
On the Memory-Hardness of Data-Independent Password-Hashing Functions

Joël Alwen∗, Peter Gaži∗, Chethan Kamath∗, Karen Klein∗, Georg Osang∗,
Krzysztof Pietrzak∗, Leonid Reyzin†, Michal Rolı́nek∗, Michal Rybár∗

∗IST Austria
†Boston University

Abstract—We show attacks on five data-independent memory-
hard functions (iMHF) that were submitted to the password
hashing competition. Informally, an MHF is a function which
cannot be evaluated on dedicated hardware, like ASICs, at
significantly lower energy and/or hardware cost than evaluat-
ing a single instance on a standard single-core architecture.
Data-independent means the memory access pattern of the
function is independent of the input; this makes iMHFs harder
to construct than data-dependent ones, but the latter can be
attacked by various side-channel attacks.

Following [Alwen-Blocki’16], we capture the evaluation of
an iMHF as a directed acyclic graph (DAG). The cumulative
parallel pebbling complexity of this DAG is a good measure
for the cost of evaluating the iMHF on an ASIC. If n denotes
the number of nodes of a DAG (or equivalently, the number of
operations — typically hash function calls — of the underlying
iMHF), its pebbling complexity must be close to n2 for the
iMHF to be memory-hard. We show that the following iMHFs
are far from this bound: Rig.v2, TwoCats and Gambit can be
attacked with complexity O(n1.75); the data-independent phase
of Pomelo (a finalist of the password hashing competition) and
Lyra2 (also a finalist) can be attacked with complexity O(n1.83)

and O(n1.67), respectively.
For our attacks we use and extend the technique developed

by [Alwen-Blocki’16], who show that the pebbling complexity
of a DAG can be upper bounded in terms of its depth-
robustness.

1. Introduction

In cryptographic settings we typically consider functions
which are easy to compute for a party having some secret
piece of information, but are extremely hard to compute
without it; inverting a trapdoor permutation or computing a
pseudorandom function are examples.

J. Alwen, P. Gaži, C. Kamath, K. Klein, K. Pietrzak and M. Rybár were
supported by the European Research Council consolidator grant (682815-
TOCNeT). M. Rolı́nek was supported by the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-
2013)/ERC grant agreement no 616160. L. Reyzin was supported in part
by IST Austria and by US NSF grants 1012910, 1012798, and 1422965;
this research was performed while he was visiting IST Austria.

1.1. Moderately Hard Functions

Some applications, like password hashing or proofs of
work, ask for “moderately hard” functions. Here, we have
no secret; instead we want the function to be “somewhat”
hard to compute. For example, in the password hashing
application, a password server will not simply store login/-
password tuples (login, pwd) in the clear, but instead a
tuple (login, salt, f(salt, pwd)) for a random salt and some
function f(·). This mitigates the consequences, should the
password file get leaked: an adversary given (login, salt, y)
will have to find a pre-image of y to impersonate login. As
passwords often do not have much entropy, this is feasible
by a dictionary attack where one evaluates f(salt, ·), starting
from the most popular passwords.

To make this dictionary attack expensive, a moderately
hard f is used. This puts some extra burden on the password
server with every login attempt, but it puts a huge extra
cost on an adversary running a dictionary attack, who must
evaluate f a large number of times in a dictionary attack.
A popular moderately hard function is PBKDF2 (Password-
Based Key Derivation Function 2), which essentially iterates
a cryptographic hash function h, like SHA-256, n times, i.e.,
computes

h(h(. . . h(salt, pwd) . . .)).

However, a password server will have to evaluate this
function on its available hardware, like an x86 processor,
whereas an attacker can run the dictionary attack on ded-
icated hardware like ASICs (application specific integrated
circuits), where performing this computation costs (in terms
of energy but also hardware) several orders of magnitude
less than on a standard processor.1 So we have not gained
nearly as much in security by using a moderately hard
function as one could have hoped for.

1.2. Memory Hard Functions

Percival [12] suggests memory-hard functions (MHF) as
a means to get functions whose evaluation cost is more
egalitarian across different platforms. The idea is to make

1. According to https://en.bitcoin.it/wiki/Mining hardware comparison,
the best ASICs make 232 hashes per joule, whereas the most efficient
laptops can do 217 hashes per joule, giving a factor of 30’000.

https://en.bitcoin.it/wiki/Mining_hardware_comparison

memory — not computation — the main cost of evaluation.
In this work we focus on data-independent MHF (iMHF),
which are MHFs whose memory-access pattern is indepen-
dent of the input. iMHFs are more restricted — and thus
potentially harder to construct — than the more general data-
dependent MHFs (dMHF), but dMHFs succumb to various
side-channel (in particular timing) attacks, and thus in some
contexts iMHFs are preferred.

1.3. Energy and AT Complexity

In this work we analyze the memory-hardness of several
iMHFs which were candidates at the password hashing
competition2 in terms of their AT and energy complexity.

The amortized energy complexity of an algorithm mea-
sures the amount of electricity required by an ASIC imple-
menting the algorithm per evaluation. This is particularly
useful when considering the running cost of an ASIC. In-
deed, many ASICs sold commercially for mining cryptocur-
rencies (which in several notable cases such as Litecoin,
Dogecoin, and Ethereum boils down to precisely the type
of brute-force attack on an MHF considered in this work),
are often specified and compared to each other by looking at
their rates of electricity consumption per evaluation. Further-
more, to make the results more technology independent, we
also equip the model with a core-memory area parameter
R̄ ∈ R+ which denotes the ratio between the amount of
electricity used to evaluate the hash function and the amount
of electricity needed to store the output of the hash function
for an equivalent amount of time.3

The AT-complexity of an algorithm is the product of the
area of an implementation of the algorithm in an applica-
tion specific integrate circuit (ASIC) and the time it takes
the circuit to produce output. AT-complexity is often used
as an efficiency estimate relating to the financial cost of
implementing an algorithm, especially for repeated compu-
tations [14]. To upper-bound the cost of a brute-force attack
on an MHF, we consider the amortized AT-complexity of
our attack per instance of the MHF it computes. Similar
to the energy complexity case, we make the results more
independent of the technology used by parametrizing the
complexity using a core-memory energy ratio R ∈ R+

denoting the ratio of the size of an (on-chip) implementation
of the underlying hash function and area required to store
one of its outputs.

1.4. iMHFs as DAGs

The computation of an iMHF f(·) can often be captured
by a DAG (directed acyclic graph) Gf = (V,E) with one
source and one sink. Let V = {v0, . . . , vn} be in some
topological order (i.e., if (vi, vj) ∈ E then i < j). We then
assign a label `i to each vertex vi, where the label `0 of

2. https://password-hashing.net/
3. More precisely, we consider shortest time (say in clock cycles) from

the moment the inputs to the hash function are determined until the output
of the hash function has been fully determined.

the source v0 is the function input, and the label `n of the
sink vn is the output. In general, the label `i of a vertex
vi is some “simple” function of the labels of its parents.
For example the DAG underlying PBKDF2 is a path and
the simple function mentioned above is the compression
function h.

The iMHFs we consider are parameterised by a space
parameter σ and a time parameter τ . Here σ specifies how
much memory is required to evaluate the iMHF (in blocks
which correspond to the output size of the underlying hash-
function, so for our f(·) that is 512 bits). Informally, param-
eter τ specifies how many times the memory is overwritten.
Typical parameters are σ = 224 (corresponding to 1GB,
block size of 512 bits) and τ a small integer, typically 1.

For the iMHFs considered in this work the underlying
DAG will typically be a path v0 → v1 → . . . → vn
(n = σ · τ) with some additional edges, and the simple
functions will be cryptographic compression functions (like
Blake, or the permutation used in the sponge of Kec-
cak), sometimes mixed with even simpler functions like
XORs. For concreteness, for this introduction let us con-
sider an iMHF f(·) where the computation of a label `i
is always done by invoking some compression function
h : {0, 1}1024 → {0, 1}512. The iMHFs Rig.v2 and TwoCats
we attack in this paper are of this form with h being Blake2.

1.5. The Naı̈ve Algorithm

The specification of an iMHF f(·) describes how to
evaluate the iMHF. We call this description a “naı̈ve” al-
gorithm N ; it typically computes the labels `1, `2, . . . , `n
sequentially, storing the last σ blocks (which means the
underlying DAG has no long edges (vi, vj) where j−i > σ).
Thus, this algorithm invokes the hash-function n = σ · τ
times sequentially, using σ memory for these n steps, which
gives an energy complexity of ER̄(N) ≈ n(R̄ + σ) and
similarly, the AT complexity is ATR(N) ≈ n(R + σ). As
typically n� R̄, R and τ is a small constant,4 this simply
becomes

ER̄(N) ≈ n2 , ATR(N) ≈ n2 .

1.6. Attacks on MHFs

For an MHF to be memory-hard, there should not exist
an adversarial algorithm A that evaluates the function at
significantly lower energy or AT cost. This A is allowed
to make parallel queries to the underlying hash-function h
(as on an ASIC we can have many cores computing h) and
the complexity can be amortized over many invocations (as
an attacker will evaluate the function on many inputs). In
this paper we analyze five MHFs which were submitted to
the password hashing competition, and for all of them show
that there exist algorithms which evaluate the function at
energy and AT complexity much lower than n2. Ideally,

4. If used as a proof of work in a cryptocurrency like Litecoin, one
probably would insist on τ = 1, as the cost of verifying a proof for given
σ is linear in τ .

https://password-hashing.net/

we’d like these complexities to be Θ(n2), but [1] showed
that no such iMHFs exist, as for every iMHF there exists
an attack achieving O(n2/ log(n)).5 Our attacks are (at least
asymptotically) much stronger showing complexities of the
form O(nc) for different constants c < 2.

The attacks in this work follow a general framework
introduced by Alwen and Blocki [1], who used it to analyse
the Argon2i, Catena and Double-Buffer constructions (an
earlier attack on Catena was presented in [6]); we first map
a given iMHF f to a graph Gf , and the AT and energy
quality of the iMHF can then be expressed in terms of
the complexity of “pebbling” the graph Gf . In [1], these
complexities were upper bounded in terms of the depth-
robustness of Gf (Theorem 1 in this paper).

Thus, finding attacks on iMHF boils down to showing
that the underlying graph is not depth-robust. We give upper
bounds on the depth-robustness of the DAGs underlying the
iMHFs, leading to upper bounds on their energy and AT
complexity via Theorem 1 as summarized in Figure 1. Our
main tools are a new result (Lemma 1) which bounds the
depth-robustness of DAGs with not too many “short” edges,
and a bound on the depth-robustness on graphs which are
close to being “layered” (Lemma 2).

Our bounds (third column of Figure 1) are asymptoti-
cally way below the best possible n2/ log(n). Concretely,
we prove an upper bound O(n1.75) for all functions, except
for Pomelo, where we only get O(n1.83) and Lyra2 where
we get a better O(n1.67). On a high level, the reason is
that all constructions except Pomelo have underlying DAGs
where most edges are either very short (of constant length)
or very long (linear in n). Pomelo additionally has a large
fraction of edges of length around

√
n, which makes it more

depth-robust (and thus gives a worse attack). In Lyra2 the
long edges have a particular distribution (going only in-
between “layers”) which allows for a better attack than the
other constructions.

In light of such asymptotic attacks – which show struc-
tural deficiencies in all analysed iMHFs – we strongly
believe they must be considered broken. This view is not
generally shared. In particular, even after [1] published sim-
ilar asymptotic attacks on several iMHFs including Argon2i,
these were dismissed as not practically relevant by the
proponents of the quick standardization of this MHF.

When one simply inputs parameters to the upper bounds
we and [1] rigorously prove, the bounds are indeed not
impressive (the fourth column in Figure 1 shows the attack
quality at 1GB of memory, only for Rig.v2 we get an actual
attack, saving a factor 2 in energy). However, one should
keep in mind that these proven bounds increase with n
and just give a rough upper bound. The actual attacks are
certainly much better for several reasons: (1) The analyses
are not tight (we often have to upper bound some quantities)
and moreover only use a single property of the underlying
graph, depth-robustness via Theorem 1, but for concrete
graphs the attack is potentially much better than what we get

5. The best proven asymptotic lower bound for any construction is
Ω(n2/ log10(n)) from [3].

MHF/section/ref building block ER̄(A) ER̄(N)
ER̄(A) at 1GB R̄

Rig.v2 §4 [7] Blake2 O(n1.75) ≥ 2 3000
TwoCats §5 [9] Blake2 O(n1.75) > 1 3000
Gambit §6 [13] Keccak Permutation O(n1.75) ≥ 1/256 3000
Lyra2 §7 [11] Blake2 O(n1.67) ≥ 1/6 3000

or Keccak Permutation
Pomelo §8 [15] Basic Ops. O(n1.83) ≥ 1/512 100

Figure 1. (3rd column) Bounds on the amortized energy complexity of
our attacks. (4rd column) The energy-quality of our attacks (cf. Def. 2)
at 1GB of memory using core-memory parameter R̄ from the last column
(cf. Sec. 1.3). AT complexities behave basically identically.

from this worst-case analysis. (2) The attacks can certainly
be improved via various heuristics tailored to the underlying
graph.

To address the dismissal of their attacks, the authors
of [1] simulated their attack on Argon2i, introducing var-
ious heuristics to further improve the attack quality [2].
As expected, the derived quantitative bounds were much
better than the proven upper bounds in their paper, showing
that Argon2i can be broken at 1GB memory even for the
most “paranoid” suggested settings (in particular, even at
an impractical τ = 6 number of memory passes) using only
realistic amounts of bandwidth (we refer the reader to [2]
for details). Such a simulation could in principle also be
done for the attacks presented in this paper, and we expect a
similar gap between the proven and the actual attack quality.
We did not implement such simulations as there is not much
to be learned from them.

We find the current approach towards constructing
MHFs worrisome. Proposed constructions usually come
with no meaningful security proofs, and asymptotic attacks
are then often dismissed as not practical based on their
proven performance. Modern cryptographic research should
put the burden of proof on the designers of a system, not
the attackers. And even if the attacks were at this point just
theoretical (which they are not), we believe that asymptotic
attacks should be sufficient to disqualify a scheme right
away unless it’s already widely deployed or we simply lack
better alternatives, neither which is the case for iMHFs. In
particular, recent results6 show that iMHFs with asymptot-
ically optimal Ω(n2/ log(n)) memory-hardness exist, and
concrete proposals are being developed.

2. Preliminaries

2.1. The Computational Model

We consider a computational model where an algorithm
which can repeatedly make batches of queries to a hash
function h (or another simple building block), before pro-
ducing the final output. Between each call to h, we make
explicit (the bit-length of) the state stored by the algorithm at
that point in the computation. The complexity measure we
ultimately consider is the cumulative memory complexity;
that is the sum of the bit-lengths of all states stored during

6. Announced at https://calendar.csail.mit.edu/events/171401.

https://calendar.csail.mit.edu/events/171401

the computation. The desired security property (as motivated
already by Percival in [12]) is that no algorithm exists which
can compute the MHF with too low cumulative memory
complexity per input/output pair computed.

We fix the details of the model bellow following [3].
At its core, the computation consists of repeatedly invoking
an algorithm A making any state maintained between in-
vocations explicit. At invocation i ∈ {1, 2, . . .} algorithm
A is given the state (bit-string) σi−1 it produced at the
end of the previous invocation. Next, A can make a batch
of calls qi = (q1

i , q
2
i , . . .) to h. Then, A receives the

response from h and can perform some basic computations
before finally outputting an updated state σi (here basic
means much simpler than evaluating h). The initial state
σ0 contains the input to the computation which terminates
once a special final state is produced by A. Apart from
the explicit states σ, the algorithm may keep no other state
between invocations. For an input x and coins r, we denote
by A(x; r;h) the corresponding (deterministic) execution of
A. If in all possible executions of A, no batch of queries
to h contains more than a single query at a time, then A is
said to be a sequential algorithm.

We define the runtime time(A) to be the maximum
running time of A in any execution (over all choices of
x, r and h). Then the cumulative memory complexity and
cumulative evaluation complexity are defined as

cmc(A) = max
x,r

∑
i∈[T−1]

|σi| cec(A) = max
x,r

∑
i∈[T]

|qi| ,

where |σ| is the bit-length of state σ, |q| is the dimension
of the vector q, and maxx,r denotes the maximum over all
possible executions of A. Similarly, the absolute memory
complexity and absolute evaluation complexity are defined
as

amc(A) = max
x,r

max
i∈[T−1]

|σi| aec(A) = max
x,r

max
i∈[T]

|qi|.

We remark that these complexity measures are stricter
than it is common, in particular, we treat h as a black-box
and do not allow for optimisation like pipelining. But keep
in mind that we use them to upper-bound the complexity
of our attacks, therefore this strictness can only serve to
strengthen our results. Using these tools, we can now define
the complexity of an algorithm as follows.
Definition 1. (AT and Energy Complexities) Let A be an

algorithm which computes #inst(A) instances of an
iMHF in parallel. Then for any core-memory area ratio
R > 0 and any core-memory energy ratio R̄ > 0 the
(amortized) AT-complexity and the (amortized) energy-
complexity of A are defined to be

ATR(A) = [amc(A) +R · aec(A)]× time(A)

#inst(A)

ER̄(A) =
cmc(A) + R̄ · cec(A)

#inst(A)
.

Recall that an MHF is specified together with a (se-
quential) evaluation algorithm N , which we call the naı̈ve
algorithm. The understanding is that this is the algorithm
used by the honest user (e.g. by the login server per login
attempt).

With this in mind we consider an evaluation algorithm
an “attack”, if it has lower (amortized) complexity than the
naı̈ve algorithm, as this implies that the adversary has an
advantage over the honest user. To this end, we define the
following measure for evaluating the quality of an attack.
Definition 2. (Attack Quality) Let f be an MHF with naı̈ve

algorithm N and let A be an algorithm for evaluating
#inst(A) instance(s) of f . Then for any core-memory
area ratio R > 0 and any core-memory energy ratio
R̄ > 0 the AT-quality and energy-quality of A is defined
to be

ATqualityR(A) =
ATR(N)

ATR(A)
,

ENqualityR̄(A) =
ER̄(N)

ER̄(A)
.

In particular, if either quantity is greater than 1, then we
call A an attack on f .

2.2. Basic Notation

We denote the set of natural numbers beginning at 0
as N = {0, 1, . . .}. For n ∈ N we denote by [n] the set
{1, 2, . . . , n}. Also, by [a, b) (resp, (a, b]), we denote the
set {a, a+ 1, · · · , b− 1} (resp., {a+ 1, a+ 2, · · · , b}). We
denote the set of real numbers greater than 0 with R+. We
use the shorthand [N]m to represent the number N mod m.

We also use the following terminology to talk about
properties of a directed acyclic graph (DAG) G = (V,E).
The indegree of a node v ∈ V is the number of edges ending
in v. In symbols, indeg(v) := |{(u, v) ∈ E : u ∈ V }|. More
generally, the indegree of G is the largest indegree of any
node in G. More precisely, indeg(G) := max{indeg(v) :
v ∈ V }. If a p is a directed path in G, then it’s length
len(p) is the number of edges traversed by p. The depth of
G, denoted depth(G), is the length of the longest directed
path in G. For any set of nodes S ⊆ V , we write G − S
to denote the DAG obtained from G by removing S (and
incident edges).

2.3. Data-Independent MHFs and Graphs

We fix some useful definitions of which we shall make
repeated use.
Definition 3. Let G = (V,E) be a DAG and let e, d ∈ N.

We say that G is (e, d)-depth-robust if after removing
any subset of at most e nodes, there remains a path of
length d in G. That is, if

∀S ⊂ V |V | ≤ e =⇒ depth(G \ S) ≤ d.

If G is not (e, d)-depth-robust, then G is said to be (e, d)-
reducible.

The attacks in this work follow the general paradigm
of determining parameters (and corresponding node set) for
which each graph is (e, d)-reducible and then instantiating
the generic attack of [1]. The complexity of that attack
in terms of the underlying DAG and its reducibility are
captured by the following theorem.
Theorem 1 ([1]). Let f be an iMHF where the underlying

DAG G = (V,E) has indeg(G) = δ and is (e, d)-
reducible.7 Then, for any integer g ∈ [d, n] and any
core-memory area and energy ratios R > 0 and R̄ > 0,
there exists evaluation algorithm A of AT and energy
complexity

ATR(A) ≤ 2n

[
dn(R+ 1)

g
+ δg + e+R

]
ER̄(A) ≤ n

[
dn(R̄+ 1)

g
+ δg + e+ R̄+ 1

]
.

Remark 1. Note that δ can be replaced with δ − 1 if for
every node of inedgree δ in G, one of incoming edges
is from the immediately preceding (in topological order)
node.

3. Attacks on Classes of Graphs

Theorem 1 allows us to attack a graph by showing that it
is depth-reducible. In this section we describe two general
approaches to demonstrating depth-reducibility of graphs.
These approaches are used in most of our attacks below.

3.1. Attacks Based on Edge Lengths

Assume G is a DAG on V = {v1, . . . , vn} with edges
going from left to right (i.e., (vi, vj) ∈ E ⇒ i < j). Define
the length of an edge (vi, vj) as j − i.
CHAIN GRAPH. Consider first a simple chain graph with
all edges of length 1. Pick some γ, divide the graph into
contiguous segments of γ nodes, and remove the last node at
the end of every segment. Then no path of length γ remains
in the graph. In other words, this graph is (n/γ, γ)-reducible
for any γ ∈ [n].
ATTACKS ON A CHAIN + SHORT AND LONG EDGES. Now
consider any graph G that has edges of length 1 or long
edges of length at least β. Again, remove the last node
of every γ-node segment. Any path in this graph will
have fewer than n/β long edges total, and no more that
γ − 2 short edges in a row before a long edge. Thus, G is
(n/γ, γdn/βe)-reducible for any γ ∈ [n].

To see how this helps to attack the graph, consider
setting γ = β1/3. We get that G is (e, d)-reducible for
e = n/β1/3 and d ≈ n/β2/3. We can then apply Theorem 1
with g = e to get attack complexity approximately n2/β1/3.

This attack can be generalized to a setting where all
edges are of length at most α or at least β, for some α <

7. Recall that an iMHF f is parameterized by parameters σ, τ , so here
G and thus also δ, e and d will depend on σ, τ .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 1 2 4 6 7

8 10 11 12 13 14 15

16 17 19 21 22 23

0 1 4 6 7

8 11 12 14 15

16 17 19 22 23

Figure 2. (top) A (m = 5, λ = 3, e = 2, d = 2)-layered graph G. (bottom
left) G after removing a node incident with each short (blue) edge. A path
of length 7 is (e = 2, d = 2)-reducible (remove the 3rd and 5th node of
the path). (bottom left) G after additionally removing 3rd and 5th node of
each layer. As claimed in Lemma 2, the graph is (m+λ·e = 11, λ·d = 6)-
reducible. For the illustrated graph this is tight, as a path of length 5 (shown
in orange) exists.

β: simply remove segments of length α instead of single
nodes, to get (nα/γ, γdn/βe) reducibility. We can then get
an attack of complexity approximately n2(α/β)1/3.

Finally, if a graph has a few edges of lengths between
α and β, we can simply remove their end points. We thus
obtain the following lemma.
Lemma 1. If for some η, α, and β, G has at most η edges

of length greater than α but less that β, then, for any γ,
G is (η + nα/γ, γdn/βe)-reducible.

ATTACKS ON A GRAPH WITH UNIFORM EDGE LENGTH.
Suppose that the number of edges in G whose length is
greater than 1 but less than ` is at most `. Such a graph
has mostly long edges. Thus, applying the above lemma to
α = 1, η = β = n3/4, and γ = n1/4 implies that G is
(e, d)-reducible for e = n3/4, d = n1/2. So, with g = e we
can apply Theorem 1 to get attack complexity of approx.
n1.75.

3.2. Attacks on Layered Graphs

We now show depth-reducibility of a general class of
graphs called layered graphs.
Definition 4. (Layered Graph) Let integer λ > 0 and e and

d be functions from [λ] to N. For λ ∈ N and functions
e, d : N→ N, a DAG G = (V,E) is a (λ, e, d)-perfectly-
layered DAG, if the following holds: There exists a
partitioning of V into subset V1, V2, . . . , Vλ, such that

1) Edges never point to lower layers: ∀(u, v) ∈ E where
u ∈ Vi and v ∈ Vj we have i ≤ j.

2) For all i ∈ [λ] the subgraph of G consisting only of
the nodes Vi is (e(i), d(i))-reducible.

More generally, for m ∈ N, a DAG G is an (m,λ, e, d)-
layered graph if there exists a node set S ⊆ V of size at
most m such that the DAG G−S is a (λ, e, d)-perfectly-
layered graph.

The following lemma lower-bounds the reducibility of a
layered graph.

Lemma 2. Let G be an (m,λ, e, d)-layered graph. Then G
is (ē, d̄)-reducible, where

ē = m+
∑
i∈[λ]

e(i) d̄ =
∑
i∈[λ]

d(i) .

Proof: We construct a set of nodes S to remove and
upper-bound the length of the longest path. Initially, S is
the set of (at most m) nodes whose removal turns G into an
(λ, e, d)-perfectly-layered graph G′ = G−S. For i ∈ [λ], let
G′i denote the subgraph of G′ containing only the nodes in
Vi. That means G′i is (e(i), d(i))-reducible. Let Si ⊆ Vi be
a set of nodes of size at most e(i), such that G′i−Si contains
no path of length d(i). Let S̄ = S ∪ (∪iSi). Then clearly
|S̄| ≤ ē. It remains to show that no path in Ḡ := G − S′
has length d̄.

Consider any path p in Ḡ. As S ⊆ S̄ the DAG Ḡ is a
subgraph of G′. Moreover, for each i ∈ [λ], as Si ⊆ S̄ the
path p can not contain a subpath of length d(i) with nodes
in Vi. Yet, once p leaves a node set Vi for a node in Vj with
j > i, no edge ever leads back to Vi. Thus, summing over
all layers of Ḡ, we get that len(p) ≤ d(i) = d̄.

4. Rig.v2

Rig was proposed by Chang et al. [7]. We analyze its
second version and denote it Rig.v2 [8]. It is a password-
hashing function strongly influenced by the ideas of the
Catena function [10]. The authors provide two variants of
Rig.v2 [H1, H2, H3], namely the strictly sequential vari-
ant Rig.v2 [Blake2b, BlakeCompress, Blake2b] and a sec-
ond variant Rig.v2 [BlakeExpand, BlakePerm, Blake2b]
(see [8]). For our analysis the choice of hash functions will
make no difference. As input, Rig.v2 takes a password pwd,
its length `pwd, a salt s of at least 16 bytes, its length `s, the
number λ of iterations, the memory count mc, the number
t of bits to be retained from hash output of the setup phase,
the output length `, and the number of rounds r. As output,
Rig.v2 gives an `-bit password hash h∗r .

The naı̈ve algorithm NR to compute Rig.v2 from [8] is
described by Algorithm 1 in the Reference Material. Using
the original analysis from [8], a single password computa-
tion using this algorithm can be done in time complexity
O((λ+ 1)mr) and space complexity O(m).

4.1. Graph Representation

The corresponding graph GR is parameterized by the
number of rounds r, the number of layers λ per round, and
the length m = 2mc of layers. GR = (V,E) is defined as
follows:

V =
⋃

1≤i≤r
0≤j≤λ

Vi,j ,

where Vi,j := {vi,jm+k | 0 ≤ k < m} denotes the j-th
layer of the i-th round. Every vertex vi,jm+k represents one

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

Figure 3. Illustration of Rig.v2 for m = 8 memory, λ = 2 layers and
r = 1 round.

evaluation of a hash function and two memory cell updates
of two temporary arrays. The set of edges is

E =

r⋃
i=1

(
Ei,1 ∪ Ei,2 ∪ Ei,3

)
∪ E4,

where

Ei,1 :=
{

(vi,k, vi,k+1)
)
| 0 ≤ k ≤ (λ+ 1)m− 2

}
defines a path running through all vertices of the i-th block;

Ei,2 :=
{

(vi,jm+k, vi,(j+1)m+k)
)
| 0 ≤ k < m, 0 ≤ j < λ

}
connects each vertex of a layer to the corresponding vertex
of the subsequent layer by a vertical edge; Ei,3 :={

(vi,jm+br(k), vi,(j+1)m+k)
)
| 0 ≤ k < m, 0 ≤ j < λ

}
is the set of all edges we obtain by connecting the k-th vertex
of the j-th layer to the br(k)-th vertex of the subsequent
layer (where br : [0,m − 1] → [0,m − 1] denotes the bit-
reversal function, see [8]); and

E4 :=
{

(vi,(λ+1)m−1, vi+1,0)
)
| 1 ≤ i < r

}
connects the blocks of the r rounds by single edges.

Note that each of the r blocks of GR looks like the
graph corresponding to the Catena password-hashing func-
tion [10], except for the additional edges Ei,2.

4.2. The Attack

Lemma 3. GR has |V | = r(λ + 1)m vertices, and
indeg(GR) = 3. The subgraphs of GR corresponding
to the rounds of the algorithm are (λ + 1,

√
m,
√
m)-

perfectly-layered graphs.

Proof: The number of vertices follows easily through
a simple enumeration. All the vertices with incoming edges
from the set E4 have indegree 1. All other vertices have at
most three incoming edges, one from each of the three sets
Ei,1, Ei,2, Ei,3, hence indeg(GR) = 3. Secondly, from the
description of our graph it is clear that all the edges either
stay in the same layer or go to the next layer, which satisfies
the first condition of Definition 4. As the edges in one layer
form a single simple path, by removing every

√
m-th vertex

of GR, the longest path in each layer has length at most√
m− 2, so also the second claim is satisfied.

Corollary 1. For chosen parameters λ and r, there exists
an algorithm AR for computing Rig.v2 with energy
complexity O(m1.75).

Proof: Since GR consists of r subgraphs which are
(λ+ 1,

√
m,
√
m)-perfectly-layered, by Theorem 1 (setting

n := (λ + 1)m and g := (λ + 1)m3/4), we get an attack
complexity O((λ + 1)2m7/4) for each subgraph. As two
subsequent subgraphs are connected by a single edge, it
follows that GR has complexity O(r(λ + 1)2m7/4). Since
λ and r are relatively small compared to m, we reduce this
result to O(m1.75).

Since NR has an energy complexity of O(n2), the
(asymptotic) quality of the attack is O(n0.25).

4.3. Comparison for Practical Parameters

We now do an analysis of our attack using practical pa-
rameters. We set r = 1 (there is only a single edge between
subsequent rounds, therefore the complexity scales linearly
with r), λ = 2 (as recommended in [8]), d = e =

√
m (by

Lemma 3), δ = 2 (see Remark 1), and apply Theorem 1 to
arrive at

ER̄(AR) ≤ 3m

[
3m

3
2 (R̄+ 1)

g
+ 2g +

√
m+ R̄+ 1

]
,

Now, we plug in parameters m = 233 (1 GB) and g =
224.25 ·

√
R̄+ 1 ·

√
3 to optimize the upper bound of our

attack’s complexity, and reach ER̄(AR) ≤ 3
3
2 · 259.25 ·

√
R̄.

In [6] we find a value R = 3000 ≈ 211.6 for Blake2.
We estimate that the value of R̄ should be correlated and
therefore set it to the same value and plug it in. On the other
hand, the complexity for the naı̈ve algorithm using the same
concrete parameters is ER̄(NR) > 3 · 267. Therefore, if we
compare these two values we find that the quality of the
attack is roughly ENquality = ER̄(NR)

ER̄(AR) ≥ 2.

5. TwoCats

The password-hashing scheme TwoCats was proposed
by Bill Cox [9]. TwoCats consists of two loops, a data-
independent (“resistant”) one, followed by a data-dependent
(“unpredictable”) one. In this paper we will only discuss the
data-independent loop. The underlying hash function H is
Blake2s or SHA256. As input, TwoCats takes a password,
a salt, their sizes, and the desired memory cost.8 The algo-
rithm for evaluating the data-independent loop of TwoCats
from [9] is described in Alg. 2 of the Reference Material.
It makes n calls to the underlying hash function (where n
is half the memory size divided by the block length); as
the naı̈ve algorithm NTC maintains all the memory during
the entire computation, it has an energy complexity of
ER̄(NTC) = O(n2) = O(m2

`).

8. In fact, we are only describing a simple version of TwoCats called
SkinnyCat, which the author designed for easy implementation. As the
underlying DAGs are the same, we won’t go into further details.

5.1. Graph Representation

The corresponding computation graph GTC = (V,E) is
defined as follows. Let n = 2nc be the number of vertices;
let V = {v0, . . . , vn−1} and E = E1 ∪E2 where E1 is the
chain {(vi, vi+1) | 0 ≤ i < n− 1]} and

E2 := {(vsbr(i), vi) | 2 ≤ i ≤ n− 1} ,

where sbr is the sliding-power-of-two bit reversal function:

sbr(i) :=

{
b̄r(i) if i− b̄r(i) ≤ 2blog2(i)c + 1

b̄r(i) + 2blog2(i)c if i− b̄r(i) > 2blog2(i)c + 1

where b̄r(i) removes the leading 1 bit and reverses the re-
maining bits. (To understand sbr(i), consider the following
example for i = 24, which is 11000 in binary: cut off the
first 1 to get 1000, reverse the bits to get b̄r(i) = 0001,
check if the difference between i and b̄r(i) is larger than
24 + 2, and if so add 24 to get sbr(24) = 17.)

Note that the indegree of all but the first two nodes is 2.

5.2. The Attack

Our attack closely follows the ideas described in Sec-
tions 3.1 and 3.2: we show that GTC can be seen as a layered
graph with exponentially growing layer sizes, where each
layer consists of a chain and additional edges of uniformly
distributed lengths.

Let the kth layer G̃k of GTC consist of all nodes whose
indices are of bit-length k; i.e., G̃k consists of vi for i ∈
[2k, 2k+1). First we show that edges of E2 internal to G̃k
have nearly-uniform lengths.
Lemma 4. For 1 ≤ k < nc, the number of edges E in

G̃k that are of length 1 < length(E) < β is at most
β + 2bk/2c.

Proof: As b̄r : [2k, 2k+1)→ [0, 2k), an edge to node
vi of length > 1 has its origin in G̃k only when b̄r(i) 6=
sbr(i), i.e., when i− b̄r(i) ≥ 2k + 1. Let i = 1acb be the
bit representation of such a value i, where a, b ∈ {0, 1}bk/2c
and c ∈ {0, 1} if k is odd, or c is empty if k is even. Then
(letting br stand for bit-reversal)

i− sbr(i) = 1acb− 1br(b)cbr(a)

= (a− br(b))2dk/2e + b− br(a) .

Since 2bk/2c < b−br(a) < 2bk/2c, the number of edges E
in the second half of Gk with 1 < length(E) < β is equal
to the number of pairs (a, b), such that (a−br(b))2dk/2e <
β + 2bk/2c, where the latter is equivalent to a − br(b) <
β/2dk/2e + 1. Thus, at most 2bk/2c(β/2dk/2e + 1) < β +
2bk/2c nodes vi can serve as endpoints for such edges.

This lemma implies an attack against TwoCats.
Corollary 2. There is an attack ATC on TwoCats of com-

plexity ER̄(ATC) = O(n1.75).

Proof: We will show that GTC is (ē, d̄)-reducible for
ē ≈ n3/4 and d̄ ≈ n1/2. Let G̃0 be the subgraph on the

vertices v0, v1 and G̃k for 1 ≤ k < nc be as defined above.
Then, by Lemma 1 (applied to α = 1, β(k) ≈ 23k/4 and
γ(k) ≈ 2bk/4c), G̃k is (e(k), d(k))-reducible with e(k) ≈
23k/4 and d(k) ≈ 2k/2. Therefore, by Lemma 2 GTC is
(ē, d̄)-reducible, where

ē =

nc−1∑
k=0

ek ≈
nc−1∑
k=0

(2nc/(2nc−k))3/4 =

= 23nc/4
nc∑
k=1

(1/2)3k/4

and by the convergence of the geometric series, it follows
ē = O(n3/4), and analogously, d̄ = O(n1/2). Thus, by
Theorem 1, we get an attack complexity of O(n1.75).
Since NTC has an energy complexity of O(n2), the (asymp-
totic) quality of the attack is O(n0.25).

5.3. Comparison for Practical Parameters

If we set mc = 30 as proposed as an upper bound
in [9], and bl = 212, we get n = 225. Optimizing
constants in the proof of Corollary 2, we set β(k) :=
(R̄/a)1/423k/4 and γ(k) := (R̄/a)−1/42k/4, where a :=∑∞

k=1(1/2)3k/4 ≈ 1.5. We see that GTC is (ē, d̄)-reducible,
with ē ≈ 2a(R̄/a)1/4n3/4 and d̄ ≈ a(R̄/a)−1/4n1/2. By
Theorem 1, choosing g ≈

√
R̄n3/44, we get as an approx-

imation of the energy-complexity of the attack algorithm
ATC

ER̄(ATC) ≤ n[2
√
d̄n(R̄+ 1) + ē+ R̄+ 1].

Using R̄ = 3000 (see 4.3), we get energy-complexity
ER̄(ATC) < 250. If NTC denotes the naı̈ve algorithm, we
obtain:

ER̄(NTC) = n2 + nR̄ = 250 + 225R̄.

Thus, for such a small value for n, our asymptotic result
only gives a very small advantage:

ENqualityR̄(A) =
ER̄(NTC)

ER̄(ATC)
>

250 + 225R̄

250
> 1.

6. Gambit

Gambit is a password-hashing function proposed by
Pintér [13] and inspired by the sponge paradigm of Bertoni
et al. [4] It is built on top of a sponge with a state consisting
of b blocks; the upper part of the state affected directly
by absorbing and squeezing consists of r words. As input,
Gambit takes a password pwd, salt salt, time and memory
complexity parameters t and m respectively, and a key
identifier dkid. The construction itself is parametrized by
an interleave factor denoted f ∈ {1, . . . ,m− 1} satisfying
several requirements that we will detail later.

6.1. The Naı̈ve Algorithm

The algorithm for computing Gambit given in [13] is
described in Algorithm 4 in the Reference Material.

We evaluate the memory costs of Algorithm 4 (we call
it Ng) in terms of words, while the computational costs will
be expressed in terms of calls to the sponge permutation.
Note that we are being generous to the naı̈ve algorithm by
making all other its computation (e.g., updates to Mem and
the sponge absorption steps) for free.
Ng maintains the memory consisting of m words during

its entire computation (t steps), hence we have cmc(Ng) =
O(mt). It performs t calls to the sponge permutation during
its operation, hence we get cec(Ng) = O(t). Overall, this
gives us ER̄(Ng) = O(t(m+ R̄)).

6.2. Graph Representation

Below we describe the directed acyclic graph that cor-
responds to the Gambit function in its simplest form, with-
out considering the optional transformations resulting from
Trans and ROM.9 When we refer to i-th absorbing/squeez-
ing/permutation step, we always index from 0 to be consis-
tent with [13].

We define a directed acyclic graph Gg = (V,E) as
follows. The set of vertices V consists of three partitions
V := V1 ∪ V2 ∪ V3. We let

V1 := {Si,j : 0 ≤ i ≤ t ∧ 0 ≤ j < b}

where for each fixed i, the tuple Si,0, . . . , Si,b−1 represents
the b words of the sponge state after (i− 1)-th application
of the sponge permutation π. Additionally,

V2 := {Ti,j : 0 ≤ i < t ∧ 0 ≤ j < r}

where for each fixed i, the tuple Ti,0, . . . , Ti,r−1 represents
the r words of the upper part of the sponge right before the
i-th application of the sponge permutation π, but after the
i-th absorption. Finally,

V3 := {Mi,p : 0 ≤ p < m ∧ 0 ≤ i < t

∧ (∃j ∈ {0, . . . , r − 1} : p = [ir + j]m)}

where Mi,p represents the state of the memory word M [p]
after the updates that occurred as a result of the i-th squeez-
ing step. Note that in each round i we only introduce new
M -vertices for memory cells that were updated in this round
(as captured by the condition ∃j ∈ {0, . . . , r − 1} : p =
[ir + j]m). Let us for every v ∈ {Si,j , Ti,j ,Mi,p} ⊆ V
define the timestamp of v as ts(v) = i.

We describe the set of edges as a union of six partitions
E :=

⋃6
i=1Ei. The first three sets

E1 := {(Si,j , Ti,j) : 0 ≤ i < t ∧ 0 ≤ j < r}
E2 := {(Ti−1,j , Si,k) : 1 ≤ i ≤ t ∧ 0 ≤ j < r ∧ 0 ≤ k < b}
E3 := {(Si−1,j , Si,k) : 1 ≤ i ≤ t ∧ r ≤ j < b ∧ 0 ≤ k < b}

9. Including the operation Trans would lead to a similar analysis, while
the effects of ROM can be amortized over any number of evaluations of
Gambit as the content of ROM remains the same.

Kb,b

. . .

.

. . .

Mem

b

r

m

Figure 4. A snippet of the graphGg capturing the i-th permutation step. The
sponge nodes {Si,•, Si+1,•} ⊆ V1 and {Ti,•, Ti+1,•} ⊆ V2 are denoted
by full black nodes and empty blue nodes, respectively. The memory nodes
{Mi,•,Mi+1,•} ⊆ V3 correspond to the red squares. The sponge update
edges E1, E2, E3 come as solid black, the memory update edges E4 as
purple dashed lines, the memory-to-sponge edges E5 are the dotted red
lines, and finally the dash-dotted blue lines are the memory-dependence
edges E6.

capture the dependence of a sponge state on the state
immediately preceding it. Edges in

E4 := {(Si,Mi,ir+j) : 0 ≤ i < t ∧ 0 ≤ j < r}

represent the updates of memory Mem based on the current
sponge state in each step. The set

E5 :=
{

(Mlast(i,j),[f(ir+j)]m
, Ti,j) : 0 ≤ i < t ∧ 0 ≤ j < r

}
where

last(i, j) := max
{
k ∈ N : Mk,[f(ir+j)]m

∈ V
∧ [k < i ∨ (k = i ∧ [fj]r > j)]}

contains edges representing the influence of the memory
Mem on the update of the sponge state. Intuitively, the index
last(i, j) represents the last iteration in which the memory at
position [f(ir + j)]m was overwritten before it is read out
and used during iteration i. This is guaranteed by the fact
that the vertex Mlast(i,j),[f(ir+j)]m

exists (i.e., this position
was updated in iteration last(i, j)) and either last(i, j) < i,
or if the update occurs in the current iteration (last(i, j) = i)
then it occurred before the value is read out (this is captured
by the condition [fj]r > j). Finally, the edges in

E6 := {(Mj,p,Mi,p) : Mj,p,Mi,p ∈ V ∧ j < i

∧ (∀k : j < k < i⇒Mk,p 6∈ V)}

represent that whenever updating a memory cell Mp, the
new value also depends on the old one.

6.3. Choice of Parameters

The author of [13] gives some conditions and recommen-
dations on how to choose the parameters. First, m cannot
be too big compared to t, otherwise the entire memory
is not used, which is captured by the proposed condition
m < tr/4. Also, the interleave factor f needs to satisfy
gcd(m, f) = 1 and gcd(m, f − 1) = 1 in order to ensure
proper usage of the entire memory and regular behaviour of
edge lengths (as we will see shortly), respectively.

For the purposes of our attack we assume that m and
t are large compared to b and r, while still evaluating the
complexity of the attack in all these parameters. We will
restrict to the case m = Θ(t) since the general paradigm of
iMHFs is to use as much memory as possible.

6.4. The Attack

Intuitively, the weakness of Gambit lies in its distribution
of edge lengths: the lengths of relevant edges are distributed
almost uniformly (i.e., the number of edges of each partic-
ular length is roughly the same), which opens door for an
attack following the ideas already sketched in Section 3.1.

In our more detailed analysis below, some of our esti-
mates are not completely precise (indicated by ≈) for two
reasons: (1) the edge lengths considered will be scaled down
by a factor of r which might cause rounding errors, and (2)
the graph looks slightly differently at its “beginning”/“end”
compared to normal operation. However, neither of these
effects can have a noticeable impact on our results and so
we opt for a simpler presentation in this version of the paper.

First we formalize the statement about edge lengths,
assuming gcd(m, f) = gcd(m, f − 1) = 1 as required
by [13]. For the purposes of Section 6, we define a slighly
different notion of an edge length that we denote by len:
for e = (u, v) ∈ E we define the length of e as len(e) :=
ts(v) − ts(u). Whenever we talk about edge length in this
section, we refer to the function len(·).
Lemma 5. For any e ∈

⋃4
i=1Ei we have len(e) ≤ 1. For

e ∈ E6 we have len(e) ≈ m/r. Finally, for e ∈ E5 we
have 0 ≤ len(e) ≤ m/r and the distribution of edge-
lengths is approximately uniform, that is

|{e : len(e) = x}| ≈ tr2/m

for each x ∈ {1, . . . ,m/r}.
Proof: The claim for

⋃4
i=1Ei is easy to observe

directly from the definition. For e ∈ E6, informally len(e)
corresponds to the difference in timestamps between two
consecutive updates of a memory cell Mem[p]. Since the
memory cells are updated successively, m − 1 updates (of
other cells) occur before a cell is updated again. However, r
consecutive updates always have the same timestamp, hence
we have len(e) = m/r for e ∈ E6. Finally, for e ∈ E5

the length len(e) corresponds to the timestamp difference

between updating a memory cell and reading it out. By
design of Gambit (due to the requirement gcd(m, f−1) = 1)
the number of updates (of other cells) that happen between
updating a cell Mem[p] and reading it out is uniformly
distributed for various p. This uniformity is approximately
maintained also after downscaling the lengths by the factor
r due to r updates happening under each timestamp.

This allows us to see Gg as a layered graph.
Theorem 2. Gg is a (t7/4r2/m, t1/4, e, d)-layered graph,

where e(i) = t1/2(b + 2r) and d(i) = 3t1/4 for each
i ∈ [t1/4].

Proof: Let us define the set of nodes to remove as
start points of short edges. Namely, we set

S = {v ∈ V3 : ∃e ∈ E5, e = (v, w), len(e) ≤ t3/4}.

Due to Lemma 5 we have

|S| ≈ t3/4 · tr
2

m
=
t7/4r2

m
.

Now let us partition V into V 1, . . . , V λ such that

V i = {v ∈ V : (i− 1)t3/4 ≤ ts(v) < it3/4} \ S for i ∈ [λ].

Note that λ ≈ t1/4 and that every edge e = (v, w) of Gg−S
has v ∈ V i, w ∈ V j for i ≤ j. It remains to discuss
the reducibility of the induced subgraphs Gi = (V i, Ei)
of Gg − S. First, let us note that Ei is disjoint with both
E5 and E6. The former holds since the “short edges” were
deleted and the “long edges” step outside V i. For the latter
we recall that len(e) ≈ m/r for e ∈ E6 and the assumed
m = Θ(t).

Now we see that len(e) ≤ 1 for every e ∈ Ei and so
we will treat Gi as we would treat a chain graph. Note that
Gi has |V i| ≤ t3/4(b+ 2r) vertices and depth(Gi) ≤ 3t3/4.
By removing all t1/2(b + 2r) vertices v with ts(v) | t1/4,
we guarantee no path longer than 3t1/4. This establishes
(t1/2(b+ 2r), 3t1/4)-reducibility for each Gi.

After applying Lemma 2, we get that Gg is (e, 3t1/2)-
reducible, where e = t3/4 max(b + 2r, r2t/m). Applying
Theorem 1 (with g = e), this gives us an algorithm Ag

for computing Gambit with the following asymptotic per-
formance.
Corollary 3. For m = Θ(t), Ag has energy-complexity

ER̄(Ag) = O(t1.75).

This beats the naı̈ve algorithm with its energy comple-
xity of t(m+ R̄) = Ω(t2).

6.5. Comparison for Practical Parameters

To go beyond the asymptotic analysis, we set m = tr/4
as suggested by [13] and apply Theorem 1 setting n = |V | ≈
t(b+ 2r) and g = e, δ = b). We obtain

ER̄(Ag) ≤ t7/4(b+2r)

[
3(b+ 2r)(R̄+ 1)

e′
+ (b+ 1)e′ + R̄

]
,

(1)

where e′ = max(b + 2r, 4r), and a similar bound for
ATR(Ag) (see Theorem 1).

Next, we will argue that the value R̄ can be replaced
with R̄/b. The value R̄ upper bounds the cost of calling the
sponge function and performing a xor but now Theorem 1
pays the cost R̄ for each node of the b output nodes of the
sponge function graph. That is b more times then necessary.
The remaining computations are xors and are very cheap
compared to calling the sponge function, hence R̄/b still
upper-bounds their cost.

[13] proposes to use one of the two variants of the
Keccak [5] permutation, taking 1600 bits of input and
keeping a capacity of either 256 or 512 bits. This gives
us b = 25 and r ∈ {12, 17} (recall that these are expressed
in words). Using 1GB of memory corresponds to m = 227

words. Plugging these values into (1) gives us approximately
ER̄(Ag) ≈ 262 for values of R̄ ≤ 5000, not beating the
naı̈ve algorithm with ER̄(Ag) ≈ 254.

We stress that the above estimate is overly pessimistic
for several reasons related to the difficulty of adapting our
model to sponges (namely, representing the state of the
sponge as b separate nodes). While this does not affect the
asymptotic analysis (where b is considered a constant), it
plays a significant role in the concrete evaluation. If the
concrete complexity of the attack is a primary goal, we
believe that a significant improvement can be obtained by
adapting the attack to the sponge structure instead of using
the attack of Theorem 1 in a black-box way.

7. Lyra 2

Lyra 2 is a sponge-based password-hashing function pro-
posed in [11]. It is built on top of a sponge with an internal
state consisting of w bits, while its upper part affected
directly by absorbing and squeezing consists of b bits. Data
is handled as words of length W — let b = β · W and
w = α·W . The function is parameterised by R10, C, T ∈ N,
and runs in two phases: setup and wandering. The setup
phase is data-independent and initializes, in a recursive
manner, a memory matrix M of dimension R × C where
each memory cell is of size b bits. The wandering phase, on
the other hand, is data-dependent and updates these memory
cells in T iterations. Hence, roughly speaking, R and C are
the memory parameters, whereas T is the time parameter.
Since the paper pertains only to data-independent MHFs, we
shall consider only the setup phase, and hence the algorithm
corresponding to T = 0. The description of this reduced
Lyra 2 function, denoted NL, is given in Algorithm 5 in the
Reference Material.

7.1. The Naı̈ve Algorithm

Lyra 2 uses the underlying sponge in two modes of
operation: squeeze (which is the normal mode) and duplex
(which is squeeze with an input). For sake of simplicity of
the analysis, we presume that both modes of the sponge

10. Not to be confused with the core-memory parameter.

have the same time-cost. Also, since other operations —
i.e., xor (⊕), wordwise addition (�) and rotation (rot) —
are accompanied by a call to the permutation function f , we
assume their costs are absorbed by the permutation. As the
naı̈ve algorithm NL has to save the content of the memory
cells M and the state of the sponge in each iteration, its
energy complexity is

ER̄(NL) = (C ·R) · (ω + (R · C) · β). (2)

We show that there exists an attack against the set-up phase
of the function by giving an evaluation algorithm AL that
requires energy complexity less than that in (2).

7.2. Graph Representation

For showing the aforementioned attack, we first have
to describe the graph GL that corresponds to Lyra 2.
We warm up with the description of a simplified graph
GL,s = GL,s(R,C) in which the state of the sponge and the
content of the memory are represented as separate vertices,
and then describe how the graph can be attacked. Later,
in Section 7.3.1, we show how GL,s can be transformed to
GL = GL(R,C, β, α) where vertices represent individual
words and hence are of the same weights. We also explain
a fine-grained attack in terms of β and α.

L1

L2,L L2,R

L3,L L3,R

L4,L L4,RC

R

λ

Figure 5. A schematic of the first four layers of GL,s — the dependence
between these layers are indicated by arrows. All the edges coming into a
layer L` belong to the previous layer (L`−1), whereas all the edges going
out of the layer are to the next layer (L`+1) (except for the extreme layers).
Refer to Figure 6 for the structure of a particular layer.

GL,s has a layered structure (see Figure 5), with each
layer (L`) having a left (L`,L) and a right half (L`,R) —
there are λL = dlog2Re − 1 layers altogether. Roughly
speaking, in a particular “window” `, the memory cells in
L`,R are filled by feeding to the sponge function certain
values of memory cells from L`−1. At the same time, these
values in L`−1 are updated to L`,L. And the process is re-
peated. Thus, GL has three types of vertices, corresponding
the state of the sponge (Vs), the (memory) fills (Vm), and
(memory) updates (Vu). In particular, Vs and Vm are always

on the right half, whereas Vu is on the left half of the layer.11

A more concrete description follows.
Let Λ(i) = blog2 ic for i > 4 and Λ(i) = 1 for i ≤ 4.

Then, GL,s = (V,E) where V = Vs ∪ Vm ∪ Vu and E =
E1 ∪E2 ∪E3 ∪E4. Each vertex has a type (s, m or u) and
is indexed by its row number, column number and its level,
and in that order. The vertices are:

1) Vs :=
{
si,j,Λ(i) : i ∈ [0, R), j ∈ [0, C)

}
2) Vm :=

{
mi,j,Λ(i) : i ∈ [0, R), j ∈ [0, C)

}
3) Vu := {ui,j,` : i ∈ [0, R), j ∈ [0, C), ` ∈ (Λ(i), λL]}

The edges can be classified into three: the edges that cor-
respond to the state of the sponge (E1, E2), a fill (E3) and
an update (E4). A detailed description of the edges follow
— henceforth, Ex,y denotes the yth part in the edge set Ex;
for example, E1 below equals E1,1 ∪ E1,2.

E1 :={(si,j,Λ(i), si,j−1,Λ(i))}i∈[0,R),j∈[C]

∪{(si,0,Λ(i), si+1,C−1,Λ(i+1))}i∈[0,R)

E2 :={(mi−1,j,Λ(i−1), si,C−1−j,Λ(i)}i∈[0,R),j∈[0,C)

∪{(urow1(i),j,Λ(i)−1, si,C−1−j,Λ(i)}i∈[0,R),j∈[0,C)

∪{(uprev1(i),j,Λ(i), si,C−1−j,Λ(i)}i∈[0,R),j∈[0,C)

E3 :={(mi−1,j,Λ(i−1),mi,C−1−j,Λ(i))}i∈[0,R),j∈[0,C)

∪{(si,C−1−j,Λ(i),mi,C−1−j,Λ(i))}i∈[0,R),j∈[0,C)

E4 :={(urow1(i),j,Λ(i)−1, urow1(i),j,Λ(i))}i∈[0,R),j∈[0,C)

∪{(si,C−1−j,Λ(i), urow1(i),j,Λ(i))}i∈[0,R),j∈[0,C)

Intuitively, row(·) and prev(·) can be seen as a set of
permutations between the layers. For example, each element
in L3,R has a unique predecessor each in L3,L and L2.
Concretely, for a given i, row1(i) and prev1(i) are defined
as:

row1(i) = (i+ 1)(2b0.5 Λ(i)c+1 ± 1) mod 2Λ(i),
prev1(i) = i(2b0.5 Λ(i)c+1 ± 1) mod 2Λ(i),

where we use plus if Λ(i) is odd, minus if Λ(i) is even. If
i = 3, then we set row1(3) = 1 and prev1(3) = 0.

7.3. The Attack

Lemma 6. GL,s = GL,s(R,C)

1) has |V | < 3(R− 2)C vertices, indeg(GL,s) = 4; and
2) is (λL, 2

`bC1−χ − 1c + Cb2`(1−ψ) − 1c, 2d2`ψCχe)-
perfectly layered for any real 0 ≤ χ, ψ ≤ 1.

Proof: L` has at total of 3 · C2` vertices, C2`

each from Vs, Vm and Vu. Thus, by the sum of a geo-
metric series, the number of vertices in GL,s is at most
3C ·

∑λL

`=1 2` = 3C · (R − 2). The vertex with the highest
indegree is in Vs — thus, the indegree of the graph is four.
As for Part 2 of the claim, consider a particular layer L`.
The edges that remain in the layer are (subsets of): E1, E2,1,
E2,3, E3 and E4,2. Of these, E1, E2,1 and E3 are within

11. As the first four rows of the memory are filled a differently from
the rest, L1 has a different structure from the rest of the layers. In the
description of the edges, however, we treat this layer as the rest for the
sake of a clear description. But this does not change affect the attacks.

L`,R; the edges in E2,3 are from L`,R to L`,L, whereas those
in E4,2 are vice versa from L`,L to L`,R. In particular an
edge (si,j,`, ui,j,`) ∈ Vs × Vu in E4,2 has an accompanying
edge (ui,j,`, si,j+1,`) ∈ Vu×Vs in E2,3 (or (ui,j,`, si+1,0,`),
if j = 0). Thus, L` is a 2` × C grid as shown in Figure
6. It turns out that the structure is not (2`bC1−χ − 1c +

Figure 6. The structure of L3 for GL,s with C = 4 – the edges going out
to the next layer and coming in from the previous layer have been omitted.
For the sake of presentation, we have flipped the direction of odd columns
(i.e., the blue columns 1, 3, 5, 7 — equivalently, columns 9, 11, 13, 15 in
the function). The blue (circular) nodes represent the state of the sponge
(∈ Vs), the green (square) nodes represents a memory fill (∈ Vm) whereas
a red (diamond) node represents an update (∈ Vu). Hence, the blue and
green nodes belong to L3,R, whereas the red nodes belong to L3,L. The
path with the (thicker) blue edges corresponds to the state of the sponge.

Cb2`(1−ψ) − 1c, 2d2`ψCχe)-depth robust. This is accom-
plished by deleting certain “rows” and “columns” entirely.
The columns (resp., rows) that are removed are subsets of
Vm (resp., Vs and Vu) at regular 2`ψ (resp., Cχ) intervals,
where 0 ≤ χ, ψ ≤ 1. As a result, the whole grid is sub-
divided into d2`·(1−ψ)C1−χe sub-grids with the property that
there are no edges between any two. The number of vertices
removed is 2` · bC1−χ− 1c+C · b2`(1−ψ)c, and the longest
path in this sub-grid is 2 · d2`ψ · Cχe long.

7.3.1. Extending to vertices of arbitrary weights. To
construct GL = GL(R,C, β, α), we replace the vertices and
edges in GL,s in a similar vein to Gambit. Intuitively, we
are constructing a graph corresponding to Lyra 2 where
all the vertices have the same weight as that of a word.
Each vertex v ∈ Vm, Vu is replaced by a set of vertices
v := {vk : k ∈ [0, β)}. On the other hand, each vertex
s ∈ Vs is replaced by a graph Gu = (s, Es) that represents
the sponge function (see Figure 7). The vertices are

s = sI ∪ sO ∪ sJ

= {sI,k, sO,k : k ∈ [0, α)} ∪ {sJ,k : k ∈ [0, β)}

where I , O and J stand for “input”, “output” and “junction”,
respectively. The edges consist of {(sI,k, sJ,k) : k ∈ [0, β)},
along with the complete bipartite graph Kα,α between the
vertices {sJ,0 . . . sJ,β−1, sI,β . . . sI,α−1} and sO. Therefore,
|s| = 2 · α+ β and |Es| = (α2 + β).

An edge (s1, s2) ∈ V 2
s in GL,s is replaced by α edges

{(s1,O,k, s2,I,k) : 0 ≤ k < α}, where si is the vertex that
corresponds to Gsi , for i = 1, 2. An edge (u, v) ∈ Vs × Vk
is replaced by a set of β edges {(sO,k, vk) : k ∈ [0, β)},
whereas an edge (v, u) ∈ Vk × Vs is replaced by a set of β

sI,0 sJ,0 sO,0

sI,1 sJ,1 sO,1

...
sI,β−1 sJ,β−1 sO,β−1

sI,β sO,β

...
sI,α−1 sO,α−1

Figure 7. A node representing the sponge computation. The edges are all
directed left to right.

edges {(vk, sJ,k) : k ∈ [0, β)}.12 Thus, given GL,s, one can
construct GL. In addition, it is not difficult to see that GL

also captures the computation of the function.
Theorem 3. GL = GL(R,C, β, α)

1) has |V | < (3β + 2α)(R − 2)C vertices, indeg(GL) =
max{4, α}; and

2) is (λL, (β + α)2`bC1−χ − 1c + βCb2`(1−ψ) −
1c, 4d2`ψCχe)-perfectly layered for any real 0 ≤
χ, ψ ≤ 1

Proof: Note that the number of vertices of each type
(i.e., s, m and u) in GL,s are the same: C · (R − 2). Thus,
from the description of the transformation, the number of
vertices in GL is 2C · (R− 2) ·β+C · (R− 2) · (2α+β) =
(3β+2α) ·C(R−2). The node with the maximum indegree
in GL is either the output node of s or the junction node
of s — the former has an indegree α, whereas the latter 4.
That establishes Part 1. Now, recall the strategy described
for a layer L` in the proof of Part 2 of Lemma 6. For every
vertex of type m (resp., u) that is removed in GL, remove
all the corresponding vertices m (resp., u). In addition, for
vertex of type s removed, remove the corresponding output
vertices sO. A straightforward recalculation shows that the
number of vertices removed are

(β + α) · 2`bC1−χ − 1c+ β · Cb2`(1−ψ) − 1c

whereas, the resulting depth is 2 · 2d2`ψCχe, where the
additional factor of two arises due to the introduction of
Gu (which has depth 2).
Corollary 4. Let AL denote the algorithm guaranteed by

Theorem 1. Then, ER̄(AL) = O(n1.67).

Proof: Assuming that C13, β and α are constants
independent of R, by Part 1 of Theorem 3, we have n =
|V | = O(R), indeg(GL) = O(1). Next, we plug in the

12. To be precise, the edges have to be treated a bit differently to account
for the � and the rot operations (presuming that the number of rotations
is a product of W , as recommended). However, this changes nothing with
regards to the attacks and so we avoid it in favour of a cleaner exposition.

13. The recommended value is C ≥ ρmax/ρ, where ρmax is the regular
number of rounds for the underlying sponge and ρ is the reduced number
of rounds. Therefore, C = 1 in case the full rounds are used.

values of e and d from Part 2 into Lemma 2 with χ =
1 and ψ = 1/3 to get d̄ = O(R1/3) and ē = O(R2/3).
Finally, applying Theorem 1 with g = R1/3 establishes the
corollary.14

Since NL has an energy complexity of O(R2) = O(n2), the
(asymptotic) quality of the attack is O(n0.33).

7.4. Comparison for Practical Parameters

We evaluate the attack for 1GB of RAM on a 64-bit
machine — that is, W = 64 bits and, thus, the memory
consists of 227 words. We consider the two permutation
functions that were suggested in the paper:

1) 512-Keccak with an internal state of size 1600b: i.e.,
αK = 1600/64 = 25, and βK = 512/64 = 8; and

2) 512-Blake2b with an internal state of size 1024b: i.e.,
αB = 1024/64 = 16, and βB = 512/64 = 8.

Note that the naı̈ve algorithm in has an energy complexity
of ≈ (2 · 227) · 23 = 257. For establishing concrete bounds,
the analysis has to be more fine-grained than in the proof of
Corollary 4. The attack performs the best for 512Blake2b
with full rounds of computation (i.e., ρ = ρmax and C = 1)
with Ē = 3000. On plugging in the values of e and d from
Part 2 of Theorem 3 with χ = 1 into Lemma 2 we get d̄ <
(4 ·Rψ)/(2ψ−1) and ē < ((2βB +αB)R1−ψ)/(21−ψ−1).
Finally, applying Theorem 1 with

g =

√
14R̄

2ψ − 1
R(1+ψ)/2

and ψ = 0..23 to get ER̄(AL) ≈ 259.5. Thus, the quality
of the attack is ≈ 1/6. The complexity for other settings is
strictly worse.

8. POMELO

POMELO is a password-hashing function proposed by
[15]. It is parametrized by m, t ∈ N.

It consists of a data-independent and a data-dependent
phase. After an initial setup of a chunk of σ = 2m memory
cells, both phases iterate 2t−1 times through the chunk of
memory. Both phases employ a pseudorandom number gen-
erator. The first RNG is data-independent while the second
one is data-dependent. Apart from using different RNGs
the two phases work the same way. We will only consider
the initialization and data-independent phase. During these
POMELO iterates τ = 1 + 2t−1 times through the memory
chunk for a total of T = τσ steps.

By the specification, t can be chosen between 0 and 25
while m can be chosen between 8 and 33. 15 Furthermore,
a parameter w which will specify the size of a memory
window is fixed as 212 in the specification.

14. The attack is asymptotically worse for the case C = R. We have
n = O(R2), and by substituting χ = ψ = 1/2, we get d̄ = O(R)
and ē = O(R3/2). Finally, applying Theorem 1 with g = ē, we get
ER̄(AL) = O(R7/2) = O(n1.75).

15. If t = 0, the data-independent phase iterates through the first half
of memory and the data-dependent phase over the second half.

Algorithm 6 in the Reference Material outlines the data-
independent part of the POMELO Algorithm as described
in [15], which we shall refer to as NP. The naı̈ve al-
gorithm maintains the whole memory of size σ memory
cells during the entire computation (τσ iterations), there-
fore we have cmc(NP) = O(σ2τ). If R̄ is the core-
energy ratio of the bit operations performed during one
iteration, we have cec(NP) = O(στR̄), for a total of
ER̄(NP) = O(στ(σ + R̄)).

8.1. Graph Representation

The RNG defines one single deterministic sequence of
64-bit numbers ri, σ ≤ i < T . This sequence is indepedent
of the input and the parameters of the algorithm and defined
via Algorithm 7 in the Reference Material. We define rhighi
as the upper 48 bits of ri, taken modulo σ, and rlowi as the
lowest 13 bits of ri. These sequences will now define two
sequences `i and gi of indices to memory cells. We interpret
them as “local” and “global” memory indices, and these
define the memory cells to be updated at time i. Henceforth
all indices to memory cells are implicitly taken modulo σ.
For i ≥ σ, set `i = i − w + rlowi . Due to the range of
rlowi it means that `i ∈ [p − w, p + w). For i ≥ σ, set
gi = rhighi if i is divisible by 32 and gi = gi−1+1 otherwise.
If i < σ we don’t define `i and gi as we don’t update
“randomly” selected memory cells during the first iteration,
i.e. initialization, through the memory matrix.

For a given set of parameters σ, τ we now define a
directed acyclic graph GP = (V,E) as follows.

The vertices Mi,p correspond to updates of memory cell
at position p at time i. At each time step i, only three
memory cells are updated, at locations p = i mod σ, `i
and gi, though the memory cell at p is updated three times.
Formally, we define the vertex set of updated cells at time
i as Vi = {M ′′i,p,M ′i,p,Mi,p,Mi,`i ,Mi,gi} if i ≥ σ and
Vi = {Mi,p} if i < σ. In the latter case we let M ′i,p and
M ′′i,p be alternative names for Mi,p. Together we get the
vertex set V =

⋃
0≤i<T Vi

As for Gambit, for a vertex v ∈ Vi we define the
timestamp of v as ts(v) = i. Define last(i, p) to be the last
time before step i when memory cell p was updated. More
formally, last(i, p) := max {ts(Mj,p) : j < i,Mj,p ∈ V }.

We define the edge set as the union of the following
sets:

ES :=
⋃

0≤i<T

{
Mlast(i,i−d),i−d : d = 2, 3, 7, 13

}
× {M ′′i,i}

EZ :=
⋃

0≤i<T

{M ′′i,iM ′i,i,M ′i,iMi,i,M
′
i,iMi,`i ,Mi,iMi,gi}

EL :=
⋃

σ≤i<T

{Mlast(i,`i),`iM
′
i,i,Mlast(i,`i),`iMi,`i}

EG :=
⋃

σ≤i<T

{Mlast(i,gi),giMi,i,Mlast(i,gi),giMi,gi}

EM :=
{
Mlast(i,i),iM

′′
i,i, : 0 ≤ i < T

}

Before explaining the intuition behind these edge sets,
define the length of an edge e = (u, v) ∈ E as len(e) =
ts(v)− ts(u). Again, thoughout this section by edge length
we always refer to the quantity len(·). For an edge e =
(Mj,p,Mi,p) we define the reach of e as reach(e) = i − p
mod σ, as the edge reaches reach(e) memory cells back. If
p = i and j < i we define reach(e) = σ rather than 0. Note
that the length of an edge is at most its reach, as memory
cell p was updated i− p mod σ time steps ago.

Then ES are short edges reaching just a few memory
cells back. Their length is at most 13. EZ contains zero-
length edges between memory cells updated during one step.
EL contains local “random” edges that refer to memory cells
close to the current memory cell i while EG contains global
“random” edges. Finally, EM contains the edges from the
old to the new state of the main memory cell during an
update. Edges from EM always have reach σ.

We shall also consider the graph G′P derived from GP by
contracting the vertices from Vi into a single one for each
i and removing loops. Note that this is a chain graph with
additional edges, and the length of an edge in this graph
reflects the length in the original graph. G′P has T vertices
with indegree at most 7, while GP has ≈ 5T vertices with
indegree at most 5.

8.1.1. Edge Length Distribution. Recall that the RNG
provides a sequence ri of length (T −σ) of 64-bit integers.
Any such sequence ri gives rise to a graph in the way
outlined in the previous section. We shall consider the set
SP of such graphs over all such sequences ri with uniform
distribution.
Lemma 7. Let βσ ∈ [w, σ −w] and βw ∈ [13, w], and con-

sider a graph G′ randomly sampled from SP, after con-
tracting the vertex sets Vi. The expected number of edges
of length between w and βσ is at most (3.5βσ/σ)(T−σ).
The expected number of edges of length between 13 and
βw is at most (1.5βw/w + 3βw/σ)(T − σ).

Proof: We first wish to estimate the number of edges
of length between w and βσ. Recall that the length of an
edge is always at most the reach of that edge, so we do not
need to consider edges of reach less than w.

Case 1: Edges with reach between w and βσ+w. Notice
that local edges e ∈ EL either have reach less than w or
greater than σ − w. Edges from EM have reach σ so only
global edges can have reach between w and βσ + w. Due
to uniform distribution of the random numbers, we get that
the expected ratio of global edges with reach between w
and βσ + w is βσ/σ.

Case 2: Edges with reach greater than βσ+w. All edges
of EM , expectedly half of the edges of EL and an expected
ratio of (σ− βσ −w)/σ edges from EG have reach greater
than βσ + w. So for a given vertex in G′, the expected
number of incoming edges with reach greater than βσ + w
is 1 + 0.5 + (σ − βσ − w)/σ ≤ 2.5. We want to estimate
how many of these edges have short length.

So assume we have a vertex Mi,p and let I := [i −
βσ, i− w]. We want to estimate the probability that the set

of vertices with timestamp j for j ∈ I contains a vertex
Mj,p referring to memory cell p. The probability that p was
chosen as a global memory index, i.e. that gj = p for some
j ∈ I , is (βσ − w)/σ. If p was chosen as local memory
index for some j ∈ I , then we must have p ∈ [(i − βσ) −
w, (i − w) + w], i.e. p is in a local window around I . But
this means the reach of (Mj,p,Mi,p) is less than βσ + w,
so we already considered that edge in Case 1.

So taking both cases together, for a given vertex in G′ we
get an overall expected number of at most 2.5(βσ−w)/σ+
βσ/σ ≤ 3.5βσ/σ incoming edges of length between w and
βσ. As we have T vertices in G′ in total and the first σ
vertices do not have any local or global incoming edges,
we get the first result.

A similar analysis yields the second result.
While the POMELO specification does not mention any

properties expected from the random number generator, we
will now assume that the edge length distribution GP is
similar to the expected distribution of a randomly sampled
graph from SP. In particular we will assume that the prop-
erties postulated in Lemma 7 also apply to G′P.

8.2. The Attack

We will now outline the attack on GP. Let βσ ∈ [w, σ]
and assume we remove all vertices that have incoming edges
of length between w and βσ. Then by Lemma 1, for any γσ
we can remove wT/γσ further vertices such that the depth
of the remaining graph is at most γσT/βσ. This is achieved
by removing chunks of w consecutive vertices, every γσ
vertices. Thus the factor of γσ represents an upper bound
for the length of the longest path only using edges of length
at most w. We wish to improve upon this upper bound by
removing some more vertices.

So consider a chunk of N := γσ consecutive vertices in
G′P. Let βw ∈ [13, w] and assume we remove all vertices that
have incoming edges of length between 13 and βw. Then
again, by Lemma 1, for any γw we can remove 13N/γw
vertices such that the depth of the remaining graph is at
most γwN/βw.

Using this new upper bound for the length of the longest
path only using edges of length at most w, we obtain an
overall bound on the depth of γwN/βw(T/βσ) = T γσ

βσ

γw
βw

.
This was achieved by deleting wT/γσ + 13T/γw vertices,
and vertices with incoming edges of certain lengths.

Applying Lemma 7 to estimate the total, we get that in
order to reduce the depth to T γσ

βσ

γw
βw

, the number of vertices
to be deleted is at most T (3.5βσ/σ+ 1.5βw/w+ 3βw/σ+
w/γσ + 13/γw).

Notice that if we translate this result back to the original
graph GP, the number of vertices deleted is at most 5 times
as high, and similarly the longest remaining path is at most
5 times as long, so asymptotically we obtain the same result.
Theorem 4. GP is (e, d)-reducible for e = T (3.5βσ/σ +

1.5βw/w + 3βw/σ +w/γσ + 13/γw) and d = T γσ
βσ

γw
βw

.

We shall now try to find values for βσ, γσ, βw, γw that
allow for an attack on Pomelo. Again, as with Gambit, we

focus on the case τ = O(1) since with iMHFs we want
to use as much memory as possible. Let’s write w = σc

for some c. If we then set βσ = σ(2+c)/3, γσ = σ(1+2c)/3,
βw = σ2c/3, γw = σc/3, we get the graph is (σe, σ2/3)-
reducible for e = max(2+c

3 , 1 − c
3). Note that this is best

for c ≈ 0.5 and thus w ≈
√
σ. If c is close to 0 or 1, the

same approach with only one of the two depth reduction
steps yields better results.

Recall that GP has in-degree O(1). Applying Theorem 1
(with g = σ5/6), this gives us an algorithm AP to compute
POMELO with cmc(AP) = O(σ1+e). With the core-energy
ratio for the operations R̄ = O(1) and w = Θ(

√
σ), in

particular we get:
Corollary 5. For τ = O(1) and w = Θ(

√
σ),AP has energy-

complexity ER̄(AP) = O(σ11/6).

Notice that if we treat w like a constant instead (i.e.
c = 0), we can obtain an algorithm with asymptotic energy
complexity of O(σ7/4) via the remark from Lemma 1.

8.3. Comparison for Practical Parameters

The POMELO specification does not suggest specific
choices for the time and memory parameters. We shall
choose σ = 225, such that the memory usage is 230 bytes,
or 1 GB. We set t = 4 so that T = 229. With this choice
the memory cost is still proportionally high while the graph
has a large proportion of local and global random edges
(which are missing during the first iteration through the
memory matrix). Setting the parameters as in Corollary 5
does not yield a sensible attack as e > T , meaning we
delete all vertices to reduce the depth of the graph. This is
due to the large constant 13 not being taken into account
by the asymptotic result. Treating the memory window w
like a constant and only doing one of the depth reduction
steps is therefore more sensible. We shall set βσ = 219

and γσ = 216, estimate the number of edges of length
between w and βσ via Lemma 7 and apply Lemma 1. If
we set the core-energy ratio of the bit operations performed
to R̄ = 100 (which is a very conservative estimate and is
in practice likely much lower) we then get an estimate of
ER̄(AP) ≈ 263, compared to ER̄(NP) ≈ 254 for the naı̈ve
algorithm.

References

[1] Joël Alwen and Jeremiah Blocki. Efficiently computing data-
independent memory-hard functions. Cryptology ePrint Archive,
Report 2016/115, 2016. http://eprint.iacr.org/2016/115.

[2] Joël Alwen and Jeremiah Blocki. Towards practical attacks on argon2i
and balloon hashing. Cryptology ePrint Archive, Report 2016/759,
2016. http://eprint.iacr.org/2016/759.

[3] Joël Alwen and Vladimir Serbinenko. High parallel complexity
graphs and memory-hard functions. In Rocco A. Servedio and Ronitt
Rubinfeld, editors, 47th ACM STOC, pages 595–603. ACM Press,
June 2015.

[4] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Ass-
che. On the indifferentiability of the sponge construction. In Nigel P.
Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 181–
197. Springer, Heidelberg, April 2008.

[5] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Ass-
che. The keccak reference, 2011.

[6] Alex Biryukov and Dmitry Khovratovich. Tradeoff cryptanalysis of
memory-hard functions. In Tetsu Iwata and Jung Hee Cheon, editors,
ASIACRYPT 2015, Part II, volume 9453 of LNCS, pages 633–657.
Springer, Heidelberg, November / December 2015.

[7] Donghoon Chang, Arpan Jati, Sweta Mishra, and Somitra Kumar
Sanadhya. Rig: A simple, secure and flexible design for password
hashing. In Information Security and Cryptology, pages 361–381.
Springer, 2014.

[8] Donghoon Chang, Arpan Jati, Sweta Mishra, and Somitra Kumar
Sanadhya. Rig: A simple, secure and flexible design for password
hashing version 2.0. 2014.

[9] Bill Cox. Twocats (and skinnycat): A compute time and sequential
memory hard password hashing scheme. Password Hashing Compe-
tition. v0 edn., 2014.

[10] Christian Forler, Stefan Lucks, and Jakob Wenzel. The catena
password-scrambling framework, 2015.

[11] Marcos A. Simplicio Jr., Leonardo C. Almeida, Ewerton R. Andrade,
Paulo C. F. dos Santos, and Paulo S. L. M. Barreto. Lyra2: Password
Hashing Scheme with improved security against time-memory trade-
offs.

[12] C. Percival. Stronger key derivation via sequential memory-hard
functions. In BSDCan 2009, 2009.

[13] Krisztián Pintér. Gambit – A sponge based, memory hard key
derivation function. Submission to Password Hashing Competition
(PHC), 2014.

[14] Clark D. Thompson. Area-time complexity for VLSI. In Proceedings
of the 11h Annual ACM Symposium on Theory of Computing, April
30 - May 2, 1979, Atlanta, Georgia, USA, pages 81–88, 1979.

[15] Hongjun Wu. POMELO – A Password Hashing Algorithm, 2015.

http://eprint.iacr.org/2016/115
http://eprint.iacr.org/2016/759

Reference Material:
The Naı̈ve Algorithms

For the convenience of the reviewers, we provide here
the descriptions of the naı̈ve algorithms to compute the con-
sidered functions. They can also be found in the referenced
publications.

9. Rig.v2

Here we give the algorithm to compute Rig.v2 from
[8] (Algorithm 1). The function π(|α|) initializes h0 with
|α| bits after the decimal point of the constant π. As
mentioned previously, the original analysis from [8] gives a
time complexity O((λ+1)mr) and space complexity O(m)
for computing a single password.

Algorithm 1: Rig.v2 (pwd, s, λ,mc, t, `, r)

1 x := pwd || pwd` || s || `s || n || `
2 m := 2mc ; α := H1(x)
3 for round := 1 . . . r do
4 h0 := π(|α|)
5 a[0] := α⊕ h0 ; k[0] := trunct(h0)
6 for i := 1 . . .m do
7 hi := H2(i || a[i− 1] || k[i− 1])
8 if i 6= m then
9 a[i] := α⊕ hi ; k[i] := trunct(hi)

10 for i := 1 . . . λ do
11 for j := 1 . . .m do
12 a[j − 1] := a[j − 1]⊕ him+j−1

13 ktemp[j − 1] :=
k[br(j − 1)]⊕ trunct(him+j−1)

14 him+j :=
H2((im+ j) || a[j − 1] || ktemp[j − 1])

15 k := ktemp

16 h∗round := (H3((n+ 1)m+ 1) || h(n+1)m || s ||m
17 if round < r then α := h∗round
18 return h∗r

10. TwoCats

The algorithm for evaluating the data-independent loop
of TwoCats as given in [9] is described by Alg. 2. It takes
pwd, its size `pwd, salt s, its size `s, and memory cost mc.
Then the length of a block b` is 4096 and the memory length
m` is (1024 ∗ 2mc)/4. H̃ is a hash where the input are
different constants - password pwd, a salt, their lengths
pwd` and salt`, and the block-length b`.

The slidingReverse function is a variant of the bit re-
versal function; its computation given in [9] is described by
Alg. 3.

Algorithm 2: TwoCats (pwd, salt,mc)

1 PRK[0. . . 7]:=H̃(pwd, salt, pwd`, salt`, b`)
2 uint32 state[8] := hashState (PRK, 0)
3 mem[0 . . . b` − 1] := expand (H, b`, state)
4 preAd := 0, toAddr := b`
5 for i := 1 . . .m`/(2 ∗ b`)− 1 do
6 a := state[0]
7 fromAd := slidingReverse (i) ∗ b`
8 for j := 0 . . . b`/8− 1 do
9 for k = 0 . . . 7 do

10 state[k] :=
11 (state[k] + mem[preAd++]) mem[fromAd++]

12 state[k] := rotateLeft (state[k], 8)
13 mem[toAddr++] := state[k]

14 state := hashState (state, a)

Algorithm 3: SlidingReverse(i)
1 reversePos := reverse(i,numBits(i)− 1)
2 if reversePos+ (1� (numBits(i)− 1)) < i+ 1

then
3 reversePos+ = 1� (numBits(i)− 1)

4 return reversePos

By [9], the architecture of the “resistant” loop was
chosen because it seemed to be most resistant against
the author’s automated pebbling algorithm. Setting n :=
m`/(2b`) − 1, the naı̈ve algorithm has complexity O(n2).
The naı̈ve algorithm maintains all the memory during the
entire computation and thus has space-time complexity of
O(m2

`).

11. Gambit

The algorithm for computing Gambit given in [13] is
described in Algorithm 4 (note that any indexing into the
arrays Mem and ROM is done modulo the size of the
respective array).

Algorithm 4: Gambit(pwd, salt, t,m, dkid)

1 S.Init()
2 Mem[0 . . .m− 1] := 0
3 S.Absorb(salt||pwd||pad)
4 for i := 0 . . . t− 1 do
5 R := S.Squeeze()
6 for j := 0 . . . r − 1 do
7 Mem[i·r+j] := Mem[i·r+j]⊕Trans(R[j])
8 W [j] := (Mem[(i · r+ j) ·f]⊕ROM[i · r+ j])

9 S.Absorb(W)

10 S.AbsorbOvr(dkid)
11 key := S.Squeeze()
12 return key

12. Lyra 2

The naı̈ve algorithm for computing the setup phase of
Lyra 2 is given in Algorithm 5.

Algorithm 5: Lyra2H,Hρ,ω(pwd, salt, R,C, `)

1 params← len(k)‖len(pwd)‖len(salt)‖R‖C
2 H.absorb(pad(pwd‖salt‖params))
3 gap← 1, stp← 1, wnd← 2, sqrt← 2
4 prev0 ← 2, row1 ← 1, prev1 ← 0
5 for col← 0 to C − 1 do
6 M [0][C − 1− col]← Hρ.squeeze(b)

7 for col← 0 to C − 1 do
8 M [1][C − 1− col]←

M [0][col]⊕Hρ.duplex(M [0][col], b)

9 for col← 0 to C − 1 do
10 M [2][C − 1− col]←

M [1][col]⊕Hρ.duplex(M [1][col], b)

11 for row0 ← 3 to R− 2 do
12 for col0 ← 0 to C − 1 do
13 rand← Hρ.duplex(M [row1][col]�

M [prev0][col]�M [prev1][col], b)
14 M [row0][C−1−col]←M [prev0][col]⊕rand
15 M [row1][col]←M [row1][col]⊕ rot(rand)

16 prev0 ← row0, prev1 ← row1,
row1 ← (row1 + stp) mod wnd

17 if row1 = 0 then
18 wnd← 2 · wnd, stp← sqrt+ gap,

gap← −gap
19 if gap = −1 then
20 sqrt← 2 · sqrt

21 H.absorb(M [row0][0])
22 return H.squeeze(k)

13. Pomelo

Algorithm 6 outlines the data-independent part of the
POMELO Algorithm as described in [15] which we shall
refer to as NP. A memory cell is 256 bits (four 64-bit

words). The indices of all accesses to memory are to be
taken modulo σ. In these algorithms,� denotes bit shift and
≪ bit rotations, and�w and≪w refer to those operations
applied to each word individually.

Algorithm 7 defines the random number generator. The
size of its state is 64 bits.

Algorithm 6: Pomelo(pwd, salt, t,m)

1 τ, σ, w := 2t−1, 2m, 212

2 Mem[0 . . . σ − 1] := 0
3 params := len(pwd)||len(salt)||output len

Mem[0 . . . 12] := pwd||salt||0 . . . 0||params||pad
4 for i := 13 . . . σ − 1 do
5 Mem[i]+=Mem[i− 2]⊕Mem[i− 3]

+ Mem[i− 7]⊕Mem[i− 13]
6 Mem[i] = (Mem[i]≪w 17)≪ 64

7 RNG.init()
8 for j := 0 . . . τ − 1 do
9 for i := 0 . . . σ − 1 do

10 random number := RNG.get()
11 ` := i− w + (random number mod 2w)
12 if i mod 32 == 0 then
13 g := random number � 16

14 g+=1
15 Mem[i]+=Mem[i− 2]⊕Mem[i− 3]

+ Mem[i− 7]⊕Mem[i− 13]
16 Mem[i] = (Mem[i]≪w 17)≪ 64
17 Mem[i]+=Mem[`]�w 1
18 Mem[`]+=Mem[i]�w 2
19 Mem[i]+=Mem[g]�w 1
20 Mem[g]+=Mem[i]�w 3

Algorithm 7: Pomelo Random Number Generator
1 def RNG.init():
2 state = 123456789

3 def RNG.get():
4 out = state
5 state+=state� 2
6 state = (state≪ 19)⊕ 3141592653589793238
7 return out

	Introduction
	Moderately Hard Functions
	Memory Hard Functions
	Energy and AT Complexity
	iMHFs as DAGs
	The Naïve Algorithm
	Attacks on MHFs

	Preliminaries
	The Computational Model
	Basic Notation
	Data-Independent MHFs and Graphs

	Attacks on Classes of Graphs
	Attacks Based on Edge Lengths
	Attacks on Layered Graphs

	Rig.v2
	Graph Representation
	The Attack
	Comparison for Practical Parameters

	TwoCats
	Graph Representation
	The Attack
	Comparison for Practical Parameters

	Gambit
	The Naïve Algorithm
	Graph Representation
	Choice of Parameters
	The Attack
	Comparison for Practical Parameters

	Lyra 2
	The Naïve Algorithm
	Graph Representation
	The Attack
	Extending to vertices of arbitrary weights

	Comparison for Practical Parameters

	POMELO
	Graph Representation
	Edge Length Distribution

	The Attack
	Comparison for Practical Parameters

	References
	Rig.v2
	TwoCats
	Gambit
	Lyra 2
	Pomelo

