡 · 𝑑
is referred to as the decoding basis of 𝑅. Therefore, we use an equivalent verification procedure to the one
above, which simply replaces 𝑅∨, 𝑑 with 𝑅, 𝑡 · 𝑑, and the test ‖𝑒‖ ≤ 𝐵 with ‖𝑔 · 𝑒‖ ≤ �̂�𝐵, where 𝑔 ∈ 𝑅 is
the special element such that 𝑔 · 𝑡 = �̂�. (Recall that �̂� = 𝑚/2 when 𝑚 is even, and �̂� = 𝑚 otherwise.)

The Λ∘𝜆 framework provides operations for efficiently “lifting” elements of 𝐾/𝑞𝑅 or 𝑅/𝑞𝑅 to 𝐾 or 𝑅
(respectively) using the decoding basis of 𝑅, and for computing ‖𝑔 · 𝑒‖, exactly as required. Actually, because
it is computationally simpler, Λ∘𝜆 works with squared norms, Gaussian parameters, error bounds, etc., so
our verifier checks the equivalent condition ‖𝑔 · 𝑒‖2 ≤ (�̂�𝐵)2.
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Continuous error bound. For continuous Ring-LWE instantiations with spherical Gaussian error 𝐷𝑟

over 𝐾, we use Lemma 2.1 and Corollary 2.2 to get rather sharp tail bounds on the Euclidean norm of the
error. In our actual challenge instances, the error bound we use was typically within a factor of ≈ 1.10 of the
largest error in each instance, so it gives little room for misbehavior relative to the correct error distribution.

The bound is obtained as follows. For an appropriate small 𝜀 > 0 we compute the minimal 𝑐 > 1/
√

2𝜋
(up to ≈ 10−4 precision) such that

𝜋𝑐2 − ln 𝑐 ≥ 1

𝑛
ln(1/𝜀) +

1

2
ln(2𝜋𝑒).

Then by Corollary 2.2, we have Pr𝑥∼𝐷𝑟 [‖𝑥‖ > 𝐵] < 𝜀, where 𝐵 := 𝑐𝑟
√
𝑛. Concretely, we set 𝜀 = 2−25

to get a rather strict bound that is still not too likely to be violated over the tens of thousands of error terms
across all the instances.

Discrete error bound. For Ring-LWE instantiations with spherical Gaussian error 𝐷𝑟 over 𝐾, discretized
(i.e., rounded off) to 𝑅∨ using the decoding basis 𝑑, we need to use a high-probability bound on the norm of
the discretized error. For this we use a combination of Corollary 2.2 and a (partially heuristic) analysis of the
round-off term. In our actual challenge instances, the ultimate bound was typically within a factor of ≈ 1.15
of the largest error in each instance.

Our discrete bound is obtained as follows. We first compute the same bound 𝐵 = 𝑐𝑟
√
𝑛 on 𝐷𝑟 as

above. Now, because 𝐷𝑟 is above or near the “smoothing parameter” of 𝑅∨, the fractional part f ∈ [−1
2 ,

1
2)𝑛

of its coefficient vector with respect to 𝑑 is close to uniformly random; henceforth we model it as such.
The discretization error is 𝑓 = ⟨𝑑, f⟩ ∈ 𝐾, which corresponds to Df in the canonical embedding, where
D = 𝜎(𝑑) = (𝜎𝑖(𝑑𝑗))𝑖,𝑗 . Observe that

‖𝑓‖2 = ⟨Df ,Df⟩ = f 𝑡Gf ,

where G = D* ·D is the positive definite Gram matrix of D.
We now analyze the trace Tr(G), and use this to obtain a high-probability tail bound on ‖𝑓‖. Note that

by definition of the decoding basis, G = H−1 is the inverse of the Gram matrix H of the powerful basis 𝑝.
When 𝑚 is a prime 𝑝, the proof of [LPR13, Lemma 4.3] shows that H = 𝑝I𝑝−1 − 1, so G = 𝑝−1(I𝑝−1 + 1),
which has trace Tr(G) = 2(𝑝− 1)/𝑝 = 2𝑛/𝑚. By the tensorial decomposition of the powerful and decoding
bases, this immediately generalizes for arbitrary 𝑚 to

Tr(G) =
2𝑘𝑛

𝑚
,

where 𝑘 is the number of distinct primes dividing 𝑚.
Recalling that we model f ∈ [−1

2 ,
1
2)𝑛 as uniformly random, by independence of 𝑓𝑖, 𝑓𝑗 for 𝑖 ̸= 𝑗 and

linearity of expectation we have

E
𝑓

[‖𝑓‖2] = E
f
[f 𝑡Gf ] =

1

12
Tr(G) =

2𝑘𝑛

12𝑚
.

We heuristically assume that 𝜎(𝑓) = Df obeys essentially the same concentration bound (Lemma 2.1) as a
spherical Gaussian having the above expected squared norm, times a small constant factor to account for
the somewhat heavier tails (due to the non-spherical, non-Gaussian distribution). Our ultimate bound is√
𝐵2 + 𝐹 2, where 𝐵 = 𝑐𝑟

√
𝑛 and 𝐹 = 𝑐

√︀
2𝑘𝑛/𝑚 are the high-probability bounds on the norms of 𝐷𝑟 and

the rounding term 𝑓 , respectively.
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4 Parameters

Here we give further details on how we choose the parameters of our instantiations, particularly the Gaussian
error parameters 𝑟 (Section 4.1) and modulus 𝑞 (Section 4.2).

4.1 Error Parameter

As already mentioned in Section 1.2.2, we consider four categories of parameter 𝑟 for the Gaussian error
distribution 𝐷𝑟 over 𝐾: “Trenta,” “Grande,” “Tall,” and “Short.” For all categories except Grande, the
descriptions in Section 1.2.2 give the exact Gaussian parameter, or range of parameters, that we use in our
instantiations.

For the Grande category, we use parameters that in particular have provable immunity to the “homo-
morphism” attack explored in [EHL14, ELOS15, CLS15, CLS16]. In [Pei16] it was shown that 𝑟 ≥ 2
is a sufficient condition for such immunity (in rings of cryptographically relevant dimensions). Here we
generalize and tighten the analysis to obtain better bounds, which we use in our Grande instantiations.

The homomorphism attack on the original (non-“tweaked”) definition of decision-Ring-LWE is as follows.
(This is for the continuous form; it adapts immediately to the discrete form by replacing 𝐾 with 𝑅∨.) Let 𝜓
be an arbitrary error distribution over 𝐾, and let ℐ ⊆ 𝑅 be any ideal divisor of 𝑞𝑅. We are given independent
samples (𝑎𝑖, 𝑏𝑖) ∈ 𝑅𝑞 × 𝐾/𝑞𝑅∨, which are distributed either uniformly or according to the Ring-LWE
distribution for some secret 𝑠 ∈ 𝑅∨

𝑞 . We first reduce the samples to

(𝑎′𝑖 = 𝑎𝑖 mod ℐ , 𝑏′𝑖 = 𝑏𝑖 mod ℐ𝑅∨) ∈ 𝑅/ℐ ×𝐾/(ℐ𝑅∨).

Then for each of the N(ℐ) candidate (reduced) secrets 𝑠′ ∈ 𝑅∨/ℐ𝑅∨, we try to distinguish the 𝑑′𝑖 :=
𝑏′𝑖 − 𝑠′ · 𝑎′𝑖 ∈ 𝐾/ℐ𝑅∨ from uniform. (How this is done does not matter for the present discussion.) Observe
that if the samples come from the Ring-LWE distribution, i.e., 𝑏𝑖 = 𝑠 · 𝑎𝑖 + 𝑒𝑖 mod 𝑞𝑅∨ for 𝑒𝑖 ← 𝜓, then
for the correct candidate 𝑠′ = 𝑠 mod ℐ𝑅∨ we have 𝑑′𝑖 = 𝑒𝑖 mod ℐ𝑅∨.

Observe that the above attack takes time at least N(ℐ) times the number of samples consumed, and
that it can work only if the reduced error distribution 𝜓 mod ℐ𝑅∨ has noticeable statistical distance from
uniform over 𝐾/ℐ𝑅∨. Otherwise, the 𝑑′𝑖 are statistically indistinguishable from uniform for any candidate 𝑠′,
regardless of the form of the original samples (uniform or Ring-LWE), and the attack fails.

Immunity to homomorphism attack. The following lemma gives a sufficient condition on the parameter
of Gaussian error 𝜓 = 𝐷𝑟 to ensure that the homomorphism attack has exponentially large time/advantage
ratio 𝑡𝑛, for any desired 𝑡 > 1. (Note that the proof never uses the fact that ℐ divides 𝑞𝑅.) For simplicity,
in our Grande instantiations we always use 𝑡 = 2 and hence 𝑟 =

√︀
8/(𝜋𝑒) ≈ 0.968. For dimensions

(say) 𝑛 > 256 one could take 𝑡 = 2256/𝑛 to obtain an even smaller 𝑟.

Lemma 4.1. For any 𝑛 ≥ 17, 𝑡 > 1, and 𝑟 ≥ 𝑡
√︀

2/(𝜋𝑒) ≈ 0.484𝑡, the time/advantage ratio of the
homomorphism attack (for any choice of the ideal ℐ) is at least 𝑡𝑛.

Proof. Let 𝑠 = N(ℐ)1/𝑛, and note that the running time of the attack is at least N(ℐ) = 𝑠𝑛, so we may
assume without loss of generality that 𝑠 ≤ 𝑡.

17



The dual ideal of ℐ𝑅∨ is (ℐ𝑅∨)−1 ·𝑅∨ = ℐ−1, which has norm N(ℐ)−1, so by Lemma 2.4 its minimum
distance is 𝜆1(ℐ−1) ≥

√
𝑛/𝑠. Letting 𝑓(𝑥) =

√
2𝜋𝑒 · 𝑥 · exp(𝜋𝑥2) be as in Equation (2.1), define

𝑐 :=
𝑟𝜆1(ℐ−1)√

𝑛
≥ 𝑟

𝑠
≥ 𝑟

𝑡
≥

√︀
2/(𝜋𝑒) > 1/

√
2𝜋,

𝐶 := 𝑓(𝑐) ≤ 2 exp(−2/𝑒) < 2−1/17,

where the penultimate inequality follows by 𝑐 ≥
√︀

2/(𝜋𝑒) and the fact that 𝑓 is decreasing for 𝑥 ≥ 1/
√

2𝜋.
By Lemma 2.3, the statistical distance between 𝐷𝑟 mod ℐ𝑅∨ and the uniform distribution over 𝐾/ℐ𝑅∨

is at most 1
2𝐶

𝑛/(1− 𝐶𝑛). Then because 𝑛 ≥ 17, the time/advantage ratio of the attack is

2(1− 𝐶𝑛) N(ℐ)

𝐶𝑛
≥ N(ℐ)

𝐶𝑛
= (𝑠/𝐶)𝑛,

so it remains to show that 𝑠/𝐶 ≥ 𝑡. By the previous observation on 𝑓(𝑥) and the fact that 𝑐 ≥ 𝑟/𝑠 > 1/
√

2𝜋,

𝑠/𝐶 = 𝑠/𝑓(𝑐) ≥ 𝑠/𝑓(𝑟/𝑠) =
𝑟√

2𝜋𝑒 · (𝑟/𝑠)2 · exp(−𝜋(𝑟/𝑠)2)
.

A straightforward calculation shows that the denominator (as a function of 𝑠) has a global maximum when
𝑟/𝑠 = 1/

√
𝜋, so as desired, 𝑠/𝐶 ≥ 𝑟

√︀
𝜋𝑒/2 ≥ 𝑡.

4.2 Modulus

For a given Gaussian error parameter 𝑟, we choose moduli 𝑞 to reflect a typical Ring-LWE public-key
encryption or key-exchange application following the basic template from [LPR10, Pei14]. Essentially,
this means that 𝑞 must be large enough to accomodate the ultimate error term, which is a combination of
the original errors, without any “wraparound.” A bit more precisely, we need that with sufficiently high
probability, the ultimate error has coefficients (with respect to an appropriate choice of basis) in the interval
(− 𝑞

4 ,
𝑞
4). The precise meaning of “high probability” depends on the low-level details of the application. For

example, wraparound of a few coefficients might be acceptable if error-correcting codes are used, or a final
key-confirmation step may handle the rare case when wraparound does occur.

The Ring-LWE “toolkit” [LPR13] provides general techniques and reasonably sharp concentration bounds
for analyzing the coefficients of sums and products of (discretized) error terms in arbitrary cyclotomics (see,
e.g., [LPR13, Lemma 6.6]). However, their generality makes them a bit pessimistic, so they do not capture
the strongest possible concentration properties for concrete cases of interest.

In this work we take a combined empirical and theoretical approach to more tightly bound the ultimate
error in encryption/key-exchange applications, and thereby obtain smaller values of the modulus and larger
error rates. Our empirical approach is as follows:

1. We simulate thousands of ultimate error terms 𝐸 := �̂�(𝑒 · 𝑒′ + 𝑓 · 𝑓 ′) ∈ 𝑅∨, where 𝑒, 𝑒′, 𝑓, 𝑓 ′ ∈ 𝑅∨

are independent samples from 𝐷𝑟, discretized to 𝑅∨ using the decoding basis.12

2. We compute the largest magnitude 𝐵 among all the coefficients of all the 𝐸s (again with respect to the
decoding basis), and use 4𝐵 as a heuristic “very high probability” bound on the coefficients.

12Depending on the primes dividing the cyclotomic index 𝑚, replacing the �̂� factor by 𝑡 in the expression for 𝐸 can sometimes
yield smaller coefficients. We use the best of the two choices in our simulation.
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3. Using 4𝐵 as a lower bound on 𝑞/4, we choose moduli 𝑞 of different arithmetic forms (e.g., completely
split, power of two, ramified) that all conform to this bound.

The theoretical (though heuristic) basis for this approach is as follows: in the canonical embedding, the
coordinates of 𝐷𝑟 are i.i.d. Gaussians over C (up to conjugate symmetry), and the same nearly holds for
the discretization to 𝑅∨ when 𝐷𝑟 is “well-spread” relative to 𝑅∨ (as it is in our instantiations). Because
multiplication is coordinate-wise in the canonical embedding, the products 𝑒 · 𝑒′, 𝑓 · 𝑓 ′ have nearly i.i.d.
subexponential coordinates. (The multiplication by �̂� simply scales them all by the same factor.) Finally, each
coefficient of 𝐸 with respect to the decoding basis is by definition the inner product of 𝜎(𝐸) with a vector
consisting of various roots of unity. Bernstein’s inequality says that such inner products have subgaussian
exp(−Θ(𝑘2)) tail probabilities in the “near zone,” which in our setting goes all the way out to 𝑘 = 𝑂(

√
𝑛)

standard deviations. In the “far zone” beyond that, the tails are still subexponential exp(−Θ(𝑘)).
Because the near zone is so wide, the largest coefficient among the tens or hundreds of thousands in our

simulation should be not much smaller than a true high-probability bound. Concretely, the largest empirical
coefficient 𝐵 should have a tail probability of no more than, say, 2−13. Under the subgaussian model, the
probability of obtaining a coefficient of magnitude more than 4𝐵 is therefore less than (2−13)4

2
= 2−208.

Even under the weaker subexponential model, the probability is at most (2−13)4 = 2−52.

5 Hardness Estimates

In this section we describe how we obtain hardness estimates for our challenges. There are many different
algorithmic approaches for attacking lattice problems like the approximate Shortest Vector Problem (SVP) and
the Bounded Distance Decoding (BDD) problem, of which Ring-LWE/LWR are special cases. These include
lattice-basis reduction (e.g., [LLL82, Sch87, GNR10, CN11, MW16]), exponential-time and -space sieving
or Voronoi-based algorithms (e.g., [AKS01, NV08, MV10b, MV10a, Laa15, ADRS15]), combinatorial and
algebraic attacks [BKW03, AG11, ACFP14], and combinations thereof (e.g., [How07]).

Because all the above approaches represent active areas of research and can be difficult to compare
directly—especially because some require enormous memory—we do not attempt to give precise estimates of
“bits of security.” Instead, we follow the analysis approach of [MR09, LP11, LN13, ADPS16] for (Ring-)LWE
to derive two kinds of hardness estimates. First, we give the approximate root-Hermite factor 𝛿 > 1 needed
to solve each challenge via lattice attacks. We use 𝛿 to classify each challenge into one of a few broad
categories, ranging from “toy” (very easy) to “very hard” (likely out of reach for nation-state attackers using
the best publicly known algorithms). Second, we estimate the smallest block size that is sufficient to solve the
challenge using the BKZ algorithm [SE94, CN11].

In Appendix D, Table 1 and Table 2 give the hardness estimates for our Ring-LWE/LWR challenges,
using the methods described below (specifically, Equations (5.1) and (5.2)).

5.1 Ring-LWE/LWR as BDD

A standard attack on Ring-LWE casts it as a Bounded Distance Decoding (BDD) problem on a random lattice
from a certain class. For a collection of ℓ Ring-LWE samples (𝑎𝑖 ∈ 𝑅𝑞, 𝑏𝑖 = 𝑠 · 𝑎𝑖 + 𝑒𝑖 mod 𝑞𝑅∨) defining
�⃗� = (𝑎1, . . . , 𝑎ℓ), we consider the corresponding “𝑞-ary” lattice

ℒ(⃗𝑎) := {�⃗� ∈ (𝑅∨)ℓ : ∃ 𝑧 ∈ 𝑅∨ such that �⃗� = 𝑧 · �⃗� (mod 𝑞𝑅∨)}.
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The vector �⃗� = (𝑏1, . . . , 𝑏ℓ) ≈ 𝑠 · �⃗� mod 𝑞𝑅∨ is then a BDD target that is close to an element of ℒ(⃗𝑎), and
the BDD error is �⃗� = (𝑒1, . . . , 𝑒ℓ), where each 𝑒𝑖 is distributed as the spherical Gaussian 𝐷𝑟.

The difficulty of BDD is primarily determined by the lattice dimension, and the width of the error relative
to the (dimension-normalized) lattice determinant. Because 𝑅∨ is isomorphic as a group to Z𝑛, we have that
ℒ(⃗𝑎) is an ℓ𝑛-dimensional lattice; however, by ignoring some coordinates we can view it as a 𝑑-dimensional
lattice for any desired 𝑑 ∈ [𝑛, ℓ𝑛]. In order to most easily adapt the prior analyses for attacks on (Ring-)LWE,
we also implicitly rescale the canonical embedding (thereby rescaling both the lattice and the error) by a
factor of 𝛿𝑅 := vol(𝜎(𝑅))1/𝑛, so that the rescaled 𝑅∨ has unit volume, just like Z𝑛. The determinant of the
lattice is then 𝑞𝑑−𝑛—the same as for a 𝑑-dimensional LWE lattice—and the error is distributed as a spherical
Gaussian of parameter 𝑟′ := 𝛿𝑅 · 𝑟.

For Ring-LWR we proceed similarly, but because the rounding is done with respect the decoding basis
of 𝑅∨—which in general is not orthogonal in the canonical embedding—we instead use the geometry given
by identifying the decoding basis with the standard basis of Z𝑛, and we model the rounding error in each
coordinate as uniform in the interval (− 𝑞

2𝑝 ,
𝑞
2𝑝). This makes the rounding error isotropic and gives 𝑅∨

unit volume, and therefore yields the smallest ratio of error width to dimension-normalized determinant.
Specifically, the lattice determinant is again 𝑞𝑑−𝑛, and the error has standard deviation 𝑞

𝑝/
√

12 in each

coordinate, so we heuristically model it as a spherical Gaussian with parameter 𝑟′ := 𝑞
𝑝

√︀
𝜋/6.

5.2 Root-Hermite Factor

The quality of lattice vectors, and the concrete hardness of obtaining them, is often measured by the Hermite
factor: for a 𝑑-dimensional lattice ℒ, vector v ∈ ℒ has Hermite factor 𝛿𝑑 given by ‖v‖ = 𝛿𝑑 · vol(ℒ)1/𝑑;
we call 𝛿 the root-Hermite factor. Experiments on random lattices indicate that 𝛿 is a very good indicator of
hardness in cryptographically relevant dimensions. For example, 𝛿 ≈ 1.022 and 𝛿 ≈ 1.011 are efficiently
obtainable by the LLL and BKZ-28 algorithms (respectively) [GN08], whereas 𝛿 = 1.005 is considered far out
of practical reach for 𝑑 ≥ 500 [CN11]. To our knowledge, the best publicly demonstrated root-Hermite factors
for cryptographic dimensions are 𝛿 ≈ 1.00955 or more, on the Darmstadt lattice challenges [LRBN10].

Assuming that the error is sufficiently “smooth” over the integers, which is the case for all our challenges,
the analyses of [MR09, LP11, LN13] show that one can solve LWE/BDD with some not-too-small probability
by obtaining a root-Hermite factor 𝛿 given by

lg 𝛿 =
lg2(𝐶𝑞/𝑟′)

4𝑛 lg 𝑞
. (5.1)

Here the factor 𝐶 influences the success probability: larger values correspond to smaller chance of success.
For example, extrapolating from [LN13, Table 2] for 𝑛 ≤ 256, taking 𝐶 ∈ [1.7, 2.5] can yield probability≈ 1
(depending on the exact dimension); 𝐶 ≈ 3.0 corresponds to probability ≈ 2−32; and 𝐶 ≈ 4.0 corresponds
to probability ≈ 2−64. (These are only rough estimates, and can be affected by the number of iterations,
choice of pruning strategy, etc.) In our estimates, for simplicity we always use 𝐶 = 2.0.

We use our root-Hermite factor estimates to classify each challenge into one of several qualitative hardness
categories. The category thresholds are given in Figure 1.

5.3 BKZ Block Size

Another very good indication of hardness for a BDD instance is the smallest block size needed for the success
of the BKZ lattice-basis reduction algorithm [SE94, CN11]. This parameter is a useful proxy for hardness
because the runtime for BKZ is at least exponential in the block size.
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Class 𝛿 >

Toy 1.011
Easy 1.0095
Moderate 1.0075
Hard 1.005
Very Hard 1.0

Figure 1: Root-Hermite factor thresholds for our qualitative hardness estimates. Each challenge is classified
according the largest applicable threshold (i.e., the weakest category.)

Heuristic algorithms exist to approximate the runtime of BKZ [CN11, Che13], but they focus on the
runtime of an SVP subroutine. This subroutine is called many times by the BKZ algorithm, but there are no
precise estimates for the number of calls, and hence no very precise estimates for the total runtime of BKZ.
Furthermore, the heuristic estimates are for sufficiently large block sizes in high dimensions, while some of
our challenges have low dimension or can be attacked with a relatively small block size. Therefore, rather
than provide an imprecise “bits of security” estimate, we instead give the approximate block size needed for
the BKZ algorithm to successfully solve each challenge.

The “primal” form of the BKZ attack on LWE/BDD is most easily explained using Kannan’s embedding
technique, which converts a 𝑑-dimensional BDD instance with error �⃗� to a (𝑑+ 1)-dimensional SVP instance
with a “planted” shortest vector (�⃗�, 1).13 When BKZ is run with a large enough block size 𝑏, it successfully
finds the planted shortest vector. More specifically, by modeling the behavior of BKZ using the geometric
series assumption (GSA) [Sch03], and assuming the error is Gaussian with parameter 𝑟′, the analysis
of [ADPS16] shows that the attack succeeds when

𝑟′
√︀
𝑏/(2𝜋) ≤ 𝜅2𝑏−𝑑−1 · 𝑞1−𝑛/𝑑, (5.2)

where 𝜅 = ((𝜋𝑏)1/𝑏 · 𝑏/(2𝜋𝑒))1/(2𝑏−2) is the GSA factor. We optimize our choice of 𝑑 ∈ [𝑛, ℓ𝑛] to minimize
the block size needed for each challenge.
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A Implementation Notes

In this section we describe some of the lower-level technical details of our challenges, and the operational
security measures we used when generating them.
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Beacon addresses. Every 60 seconds the NIST randomness beacon [NIS11] announces a 512-bit string,
which is identified by the corresponding (Unix) epoch, i.e., the number of seconds elapsed since 1 January
1970 00:00:00 UTC. (The beacon epochs are always divisible by 60.) For our cut-and-choose protocol, a
beacon address is a pair (𝑠, 𝑖) consisting of an epoch 𝑠 and a zero-indexed offset 𝑖 ∈ {0, . . . , 63 = 512/8−1},
which indexes the 𝑖th byte of the beacon’s output string for epoch 𝑠.

Each of our challenges is associated with a distinct beacon address, which is used to determine which of
its 𝑁 = 32 instances will become the “official” one; the remainder will have their secrets revealed in the
cut-and-choose protocol (see Section 3 for details). A beacon address of (𝑠, 𝑖) means that the official instance
will be the one indexed by the 𝑖th byte of the beacon value for epoch 𝑠, interpreted as an unsigned 8-bit
integer and reduced modulo 32. That is, we use the least-significant 5 bits of the 𝑖th byte, and ignore the rest.

To ensure distinct beacon addresses, we generated our challenges to have sequentially increasing addresses
starting from epoch 1,471,449,600 (corresponding to 17 August 2016 12:00:00 EDT) and index zero.
“Sequentially increasing” means that the index increments from 0 to 63, after which the epoch increments
(by 60) and the index is reset to zero.14

Randomness. As the source of randomness for generating each instance of our challenges, we used the
Haskell DRBG implementation [DuB15] of the NIST standard CTR-DRBG-AES-128 [BK15] pseudorandom
generator, with a 256-bit seed (“input entropy”). The seeds themselves were derived using the Hash-DRBG-
SHA-512 generator [BK15], seeded with 512 bits of system entropy. We would have preferred to use
Hash-DRBG-SHA-512 for all pseudorandomness, but its implementation in DRBG is much slower, and
pseudorandom bit generation is currently the main bottleneck in our implementation.

Operational security. A primary goal when generating our challenges and executing the cut-and-choose
protocol was to reduce the risk of unauthorized exfiltration of the underlying secrets, e.g., by malware or
hacking.

We generated the challenges on a 2010 MacBook Pro laptop with a freshly installed operating system,
which was never connected to any network and had all network interfaces disabled. We exclusively used write-
once CD and DVD media for copying the challenge-generator executable to the laptop, and the challenges
and revealed secrets from the laptop.15

We enabled FileVault encryption for the user account storage. As an extra layer of protection, we also
created and stored the challenges and their secrets in a separately encrypted volume (within user storage),
which was kept unmounted except when the challenges were being created or operated upon. The random
passphrases for the user account and encrypted volume were generated and stored non-electronically, and
were destroyed with fire once the cut-and-choose protocol was completed. Finally, we wiped the storage
media with all-zeros. Therefore, we believe that the non-revealed secrets should be completely unrecoverable
(even by us), except by solving the corresponding challenges.

14Actually, there are two non-sequential “jumps” in the beacon addresses of our challenges, corresponding to batches we created
with different runs of the generator. However, all beacon addresses are distinct across all our challenges.

15Because our executable requires compilers and external libraries to build, it was produced on a networked machine. It is
conceivable, but seems highly unlikely, that the resulting executable could contain malicious code that manages to exfiltrate secrets
via the external media when we export the challenges and revealed secrets. Unfortunately, this risk is inherent to our setup, because
we must copy data from the laptop at some point.
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B Directory Structure and File Contents

B.1 Commitment Phase

The commitment phase corresponds to Step 1 of the cut-and-choose protocol from Section 3: we timestamp
and publish all the challenge parameters, instances, and beacon addresses, but none of the underlying secrets.

We publish the commitment phase as a single archive named rlwe-challenges-v1.tar.gz, which
contains many directories, each corresponding to a different challenge. For convenience, the Ring-LWE
challenge directories are named according to the template16

chall-idchallID-type-mmval-qqval-llval-annotation

where

∙ challID is a globally unique non-negative integer (in decimal);

∙ type ∈ {rlwec,rlwed} respectively indicates continuous or discretized Ring-LWE;

∙ mval is the cyclotomic index 𝑚;

∙ qval is the modulus 𝑞;

∙ lval is the number of Ring-LWE samples 𝑙;

∙ annotation is a descriptive string indicating the categories of the error width and estimated hardness
(e.g., grande-moderate);

For example, the (hypothetical) directory chall-id0003-rlwed-m128-q257-l100-short-easy
would contain challenge number 3, which is for discretized Ring-LWE over the 128th cyclotomic with
modulus 𝑞 = 257 and 𝑙 = 100 samples, for a Gaussian parameter 𝑟 from the “short” category, which we
expect to be “easy” to solve.

Similarly, the Ring-LWR challenge directories are named according to the template

chall-idchallID-rlwr-mmval-qqval-ppval-llval-annotation

where challID, mval, qval, and lval are as above, and

∙ pval is the target rounding modulus 𝑝;

∙ annotation is a descriptive string indicating the estimated hardness category (e.g., veryhard)

Each challenge directory named dirName contains the following:

∙ A file dirName.challenge, which consists of a serialized message Challenge containing the
parameters of the instantiation, the computed error bound (for Ring-LWE instantiations), the number
of instances in the challenge, the beacon address for the cut-and-choose protocol, etc. (See Figure 2a.)

∙ Several files dirName-instID.instance, where instID is two upper-case hexadecimal digits uniquely
identifying the instance within the challenge, starting from 00. Each such file consists of a serialized
message InstanceType, where Type is as indicated by the challenge file. (See Figure 2b.)

See Appendix C for further details on the formats of the .challenge and .instance files.
16We stress that the file contents define the actual challenge data; the names are only for convenience and human readability.
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B.2 Reveal Phase

The reveal phase corresponds to Step 3 of the cut-and-choose protocol from Section 3: for each challenge,
we publish the secrets and PRG seeds underlying all but one of the instances, as indicated by the value of the
randomness beacon at the “address” (i.e., beacon epoch and byte offset) specified in the challenge.

We publish a single archive having the same directory structure as in the commitment phase. For each
instance file instName.instance whose secret should be revealed, we include a file instName.secret
in the same directory, which consists of a serialized message Secret. (See Figure 2b.)

In addition to the instance secrets, for convenience the archive includes some additional files at the top
level of the directory tree (i.e., not in any challenge folder):

∙ We include the original XML files for all the needed NIST beacon values; their format is detailed at
https://beacon.nist.gov/record/0.1/beacon-0.1.0.xsd.

∙ We include the NIST certificate containing the public verification key under which the beacon values are
digitally signed. This certificate is available at https://beacon.nist.gov/certificate/
beacon.cer.

We remark that all these files are publicly available from the NIST beacon web site; we include them in
our archives so that the challenges can be verified offline, or in the event that the NIST beacon becomes
unavailable.

C Protocol Buffers Message Specifications

Our challenges are serialized using Google’s language- and platform-neutral protocol buffers framework [Goo08].
Figure 2 gives the specifications for all the message types, which are available in the .proto files on the
Ring-LWE challenges website [RLW16] and the Λ∘𝜆 GitHub repository [CP16b]. These message specifi-
cations can be used to automatically generate parsers for our challenge files in most popular programming
languages.

We point out that in the Rq and Kq message types, the coefficient arrays correspond to the ordered bases
as implemented in Λ∘𝜆, which are in “digit reversed” order. E.g., the powerful and tweaked decoding basis
of the 16th cyclotomic ring is 1, 𝑋4, 𝑋2, 𝑋6, 𝑋,𝑋5, 𝑋3, 𝑋7. See [CP16a, Section C.1.1] for further details.
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Figure 2: Protocol buffers message types.

message Challenge {
required int32 challengeID = 1; // unique identifier of challenge
required int32 numInstances = 2; // number of instances in challenge
required int64 beaconEpoch = 3; // NIST beacon epoch
required int32 beaconOffset = 4; // byte position of beacon value
oneof params { // challenge type and parameters

ContParams cparams = 5;
DiscParams dparams = 6;
RLWRParams rparams = 7;

}
}

message ContParams { // continuous Ring-LWE parameters
required int32 m = 1; // cyclotomic index 𝑚
required int64 q = 2; // modulus 𝑞
required double svar = 3; // squared Gaussian param 𝑣 = 𝑟2 (pre-tweak)
required double bound = 4; // ‖𝑔 · 𝑒‖2 bound (post-tweak)
required int32 numSamples = 5; // number of samples per instance

}

message DiscParams { // discrete Ring-LWE parameters; similar to ContParams
required int32 m = 1;
required int64 q = 2;
required double svar = 3;
required int64 bound = 4;
required int32 numSamples = 5;

}

message RLWRParams { // Ring-LWR parameters; similar to ContParams
required int32 m = 1;
required int64 q = 2;
required int64 p = 3; // rounding modulus 𝑝 < 𝑞
required int32 numSamples = 4;

}

(a) Message types for challenges and their parameters.
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message InstanceCont { // continuous Ring-LWE instance
required int32 challengeID = 1; // ID of challenge this instance belongs to
required int32 instanceID = 2; // ID of instance within the challenge
required ContParams params = 3; // challenge params (for self-containment; should match)
repeated SampleCont samples = 4; // the Ring-LWE samples

}

message InstanceDisc { // discrete Ring-LWE instance; similar to InstanceCont
required int32 challengeID = 1;
required int32 instanceID = 2;
required DiscParams params = 3;
repeated SampleDisc samples = 4;

}

message InstanceRLWR { // Ring-LWR instance; similar to InstanceCont
required int32 challengeID = 1;
required int32 instanceID = 2;
required RLWRParams params = 3;
repeated SampleRLWR samples = 4;

}

message SampleCont { // continuous Ring-LWE sample
required Rq a = 1; // 𝑎 ∈ 𝑅𝑞

required Kq b = 2; // 𝑏 = 𝑠 · 𝑎+ 𝑒 ∈ 𝐾𝑞 for tweaked error 𝑒
}

message SampleDisc { // discrete Ring-LWE sample
required Rq a = 1; // 𝑎 ∈ 𝑅𝑞

required Rq b = 2; // 𝑏 = 𝑠 · 𝑎+ ⌊𝑒⌉ ∈ 𝑅𝑞 for tweaked 𝑒, discretized in dec. basis of 𝑅
}

message SampleRLWR { // Ring-LWR sample
required Rq a = 1; // 𝑎 ∈ 𝑅𝑞

required Rq b = 2; // 𝑏 = ⌊𝑠 · 𝑎⌉𝑝 ∈ 𝑅𝑝, rounded in decoding basis of 𝑅
}

message Secret { // a secret for an Ring-LWE/LWR instance
required int32 challengeID = 1; // ID of challenge this secret applies to
required int32 instanceID = 2; // ID of instance this secret applies to
required int32 m = 3; // cyclotomic index 𝑚 of 𝑅
required int64 q = 4; // modulus 𝑞
required bytes seed = 5; // 256-bit CTR-DRBG-AES-128 entropy seed used to generate instance
required Rq s = 6; // the secret 𝑠 ∈ 𝑅𝑞

}

(b) Message types for Ring-LWE/LWR samples and instances.

message Rq { // an element of 𝑅𝑞 = 𝑅/𝑞𝑅
required uint32 m = 1; // cyclotomic index 𝑚 of 𝑅
required uint64 q = 2; // modulus 𝑞
repeated sint64 xs = 3; // 𝑛 = 𝜙(𝑚) integral coefficients in decoding basis of 𝑅

}

message Kq { // an element of 𝐾𝑞 = 𝐾/𝑞𝑅
required uint32 m = 1; // cyclotomic index 𝑚 of 𝐾
required uint64 q = 2; // modulus 𝑞
repeated double xs = 3; // 𝑛 = 𝜙(𝑚) real coefficients in decoding basis of 𝑅

}

(c) Message types for ring and field elements modulo 𝑞𝑅.
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D Hardness Estimates

Table 1: Hardness estimates for our continuous Ring-LWE challenges, in terms of approximate root-Hermite
factors and smallest BKZ block size required to solve them: 𝑟′ is the rescaled error parameter (Section 5.1), 𝛿
is the root-Hermite factor (Section 5.2), and 𝜅 is the GSA factor (Section 5.3). Hardness estimates for our
discrete Ring-LWE challenges (odd challenge IDs, with parameters identical to the preceding even challenge
ID) are essentially the same, but may be slightly larger due to the extra round-off error.

Hermite Factor BKZ

ID 𝑚 𝜙(𝑚) 𝑟′ 𝑞 𝛿 Qualitative 𝜅 Dimension 𝑑 Block size

0 256 128 1.000 769 1.0160 toy 1.0124 96 ≤ 30
2 256 128 1.000 512 1.0152 toy 1.0125 121 42
4 256 128 2.000 3,329 1.0160 toy 1.0124 105 ≤ 30
6 256 128 2.000 1,024 1.0136 toy 1.0116 135 57
8 256 128 6.000 7,681 1.0135 toy 1.0117 162 56

10 256 128 6.000 8,192 1.0137 toy 1.0118 172 54
12 256 128 9.000 17,921 1.0138 toy 1.0119 177 52
14 256 128 9.000 32,768 1.0150 toy 1.0126 195 34
16 256 128 10.950 25,601 1.0138 toy 1.0120 187 51
18 256 128 10.950 32,768 1.0143 toy 1.0123 198 45
20 256 128 1.000 769 1.0160 toy 1.0124 96 ≤ 30
22 256 128 1.000 512 1.0152 toy 1.0125 121 42
24 256 128 2.000 3,329 1.0160 toy 1.0124 105 ≤ 30
26 256 128 2.000 1,024 1.0136 toy 1.0116 135 57
28 256 128 6.000 7,681 1.0135 toy 1.0117 162 56
30 256 128 6.000 8,192 1.0137 toy 1.0118 172 54
32 256 128 9.000 17,921 1.0138 toy 1.0119 177 52
34 256 128 9.000 32,768 1.0150 toy 1.0126 195 34
36 256 128 10.950 25,601 1.0138 toy 1.0120 187 51
38 256 128 10.950 32,768 1.0143 toy 1.0123 198 45
40 512 256 1.000 7,681 1.0102 easy 1.0095 201 94
42 512 256 1.000 512 1.0075 moderate 1.0074 196 152
44 512 256 2.000 7,681 1.0088 moderate 1.0084 234 121
46 512 256 2.000 2,048 1.0075 hard 1.0073 242 154
48 512 256 6.000 10,753 1.0071 hard 1.0070 295 167
50 512 256 6.000 16,384 1.0075 hard 1.0073 293 154
52 512 256 9.000 25,601 1.0072 hard 1.0071 318 162
54 512 256 9.000 32,768 1.0075 hard 1.0073 332 154
56 512 256 15.486 70,657 1.0073 hard 1.0072 352 159
58 512 256 15.486 131,072 1.0079 moderate 1.0077 334 142
60 512 256 1.000 7,681 1.0102 easy 1.0095 201 94
62 512 256 1.000 512 1.0075 moderate 1.0074 196 152
64 512 256 2.000 7,681 1.0088 moderate 1.0084 234 121
66 512 256 2.000 2,048 1.0075 hard 1.0073 242 154
68 512 256 6.000 10,753 1.0071 hard 1.0070 295 167
70 512 256 6.000 16,384 1.0075 hard 1.0073 293 154
72 512 256 9.000 25,601 1.0072 hard 1.0071 318 162
74 512 256 9.000 32,768 1.0075 hard 1.0073 332 154
76 512 256 15.486 70,657 1.0073 hard 1.0072 352 159
78 512 256 15.486 131,072 1.0079 moderate 1.0077 334 142
80 1,024 512 9.000 37,889 1.0038 very hard 1.0041 620 382
82 1,024 512 21.901 202,753 1.0039 very hard 1.0042 682 376
84 2,048 1,024 9.000 59,393 1.0020 very hard 1.0023 1,121 838
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Table 1: Hardness estimates for our continuous Ring-LWE challenges, in terms of approximate root-Hermite
factors and smallest BKZ block size required to solve them: 𝑟′ is the rescaled error parameter (Section 5.1), 𝛿
is the root-Hermite factor (Section 5.2), and 𝜅 is the GSA factor (Section 5.3). Hardness estimates for our
discrete Ring-LWE challenges (odd challenge IDs, with parameters identical to the preceding even challenge
ID) are essentially the same, but may be slightly larger due to the extra round-off error.

Hermite Factor BKZ

ID 𝑚 𝜙(𝑚) 𝑟′ 𝑞 𝛿 Qualitative 𝜅 Dimension 𝑑 Block size

86 2,048 1,024 30.972 638,977 1.0021 very hard 1.0024 1,321 823
88 4,096 2,048 9.000 86,017 1.0010 very hard 1.0013 2,121 1,795
90 4,096 2,048 43.801 1,720,321 1.0011 very hard 1.0013 2,621 1,779
92 8,192 4,096 9.000 114,689 1.0005 very hard 1.0007 4,017 3,799
94 8,192 4,096 61.945 5,234,689 1.0006 very hard 1.0007 5,141 3,727
96 243 162 0.931 487 1.0121 toy 1.0107 132 72
98 243 162 0.931 512 1.0122 toy 1.0108 133 71

100 243 162 0.931 729 1.0128 toy 1.0111 124 65
102 243 162 1.861 1,459 1.0115 toy 1.0104 167 78
104 243 162 1.861 1,024 1.0110 easy 1.0099 160 86
106 243 162 1.861 2,187 1.0122 toy 1.0108 161 70
108 243 162 5.584 8,263 1.0110 easy 1.0100 207 84
110 243 162 5.584 8,192 1.0110 easy 1.0100 216 84
112 243 162 5.584 19,683 1.0123 toy 1.0111 205 66
114 243 162 8.375 17,011 1.0110 easy 1.0100 208 84
116 243 162 8.375 32,768 1.0120 toy 1.0108 210 70
118 243 162 8.375 19,683 1.0112 toy 1.0103 231 80
120 243 162 11.464 32,563 1.0112 toy 1.0102 223 81
122 243 162 11.464 32,768 1.0112 toy 1.0102 220 81
124 243 162 11.464 59,049 1.0121 toy 1.0109 216 69
126 243 162 0.931 487 1.0121 toy 1.0107 132 72
128 243 162 0.931 512 1.0122 toy 1.0108 133 71
130 243 162 0.931 729 1.0128 toy 1.0111 124 65
132 243 162 1.861 1,459 1.0115 toy 1.0104 167 78
134 243 162 1.861 1,024 1.0110 easy 1.0099 160 86
136 243 162 1.861 2,187 1.0122 toy 1.0108 161 70
138 243 162 5.584 8,263 1.0110 easy 1.0100 207 84
140 243 162 5.584 8,192 1.0110 easy 1.0100 216 84
142 243 162 5.584 19,683 1.0123 toy 1.0111 205 66
144 243 162 8.375 17,011 1.0110 easy 1.0100 208 84
146 243 162 8.375 32,768 1.0120 toy 1.0108 210 70
148 243 162 8.375 19,683 1.0112 toy 1.0103 231 80
150 243 162 11.464 32,563 1.0112 toy 1.0102 223 81
152 243 162 11.464 32,768 1.0112 toy 1.0102 220 81
154 243 162 11.464 59,049 1.0121 toy 1.0109 216 69
156 625 500 8.229 28,751 1.0038 very hard 1.0041 611 377
158 625 500 19.788 191,251 1.0040 very hard 1.0043 644 359
160 3,360 768 7.033 30,241 1.0026 very hard 1.0030 853 610
162 3,360 768 20.960 305,761 1.0027 very hard 1.0030 988 584
164 500 200 0.914 3,001 1.0121 toy 1.0110 179 68
166 500 200 0.914 512 1.0099 easy 1.0092 165 101
168 500 200 0.914 500 1.0099 easy 1.0092 149 102
170 500 200 1.829 3,001 1.0103 easy 1.0095 193 94
172 500 200 1.829 2,048 1.0098 easy 1.0092 206 102
174 500 200 1.829 1,600 1.0095 moderate 1.0089 193 108
176 500 200 5.486 9,001 1.0090 moderate 1.0086 241 116
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Table 1: Hardness estimates for our continuous Ring-LWE challenges, in terms of approximate root-Hermite
factors and smallest BKZ block size required to solve them: 𝑟′ is the rescaled error parameter (Section 5.1), 𝛿
is the root-Hermite factor (Section 5.2), and 𝜅 is the GSA factor (Section 5.3). Hardness estimates for our
discrete Ring-LWE challenges (odd challenge IDs, with parameters identical to the preceding even challenge
ID) are essentially the same, but may be slightly larger due to the extra round-off error.

Hermite Factor BKZ

ID 𝑚 𝜙(𝑚) 𝑟′ 𝑞 𝛿 Qualitative 𝜅 Dimension 𝑑 Block size

178 500 200 5.486 16,384 1.0098 easy 1.0092 229 102
180 500 200 5.486 10,000 1.0092 moderate 1.0087 251 113
182 500 200 8.229 19,501 1.0091 moderate 1.0087 269 114
184 500 200 8.229 32,768 1.0097 easy 1.0092 252 102
186 500 200 8.229 20,000 1.0091 moderate 1.0087 250 114
188 500 200 12.515 44,501 1.0092 moderate 1.0087 263 112
190 500 200 12.515 65,536 1.0097 easy 1.0092 285 102
192 500 200 12.515 50,000 1.0094 moderate 1.0089 265 109
194 500 200 0.914 3,001 1.0121 toy 1.0110 179 68
196 500 200 0.914 512 1.0099 easy 1.0092 165 101
198 500 200 0.914 500 1.0099 easy 1.0092 149 102
200 500 200 1.829 3,001 1.0103 easy 1.0095 193 94
202 500 200 1.829 2,048 1.0098 easy 1.0092 206 102
204 500 200 1.829 1,600 1.0095 moderate 1.0089 193 108
206 500 200 5.486 9,001 1.0090 moderate 1.0086 241 116
208 500 200 5.486 16,384 1.0098 easy 1.0092 229 102
210 500 200 5.486 10,000 1.0092 moderate 1.0087 251 113
212 500 200 8.229 19,501 1.0091 moderate 1.0087 269 114
214 500 200 8.229 32,768 1.0097 easy 1.0092 252 102
216 500 200 8.229 20,000 1.0091 moderate 1.0087 250 114
218 500 200 12.515 44,501 1.0092 moderate 1.0087 263 112
220 500 200 12.515 65,536 1.0097 easy 1.0092 285 102
222 500 200 12.515 50,000 1.0094 moderate 1.0089 265 109
224 1,155 480 0.727 2,311 1.0052 hard 1.0054 311 256
226 1,155 480 0.727 4,096 1.0055 hard 1.0056 333 238
228 1,155 480 0.727 2,401 1.0052 hard 1.0054 335 254
230 1,155 480 1.454 4,621 1.0047 very hard 1.0050 393 286
232 1,155 480 1.454 4,096 1.0047 very hard 1.0049 383 291
234 1,155 480 1.454 3,465 1.0046 very hard 1.0049 375 298
236 1,155 480 4.362 18,481 1.0043 very hard 1.0046 509 321
238 1,155 480 4.362 16,384 1.0043 very hard 1.0046 496 327
240 1,155 480 4.362 12,705 1.0042 very hard 1.0045 521 339
242 1,155 480 6.543 32,341 1.0043 very hard 1.0045 530 331
244 1,155 480 6.543 32,768 1.0043 very hard 1.0045 543 330
246 1,155 480 6.543 27,783 1.0042 very hard 1.0045 551 338
248 1,155 480 15.416 164,011 1.0043 very hard 1.0046 597 327
250 1,155 480 15.416 262,144 1.0046 very hard 1.0048 632 305
252 1,155 480 15.416 164,025 1.0043 very hard 1.0046 597 327
254 1,155 480 0.727 2,311 1.0052 hard 1.0054 311 256
256 1,155 480 0.727 4,096 1.0055 hard 1.0056 333 238
258 1,155 480 0.727 2,401 1.0052 hard 1.0054 335 254
260 1,155 480 1.454 4,621 1.0047 very hard 1.0050 393 286
262 1,155 480 1.454 4,096 1.0047 very hard 1.0049 383 291
264 1,155 480 1.454 3,465 1.0046 very hard 1.0049 375 298
266 1,155 480 4.362 18,481 1.0043 very hard 1.0046 509 321
268 1,155 480 4.362 16,384 1.0043 very hard 1.0046 496 327
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Table 1: Hardness estimates for our continuous Ring-LWE challenges, in terms of approximate root-Hermite
factors and smallest BKZ block size required to solve them: 𝑟′ is the rescaled error parameter (Section 5.1), 𝛿
is the root-Hermite factor (Section 5.2), and 𝜅 is the GSA factor (Section 5.3). Hardness estimates for our
discrete Ring-LWE challenges (odd challenge IDs, with parameters identical to the preceding even challenge
ID) are essentially the same, but may be slightly larger due to the extra round-off error.

Hermite Factor BKZ

ID 𝑚 𝜙(𝑚) 𝑟′ 𝑞 𝛿 Qualitative 𝜅 Dimension 𝑑 Block size

270 1,155 480 4.362 12,705 1.0042 very hard 1.0045 521 339
272 1,155 480 6.543 32,341 1.0043 very hard 1.0045 530 331
274 1,155 480 6.543 32,768 1.0043 very hard 1.0045 543 330
276 1,155 480 6.543 27,783 1.0042 very hard 1.0045 551 338
278 1,155 480 15.416 164,011 1.0043 very hard 1.0046 597 327
280 1,155 480 15.416 262,144 1.0046 very hard 1.0048 632 305
282 1,155 480 15.416 164,025 1.0043 very hard 1.0046 597 327
284 179 178 0.988 3,581 1.0137 toy 1.0119 149 52
286 179 178 0.988 2,048 1.0129 toy 1.0114 154 61
288 179 178 0.988 32,041 1.0168 toy 1.0124 83 ≤ 30
290 179 178 1.977 3,581 1.0116 toy 1.0105 176 76
292 179 178 1.977 4,096 1.0118 toy 1.0107 191 73
294 179 178 1.977 32,041 1.0147 toy 1.0124 171 ≤ 30
296 179 178 5.930 8,951 1.0100 easy 1.0093 212 100
298 179 178 5.930 16,384 1.0108 easy 1.0099 215 86
300 179 178 5.930 32,041 1.0117 toy 1.0107 235 72
302 179 178 8.895 20,407 1.0101 easy 1.0094 226 97
304 179 178 8.895 32,768 1.0108 easy 1.0099 231 86
306 179 178 8.895 32,041 1.0107 easy 1.0099 250 86
308 179 178 12.762 40,813 1.0102 easy 1.0095 238 95
310 179 178 12.762 65,536 1.0109 easy 1.0100 249 84
312 179 178 12.762 5,735,339 1.0171 toy 1.0124 123 ≤ 30
314 179 178 0.988 3,581 1.0137 toy 1.0119 149 52
316 179 178 0.988 2,048 1.0129 toy 1.0114 154 61
318 179 178 0.988 32,041 1.0168 toy 1.0124 83 ≤ 30
320 179 178 1.977 3,581 1.0116 toy 1.0105 176 76
322 179 178 1.977 4,096 1.0118 toy 1.0107 191 73
324 179 178 1.977 32,041 1.0147 toy 1.0124 171 ≤ 30
326 179 178 5.930 8,951 1.0100 easy 1.0093 212 100
328 179 178 5.930 16,384 1.0108 easy 1.0099 215 86
330 179 178 5.930 32,041 1.0117 toy 1.0107 235 72
332 179 178 8.895 20,407 1.0101 easy 1.0094 226 97
334 179 178 8.895 32,768 1.0108 easy 1.0099 231 86
336 179 178 8.895 32,041 1.0107 easy 1.0099 250 86
338 179 178 12.762 40,813 1.0102 easy 1.0095 238 95
340 179 178 12.762 65,536 1.0109 easy 1.0100 249 84
342 179 178 12.762 5,735,339 1.0171 toy 1.0124 123 ≤ 30
344 257 256 0.991 9,767 1.0104 easy 1.0098 222 89
346 257 256 0.991 4,096 1.0096 easy 1.0091 218 104
348 257 256 0.991 66,049 1.0123 toy 1.0113 225 62
350 257 256 1.982 9,767 1.0090 moderate 1.0086 244 115
352 257 256 1.982 4,096 1.0082 moderate 1.0079 238 135
354 257 256 1.982 66,049 1.0109 easy 1.0102 255 81
356 257 256 5.947 13,879 1.0073 hard 1.0072 305 158
358 257 256 5.947 16,384 1.0075 hard 1.0074 306 153
360 257 256 5.947 66,049 1.0089 moderate 1.0085 301 118
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Table 1: Hardness estimates for our continuous Ring-LWE challenges, in terms of approximate root-Hermite
factors and smallest BKZ block size required to solve them: 𝑟′ is the rescaled error parameter (Section 5.1), 𝛿
is the root-Hermite factor (Section 5.2), and 𝜅 is the GSA factor (Section 5.3). Hardness estimates for our
discrete Ring-LWE challenges (odd challenge IDs, with parameters identical to the preceding even challenge
ID) are essentially the same, but may be slightly larger due to the extra round-off error.

Hermite Factor BKZ

ID 𝑚 𝜙(𝑚) 𝑟′ 𝑞 𝛿 Qualitative 𝜅 Dimension 𝑑 Block size

362 257 256 8.920 23,131 1.0071 hard 1.0071 312 165
364 257 256 8.920 32,768 1.0075 hard 1.0073 317 154
366 257 256 8.920 66,049 1.0081 moderate 1.0079 314 135
368 257 256 15.349 74,017 1.0074 hard 1.0073 356 157
370 257 256 15.349 131,072 1.0079 moderate 1.0077 351 141
372 257 256 0.991 9,767 1.0104 easy 1.0098 222 89
374 257 256 0.991 4,096 1.0096 easy 1.0091 218 104
376 257 256 0.991 66,049 1.0123 toy 1.0113 225 62
378 257 256 1.982 9,767 1.0090 moderate 1.0086 244 115
380 257 256 1.982 4,096 1.0082 moderate 1.0079 238 135
382 257 256 1.982 66,049 1.0109 easy 1.0102 255 81
384 257 256 5.947 13,879 1.0073 hard 1.0072 305 158
386 257 256 5.947 16,384 1.0075 hard 1.0074 306 153
388 257 256 5.947 66,049 1.0089 moderate 1.0085 301 118
390 257 256 8.920 23,131 1.0071 hard 1.0071 312 165
392 257 256 8.920 32,768 1.0075 hard 1.0073 317 154
394 257 256 8.920 66,049 1.0081 moderate 1.0079 314 135
396 257 256 15.349 74,017 1.0074 hard 1.0073 356 157
398 257 256 15.349 131,072 1.0079 moderate 1.0077 351 141
400 797 796 8.968 44,633 1.0025 very hard 1.0028 886 643
402 797 796 27.210 401,689 1.0026 very hard 1.0029 1,042 625
404 256 128 141.295 3,754,241 1.0154 toy 1.0124 182 ≤ 30
406 256 128 141.295 4,194,304 1.0156 toy 1.0124 174 ≤ 30
408 256 128 302.375 18,684,161 1.0162 toy 1.0124 166 ≤ 30
410 512 256 232.482 16,470,529 1.0083 moderate 1.0081 438 130
412 512 256 502.450 74,613,761 1.0086 moderate 1.0083 449 123
414 1,024 512 835.832 289,001,473 1.0045 very hard 1.0047 933 311
416 2,048 1,024 1,391.758 1,159,182,337 1.0024 very hard 1.0026 1,740 712
418 243 162 155.683 6,112,423 1.0126 toy 1.0115 275 60
420 243 162 155.683 8,388,608 1.0131 toy 1.0118 279 54
422 243 162 155.683 6,112,422 1.0126 toy 1.0115 275 60
424 243 162 334.353 25,218,541 1.0130 toy 1.0118 296 55
426 625 500 750.988 241,965,001 1.0046 very hard 1.0048 874 302
428 3,360 768 880.048 476,757,121 1.0032 very hard 1.0034 1,337 504
430 500 200 177.953 8,794,501 1.0104 easy 1.0098 343 89
432 500 200 177.953 8,791,500 1.0104 easy 1.0098 343 89
434 500 200 383.329 37,996,001 1.0107 easy 1.0100 349 84
436 1,155 480 266.103 41,817,931 1.0048 very hard 1.0049 777 291
438 1,155 480 579.489 212,466,871 1.0050 very hard 1.0051 810 276
440 179 178 176.904 8,382,929 1.0116 toy 1.0108 325 71
442 179 178 176.904 8,388,608 1.0116 toy 1.0108 325 71
444 179 178 176.904 8,382,033 1.0116 toy 1.0108 325 71
446 179 178 380.444 37,250,617 1.0120 toy 1.0111 316 66
448 257 256 230.425 15,802,417 1.0083 moderate 1.0080 428 131
450 257 256 230.425 15,792,907 1.0083 moderate 1.0080 428 131
452 257 256 498.003 72,720,721 1.0086 moderate 1.0083 457 123
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Table 1: Hardness estimates for our continuous Ring-LWE challenges, in terms of approximate root-Hermite
factors and smallest BKZ block size required to solve them: 𝑟′ is the rescaled error parameter (Section 5.1), 𝛿
is the root-Hermite factor (Section 5.2), and 𝜅 is the GSA factor (Section 5.3). Hardness estimates for our
discrete Ring-LWE challenges (odd challenge IDs, with parameters identical to the preceding even challenge
ID) are essentially the same, but may be slightly larger due to the extra round-off error.

Hermite Factor BKZ

ID 𝑚 𝜙(𝑚) 𝑟′ 𝑞 𝛿 Qualitative 𝜅 Dimension 𝑑 Block size

454 797 796 1,152.130 741,587,779 1.0030 very hard 1.0033 1,360 527

Table 2: Hardness estimates for our Ring-LWR challenges, in terms of approximate root-Hermite factors and
smallest BKZ block size required to solve them: 𝛿 is the root-Hermite factor (Section 5.2), and 𝜅 is the GSA
factor (Section 5.3).

Hermite Factor BKZ

ID 𝑚 𝜙(𝑚) 𝑞 𝑝 𝛿 Qualitative 𝜅 Dimension 𝑑 Block size

456 32 16 97 2 1.0100 easy 1.0081 75 ≤ 30
457 32 16 32 2 1.0133 toy 1.0092 60 101
458 32 16 105 7 1.0299 toy 1.0124 33 ≤ 30
459 64 32 193 2 1.0043 very hard 1.0053 141 263
460 64 32 16 2 1.0083 moderate 1.0075 72 150
461 64 32 105 7 1.0148 toy 1.0108 82 71
462 128 64 257 2 1.0021 very hard 1.0034 250 497
463 128 64 16 2 1.0041 very hard 1.0052 112 272
464 128 64 105 7 1.0074 hard 1.0071 128 162
465 256 128 257 2 1.0010 very hard 1.0022 427 904
466 256 128 16 2 1.0021 very hard 1.0034 189 493
467 256 128 105 7 1.0037 very hard 1.0045 232 335
468 27 18 109 2 1.0087 moderate 1.0075 82 147
469 27 18 32 2 1.0118 toy 1.0087 63 112
470 27 18 105 7 1.0265 toy 1.0124 41 ≤ 30
471 27 18 81 3 1.0142 toy 1.0098 66 88
472 81 54 163 2 1.0027 very hard 1.0040 200 399
473 81 54 16 2 1.0049 very hard 1.0057 101 235
474 81 54 105 7 1.0088 moderate 1.0079 114 134
475 81 54 27 3 1.0063 hard 1.0065 106 190
476 243 162 487 2 1.0007 very hard 1.0018 578 1,221
477 243 162 16 2 1.0016 very hard 1.0030 215 605
478 243 162 105 7 1.0029 very hard 1.0038 274 426
479 243 162 27 3 1.0021 very hard 1.0033 227 527
480 25 20 101 2 1.0079 moderate 1.0072 88 158
481 25 20 32 2 1.0106 easy 1.0083 65 123
482 25 20 105 7 1.0239 toy 1.0124 57 ≤ 30
483 25 20 125 5 1.0180 toy 1.0115 65 60
484 125 100 251 2 1.0013 very hard 1.0026 353 727
485 125 100 16 2 1.0026 very hard 1.0040 153 399
486 125 100 105 7 1.0047 very hard 1.0053 184 260
487 125 100 25 5 1.0054 hard 1.0058 121 225
488 49 42 197 2 1.0033 very hard 1.0045 177 332
489 49 42 16 2 1.0063 hard 1.0065 90 189
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Table 2: Hardness estimates for our Ring-LWR challenges, in terms of approximate root-Hermite factors and
smallest BKZ block size required to solve them: 𝛿 is the root-Hermite factor (Section 5.2), and 𝜅 is the GSA
factor (Section 5.3).

Hermite Factor BKZ

ID 𝑚 𝜙(𝑚) 𝑞 𝑝 𝛿 Qualitative 𝜅 Dimension 𝑑 Block size

490 49 42 105 7 1.0113 toy 1.0093 97 100
491 49 42 49 7 1.0135 toy 1.0103 77 80
492 84 24 337 2 1.0052 hard 1.0058 131 225
493 84 24 32 2 1.0088 moderate 1.0077 76 143
494 84 24 105 7 1.0198 toy 1.0123 70 46
495 84 24 42 2 1.0082 moderate 1.0074 81 153
496 105 48 211 2 1.0028 very hard 1.0041 190 377
497 105 48 16 2 1.0055 hard 1.0061 97 212
498 105 48 105 7 1.0099 easy 1.0085 107 117
499 105 48 105 3 1.0050 hard 1.0056 141 237
500 60 16 61 2 1.0112 toy 1.0085 69 118
501 60 16 32 2 1.0133 toy 1.0092 60 101
502 60 16 105 7 1.0299 toy 1.0124 33 ≤ 30
503 60 16 900 2 1.0067 hard 1.0066 113 184
504 100 40 101 2 1.0040 very hard 1.0050 151 283
505 100 40 16 2 1.0066 hard 1.0067 81 182
506 100 40 105 7 1.0119 toy 1.0095 100 94
507 100 40 100 2 1.0040 very hard 1.0050 144 283
508 29 28 59 2 1.0064 hard 1.0065 99 188
509 29 28 32 2 1.0076 moderate 1.0071 84 163
510 29 28 105 7 1.0170 toy 1.0115 75 59
511 29 28 841 29 1.0258 toy 1.0124 42 ≤ 30
512 23 22 47 2 1.0087 moderate 1.0076 78 146
513 23 22 32 2 1.0096 easy 1.0080 70 133
514 23 22 105 7 1.0217 toy 1.0126 64 39
515 23 22 529 23 1.0317 toy 1.0124 30 ≤ 30
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