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ABSTRACT
The security of order-revealing encryption (ORE) has been
unclear since its invention. Dataset characteristics for which
ORE is especially insecure have been identified, such as small
message spaces and low-entropy distributions. On the other
hand, properties like one-wayness on uniformly-distributed
datasets have been proved for ORE constructions.

This work shows that more plaintext information can be
extracted from ORE ciphertexts than was previously thought.
We identify two issues: First, we show that when multi-
ple columns of correlated data are encrypted with ORE,
attacks can use the encrypted columns together to reveal
more information than prior attacks could extract from the
columns individually. Second, we apply known attacks, and
develop new attacks, to show that the leakage of concrete
ORE schemes on non-uniform data leads to more accurate
plaintext recovery than is suggested by the security theorems
which only dealt with uniform inputs.

Keywords
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attacks

1. INTRODUCTION
Property-preserving encryption (PPE) encrypts data so

that certain functions of plaintexts are computable from ci-
phertexts by someone without the key. PPE flavors include
searchable encryption [15] for text searching, determinis-
tic encryption (where one can detect if two plaintexts are
equal), and order-revealing encryption (ORE) [2, 4], where
one can detect the order of two plaintexts without decrypt-
ing. PPE generally achieves weaker security than traditional
encryption because it inherently leaks information about
plaintexts. On the other hand PPE has enabled efficient
encrypted database applications [14, 8, 1, 3].

This work considers the security of ORE. An ORE scheme
is an encryption algorithm E that takes numbers from some
domain as input, and such that, given two ciphertexts EK(x),
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EK(y), anyone can tell if x < y without knowing K. ORE is
useful for encrypting columns in a database table whilst still
allowing range queries: To issue a query for the range (a, b)
one encrypts a and b and sends the ciphertexts. The server
can then find all rows with values between the encrypted
endpoints in sublinear time.

ORE security. Starting with the work of Boldyreva et
al. [4], ORE schemes have been proved secure with respect
to mostly incomparable definitions. The strongest, which we
will call ideal ORE, requires that only the order of cipher-
texts can be learned by the adversary. Known ideal ORE
constructions require heavy theoretical tools [6] or interac-
tive protocols [14, 10, 9]. Other work [4, 5, 7] gave efficient,
non-interactive constructions that achieve weaker security.
Specifically, ideal security is relaxed to require that an ad-
versary learn only the plaintext information contained in a
leakage profile, which varies according to the construction.

Theoretical properties, like one-wayness, were identified
for some definitions and used to compare leakage profiles.
The proofs of one-wayness for ORE assume that data are
uniform over some space, but this does not appear to be the
case in any application we could think of. Thus it is not
clear what the proofs imply about ORE in practice.

Further complicating the situation is the nature of the
leakage profiles, which (depending on the construction) in-
cludes plaintext bits or statistics about plaintexts. The be-
haviour of leakage profiles on non-uniform data has not been
explored either empirically or theoretically, making it diffi-
cult for practitioners to make informed decisions regarding
deploying and configuring ORE.

A recent work of Naveed, Kamara, and Wright [12] initi-
ated the empirical study of ideal ORE security via message
recovery attacks against columns of real medical databases
encrypted with ORE. Their attacks apply to any ORE that
reveals the order and equality of plaintexts, including ideal
ORE and any of the less-secure versions. They showed that
ORE constructions are insecure when the entire plaintext
space of a column is encrypted, and also gave attacks that
used frequency statistics of plaintexts (from training data) to
guess plaintext messages effectively. Moreover, they found
that several columns of medical data were susceptible to
their attacks.

The Naveed et al. attacks did not take advantage of the
additional leakage that is present in all efficient construc-
tions. Thus, their work gives an upper bound on the secu-
rity of ORE, but leaves open the possibility that stronger
attacks exist against the weaker constructions.

http://dx.doi.org/10.1145/2976749.2978379


1.1 Our contributions
This paper presents a collection of observations, experi-

ments, and attacks dealing with the use of ORE on data
that will be encountered in practice. We point out over-
looked properties of leakage profiles, perform experiments
to measure the security of ORE against known attacks but
on non-uniform data, and give new attacks showing that
ORE is less secure than theory indicated.

Inter-column correlation-based attacks. In a database
table with multiple columns, PPE-based systems [14, 8] use
ORE to encrypt each column independently under different
keys. Using a different key for each column prevents direct
comparison of ciphertexts across columns, thus leaking less
information.

The first part of this work investigates the security of ideal
ORE on multiple columns. We observe that columns of
data in a table are usually correlated because a row of a ta-
ble usually corresponds to an individual record. This opens
up a new avenue for attack, where an attacker attempts to
extract information from multiple columns simultaneously
rather than from the columns individually.

We study the effect of correlation using simple multi-
column versions of attacks by [12] on ideal ORE. We analyze
our attacks using visualizations and measurements of the
attack accuracy on geographic datasets (described below)
where latitude and longitude were correlated. We show that
the rough shape of the geographic distributions is present in
the ciphertext leakage, and also measure how accurately the
plaintexts can be estimated by an adversary who knows a
bounding box for the plaintexts.

In the course of our analysis, we advocate for a more gen-
eral interpretation of attack success: Whereas Naveed et
al. measured the fraction of plaintexts recovered exactly, we
instead consider approximate recovery of plaintexts. This
also allows us to consider datasets where values never re-
peat, meaning they have trivial frequency information that
is not useful for the attacks of [12].

Evaluating concrete leakage profiles. We observed that
when data in a column are not uniformly random and in-
dependent, the one-wayness proofs by [5, 7] do not apply.
Thus, in practice, the information leaked by these construc-
tions may be greater than the theorems suggest.

We show that non-uniformity of data does more than tech-
nically violate the assumptions of the theorems. We start
by measuring the amount of information that can be di-
rectly inferred from leakage profiles of existing ORE con-
structions on different types of data, including synthetic and
real location datasets and timestamps for mobile phone us-
age. This measurement consists of running simple attacks,
and in some cases composing them, to produce guesses of
plaintexts which are then evaluated for accuracy depending
on the context.

We found that the security gap predicted by one-wayness
theorems was not always present on real data. Concretely,
we consider the construction of Chenette et al. [7], which was
proved to be one-way in a quantitatively stronger sense than
the prior work of Boldyreva et al. [4, 5]. But by simulating
the Chenette et al. and Boldyreva et al. leakage profiles on
a real dataset of 2000 latitude-longitude pairs, we found that
essentially the same number of plaintext bits (about 50%)
were explicitly leaked by both schemes. On larger datasets
Chenette et al. may leak even more.

We took a closer look at the Boldyreva et al. scheme [5].
Theoretical results [4] suggested that this construction“leaks
the most-significant half of the plaintext bits,”but our exper-
iments showed that this conclusion was too generous: Simple
attacks recover more. Specifically, that construction appears
to leak all of the leading zeros or ones of a message, plus the
most significant half of the bits after the leading one (or
zero). So, for example, an encryption of the zero message
can usually be recognized exactly. The contrast with the
theoretical result is explained because messages with many
leading zeros or ones are unlikely to occur at random.

We additionally noticed that the Boldyreva et al. scheme
often leaks these plaintext bits in the clear. Previously it
was observed [5] that these bits could be inferred via com-
putation, but in fact, one can simply glance at ciphertexts.

Inter+Intra-column correlation-based attack. Our
results above show that the Chenette et al. construction can
leak the same number of bits as Boldyreve et al., despite the
one-wayness gap. We go further in attacking the Chenette
et al. construction, showing how to infer additional plain-
text bits beyond those explicitly leaked. Our attack exploits
both inter- and intra-column correlations. The attack uses
the observation that location datasets tend to cluster, so af-
ter some bits are revealed, hidden bits can be guessed to fit
this tendency.

Our attack against the Chenette et al. construction was
able to predict almost every point in a location dataset of
California road intersections to within 5km (and most to
within 0.5km), while the leakage profile did not explicitly
leak the location of any plaintext to within less than 400 km.
We note that our quantitative claim depends on the attacker
determining the two most significant bits of the longitudes
by hand, since the ORE construction did not leak these ex-
plicitly. (This amounts to putting a California-shaped blob
of points in one of four possible places on the globe.)

We performed a similar experiment with timestamps of an
individual’s mobile phone usage, showing that most of the
periods of time between usages could be estimated to within
one hour.

Chenette et al. recommended that their construction be
combined with the Boldyreva et al. construction. We show
that our attack performs essentially as well against this ver-
sion, calling into question whether the increased complexity
and computation of a combined scheme is justified.

Additional observations. We revisit the security pro-
vided by modular ORE (MORE), an enhancement to ORE
suggested by Boldyreva et al. [5], and developed further by
Mavroforakis et al. [11]. MORE applies an additive mask
to the input before encrypting, which provably hides infor-
mation when messages are uniform. But, when the data are
not uniform, the proof does not apply. In fact, we show that
the additive mask is likely easy to remove in practice, by
visualizing MORE applied to the geographic data used by
Mavroforakis et al.

Conclusions and recommendations. This work shows
that the conclusions of one-wayness theorems about ORE
security should not be assumed to hold on real data. But
in practice we expect attacks to recover even more informa-
tion than our experiments did. Our datasets are relatively
small, and leakage gets worse as the dataset grows. In this
paper, we highlight the performance of attacks on specific
datasets, but these numbers should not be taken as “typical”



numbers to inform deployment decisions. This is especially
true because the relationship between the semantics of data
and its encoding will affect the attacks. Instead, we rec-
ommend that one run our attacks, which are all simple to
implement and ran in a few minutes on our datasets, on test
data (similar to production data for the intended use-case)
before using ORE.

Some of the work in this paper grew out of exactly this
approach, where the authors were considering ORE to store
personal location histories. While we could not quantify
the attacks theoretically, the plots in Figure 3 convinced
us that ORE provide inadequate security, especially against
adversaries with side information on the individual.

Paper organization. In the remainder of this section we
review related work. In Section 2, we recall notation, se-
curity definitions, and prior attacks on ORE. In Sections 3
and 4, we present our attacks on ideal and leaky-ORE re-
spectively.

Related work. ORE was first introduced by Agrawal et
al. [2] and formalized by Boldreva et al. [4, 5] as a symmet-
ric, deterministic, and stateless encryption scheme. Other
works [14, 10, 9] constructed interactive protocols which
achieve a functionality similar to ORE, whilst only leaking
order (or less). Recently [6] constructed ideal ORE using
multilinear maps, and their constructions is much less effi-
cient than non-ideal, blockcipher-based, constructions.

In a recent work, Naveed et al.[12] explored inference at-
tacks on PPE-based EDB systems. Portions of their work
target the ORE- and deterministically encrypted columns,
and we review the ORE-relevant part of their work below.

2. PRELIMINARIES
Dataset formalization and notation. We formalize a
column as a vector d over some ordered plaintext space.
Depending on the context, the plaintext space will be a set of
fixed-length bitstrings, or set of positive integers {0, 1, . . . ,M}.

Given a bitstring x ∈ {0, 1}n and positive integer k, we
define x � k to be the right shift of x by k bits, where the
leftmost bits are not padded (so 0110� 2 is 01).

2.1 Order-revealing encryption
An ORE scheme consists of three algorithms Π = (K, E , C)

for key generation, encryption, and comparison respectively.
The key generation algorithm outputs a key k, and the
encryption algorithm may be randomized, takes an input
message m from an associated ordered plaintext space, and
emits a ciphertext c. The comparison algorithm takes two
ciphertexts c0, c1 as input and outputs a bit b indicating that
the message in cb is larger (or ⊥ if the messages are equal).
When the algorithm C is a canonical numerical comparison
operator, the scheme is called an order preserving encryp-
tion (OPE) scheme, though this distinction is not relevant
for our attacks.

Security of ORE. We follow Chenette et al. [7] in defining
ORE security with a parameter called a leakage profile L.
Formally, L can be any function on vectors of messages. In-
tuitively, an ORE scheme must leak the order of the plain-
texts, but it may also be allowed to leak more, namely L
applied to the messages. The formal definition requires that
an adversary cannot win a game requiring it to compute
more information than is output by L. We proceed infor-

mally since our attacks do not depend on the details of the
definition, but rather only on the leakage profile.

Five leakage profiles have been considered in the litera-
ture. We term them Ideal,ROPF,MSDB,RtM,MtR.
The first two were introduced by Boldyreva et al. [4], who
construct an ROPF-secure ORE. Later, Boldyreva et al. [5]
proved that ROPF-security requires an ORE to roughly re-
veal half the plaintext bits. Later, Chenette et al [7] defined
profiles MSDB,RtM,MtR, built ORE achieving them,
and proved a result showing that these profiles leak fewer
bits on uniform data. We review them in more detail now.

Ideal. The ideal leakage profile only reveals the order of
the ciphertexts. This profile for instance hides any statis-
tical information about the gaps between messages. The
profile is achievable using (currently impractical) theoret-
ical tools [6]. Ideal security is also achieved by interactive
variants of ORE where encryption is a protocol between two
parties [13, 10, 9]. We consider these protocols in-scope for
this work, and will treat them as ORE. We note that [9]
actually achieves stronger-than-ideal security by hiding the
frequency of plaintexts in the column. Some of our attacks
will still apply to this construction.

ROPF. The random order-preserving function profile [4] is
defined with respect to a plaintext space and range. Given
a column of data d with n cells, the leakage profile chooses a
random order-preserving function f from the plaintext space
to the range, and outputs f(d[1]), . . . , f(d[n]), i.e. the func-
tion applied component-wise to the dataset.

The ROPF profile was later shown to reveal approxi-
mately the most-significant half of the plaintext bits [5] of
a random message, and also to hide roughly the other half.
The selection of the range set is a parameter to be set when
configuring the instantiation.

MSDB. The most-significant-differing bit profile [7], on a
column d with n entries, will output the order of the plain-
texts in d along with, for all 1 ≤ i < j ≤ n, a number diffi,j

that indicates the index of the most significant bit where the
plaintexts d[i] and d[j] differ, along with their bits at that
position. Equivalently, diffi,j is the length of the longest
common prefix of d[i] and d[j], plus one.

For example, if the plaintexts are 0000, 0001, 1000, the
MSDB profile would allow one to infer the first bit of all
three plaintexts, and the last bit of the first two plaintexts,
along with equality of appropriate prefixes. For this exam-
ple, an adversary would learn that the plaintexts must be of
the form 0uw0, 0uw1, 1xyz, where u,w, x, y, z are variables
for bits that are not explicitly leaked.

RtM and MtR. We consider two more profiles that are in-
duced by composing multiple ORE schemes as suggested by
Chenette et al. [7]. The first, RtM, is induced by first apply-
ing the leakage profile ROPF to get a vector (f(d[1]), . . . ,
f(d(n))), and then applying MSDB to this vector (treat-
ing it as if it were a plaintext). That is, the profile leaks
the index of the most significant differing bit of f(d[i]) and
f(d[j]) for each i < j.

The profile MtR will be scheme-dependent. The scheme
is defined by composing some MSDB-secure OPE scheme
with an ROPF-secure ORE scheme. The leakage is defined
by the output of the composed scheme. Note that we must
assume that the MSDB scheme here is OPE, not just ORE,
in order to define the compare algorithm for this version.



The two profiles MtR,RtM were originally introduced
without distinction, but we observe that they provide for-
mally different security.

2.2 Theoretical results on leakage profiles
One-wayness of ROPF. Boldyreva et al. [5] introduced
the notion of window-one-wayness (WOW) for ORE. An
ORE is L-WOW if given EK(xi) for several uniformly ran-
dom strings xi ∈ {0, 1}m, it is infeasible to determine an
interval of size L containing some xi. To make our experi-
ments easier to compare, we consider an alternative version
that we call `-bit-WOW, which says that it should be infea-
sible to compute the `-bit prefix of some xi.

Boldyreva et al. [5] also proved that any ROPF-secure
ORE with plaintext space {0, 1}m is L-WOW secure for L

approximately 2m/2, meaning that it is hard to compute the
lower m/2 bits of a uniformly random plaintext.

One-wayness of MSDB. Chenette et al. [7] proved that
MSDB-secure OREs have stronger WOW security. That
work proved `-bit-WOW security for MSDB schemes, for
a much smaller ` of about ` ≈ 1/ log ε, where ε is the de-
sired bound on the success probability of the adversary. (A
smaller ` means the result is stronger, and it is hard to guess
even a smaller prefix of the plaintext.) A closely matching
attack against `-bit-WOW of MSDB is almost immediate,
as one can show that the MSDB leakage profile will provide
roughly this many bits of a plaintext prefix.

Security of RtM and MtR. Composed ORE schemes
were suggested in [7] to combine the security of ROPF and
MSDB. It was proved that the composition of individual
OREs will result in a construction that inherits both security
notions. We remark that this is only a lower bound on the
quality of security achieved, and that the composition may
be strictly more secure than ROPF or MSDB.

2.3 Attacks on leakage profiles
Scaling attack against ROPF. Boldyreva et al. [5] intro-
duced what we term the scaling attack and denote ScalingAtk
against the WOW security of an ROPF. It works as fol-
lows. To attack an ORE with plaintext space {0, . . . ,M}
and range {0, . . . , N}, one maps a ciphertext y for an un-
known plaintext x to x′ = dyM/(N + 1)e. It was proved

that this estimate will satisfy |x − x′| < 8
√
M with high

probability.
We observe that when M = 2m and N = 2n are powers

of two, this can be approximated by a simple bitshift: x′ ≈
y � (n − m) i.e. the right-shift of y until it is the same
bit-length as a plaintext. The estimate for these parameters
becomes |x − x′| < 2m/2+3, now implies that for most x,
about the upper half of the bits of x′ will match those of x.
We omit a formal analysis of the variation due to high-order
bit rollovers.

Sort attack against Ideal. Recent work by Naveed et al.
gave attacks on Ideal-secure ORE schemes (and thus on all
of the other profiles except that of [9]). The first was the
sort attack, denoted SortAtk below, which we recall in detail
for use later. The attack assumes knowledge of a plaintext
space that we identify with {1, 2, . . . ,M}, and attempts to
guess the plaintexts used to generate a vector of ciphertexts
c that it takes as input. The attack sorts the vector c (using
the ORE comparison algorithm), and then guesses that the

smallest unique ciphertext corresponds to 1, that the second
smallest ciphertext corresponds to 2, and so on. Formally,
it is defined as follows. Let c1, c2, . . . be the ciphertexts in
c in sorted order. SortAtk(c) outputs a mapping α from
ciphertexts to {1, . . . ,M}, where

α(c) =

{
i if c ∈ c, c = ci

⊥ otherwise
.

The sort attack was shown to correctly invert a large fraction
of ciphertexts in a simulated attack. However, it required
that the plaintexts were“dense” in the message space, mean-
ing that almost all possible plaintexts in {1, . . . ,M} are en-
crypted in c. This was true for several columns in certain
hospital databases, like age (years), length-of-stay (0-365),
and others.

Cumulative attack against Ideal. Naveed et al. gave
a second attack, called the cumulative attack and denoted
CumulativeAtk that works when plaintexts are not dense in
the message space. This attack also takes as input a vector
of ciphertexts c, but additionally requires a training vector
z of data which should be drawn from the same distribution
as the plaintexts in c.

The cumulative attack outputs a map α from ciphertexts
in c to plaintexts in z. The map α is computed via a lin-
ear program that minimizes the error in frequencies and in
the cumulative distribution (i.e., the fraction of plaintexts
less than a given plaintext in z versus c). We omit further
details, but we note that the training input z is essential
for two reasons: First, the map α will only output plain-
texts in z, and thus if a plaintext has not been seen, then
CumulativeAtk(c, z) will never guess it. Second, the guesses
are entirely dependent on using z as a “typical” distribution
with frequencies that correspond to the target data.

Other attacks. It was observed by Boldreva et al. [4] that
chosen plaintext attacks allowed the easy extraction of plain-
texts. This, and attacks that observe queries, are not consid-
ered in this work but are likely to further diminish security
in practice.

2.4 Datasets and implementation
We use two real geographic datasets Cal, SpitzLoc, one

synthetic geographic distribution Globe, and one real time-
stamp dataset SpitzTime.

The dataset Cal represents the latitude and longitude of
about 21,000 intersections in the California road network1

(also used by Mavroforakis et al. [11] in their ORE work).
Latitudes are numbers between −90 and 90 and longitude
are numbers between −180 and 180, both given to six dec-
imal digits. Encoding latitude requires dlog2(180)e = 28
bits, and similarly longitude requires 29 bits. We encode a
given latitude x as 106(x + 90)/180 in binary, and a longi-
tude y as 106(x + 180)/360 in binary. The latitudes were
all between 32.541302 and 42.017231, and longitudes were
between −124.389343 and −114.294258.

The dataset SpitzLoc consists of latitude and longitude
coordinates tracking the movement of German Green party
politician Malte Spitz over six months. The dataset records
the location of towers used for voice calls and text messages,
as well as times (which we used for the SpitzTime dataset

1Dataset obtained from http://www.cs.utah.edu/˜lifeifei/
SpatialDataset.htm

http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
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below). The data were provided by Deutsche Telecom and
posted publicly as an example of highly sensitive informa-
tion recorded by service providers2. The dataset consists of
about 36,000 rows, with many locations missing. We ex-
tracted from this 1,477 non-repeating (latitude, longitude)
pairs in Germany that we call SpitzLoc. The points were
available to 8 decimal digits of accuracy, but we encoded
them as 28 and 29 bit-long strings as in Cal.

The SpitzTime dataset consists of 30,492 time-stamps
represented as seconds from an epoch of January 1, 2000.
The actual range is between 2009-08-31 to 2010-02-27 and
mostly daylight hours. Concretely, the timestamps were in-
teger values between 305,020,620 and 320,629,560.

Finally, we selected a distribution Globe to represent the
latitude and longitude of a uniformly random point on Earth.
We encode the points as bitstrings of length 32, using the
same method as before. We chose this distribution because
it does not result in uniform samples of pairs from {0, 1}32,
but it may model the distribution of some datasets.

All experiments were performed on recent Mac laptops.
Our experiments were written in Python and used the ROPF
implementation from CryptDB. The other leakage profiles
could be simulated exactly without full implementations.

3. INTER-COLUMN CORRELATION
The sort- and cumulative-attacks [12] showed that the ci-

phertexts (produced with Ideal-secure ORE that only leaks
order and frequency) in an individual encrypted column
could sometimes be inverted, but required at least one of
the following conditions to be met:

• The plaintext data present in the column isdense in
the plaintext space, meaning that most or all of the
possible plaintext values appear at least once.

• The plaintext data has low entropy, meaning most of
the possible plaintexts appear frequently, and partic-
ularly that a training set will have many plaintexts in
common with the column under attack.

We add to this another condition: When two or more en-
crypted columns hold data that are correlated. We show that
information may be leaked even when the data in the col-
umn is sparse in its domain, and when all values are unique
(and without any training data), and an Ideal-secure ORE
is used. We call this inter-column correlation, and below
we experiment with applying the sorting attack on multiple
columns at once.

2-D sort attack. We consider applying the sort attack to
two columns at once. Recall that, given a ciphertext vector
c, SortAtk(c) outputs a mapping α from ciphertexts to the
set {1, . . . ,M}, where M is the number of unique ciphertexts
in c.

We simply apply this attack to two columns individually.
That is, we define the attack 2DimSortAtk(c1, c2) to output
(α1, α2) given by αi ← SortAtk(ci) for i = 1, 2. In words,
this attack is independently sorting each ciphertext vector,
and emitting guesses about the plaintext vectors using the
same technique as SortAtk. Below, we argue that this attack
should be interpreted differently from the original single-
column attack.

2The data is downloadable at http://www.zeit.de/
datenschutz/malte-spitz-data-retention

Visual example. We start with an example. In Figure 1
(a), we plot an image, which is formally a set of approxi-
mately 106 points in {1, . . . , 2000}2 (the black points cor-
respond to points in the set). In (b), we select a random
subset of only 300 points from the set, conditioned on none
of the coordinates repeating (that is, none of the chosen
points have the same x or the same y value).

(a) source image (b) 300 random points

(c) sort attack output (d) sort attack with scaling

Figure 1: Visualization of the 2-D sort attack on an image
dataset encrypted with Ideal ORE.

We model the chosen subset as a dataset d = (dx,dy)
consisting of a pair of columns dx and dy each with 300 cells,
where each row represents the location of a black point in
the image. We selected the data in this way to ensure that
prior attacks against the two individual columns would not
be effective. Namely, since all points in each column are
unique, the frequency information is trivial. Moreover, each
column only consists of 300 out of 2000 possible plaintext
values, so the columns are not dense in the plaintext space.

Despite the prior attacks failing to recover the plaintexts
in d, we show that information can be recovered by consider-
ing the columns together via the 2-D sort attack. The results
of our attack are plotted in (c), where the rough features of
d are still visible.

Our multi-dimensional sorting attack does not guess any
points correctly – The original points are in {1, . . . , 2000}
but the sort attack only emits guesses in {1, . . . , 300}. Thus,
by the metrics of [12], the attack does not work. But it is
clear that much structure of the image is recovered, includ-
ing relatively fine details like the arrangement of points from
the penguin’s foot in the lower right. (By scaling the plot in
(d) it resembles the plaintext points more strongly.)

This experiment suggests that we expand our considera-
tion of the leakage of ORE in two senses. First, even when
individual encrypted columns are useless for an adversary,
the leakage from correlated encrypted columns may combine
to reveal a harmful level of information, even to an adver-

http://www.zeit.de/datenschutz/malte-spitz-data-retention
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sary with no training data to help its analysis. Second, even
when an attack does not recover plaintexts correctly, it may
still be plausibly considered successful by recovering partial
information.

3.1 Sort attack on location datasets
We experimented with the 2-dimensional sort attack on

two location datasets: Cal and SpitzLoc (see Section 2.4
for details).

Cal dataset visualization. For the Cal dataset, we se-
lected a subset of 2,000 random points and ran 2DimSortAtk
on the ideal leakage for that subset. In Figure 2, we plot the
plaintext points and the output of 2DimSortAtk (the colors
are used to track plaintexts between the two plots). We ob-
serve that the shape of California is still clearly visible, and
some features like western protrusion one third of the way
up are also visible (several other runs on random points were
similar). Below we return to this attack and try to evaluate
it quantitatively.

(a) 2,000 plaintext points (b) 2DimSortAtk output

Figure 2: Visualization of 2DimSortAtk on a subset of the
Cal dataset.

SpitzLoc dataset visualization. We applied 2DimSortAtk
to the entire Spitz location dataset, also keeping track of
time ordering for visualization (we did not attempt to guess
times in this part). This attack generates guesses for every
location in the dataset, and we plotted subsets of the guesses
corresponding to different periods of time in Figure 3. We
selected a specific day, week, and month to examine and
juxtaposed the guesses with the corresponding subset of the
plaintext data. Consecutive guesses are connected by lines
to recreate the movement history. We note that the plots
are strikingly similar in some features, while some of the
structure is lost. For instance, in the last row, movement to
the North was compressed in the top of (b.3) because fewer
points were reported in that region.

Conclusions. The authors initially investigated the secu-
rity of ORE for two projects. The first required encrypting a
database that included locations of naval vessels, and second
considered encrypting personal mobile phone GPS histories
to allow for location-based queries. Our experiments above
showed that even the best possible leakage (Ideal) would
still result in a concerning loss in secrecy.

We conjecture that the security in practice may be much
worse. This is because we generated the plots above without
any training data or side information. An attack who knows
that Cal points are taken from California, or that SpitzLoc
points are taken from the movements of a German citizen,

can use side information like the shape of the movement zone
and the distribution of cities and other points of interest
when generating guesses at the plaintext data.

Moreover, our attacks are on relatively small amounts of
data. For instance, a column with 2,000 rows could be down-
loaded and searched locally in most scenarios, meaning that
ORE may be unnecessary there. On larger datasets, such
as years of location movements, the guesses might be even
more accurate.

3.2 Sort attack accuracy with bounds
We now consider extending the 2-D sort attack to use

the additional hint of bounds on the possible plaintexts and
generate guesses on the plaintexts that can be quantitatively
evaluated. Concretely, we consider the following variant of
2DimSortAtk, denoted Bnd2DimSortAtk. In addition to the
encrypted columns (c1, c2), the attack also takes as input
pairs of numbers (a1, b1) and (a2, b2). First, it runs the
original 2DimSortAtk twice, to generate mappings (α1, α2)
from the ciphertexts to {1, . . . ,M}. We then compose these
mappings with functions f1, f2 that evenly space the guesses
within the given bounds, resulting in the following attack:

Bnd2DimSortAtk(c1, c2, a1, b1, a2, b2)

01 Compute (α1, α2)← 2DimSortAtk(c1, c2)

02 Define the function f1 by f1(i) := (i− 1) · b1−a1
|c1|

+ a1

03 Define the function f2 by f2(i) := (i− 1) · b2−a2
|c2|

+ a2
04 Output (f1 ◦ α1, f2 ◦ α2).

In the algorithm, |c| denotes the number of ciphertexts in
the encrypted column |c|.

Cal dataset attack with bounds. We used random sub-
sets of 25, 50, ..., 2000 points from the Cal dataset to eval-
uate Bnd2DimSortAtk. The results are plotted in Figure 4.
In each case we gave the attack the same bounds, which
were set to the greatest and smallest latitudes/longitudes in
California (and in particular, they were not the maxes and
mins over the actual subset under attack). We plotted the
quality of guesses as stacked histograms in Figure 4 (each
bar reports on a different run, showing the proportion of
points that were guessed to within different accuracies on
that run).

The maximum error in any of the experiments was around
140 km while the minimum was about 2 km. We note that
our plot reveals that the quality of guesses was not improv-
ing with the number of points, which is curious because we
expected a dense set of points to reveal more ordering in-
formation. The explanation (which we found via inspection
and plotting the guesses) is that bad guesses tend to stay
bad, even with many points, and good guesses tend to stay
good. We stress however that an attack, with, say, a train-
ing set of points in California could likely do much better
than this simple attack.

Discussion. Strictly speaking, this attack is no longer ex-
ploiting inter-column correlation because Bnd2DimSortAtk
could be adapted to run on individual columns, and it would
generate the same guesses for the latitude and longitude
columns independently. However we suggest it as a tech-
nique for evaluating the confidentiality of Ideal ORE on
geographic data.

4. LEAKAGE-ENABLED ATTACKS



(a.1) October 1 (a.2) October 1–7 (a.3) October 1–31

(b.1) Attack output on (a.1) (b.2) Attack output on (a.2) (b.3) Attack output on (a.3)

Figure 3: Visualization of subsets of the 2DimSortAtk output on the SpitzLoc dataset.

This section contains evaluations of known attacks on
ORE but with non-uniform data (sections 4.1, 4.2, 4.3),
showing that in some cases leakage is much worse than on
uniform data. Then new attacks are presented (sections 4.4,
4.5, 4.6), and we also present our observations regrading
MORE (section 4.7).

4.1 MSDB on random globe points
We evaluated MSDB leakage on the Globe dataset. Re-

call that MSDB allows one to infer some bits explicitly but
keeps others hidden. In order to quantitatively compare the
leakage to the plaintext values, we filled in all unknown bits
arbitrarily.

The accuracy of our guesses is evaluated in Figure 5. The
MSDB leakage profile tends to leak more information on
larger datasets (it is monotonic in the sense that it will
never leak less when a subset of data is included in a larger
set). We note that after 600 points, we found that over
half the points could be guessed within 10km, and the other
half could be guessed within 50km. Thus even on a tiny
dataset of random values, the geometric meaning of this
leakage (which is limited mostly to high-order bits) reveals
significant information about the dataset.

It is a fair observation that the Globe dataset is geographi-
cally uniform and numerically non-uniform, which undoubt-
edly impacts the quality of the attack. The same attack on
numerically uniform data, which has a geographic distribu-
tion biased towards the poles, results in a slight improve-
ment in mean attack accuracy without taking advantage of

the known distribution. We did not analyze datasets with
encodings that maintain numeric and geographic uniformity.

4.2 ROPF on real locations
Boldyreva et al. [5] proved that any ROPF-secure ORE

with plaintext space {0, 1}m is L-WOW (see Section 2.2)

for L ≈ 2m/2. This roughly implies that it is hard to guess
more than m/2 of the most significant bits of a random
plaintext. Their result was involved, and generalizing it to
other plaintext distributions does not seem easy. Moreover,
real data may not obey and distribution assumed in a proof
anyway.

Thus, we instead evaluated how the ScalingAtk (see Sec-
tion 2.3) performed on our datasets. We encrypted subsets
of Cal using an ROPF-secure ORE of [4], and recorded
the length of the plaintext prefix that appears in the corre-
sponding ciphertext. The average number of bits preserved
between the plaintexts and corresponding ciphers over en-
tire longitude column of Cal is 15 bits out of 27. This result
matches the theory for uniform data. Moreover, Boldyreva
et al. [5] also showed that increasing the ciphertext length
by more than few bits beyond the plaintext length does not
have any effect on the security for uniform data. We also
experimented with varying ciphertext lengths, and the av-
erage number of preserved bits remained around 15 bits for
larger output sizes.

We have no theoretical framework to explain how and
if this experiment will generalize to other data. It seems
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prudent (and easy) for practitioners to simulate this attack
on test data before deployment.

4.3 ROPF on small and large messages
Boldreva et al. proved roughly that an ROPF-secure

ORE will leak half of the bits of a random input message, but
not much more, even when the output space is only one bit
longer than the input space. Here we experimentally show
that this result does not apply when encrypting messages
that are close to the minimum and maximum elements of
the message space. That is, for small and large messages,
the Boldyreva et al. construction leaks far more.

We performed the following experiment. We fixed the
message space of the Boldyreva et al. ORE to {0, 1}64, and
output space to be either {0, 1}65 or {0, 1}128 in two indepen-
dent runs. We encrypted the plaintexts x = 20, 21, . . . , 263,
to generate ciphertexts c0, c1, . . . , c63, and computed x′i ←
ScalingAtk(ci) for each i. We computed the error ei ←
|xi − x′i| for each i, and averaged the ei over 10 indepen-
dent runs (i.e. we selected a new key each time).

Note that the largest message in our experiment is x =
263, the midpoint of the message space. By symmetry, sim-
ilar results would be obtained for the large messages near
264, so we did plot these results.

In Figure 6 we plot the logarithms (base 2) of the errors
ei compared to i, the logarithm (base 2) of the message. We
find that the scaling attack performs much better on small
messages than on random messages, which can be guessed
to within a distance of about 231. The ciphertext for x = 1
was predicted exactly in every run. Ciphertexts up to 24

were recovered to with distance 2 on every run. The rest
of the guesses were much more accurate than 231, until we
reach larger messages. There was no significant variation
when we changed the output length of the cipher.

Let n be the input length. The trend is that an input
x ≈ 2i or x ≈ 2n − 2i can be predicted to within about 2i/2

accuracy. This can be stated alternatively as a new rule of

thumb: An ROPF-secure ORE leaks all of the leading zeros
(or ones) of a message, and additionally the most-significant
half of the remaining bits.

Discussion. The ROPF security result held because a
random message was unlikely to be very small or very large.
But it is easily possible that one will want to encrypt large
or small values for application-dependent reasons. We sug-
gest that the intuition about “leaking half the input bits” be
updated, and that caution be exercised as the leakage may
be even worse.

4.4 MSDB on real locations: The distance min-
imization attack

A stronger one-wayness result was proved for the MSDB
profile. When random data are encrypted, the proof showed
that only the k most significant bits will be leaked, except
with probability about |d|/2k. Again, a detailed result on
general distributions seems difficult to derive and anyway
may not be useful in practice. Intuitively, the result follows
because two random plaintexts will have the same k-bit pre-
fix with probability 1/2k, and if this does not happen then
no bits beyond the k-th will be leaked.

We evaluated this profile on the Cal dataset. Since points
are not uniformly random, the location of differing bits be-
tween pairs will depend strongly on the distribution. More-
over, by exploiting properties of the distribution, even more
bits may be inferred, as we show below.

Intuition. We first visualize MSDB leakage on the Cal

dataset. Recall that this leakage profile explicitly leaks some
bits of the plaintexts and keeps other bits hidden (see Sec-
tion 2.1). In order to visualize the geometry of the leakage
on Cal, we pretend that the unknown bits are the average
of their possible values – that is, instead of one or zero, they
are actually “0.5”. After filling in these values we plot the
result in Fig. 7. The large groups of points are separated
from the main group when a relatively high-order bit is hid-
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Figure 5: Accuracy for MSDB leakage on random globe points.
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den. There are also many other low-order bits hidden, but
their effect is harder to see. Our intuition is that the large
groups are trivial to move to the correct location by hand,
and thus some of the hidden bits are easy to guess.

We give an attack to automate this, called the distance
minimization attack, which is described and evaluated be-
low. This attack will consider an individual encrypted col-
umn, and create guesses for every plaintext bit by moving
the points to possible locations and seeing which is “closer”
to the aggregate group, with the intuition being that corre-
lated data will not often exhibit behavior like the irregular
groups in Fig. 7.

The attack. The attack is given in pseudocode here, and
a description follows.

DistMinAtk(c)

01 Initialize an empty guess vector g

Figure 7: Visualization of MSDB leakage on Cal dataset.

02 Foreach c[i] ∈ c
03 Set g[i] ∈ {0, 1,⊥}m using MSDB leakage
04 Reset g[i] ∈ {0, 1, 0.5}m by replacing ⊥ with 0.5
05 For j = m down to 1
06 Foreach g[i] with j-th bit unresolved (i.e. set to 0.5)
07 Try assigning j-th bit of g[i] to 0 and 1
08 For each setting, compute S =

∑
k |g[i]− g[k]|.

09 Set j-th bit of g[i] to minimize S.

The distance minimization attack is given a column c of
ciphertexts encrypted with an MSDB-secure ORE. It first
initializes a guess vector g using MSDB leakage naively
(line 03). That is, it starts with all bits unknown. Then for
every pair of ciphertexts g[i],g[j], it performs the compari-
son to learn their differing bit, and then fills in that bit in
the entries of g[i] and g[j].

After this initial stage, the guesses are strings in {0, 1,⊥}m,
where ⊥ represents that a bit was not leaked. The rest of
the algorithm will assign every ⊥ entry to either zero or



one. The algorithm will need to interpret the guesses g[i]
as numbers, even when it has unknown bits. We will tem-
porarily set g[i] to the “average” of all the possible values
that it could be. Concretely we convert each g[i] into a vec-
tor over {0, 1, 0.5} by replacing ⊥ with 0.5. Now when we
need to consider g[i] as a number, we can compute its value
using the binary expansion formula, but with values 0, 1, 0.5
allowed as bits instead of just 0, 1.

Starting on line 05, the attack begins to resolve the 0.5
entries in the guesses to either 0 or 1. It begins with the
most significant bits, and considers the guesses with most
significant bit unknown individually. When considering the
guess g[i] the attacks tries setting the unknown bit of g[i]
to 0 and 1. For each setting it measures the sum of absolute
differences between the resulting point and all of the points
in the guess set (it is at this point that we are considering
the guesses as numbers, to compute differences). The attack
selects the bit setting that results in a smaller sum, and
moves on to the next guess.
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Figure 8: Accuracy of DistMinAtk against MSDB on Cal.

Evaluation. We evaluated this attack on random subsets
of the Cal dataset of varying size. In Cal, the two most sig-
nificant bits of longitude never change, so the attack cannot
automatically infer these bits. This is exactly the sort of in-
formation that MSDB is designed to protect, but we assert
that these can sometimes be guessed. In our setting, and
attacker could run the attack without guessing these bits,
notice that the shape of California appeared, and then fill in
the missing significant bits by selecting one of four possible
positions on the globe.

We evaluated the accuracy of our algorithm assuming the
two most significant bits of longitude were given. In Fig.
8, we measure accuracy on subsets of sizes 25 to 2000. The
figure reflects the improvement on the accuracy of guesses as
the size of the dataset grows. On a dataset of 2,000 points,
the algorithm guesses 95% of the plaintexts to within 2 km,
and has average error 0.6 km. We note that no location
was leaked to within less than 400km explicitly, and the
improvement comes from the attack inferring hidden bits.

Discussion. For this particular example, leakage and cor-
relation allowed accurate estimatation of essentially every
plaintext. More generally, use of any ORE scheme on any
dataset that contains correlations should be viewed with a
healthy dose of caution. Limiting databases to small datasets
might not offer meaningful protection and anyway negates
the benefits of off-loading computation, which is a primary
motivation for ORE. Practitioners desire simple rules for de-
termining if property-preserving encryption and leaks inher-
ent to the selected mechanism are acceptable, but no such
rules have been proposed while examples of dangerous uses
continue to mount.

4.5 Combined attacks on MtR and RtM.
In this section we consider how prior attacks can be com-

bined to extract information from the composed leakage pro-
files MtR and RtM defined in Section 2.1. We start by
describing how each can be attacked, and then evaluate the
attacks.

In this section, let Er be the ROPF-secure ORE from [4]
and Em be the MSDB-secure ORE from [7]. We will specify
the appropriate domains and ranges for Er, Em as needed
below.

MtR. This profile describes the security of the following
ORE scheme: It uses two random keys Km,Kr. To encrypt
a plaintext x, it computes

cin ← EmKm(x); cout ← ErKr(cin)

and outputs cout. Note that we have assumed that the range
of Em is contained in the domain of Er. In order for the
scheme to be correct (i.e., order-preserving) we need that Em
is an OPE scheme, not just an ORE scheme, since the com-
position prevents running a general comparison algorithm
on cin.

Now suppose we are given a column c of ciphertexts en-
crypted with the above construction. We first apply the
scaling attack to each ciphertext c[i] by running y[i] ←
ScalingAtk(c[i]) (see Section 2.3). According to the WOW-
security results on ROPF, we expect about the most sig-
nificant half of y[i] to match the bits of the corresponding
MSDB-secure ciphertext produced as an intermediate ci-
phertext.

Next, we simply treat the column y as ciphertexts emitted
by the [7] MSDB-secure construction. We carry out all of
the pair-wise comparisons, recording when the differing bits
are revealed in a vector of guesses g. We can then interpret
the vector g as we did when attacking MSDB alone.

RtM. This attack simply reverses the steps, so we sketch
the important differences. The outer encryption is now
MSDB-secure, so one can compute the differing bits on
those ciphertexts to get a vector of guesses g (that will have
known and unknown bits recorded). Then we can apply the
scale attack to the entries of g (we leave the unknown bits
in place, and bit-shift the string as before). The result will
issue guesses for some known bits which we can use as the
attack output. We can also replace the unknown bits with
0.5 as in the DistMinAtk to quantitatively approximate the
plaintexts.

Selecting a combined scheme. We remark that the
constructions achieving MtR and RtM might not provide
equivalent security. (The proof only shows that they achieve
at least MSDB and ROPF security separately, but the



combined modes might be strictly stronger.) It was unclear
which will be better in practice.

There is, however, an efficiency difference between the ex-
isting instantiations of MtR and RtM. In [7], MSDB-
secure ORE is constructed with relatively short ciphertexts
(about 1.58 times the size of a plaintext), but the OPE ver-
sion of their scheme has much longer ciphertexts (it expands
the plaintext by a factor λ which corresponds to the “secu-
rity parameter” and may be set to 80 or much larger). Thus
RtM, which does not require the MSDB-secure part to be
OPE, results in a much more efficient construction, and it
is the one we evaluate below.

Evaluation. In Fig. 9 we plot the performance of the com-
bined attack on RtM encryption. The results are similar
to Fig. 8 so we conclude that, on this type of data, MSDB
and RtM provide similar security.
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Figure 9: Accuracy of DistMinAtk against RtM on Cal.

4.6 RtM on timestamp data
We now turn to less disperse data encrypted under RtM.

We randomly draw time-stamps from the SpitzTime dataset,
which are distributed over a several-month period. Our at-
tack first encrypts this data using ROPF then models the
MSDB leakage. From this model we then generate our
guesses and compare these values to the plaintext data.

The analysis of time-stamp data can not be performed
with distances between the guessed and actual values as done
for the random locations. This is because the plaintexts are
concentrated in a narrow portion of the domain, resulting
in all ciphertexts sharing a significant matching prefix. In-
stead of a direct difference, our analysis and attack are a
form of distance windowed one-wayness adversary[5]. Infor-
mally, we compare the guessed distance between each pair
of ciphertext (in order) with the distance between the plain-
text data. More formally, for the sorted vector of guessed
values, g, and matching plaintexts, p, the metric of interest
is |(gi − gi−1)− (pi − pi−1)|.

We now describe the setup, attack, and results. First,
SpitzTime data beginning times are parsed into a 32 bit

number of seconds starting at an epoch of January 1, 2000.
All data is OPE encrypted and shifted as with the scaling
attack. Then the MSDB leaks are modeled and inferences
made. Finally, we generate the guessed data set for compar-
ison.

The results of the attack are shown in Fig. 10. Even for
extremely small databases, many time-stamp differences are
accurately guessed to within one-hour. The vast majority of
guesses were are correct to within two days.

4.7 Modular ORE on real locations
Modular ORE (MORE) was suggested by Boldyreva et

al. [5] to address the leakage of ROPF-secure ORE. When
an adversary sees a column of data encrypted with ROPF,
it can extract about half of the plaintext via their scaling at-
tack. Thus, they suggest modifying an ROPF-secure ORE
Er as follows: In addition to the usual key K, store an-
other string j, chosen at random from the plaintext space
{0, 1}m. Then define Emod

(K,j)(x) := ErK(x+ j), where the ad-

dition x+j is computed modulo 2m. The construction Emod

is no longer strictly speaking an ORE scheme, since the ad-
dition wraps sometimes. It was shown that efficient range
queries are still possible (see [5]). The scaling attack fails
completely against Emod because it recovers the higher-order
bits of x + j mod 2m, which are independent of x. Recent
work [11] developed query protocols to hide the shift value
but left the actual encryption algorithm as defined above.

We took the Cal dataset, which Mavroforakis et al. used
in testing their MORE algorithms, and applied their MORE
construction to the latitude and longitude columns indepen-
dently (with different keys and different “shifts” for each
columns). Then we applied the scaling attack to the ci-
phertexts and plotted the results in Fig. 11. We observe
that the fine details of the data are preserved (as expected,
because ROPF-OPE was used), but it is also obvious how
to correct both shifts by hand. We did not explore a quan-
titative or automated way to remove the shift. The general
issue appears to be that for some distributions, shifting by
a random value still preserves enough structure so that the
shift is easily corrected.
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