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Abstract. Since Keccak was selected as SHA-3 hash function by NIST,
it has attracted considerable attention from cryptographic researchers.
Keccak sponge function [1] has also been used to design message au-
thentication codes (MAC) and authenticated encryption (AE) scheme
Keyak. Till now, the most efficient key recovery attacks on Keccak-MAC
and Keyak are cube attacks and cube-attack-like cryptanalysis proposed
at EUROCRYPT’15. In this paper, we provide a new type of cube distin-
guisher named conditional cube tester for Keccak sponge function, where
we append some bit conditions for some cube variables to reduce the di-
mension of the original cube tester. We apply the conditional cube tester
to recover the key for reduced-round Keccak-MAC and Keyak. Compared
to the previous key recovery attacks for Keccak-MAC and Keyak, our
attacks are the best attacks according to the number of rounds or the
complexity. Moreover, by constructing an MILP (mixed integer linear
programming) model, we provide a searching algorithm to produce the
most efficient conditional cube tester, which can be utilized as a distin-
guisher for Keccak sponge function. As a result, we improve the previous
distinguishing attacks on Keccak sponge function. Although the attack-
s in this paper are the best ones compared with previous results, they
cannot threat the security margin of Keccak sponge function.

Keywords: Keccak-MAC, Keyak, cube tester, conditional cube vari-
able, ordinary cube variable

1 Introduction

In 2007, the U.S. National Institute of Standards and Technology (NIST) held
a public competition in order to design a new standard for a cryptographic
hash function SHA-3. In 2012, after five years of research and analysis, Keccak,
designed by Bertoni et al., was selected as the winner of the contest.
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Since then, Keccak has attracted much more attention from cryptograph-
ic researchers. For keyless modes of reduced-round Keccak, many results have
been brought out on collision attack [2], preimage attack [3] and second preim-
age attack [4] etc. In addition, a distinguisher of full 24-round Keccak internal
permutation has been proposed in [5] with time complexity of 21579 Keccak calls.
Using the rebound attack and efficient differential trails, Duc et al.[6] provided a
distinguisher for 8-round Keccak internal permutation with the complexity 2491.
These results on Keccak internal permutation seem not to be close to the secu-
rity margin of Keccak sponge function. For the distinguishing attack on Keccak
sponge function, some results have been given in [7], [8] and [9].

In keyed modes, Keccak can not only generate an infinite key stream as a
stream cipher but also be used as message authentication codes (MAC) and
authenticated encryption (AE) schemes. Besides the side channel attack in [10],
the key recovery attack given in [9] is the only public result on keyed modes of
Keccak. In [9], Dinur et al. set the cube variables in the CP kernel, which controls
the propagation of θ in the first round. Cube variables are carefully selected so
that they will not get multiplied with each other after the first round. In this way,
the cube dimension is reduced. Besides, the cube sums over the cube variables
on output polynomials are only related to a part of key bits. This property
is used to construct the first key recovery attack on reduced-round Keccak-
MAC and Keyak, which is called cube-attack-like cryptanalysis. Moreover, the
cube attack and cube-attack-like are very efficient methods to analyse Keccak-
like cryptosystems [11] and [12]. However, most of the previous attacks only
control the propagation of cube variables after the first round. How to control the
relation of cube variables after the second round to improve the current attacks
has been an interesting problem for cryptanalysis of Keccak sponge function. In
this paper, we propose the conditional cube tester to solve this problem.

1.1 Our Contributions

Conditional Cube Tester for Keccak Sponge Function. In this paper,
we propose a new model named conditional cube tester which is inspired by
dynamic cube attack on Grain stream cipher in [13] and conditional differential
attacks in [14]. In [13], by appending bit conditions on initial value (IV), the
intermediate polynomials can be simplified and the degree of output polynomial
can be reduced. However, the structure of Keccak sponge function is so different
from Grain stream cipher that the dynamic cube attack in [13] can not be uti-
lized for Keccak sponge function. In this paper, we control the propagation of
cube variables caused by the nonlinear operation χ by appending bit condition-
s. With the propagation of cube variables controlled, it will benefit to find the
cube variables not multiplied with each other after the second round of Kecca-
k sponge function. We provide the algorithms for searching the cube variables
and appending the corresponding bit conditions. Then, we can construct a cube
tester based on the obtained cube variables and the corresponding conditions.
Thus, we name it as ‘conditional cube tester’. In this way, the dimension of the
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conditional cube tester can be reduced compared to the previous cube tester in
some cases.

Improved Key Recovery Attack on Reduced-Round Keccak-MAC. We
apply the conditional cube tester to recover the key for Keccak-MAC. As a result,
we can provide a key recovery attack on five rounds of Keccak-MAC-512 with
the complexity of 224 Keccak calls. For six rounds of Keccak-MAC-384, full
key bits could be recovered with the complexity of 240 Keccak calls. We could
break seven rounds of Keccak-MAC-256 with 272 Keccak calls. The previous key
recovery attacks have been provided in [9], where the attack on 5-round Keccak-
MAC-288 has complexity of 235 Keccak calls, the attacks on 6-round and 7-round
Keccak-MAC-128 have complexity of 266 and 297 Keccak calls, respectively. Note
that the attack on Keccak-MAC-n1 can work on Keccak-MAC-n2 with the same
complexity as n1 > n2. We compare our key recovery attacks on Keccak-MAC
with those previous attacks in Table 1. From Table 1, our attacks are the best
attack according to the number of rounds. Moreover, the attacks on 5-round
Keccak-MAC-512 and 6-round Keccak-MAC-384 are practical, which have been
verified with experiments.

Rounds Capacity Time Data Memory Reference

5 576 235 235 negligible [9]
6 256 266 264 232 [9]
7 256 297 264 232 [9]

5 576/1024 224 224 negligible Section 4
6 256/768 240 240 negligible Section 4
7 256/512 272 272 negligible Section 4

Table 1. Summary of key recovery attacks on Keccak-MAC

Improved Key Recovery Attack on Reduced-Round Keyak. We also
use the conditional cube tester to recover the key for reduced-round Keyak,
which is an AE scheme based on Keccak sponge function [15]. We focus on the
key recovery attack on Keyak with two blocks of messages and assume that the
nonce could be reused. According to the specification of Keyak [15], a nonce
cannot be reused during providing confidentiality but the nonce can be fixed
when only authenticity and integrity are required. Thus, our attacks on Keccak
are to break the properties of authenticity and integrity. We give the attacks on
7-round and 8-round Keyak with the time complexity 242 and 274, respectively.
The previous key recovery attack on Keyak can work on 7-round with the time
complexity 276, which also assumes the nonce could be reused. Table 2 compares
our results with previous attacks on Keyak. From Table 2, our attacks on Keyak
are the best attacks according to the number of rounds and the complexity. Note
that memory complexity in our attacks is negligible.
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Rounds Capacity Time Data Memory Reference

7 256 276 275 243 [9]

7 256 242 242 negligible Section 5
8 256 274 274 negligible Section 5

Table 2. Summary of key recovery attacks on Keyak

Improved Distinguishing Attack on Keccak Sponge Function. The con-
ditional cube tester could also be used to proceed the distinguishing attack on
Keccak sponge function. We choose the conditional cube variables with MILP,
which helps us to find the combination of conditional cube variables automati-
cally. As a result, the distinguishing attack has been achieved practically up to
seven rounds of Keccak sponge function. For the previous distinguishing attacks
on Keccak sponge function, Naya-Plasencia et al. put forward a 4-round differ-
ential distinguisher over Keccak-256/224 in [7] and Das et al. gave a 6-round
distinguisher over Keccak-224 in [8]. Besides, there is another straightforward
distinguisher on n-round Keccak sponge function from [9] with time complexity

of 22n−1+1 Keccak calls (n ≤ 7).

Table 3 lists the previous and our distinguishing attacks on Keccak sponge
function. Note that the attack on Keccak with the capacity c1 can work on
Keccak with the capacity c2 with the same complexity where c1 > c2.

Rounds Capacity Time Data Memory Referance

4 448/512 225 224 negligible [7]
6 448 252 252 negligible [8]
6 448/512/576 233 233 negligible [9]
7 448/512/576 265 265 negligible [9]

5 448/512 29 29 negligible Section 6
6 1024 29 29 negligible Section 6
6 448/512 217 217 negligible Section 6
7 768 217 217 negligible Section 6
7 448 233 233 negligible Section 6

Table 3. Summary of distinguishing attacks on Keccak sponge function

This paper is organized as follow. In Section 2, we will introduce the pre-
liminaries of this paper, including Keccak sponge function, two keyed modes
of Keccak and the idea of cube tester. In Section 3, our new model – condi-
tional cube tester will be introduced. In Section 4 and Section 5, we apply our
new model on key recovery attack for Keccak-MAC and Keyak. In Section 6,
distinguishing attacks on Keccak sponge function will be constructed based on
conditional cube tester. Finally, we conclude the paper in Section 7.
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2 Preliminaries

Keccak is a family of sponge hash functions, which could also be used as MAC,
AE scheme and stream cipher. In this section, we will show the details of Keccak
sponge function. Then, we will introduce two keyed modes of Keccak, including
Keccak-MAC and AE scheme Keyak. Finally, the idea of cube tester will be
stated.

2.1 Notations

ki the i-th key bit

vi public variable

A state of Keccak

A[i][j][k] input bit of Keccak in the i−th column, the j−th row, the k−th slice

Round(A,RC) round function of Keccak, RC is round constant.

rot[L, n] L >>> n,L is a lane.

2.2 Keccak Sponge Function

Description of Keccak Sponge Function. We give a brief description here
for understanding our attacks better. For a complete version, please refer to
Keccak specification [1].

The sponge function works on a b-bit state. As we discuss the default version,
b is set up to be 1600 in this paper. The 1600 bits are divided into two parts
according to the parameters r and c, which are bitrate and capacity respectively.
As described in [1], we use another parameter n = c/2 to denote the sponge
function as Keccak-n. The length of hash value is n bits. There are four versions
of Keccak sponge function, which are Keccak-224, Keccak-256, Keccak-384 and
Keccak-512. Initially, all the 1600 bits are filled with 0s and the message will
be split into r-bit blocks. The sponge function will work on the message in two
phases.

The first phase is the absorbing phase. In this phase, the next r-bit message
block will be XORed with its first r-bit intermediate state and process the state
with internal permutation. The number of internal permutations is 24 for default
version. After all the blocks are absorbed, there comes to the second phase, which
is the squeezing phase. In this phase, Keccak-n will return the first r bits as the
output of the function with internal permutation iteratively until the desired
length of the digest is produced.

Keccak is designed in the view of 3 dimensions. Fig. 1 shows the terminologies
used in Keccak. The state of Keccak can be viewed as an array of 5×5 lanes. Each
of the lane, denoted by A[x, y], is a 64-bit string. And the internal permutation
is all the same except for the round constant (RC) XORed into the state at the
end of each round.
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state

slice

row

bit

lane

column

Fig. 1. Terminologies used in Keccak

Next, we will show one round internal permutation with pseudo-code. The
array B in the pseudo code denotes for an intermediate state. C[x] and D[x] are
intermediate value for a single lane of 64 bits. r[x, y] is the offset of the internal
permutation for the position where the lane A[x, y] should be moved to. r[x, y]
will be shown in Table 8. In our pseudo-code the indices in all the operations
are modulo 5 by default.

Round(A, RC)

{
θ step

for x in (0...4)

C[x] = A[x,0] xor A[x,1] xor A[x,2] xor A[x,3] xor A[x,4]

D[x] = C[x-1] xor rot(C[x+1],1)

for x in (0...4)

for y in (0...4)

A[x,y] = A[x,y] xor D[x]

ρ step

for x in (0...4)

for y in (0...4)

A[x,y] = rot[A[x,y],r[x,y]]

π step

for x in (0...4)

for y in (0...4)

B[y,2*x+3*y] = A[x,y]

χ step

for x in (0...4)

for y in (0...4)

A[x,y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y])
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τ step

A[0,0] = A[0,0] xor RC

return A

};

The aim of operation θ is to diffuse the state. It could be seen that if certain
variable in every column of state has even parity, the variable will not diffuse to
other columns. In Keccak specification [1], this property is called column parity
kernel, CP kernel for short. In this way, diffusion of some input variables
caused by operation θ could be controlled in the first round. This property has
been widely used in cryptanalysis of Keccak. It has also been applied in [9] to
slow down diffusion of operation θ and decrease the dimension of cube used in
the attack.

Operations ρ and π just change the position of bits. As operation τ will not
impact our attacks, we will omit it in our paper. We refer to the first three linear
operations, i.e. θ, ρ and π, as half a round. It is obvious to see that the only
nonlinear operation in the internal permutation is χ. The algebraic degree of χ
is only 2. After n-round Keccak internal permutation, the algebraic degree of
output bit polynomial is 2n at most.

2.3 Keyed Modes of Keccak

MAC based on Keccak. A message authentication code can be applied for
ensuring data integrity and authentication of a message. During communicating,
Alice sends a message M associated with a short tag T to Bob and Bob will
verify whether M could produce T with the key they have shared. In this way,
Bob confirms the integrity and source of M . Thus, a secure MAC algorithm is
expected to meet two security requirements: no key recovery and resistance of
MAC forgery.

Fig. 2 shows the construction of Keccak-MAC-n working on a single block.
As described in 2.2, n is half of capacity length. For Keccak-MAC in this paper,
message which we could control is a single block. Both sizes of key and tag are
128 bits. The two significant lanes are key bits. Block sizes are different based
on the variants we analyse.

Authenticated Encryption Scheme based on Keccak During commu-
nication, AE schemes are cryptographic primitives to provide confidentiality,
integrity and authenticity of data. Keccak sponge function can also be applied
as authenticated encryption scheme. Here we will introduce the design of Keyak
[15], an authenticated encryption scheme based on Keccak. Keyak is a second-
round candidate algorithm submitted to CAESAR [16].

Fig.3 shows the construction of Keyak on two-block message. Keyak is the
recommended version with 1600-bit state and no associated data. The internal
permutation of Keyak submitted to CAESAR has twelve rounds. Both sizes of
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bitrate

capacity

Keccak internal 

permutation

128-bit tag

128-bit key||message

1600-2n bits

2n bits

Fig. 2. Construction of Keccak-MAC-n

key and nonce are 128 bits and the capacity is set to 256 bits, i.e. r = 1600−256 =
1344.

According to the specification of Keyak [15], when confidentiality of data
is not required, a nonce could be reused. In this paper, we focus on the two-
block Keyak. We could control the value of the two-block plaintext as long as
2× 1344 = 2688 bits.

Keccak internal 

permutation

128-bit key||128-bit nonce

tag

Keccak internal 

permutation

pad

C1

P1

pad

C2

P2

Keccak internal 

permutation

X0

k

1344 bits

256 bits

Fig. 3. Construction of Keyak on two blocks

2.4 Cube Tester.

Cube tester introduced in [17] is a distinguisher to detect algebraic property of
cryptographic primitives. Given a Boolean function with algebraic degree d, the
adversary sums over its outputs over 2k(k ≤ d) inputs, in which a set of cube
variables with size k ranges over all possible values and the other variables are
fixed to some constants. The cube sum is the coefficient of the multiplication term
on the cube variables in the set. The cube sum can be taken as differentiating
the output polynomial over cube variables, which is higher order derivatives
[18] with respect to cube variables. This non-random behaviour is based on the
following theorem.

Theorem 1. ([9]) Given a polynomial f : {0, 1}n → {0, 1} of degree d. Suppose
that 0 < k < d and t is the monomial x0 . . . xk−1. Write f as:
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f(X) = t · Pt(xk, . . . , xn−1) +Qt(X),

where none of the monomials in Qt(X) is divisible by t. Then the sum of f over
all values of the cube (cube sum) is∑

x′∈Ct

f(x′, xk, . . . , xn−1) = Pt(xk, . . . , xn−1),

where the cube Ct contains all binary vectors of the length k.

Proof of this theorem is given in [19]. All the polynomials in this paper are over
F2. Cube sum here is exactly the value of Pt(xk, . . . , xn), which can be regarded
as the coefficient of t. Previous results in [17] and [19] are more concerned about
the properties of Pt, such as its low algebraic degree, highly unbalanced truth
table and so on.

n-Round Cube Tester on Keccak Sponge Functions. Cube tester could
be constructed based on algebraic property of Keccak sponge function, which
could distinguish round-reduced Keccak from random permutation. As algebraic
degree of output bit after n-round Keccak is bounded by 2n, there is no terms
of degree 2n + 1. Cube tester can detect this with a cube of dimension 2n + 1.
This idea has been used in [9] to forge MAC instead of recovering key.

3 Conditional Cube Tester for Keccak Sponge Function

z=6 z=62

ρ-1◦π-1◦χ -1

z=60z=45 z=5z=44 z=4 z=59 z=7z=6

χ◦π◦ρ

z=0

θ

z=0

Round 0 ：

v0

Input
z – the index of slice 

Fig. 4. Overview of bit conditions

The previous cube attacks against keyed modes of Keccak in [9] were built
by extending one round before n-round to construct a (n+1)-round cube tester.
That is to select cube variables not multiplied with each other after the first
round. For example, A[2][0][0] = A[2][1][0] = v0 in Fig. 4 is a cube variable. This
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cube variable only impacts two bits before the operation χ in the first round. It
is very easy to find a combination of 2n + 1 cube variables. The cube tester has
been used to proceed the forgery attack on (n + 1)-round Keccak-MAC in [9].
More important contribution in [9] is that the cube tester has been applied to
the key recovery attack for Keccak-MAC and Keyak with many dedicated and
novel techniques.

In our new model, we focus to choose the cube variables which are not mul-
tiplied with each other after the second round. In this way, we need to collect
2n + 1 such cube variables to construct a cube tester for (n+ 2)-round.

The scheme for the new model is shown in Fig. 4. In Fig. 4, we also choose
A[2][0][0] = A[2][1][0] = v0 as a cube variable. Furthermore, in order to reduce
the possibilities that v0 gets multiplied with other cube variables after the second
round, we should append some additional conditions to the colorful input bits of
the second round according to the property of χ in Fig. 4. Then we denote the
conditions with the input variables of the first round where the corresponding
input variable has same color as the input bit for the second round. Since we
choose A[2][0][0] = A[2][1][0] = v0 as one cube variable and set the colorful input
bits in the first round with the proper conditions, the propagation of v0 is slowed
down and the possibility that v0 gets multiplied with other cube variables after
the second round is reduced. With this scheme, we construct the cube tester
which is named as conditional cube tester in our paper.

Next, we will give the definitions of some variables in conditional cube tester.

Definition 1 The variable summed in the cube tester is called cube variable.
The variable in the CP kernel pattern is called ordinary cube variable. The
variable assigned with a function is called conditional variable. The variable
in the CP kernel pattern with bit conditions set to the conditional variables is
called conditional cube variable. Other variables fixed with random values are
called free variables.

In this section, we will give the requirements of conditional and ordinary
cube variables in a conditional cube tester. Then, some properties on Keccak
sponge function will be discussed, based on which the algorithms to evaluate the
relation between two cube variables after the second round are given.

3.1 Requirements on Cube Variables in Conditional Cube Tester

Actually, the advantage of an ordinary cube variable is that no extra conditions
should be satisfied. However, the disadvantage is that it is difficult to avoid the
ordinary cube variables to be multiplied with each other after the second round.
Thus, in order to get an optimal cube tester for Keccak sponge function, we
should choose a proper combination of some ordinary cube variables and condi-
tional cube variables. The following theorem provides the basic requirements for
the two types of cube variables in a conditional cube tester.

Theorem 2. For (n + 2)-round Keccak sponge function, there are p (0 ≤ p <
2n +1) conditional cube variables, i.e. v1, . . . , vp, and q = 2n+1−2p+1 ordinary



Conditional Cube Attack on Reduced-Round Keccak Sponge Function 11

cube variables, i.e. vp+1, . . . , vp+q (A special case is q = 0 if p = 2n + 1). If the
cube variables satisfying the following three requirements, the term v1v2 . . . vp+q

will not appear in the output polynomials of (n+2)-round Keccak sponge function
(n > 0). With p conditional cube variables and q ordinary cube variables, a
(n+ 2)−round cube tester can be constructed.

a. The conditional cube variables vi (1 ≤ i ≤ p) are not multiplied with each
other after the second round.

b. The ordinary cube variables vj (p + 1 ≤ i ≤ p + q) are not multiplied with
each other after the first round.

c. Every conditional cube variable vi (1 ≤ i ≤ p) isn’t multiplied with ordinary
cube variable vj (p+ 1 ≤ j ≤ p+ q) respectively after the second round.

Proof. We use reduction to absurdity to prove. Assume that there is a monomial
with p + q cube variables after (n + 2)-round Keccak, and then we prove that
the assumption is not true.

According to the above three requirements, for the intermediate polynomial
of the second round, the degree of monomials Mp

2 containing v1, v2, . . . , vp is one
and the degree of monomials Mq

2 formed by vp+1, . . . , vp+q is two at most.
For the output polynomial after the following n-round operation, the mono-

mial Mn+2 with the highest degree should consist of 2n monomials Mp
2 and

Mq
2 .
If all p conditional cube variables appear in Mn+2 as we have assumed, there

will be 2n−p monomial Mq
2 in Mn+2. In this way, as the degree for Mq

2 is 2, then
the degree for Mn+2 is at most p+(2n−p) ·2 = 2n+1−p. It means that there are
at most 2n+1 − 2p ordinary cube variables in Mn+2. Thus it is impossible that
all p conditional cube variables and q = 2n+1 − 2p + 1 ordinary cube variables
appear in Mn+2.

If p = 2n + 1, no ordinary cube variable is needed. After (n + 2)-round
Keccak internal permutation, the degree of the monomial Mn+2 is 2n at most.
Therefore, it is also impossible that all p = 2n + 1 conditional cube variables
appear in Mn+2. ut

Note that if p = 0 , there is no conditional cube variable which is same as the
case in [9]. If 1 ≤ p ≤ 2n + 1, we can apply the conditional cube tester to recover
the key for the (n+2)-round keyed modes of Keccak based on Theorem 2, which
will be introduced in Section 4 and 5. Moreover, the distinguishing attack on
Keccak sponge function can be implemented when p = 2n + 1, which will be
described in Section 6.

3.2 Properties of Keccak Sponge Function

In general, the differential propagation is much easier to trace than the Boolean
function. So we will construct an equivalent relation between differential charac-
teristic and Boolean function. Then the propagation of differential characteristic
will be used to trace the Boolean function. Firstly, we will give the following
property to describe the differential property for χ operation.
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Property 1. If the input difference to operation χ in a row is (1,0,0,0,0), the
output difference is (1,0,0,0,0) if and only if x1 = 0 and x4 + 1 = 0.

Proof. According to Boolean equations of χ , when the input of operation χ
is assigned to (x0, x1, x2, x3, x4) and the other input is assigned to (∆x0 +
x0, x1, x2, x3, x4), the output of the pairs is as follow.

y0 = x0 + (x1 + 1)x2, y′0 = ∆x0 + x0 + (x1 + 1)x2,

y1 = x1 + (x2 + 1)x3, y′1 = x1 + (x2 + 1)x3,

y2 = x2 + (x3 + 1)x4, y′2 = x2 + (x3 + 1)x4,

y3 = x3 + (x4 + 1)x0, y′3 = x3 + (x4 + 1)(∆x0 + x0),

y4 = x4 + (x0 + 1)x1, y′4 = x4 + (∆x0 + x0 + 1)x1.

It is clear that, the output difference is (1, 0, 0, 0, 0) if and only if x1 = 0 and
x4 + 1 = 0. ut



Fig. 5. Diffusion caused by operation χ

Now we describe the relation between the differential characteristic and the
Boolean function based on Fig. 5. As the input difference for χ is (1, 0, 0, 0, 0),
the truncated output difference is (1, 0, 0, ?, ?), where ‘?’ is the unknown bit.
From the view of Boolean function, the vector (1, 0, 0, ?, ?) means that the first
output bit y0 denoted as ‘1’ is linearly related to x0, the second and third output
bits y1 and y2 denoted as ‘0’ are not related to x0 and the fourth and fifth output
bits y3 and y4 denoted as ‘?’ are nonlinearly related to x0. Thus, such truncated
differential characteristic can represent the Boolean function equivalently. For
the differential characteristic, if the conditions x1 = 0 and x4 + 1 = 0 are
satisfied, the differential characteristic (1, 0, 0, 0, 0)→ (1, 0, 0, 0, 0) will hold with
probability 1. At the same time, if the conditions x1 = 0 and x4 + 1 = 0 are
satisfied, (1, 0, 0, 0, 0)→ (1, 0, 0, 0, 0) for Boolean function means that y0 is linear
related to x0 and yi is not related to x0 for 1 ≤ i ≤ 4.

We summarize all the five differential characteristics cases that we will use
in Table 4 where the input and output differences have only one non-zero bit.
As described in the above, in these cases, every input bit xi of χ is only linearly
related to one output bit yi under two bit conditions, which will be used in
constructing our conditional cube tester.
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Input/Output Difference Conditions
(1, 0, 0, 0, 0) −→ (1, 0, 0, 0, 0) x1 = 0, x4 = 1
(0, 1, 0, 0, 0) −→ (0, 1, 0, 0, 0) x2 = 0, x0 = 1
(0, 0, 1, 0, 0) −→ (0, 0, 1, 0, 0) x3 = 0, x1 = 1
(0, 0, 0, 1, 0) −→ (0, 0, 0, 1, 0) x4 = 0, x2 = 1
(0, 0, 0, 0, 1) −→ (0, 0, 0, 0, 1) x0 = 0, x3 = 1

Table 4. Summary of conditions for differential characteristic of χ

In order to show the advantage of conditional cube variable compared with
the ordinary cube variable, we consider propagation of ordinary cube variable
A[2][0][0] = A[2][1][0] = v0 in the view of truncated differential characteris-
tic in Fig. 6(a) and the propagation of conditional cube variable A[2][0][0] =
A[2][1][0] = v0 in the view of differential characteristic in Fig. 6(b).

Round 0

Round 1

Round 1.5

Round 0

Round 1.5

Round 1

(a) Propagation of an ordinary cube variable (b) Propagation of a conditional cube variable

Fig. 6. 1.5-round differential of an ordinary and a conditional cube variable

It is obvious to see that two active bits at the beginning of the second round
will affect 22 bits caused by the step θ. Thus, the conditional cube variable in
Fig. 6(b) is only linearly related 22 active bits after 1.5-round Keccak internal
permutation and the ordinary cube variable in Fig. 6(a) is linearly related to
the black bits and non-linearly related to the gray bits after 1.5-round Keccak.
In total, 62 bits are related to v0 after 1.5-round Keccak. Thus, it is more likely
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for a ordinary cube variable to get multiplied with other cube variables after the
second round Keccak.

Note that we name the pattern of the conditional cube variable in Fig. 6(b)
as 2-2-22 pattern according the number of active bits in three states (input state,
the output state of the first round, the output state of the first 1.5 rounds).

As we introduce more conditional cube variables, contradictions may occur
from the bit conditions derived from different conditional cube variables. In
order to avoid such contradiction, we give the following property by observing
the operation χ.

Property 2. For the χ operation in the first round, if in a certain row the first
input bit is linear related with conditional cube variable v0 and the third input
bit is linear related with conditional cube variable v1, it is impossible to cancel
all the nonlinear terms containing v0 or v1 after the first round.

Proof. The output truncated difference over v0 is (1,0,0,?,?). To remove the
nonlinear terms including v0 after the χ operation, conditions x1 = 0, x4 = 1
should be added. The output truncated difference over v1 is (?,?,1,0,0), conditions
x3 = 0, x1 = 1 should be satisfied to delete the nonlinear terms with v1. In this
way, there is a contradiction for the conditions for x1. The contradictions for
other input bits for χ operation can be derived similarly. ut

If we can deduce the exact intermediate polynomials after the second round,
whether two cube variables are multiplied with each other could be determined.
But it is very complicated to derive. The truncated differential will help us
to determine the relation between two cube variables efficiently, which will be
introduced in Algorithm 1, 2 and 3.

Based on Keccak sponge function, if the neighboring input bits in a row of
the operation χ are related to two different variables, the two variables would
get multiplied in the next step. Line 6 in Algorithm 1, line 7 and 10 in Algo-
rithm 2, and line 10 and line 13 in Algorithm 3 are based on this property. The
three algorithms are corresponding to requirement [b], [a] and [c] in Theorem 2
respectively.

In the three algorithms, as we compute the output truncated difference or
difference, we use ‘0’, ‘1’ and ‘2’ to denote the inactive bit, the active bit and the
unknown bit respectively. When deducing the difference or truncated difference
over some cube variable v0, the input bits of the first round set to v0 are denoted
to 1 and other input bits are set to 0. It should be noted that the indices in the
pseudo-code are modulo 5.
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Algorithm 1 Determine Relation of Two Ordinary Cube Variables

Input: input bit positions set P0 of ordinary cube variable v0
input bit positions set P1 of ordinary cube variable v1

Output: relation of two ordinary cube variables v0 and v1 set on P0 and P1 respectively
compute the 0.5-round output difference from the input difference set P0 (P1) as 1
and other input positions as 0, and store them in B0 (B1);
flag=0
for each i ∈ [0, 63] do

for each j ∈ [0, 4] do
for each k ∈ [0, 4] do

if (B0[k][j][i] = 1, B1[k + 1][j][i] = 1)or (B0[k + 1][j][i] = 1, B1[k][j][i] = 1)
then

flag=1;
end if

end for
end for

end for
if (flag) then

return multiplied after the first round;
else

return not multiplied after the first round;
end if

Algorithm 2 Determine Relation of a Conditional Cube Variable and an Ordi-
nary Cube Variable

Input: input bit positions set P0 of conditional cube variable v0
input bit positions set P1 of ordinary cube variable v1

Output: relation of conditional cube variable v0 and ordinary cube variable v1 set on
P0 and P1 respectively
flag=[0,0]
compute the 0.5-round output difference from the input difference set P0 (P1) as 1
and other input positions as 0, and store them in B0 (B1);
compute the 1.5-round truncated output difference from the input difference set P0

(P1) as 1 and other input positions as 0, and store them in C0 (C1);
for each i ∈ [0, 63] do

for each j ∈ [0, 4] do
for each k ∈ [0, 4] do

if (B0[k][j][i] = 1, B1[k + 1][j][i] = 1)or (B0[k + 1][j][i] = 1, B1[k][j][i] = 1)
then

flag[0]=1;
end if
if (C0[k][j][i] = 1, C1[k + 1][j][i] 6= 0)or (C0[k + 1][j][i] = 1, C1[k][j][i] 6= 0)
then

flag[1]=1;
end if

end for
end for

end for
if (flag[0]) then

return multiplied after the first found;
else if (flag[1]) then

return multiplied after the second round;
end if
return not multiplied after the second round;
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Algorithm 3 Determine Relation of Two Conditional Cube Variables

Input: input bit positions set P0 of conditional cube variable v0
input bit positions set P1 of conditional cube variable v1

Output: relation of two conditional cube variables v0 and v1 set on P0 and P1 respec-
tively
flag=[0,0,0]
compute the 0.5-round output difference from the input difference set P0 (P1) as 1
and other input positions as 0, and store them in B0 (B1);
compute the 1.5-round output difference from the input difference set P0 (P1) as 1
and other input positions as 0, and store them in C0 (C1);
for each i ∈ [0, 63] do

for each j ∈ [0, 4] do
for each k ∈ [0, 4] do

if (B0[k][j][i] = 1, B1[k + 2][j][i] = 1)or (B0[k + 2][j][i] = 1, B1[k][j][i] = 1)
then

flag[0]=1; . Property 2.
end if
if (B0[k][j][i] = 1, B1[k + 1][j][i] = 1)or (B0[k + 1][j][i] = 1, B1[k][j][i] = 1)
then

flag[1]=1;
end if
if (C0[k][j][i] = 1, C1[k + 1][j][i] = 1)or (C0[k + 1][j][i] = 1, C1[k][j][i] = 1)
then

flag[2]=1;
end if

end for
end for

end for
if (flag[0]) then

return contradiction;
else if (flag[1]) then

return multiplied after the first round;
else if (flag[2]) then

return multiplied after the second round;
end if
return not multiplied by the second round;

4 Key Recovery Attack on Reduced-Round Keccak-MAC

In this section, we will use conditional cube tester to achieve the key recovery
attack against Keccak-MAC. Firstly, we discuss the general process for key re-
covery attack, including the attack process, complexity analysis and searching
the combination of conditional and ordinary cube variables. Then, condition-
al cube attacks will be applied on different variants of Keccak-MAC, including
Keccak-MAC-512, Keccak-MAC-384 and Keccak-MAC-224.
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4.1 General Process for Key Recovery Attack on Keccak-MAC

Given a cube tester with p conditional cube variables and q = 2n+1 − 2p + 1
ordinary cube variables (1 ≤ p ≤ 2n + 1), we could proceed key recovery attack
on (n + 2)-round Keccak-MAC. It is assumed that k0 equivalent key bits are
related to the bit conditions derived from conditional cube variables. The attack
process is described in the following.

Step 1. Fix the free variables with random values.
Step 2. Guess the value of k0 equivalent key bits.
Step 3. Calculate the values of conditional variables under the guessed values

of key bits.
Step 4. For all the possible value of cube variables, compute the corresponding

tag and sum all the 128-bit tags over (2n+1 − p+ 1)-dimension cube.
Step 5. If 128-bit cube sums over output tags are zero, the guessed key values

are probably the right candidate; otherwise, it’s the wrong guess and return
to Step 2.

After executing the above process one time, the values of k0 key bits could
be recovered. The process takes 22n+1−p+1 · 2k0 Keccak calls. To recover the
remaining 128− k0 key bits, we just shift the positions of all the cube variables
in the attack and repeat the process for 128/k0 times. The rotation of cube
variables will change the key bits in the bit conditions instead of the relations
between the cube variables. Therefore, both time and data complexity of the key
recovery attack is 1

k0
· 22n+1−p+k0+8. Thus, for a (n+ 2)-round conditional cube

attack, the complexity is determined by 1
k0
· 2k0−p. However, more conditional

cube variables involved in the attack will cause more key bits involved in the bit
conditions to be guessed. The number of conditional cube variables can not be
too large to make the attacks better. Thus, we use one conditional cube variable
and 2n+1 − 1 ordinary cube variables to construct an optimized key recovery
attack on Keccak-MAC.

If we choose A[2][0][0] = A[2][1][0] = v0 as the conditional cube variable,
there are only two equivalent key bits involved in the bit conditions (bit con-
dition is the relation between conditional variable, equivalent key bit and free
variables). But if we choose other positions to set the conditional cube variable,
the number of key bits involved in the bit conditions may be greater than t-
wo. Therefore, we choose A[2][0][0] = A[2][1][0] = v0 as the conditional cube
variable. Algorithm 4 will show how to find the corresponding ordinary cube
variables with the conditional cube variable A[2][0][0] = A[2][1][0] = v0.

Now, the cube tester has been constructed with v0 and 2n+1 − 1 ordinary
cube variables. With the cube tester, we can proceed the key recovery attack on
Keccak-MAC.

4.2 Key Recovery on 5/6/7-Round Keccak-MAC

Full key bits of 5-round Keccak-MAC-512 could be recovered with a conditional
cube variable and 15 ordinary cube variables. The block size of this version is
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Algorithm 4 Search the Ordinary Cube Variables along with the conditional
cube variable A[2][0][0] = A[2][1][0] = v0 for Keccak-MAC

Output: a combination of 2n+1 − 1 ordinary cube variable candidates;
1: m=#{ordinary cube variable candidates in bitrate part}
2: S = ∅
3: for each i ∈ [0,m− 1] do
4: proceed Algorithm 2 with v0 and the i-th ordinary cube variable candidate ui

as the input;
5: if Algorithm 2 returns ‘not multiplied by the second round’ then
6: S ← S ∪ {ui}
7: end if
8: end for
9: Choose the maximum number of variables in S which will not be multiplied with

each other after the first round and put these variables into T
10: return T

1600 − 2 · 512 = 576 bits. As described in Section 4.1, A[0][2][0]=A[1][2][0]=v0

is set to be the conditional cube variable and the corresponding ordinary cube
variables are shown in Table 5. The time and data complexity of this attack is
224, which could be done on a desktop in a few minutes.

As the instance shown next, the key is generated randomly. For the conve-
nience of statement, all the static variables is fixed to be zero, which could be
random in the attack. It can be seen that the right key can be easily distin-
guished.

128-bit key:
1110000100010100000101101001000101111111000000110010111001110101
1100011110001011110100011111111010000101011000000011000100100010
right value: k5 + k69 = 1, k60 = 0
guessed value:00, cube sum: 0xe93169ae5c86d086, 0xf6ec898c859bea1a
guessed value:01, cube sum: 0xc7d0bc36dc141c5e, 0x523a33c8753eb171
guessed value:10, cube sum: 0x0,0x0
guessed value:11, cube sum: 0x2ee1d5988092ccd8, 0xa4d6ba44f0a55b6b

Ordinary Cube Variables

A[2][0][8]=A[2][1][8]=v1, A[2][0][12]=A[2][1][12]=v2,
A[2][0][20]=A[2][1][20]=v3, A[2][0][28]=A[2][1][28]=v4,
A[2][0][41]=A[2][1][41]=v5, A[2][0][43]=A[2][1][43]=v6,
A[2][0][45]=A[2][1][45]=v7, A[2][0][53]=A[2][1][53]=v8,
A[2][0][62]=A[2][1][62]=v9, A[3][0][3]=A[3][1][3]=v10,
A[3][0][4]=A[3][1][4]=v11, A[3][0][9]=A[3][1][9]=v12,

A[3][0][13]=A[3][1][13]=v13, A[3][0][23]=A[3][1][23]=v14,
A[3][0][30]=A[3][1][30]=v15

Conditional Cube Variables A[2][0][0]=A[2][1][0]=v0

Bit Conditions

A[4][0][44]=0,
A[2][0][4]= k5 + k69 + A[0][1][5] + A[2][1][4] + 1,
A[2][0][59]= k60 + A[0][1][60] + A[2][1][59] + 1,

A[2][0][7]= A[4][0][6] + A[2][1][7] + A[3][1][7]
Guessed Key Bits k60, k5 + k69

Table 5. Parameters set for attack on 5-round Keccak-MAC-512
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For 6-round Keccak-MAC-384, one conditional cube variable and 31 ordi-
nary cube variables are used in conditional cube attack, which could recover full
128-bit key with 240 Keccak calls. We search the corresponding ordinary cube
variables with Algorithm 4. The parameters of this attack are shown in Table 9.
The process could be finished on a desktop with four i5 processors in a few days.
Similarly, we will show an instance for attacking 6-round Keccak-MAC-384. The
key is generated randomly and all the static variables is fixed to be zero.

128-bit key:
1111011111001001000111010010100111100011110001110111100100000010
0111000010010100010101110110111110100010101010001110111001100011
right value: k5 + k69 = 1, k60 = 0
guessed value:00, cube sum: 0x3f9d5fa4e143f779, 0x26607b3ce1c56f2b
guessed value:01, cube sum: 0x99bbf2ae6b93a7fb, 0xdbbb864fcc563747
guessed value:10, cube sum: 0x0,0x0
guessed value:11, cube sum: 0x398b37a846e81e42, 0x691cf4345e2164ee
For 7-round Keccak-MAC-256, conditional cube attack could recover full 128-

bit key with 272 Keccak calls with a cube of dimension 64. The parameters of
this attack are shown in Table 10.

5 Key Recovery Attacks on Reduced-Round Keyak

As the key recovery attack on Keyak in [9], we focus on the key recovery attack
on Keyak with two blocks of messages in Fig. 3. In this way, we can use the first
block as the input of the second permutation and the second block to get the
output of the second permutation. Besides, we also assume that the nonce could
be reused as [9]. Actually, the attack here is a state recovery attack. In Fig. 3,
we can get the value of X0, but the 256 bits in the capacity part are unknown
which are denoted as k ∈ F256

2 . We denote the i-th bit of k as ki(0 ≤ i ≤ 255).
If we can recover k, then we can get the master key by proceeding the inverse of
the first Keccak internal permutation.

During the attack, cube variables are set in P1 and P2 is fixed to zero and then
C2 is equal to the upper part of the output of Keccak internal permutation. The
attack process is almost the same as the general process introduced in Section
4.1 except for the bit conditions. Fortunately, conditional cube attack could be
extended by one more round forward without increasing the dimension of cube.
The size of Keyak output is 1344 bits. In this way, the operation χ of the last
round on the most significant 1280 bits could be reversed. The linear operations
of the final round would never increase the degree of output polynomials, which
guarantees the previous (n+2)-round cube tester could be hold for (n+3)-round
with the same cube dimension.

For 7-round Keyak, conditional cube attack could be built with the same cube
in Table 9 except for the bit conditions. The four bit conditions are shown in
Table 6. By shifting the positions of cube variables and repeating the attack for
192/4 = 48 times, three lanes of secret values, i.e. k0, · · · , k191 could be recovered
with 236 · 48 = 241.58 Keyak calls. The other lane of key bits could be recovered
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by changing the conditional cube variable to A[3][0][i] = A[3][1][i] = v0. Only
one key bit is involved in the bit conditions after recovering three lanes of secret
values. Recovering the remaining lane of secret values requires 233 · 26 = 239

Keyak calls. In total, the time complexity to recover the full 128-bit master key
is about 242 Keyak calls.

For 8-round Keyak, the cube variables in Table 10 will be used and the bit
conditions in the Table 6 will be applied. Similar as the attack on 7-round Keyak,
the data and time complexity for 8-round attack is 274. Note that the memory
complexity for both attacks could be neglected.

Bit conditions for 8(7)-round Keyak

A[4][0][44]=k169 (+A[4][1][44]) + A[2][2][45]
+ A[3][2][45] + A[4][2][44] + A[2][3][45] + A[4][3][44],
A[0][0][5]= k128 + A[1][0][5] + A[2][0][4] + A[0][1][5]

+ A[2][1][4] + A[0][2][5] + A[2][2][4] + A[0][3][5]
+ A[2][3][4] + A[0][4][5] + 1,

A[0][0][60]= k56 + k183 + A[2][0][59] + A[0][1][60]
+ A[2][1][59] + A[0][2][60] + A[2][2][59] + A[0][3][60]

+ A[2][3][59]+ A[0][4][60] + 1,
A[2][0][7]= k131 + A[4][0][6] + A[2][1][7] + A[3][1][7]

+ A[4][1][6] + A[2][2][7]+ A[4][2][6] + A[2][3][7]
+ A[4][3][6]

Guessed Key Bits k169, k128, k56 + k183, k131

Table 6. Parameters for attacking 7-round and 8-round Keyak

6 Distinguishing Attacks on Keccak Sponge Function

In this section, conditional cube tester will be applied to proceed the distin-
guishing attacks on Keccak sponge function with the practical complexity. From
Theorem 2, if we use 2n + 1 conditional cube variables under the three require-
ments, the monomial including such 2n + 1 conditional cube variables will not
appear in the output polynomials of (n + 2)-round Keccak sponge function.
That’s to say, the dimension of the cube to distinguish (n+ 2)-round Keccak is
reduced to 2n + 1.

Constructing the cube tester includes two parts:

– Find a combination of enough conditional cube variables, which do not get
multiplied with each other after the second round;

– Derive the corresponding bit conditions for the chosen conditional cube vari-
ables.

6.1 Constructing Conditional Cube Tester with MILP

In this section, a new model will be introduced to find a combination of enough
conditional cube variables, which can be regarded as a mixed integer linear
programming (MILP) problem. The MILP problem has been also applied to
find the best differential characteristic in [20].
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In this new model, a variable xi ∈ F2, 1 ≤ i ≤ m is set for each conditional
cube variable candidate. If xi = 1, it means that the i-th conditional cube
variable candidate is selected as a conditional cube variable; otherwise, it is not
chosen. To find enough conditional cube variables, we need to find the assignment
X = {(x1, x2, . . . , xm)|xi ∈ F2, 1 ≤ i ≤ m} of hamming weight larger than 2n+1.
From previous analysis, we know that some conditional cube variables could not
be selected together. So we firstly deduce the constrains on X. It will be shown
how to deduce the constrains in Algorithm 5.

Algorithm 5 Deduce Constrains on X

Input: m conditional cube variable candidates;
Output: A set F of constrains on X
1: F = ∅
2: for each i ∈ [1,m− 1] do
3: for each j ∈ [i+ 1,m] do
4: proceed Algorithm 3 on the i-th and the j-th conditional cube variables;
5: if Algorithm 3 does not return ‘Not Multiplied after the Second Round’ then
6: F ← F ∪ {xi + xj ≤ 1}
7: end if
8: end for
9: end for

10: return F

With the constrains F , the selection problem for conditional cube variables
is modeled into a binary linear programming problem as follow:

m∑
i=1

xi ≥ 2n + 1

s.t.A0X ≤ b,X = {(x1, x2, . . . , xm)|xi ∈ F2, 1 ≤ i ≤ m}

where A0 is a binary matrix and b a binary vector based on the inequalities in
set F in Algorithm 5. Although MILP is proved to be NP-hard, fortunately a
programming solver, Gurobi Optimizer [21], could solve certain instances based
on branch and cut algorithm. We use Gurobi to solve this model directly.

Now the combination of enough conditional cube variables have been found.
Next, we will proceed the distinguishing attacks on Keccak sponge function by
deriving the corresponding conditions for the chosen conditional cube variables.

6.2 Distinguishing Attack on Keccak-512 and Keccak-384

Conditional cube variables candidates in one slice for Keccak-512 are set to color-
ful bit positions in Fig. 7. There are 256 such candidates in 64 slices. We execute
Algorithm 5 to deduce all the constrains for the 256 conditional cube variable
candidates and solve the problem with Gurobi Optimizer [21]. A combination
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Fig. 7. Conditional cube variable candidates in a slice for Keccak-512

of 9 conditional cube variables has been found, with which we can construct a
5-round conditional cube tester. As long as the conditions are satisfied, the alge-
braic degree of output polynomial of 5-round Keccak-512 is 8 at most. Therefore,
the cube sum of 5-round Keccak-512 output is zero. The most significant 320 bits
of Keccak-512 output could be reversed, which wins the distinguishing attack
one more round without increasing the complexity. The time complexity for the
distinguishing attack on 6-round Keccak-512 with the conditional cube tester is
29 Keccak calls and the data complexity is 29. Similarly, we find a combination
of 17 conditional cube variables for Keccak-384 which can be used to construc-
t a 7-round conditional cube tester. We proceed the distinguishing attack on
7-round Keccak-384 with the complexity 217.

The conditions for these two conditional cube tester are shown in Table 11
and Table 12.

6.3 Distinguishing Attack on Keccak-224

The same process could be done with the conditional cube variables candidates
in 2-2-22 pattern. But the searching problem is too difficult to solve, where 1536
conditional cube variable candidates should be considered. Therefore, the condi-
tional cube candidates are turned to be the ones in double kernel pattern, which
means if the conditions are satisfied, propagation of the variable is invariant to
the operation θ in the second round.

The four differential characteristics in double kernel pattern are shown in
Table 7 presented by hexadecimal numbers. We use ‘-’ to denote zero difference
and δ0 is the input difference, δ1 is the input difference of the second round and
δ1.5 is the output difference after 1.5 rounds Keccak. The first two differential
characteristics are found in [8] in 6-6-6 pattern and the other two are found with
the method introduced in [7] in 8-8-8 pattern. For example, a conditional cube
variable could be set as

A[0][0][0]=A[0][1][0]=A[2][1][30]=A[2][2][30]= A[1][0][63]=A[1][2][63]=v0.

This variable only impacts 6 bits after 1.5 round, which reduces the possibili-
ties for the conditional cube variables to multiply with each other. We proceed
Algorithm 5 on these 256 conditional cube variable candidates. The problem is
solved by Gurobi and a combination of 30 conditional cube variables has been
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NO δi Differential

0 δ0 - - - - - - - - - - - - - - - 1 8- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - 4- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - 8- - - - - - - - - - - - - - - - - - - - - - - 4- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 δ1 - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - 1 - - - - - - 1- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - - - - 2- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 δ1.5 - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 δ0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - -
- - - - - - - - - - - 8 - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 δ1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 δ1.5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - 1 - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - -

2 δ0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - -
- - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - -
- - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2 δ1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - 2 - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - 2 - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - -

2 δ1.5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - 4 - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - -
- - - - - - - - - - - - - 8 - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - -

3 δ0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - -
- - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

3 δ1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - 2 - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

3 δ1.5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - 4 - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - 2 - - - - - - - - - - -

Table 7. The four equivalent classes of conditional cube variables



24 Senyang Huang, Meiqin Wang, Xiaoyun Wang, Jingyuan Zhao

found, which never get multiplied with each other after the second round. Three
conditional cube variables in 2-2-22 pattern are appended with the combination.
A 7-round cube tester on Keccak-224 is produced. These 33 conditional cube
variables are independent.

Time complexity of this distinguishing attack is 233. Memory complexity is
neglectable. This distinguishing attack could be done on a desktop in hours.
These conditional cube variables are shown in Table 13. The conditions could be
derived exactly from the conditional cube variables. Due to the limited space,
we list the conditions in the auxiliary supporting material.

7 Conclusion

In this paper, we propose the conditional cube tester for Keccak sponge function
which has smaller dimension compared with the original cube tester in some
cases. Using the conditional cube tester, we improve the previous key recovery
attacks on Keccak-MAC and Keyak in terms of the number of rounds or the
complexity. Moreover, the improved distinguishing attacks on Keccak sponge
function have been provided in this paper based on the conditional cube tester.
Note that our proposed conditional cube tester could be used for Keccak-like
cryptosystems.

References

1. Bertoni Guido, Daemen Joan, Peeters Michaël, and Gilles Van Assche. Kec-
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0 1 62 28 27
36 44 6 55 20
3 10 43 25 39
41 45 15 21 8
18 2 61 56 14

Table 8. offsets r[x,y] in operation ρ
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Ordinary Cube Variables

A[2][0][12]=A[2][1][12]=v1, A[2][0][20]=A[2][1][20]=v2,
A[2][0][28]=A[2][1][28]=v3, A[2][0][41]=A[2][1][41]=v4,
A[2][0][43]=A[2][1][43]=v5, A[2][0][45]=A[2][1][45]=v6,
A[2][0][53]=A[2][1][53]=v7, A[2][0][61]=A[2][1][61]=v8,
A[2][0][62]=A[2][1][62]=v9, A[3][0][3]=A[3][1][3]=v10,
A[3][0][9]=A[3][1][9]=v11, A[3][0][13]=A[3][1][13]=v12,

A[3][0][15]=A[3][1][15]=v13, A[3][0][23]=A[3][1][23]=v14,
A[3][0][30]=A[3][1][30]=v15, A[3][0][40]=A[3][1][40]=v16,
A[3][0][46]=A[3][1][46]=v17, A[3][0][56]=A[3][1][56]=v18,
A[3][0][57]=A[3][1][57]=v19, A[4][0][5]=A[4][1][5]=v20,

A[4][0][10]=A[4][1][10]=v21, A[4][0][12]=A[4][1][12]=v22,
A[4][0][14]=A[4][1][14]=v23, A[4][0][47]=A[4][1][47]=v24,
A[4][0][58]=A[4][1][58]=v25, A[4][0][62]=A[4][1][62]=v26,
A[4][0][63]=A[4][1][63]=v27, A[0][1][28]=A[0][2][28]=v28,
A[0][1][34]=A[0][2][34]=v29, A[0][1][37]=A[0][2][37]=v30,

A[0][1][46]=A[0][2][46]=v31

Conditional Cube Variables A[2][0][0]=A[2][1][0]=v0

Bit Conditions

A[4][0][44]= A[4][1][44] + A[2][2][45],
A[2][0][4]= k5 + k69 + A[0][1][5] + A[2][1][4] + A[0][2][5] + A[2][2][4] + 1,
A[2][0][59]= k60 + A[0][1][60] + A[2][1][59] + A[0][2][60] + A[2][2][59] + 1,

A[2][0][7]= A[4][0][6] + A[2][1][7] + A[4][1][6] + A[2][2][7] + A[3][1][7].
Guessed Key Bits k60, k5 + k69

Table 9. Parameters set for attack on 6-round Keccak-MAC-384
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Ordinary Cube Variables

A[2][0][8]=A[2][1][8]=v1, A[2][0][12]=A[2][1][12]=v2,
A[2][0][20]=A[2][1][20]=v3, A[2][0][28]=A[2][1][28]=v4,
A[2][0][41]=A[2][1][41]=v5, A[2][0][43]=A[2][1][43]=v6,
A[2][0][45]=A[2][1][45]=v7, A[2][0][53]=A[2][1][53]=v8,
A[2][0][62]=A[2][1][62]=v9, A[3][0][3]=A[3][1][3]=v10,
A[3][0][9]=A[3][1][9]=v11, A[3][0][13]=A[3][1][13]=v12,

A[3][0][30]=A[3][1][30]=v13, A[3][0][40]=A[3][1][40]=v14,
A[3][0][46]=A[3][1][46]=v15, A[3][0][56]=A[3][1][56]=v16,
A[4][0][5]=A[4][1][5]=v17, A[4][0][10]=A[4][1][10]=v18,

A[4][0][12]=A[4][1][12]=v19, A[4][0][14]=A[4][1][14]=v20,
A[4][0][31]=A[4][1][31]=v21, A[4][0][47]=A[4][1][47]=v22,
A[4][0][58]=A[4][1][58]=v23, A[4][0][62]=A[4][1][62]=v24,
A[4][0][63]=A[4][1][63]=v25, A[0][1][37]=A[0][2][37]=v26,
A[0][1][47]=v27, A[0][2][47]=v27+v28, A[0][3][47]=v28,

A[0][1][46]=A[0][2][46]=v29, A[0][1][59]=A[0][2][59]=v30,
A[1][1][7]=A[1][2][7]=v31, A[1][1][15]=A[1][2][15]=v32,

A[1][1][20]=A[1][2][20]=v33, A[1][1][26]=A[1][2][26]=v34,
A[1][1][30]=A[1][2][30]=v35, A[1][1][38]=A[1][2][38]=v36,
A[1][1][39]=A[1][2][39]=v37, A[1][1][40]=A[1][2][40]=v38,
A[1][1][52]=A[1][2][52]=v39, A[1][1][54]=A[1][2][54]=v40,
A[2][1][11]=A[2][2][11]=v41, A[2][1][15]=A[2][2][15]=v42,
A[2][1][19]=A[2][2][19]=v43, A[2][1][24]=A[2][2][24]=v44,
A[2][1][52]=A[2][2][52]=v45, A[2][1][58]=A[2][2][58]=v46,
A[2][1][61]=A[2][2][61]=v47, A[3][1][23]=A[3][2][23]=v48,
A[3][1][29]=A[3][2][29]=v49, A[3][1][58]=A[3][2][58]=v50,
A[4][1][1]=A[4][2][1]=v51, A[4][1][28]=A[4][2][28]=v52,

A[4][1][44]=A[4][2][44]=v53, A[4][1][50]=A[4][2][50]=v54,
A[4][1][61]=A[4][2][61]=v55, A[0][2][17]=A[0][3][17]=v56,
A[0][2][28]=A[0][3][28]=v57, A[0][2][34]=A[0][3][34]=v58,
A[0][2][56]=A[0][3][56]=v59, A[1][2][44]=A[1][3][44]=v60,
A[1][2][49]=A[1][3][49]=v61, A[1][2][57]=A[1][3][57]=v62,

A[2][0][5]=A[2][2][5]=v63
Conditional Cube Variables A[2][0][0]=A[2][1][0]=v0

Bit Conditions

A[4][0][44]= A[2][2][45] + A[3][2][45],
A[2][0][4]= k5 + k69 + A[0][1][5] + A[2][1][4]

+ A[0][2][5] + A[2][2][4] + A[0][3][5] + 1,
A[2][0][59]= k60 + A[0][1][60] + A[2][1][59] + A[0][2][60]

+ A[2][2][59] + A[0][3][60] + 1,
A[2][0][7]= A[3][1][7] + A[4][1][6] + A[2][1][7] + A[4][1][6]

+A[2][2][7] + A[4][2][6]
Guessed Key Bits k60, k5 + k69

Table 10. Parameters set for attack on 7-round Keccak-MAC-256
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Conditional Cube Variables
A[2][0][0]=A[2][1][0]=v0, A[2][0][1]=A[2][1][1]=v1,A[2][0][2]=A[2][1][2]=v2,

A[2][0][3]=A[2][1][3]=v3,A[2][0][22]=A[2][1][22]=v4, A[2][0][23]=A[2][1][23]=v5,
A[2][0][44]=A[2][1][44]=v6, A[2][0][45]=A[2][1][45]=v7,A[3][0][15]=A[3][1][15]=v8

Bit Conditions

A[2][0][4]= A[0][0][5]+ A[1][0][5]+ A[0][1][5]+ A[2][1][4]+ 1,
A[2][0][5]= A[0][0][6]+ A[1][0][6]+ A[0][1][6]+ A[2][1][5]+ 1,
A[2][0][6]= A[0][0][7]+ A[1][0][7]+ A[0][1][7]+ A[2][1][6]+ 1,
A[2][0][7]= A[0][0][8]+ A[1][0][8]+ A[0][1][8]+ A[2][1][7]+ 1,

A[2][0][8]= A[4][0][7]+ A[2][1][8]+ A[3][1][8],
A[2][0][9]= A[4][0][8]+ A[2][1][9]+ A[3][1][9],

A[2][0][10]= A[4][0][9]+ A[2][1][10]+ A[3][1][10],
A[2][0][17]= A[0][0][18]+ A[0][1][18]+ A[2][1][17]+ 1,

A[2][0][25]= A[4][0][24]+ A[2][1][25],
A[2][0][26]= A[0][0][27]+ A[1][0][27]+ A[0][1][27]+ A[2][1][26]+ 1,
A[2][0][27]= A[0][0][28]+ A[1][0][28]+ A[0][1][28]+ A[2][1][27]+ 1,

A[2][0][29]= A[4][0][28]+ A[2][1][29]+ A[3][1][29],
A[2][0][30]= A[4][0][29]+ A[2][1][30]+ A[3][1][30],

A[2][0][40]= A[0][0][41]+ A[0][1][41]+ A[2][1][40]+ 1,
A[2][0][46]= A[4][0][45]+ A[2][1][46],
A[2][0][47]= A[4][0][46]+ A[2][1][47],
A[2][0][48]= A[4][0][47]+ A[2][1][48],

A[2][0][49]= A[0][0][50]+ A[1][0][50]+ A[0][1][50]+ A[2][1][49]+ 1,
A[2][0][51]= A[4][0][50]+ A[2][1][51]+ A[3][1][51],
A[2][0][52]= A[4][0][51]+ A[2][1][52]+ A[3][1][52],

A[2][0][59]= A[0][0][60]+ A[0][1][60]+ A[2][1][59]+ 1,
A[2][0][60]= A[0][0][61]+ A[0][1][61]+ A[2][1][60]+ 1,
A[2][0][61]= A[0][0][62]+ A[0][1][62]+ A[2][1][61]+ 1,
A[2][0][62]= A[0][0][63]+ A[0][1][63]+ A[2][1][62]+ 1,

A[3][0][23]= A[0][0][22]+ A[0][1][22]+ A[3][1][23],
A[3][0][31]= A[0][0][30]+ A[0][1][30]+ A[3][1][31],

A[3][0][45]= A[1][0][46]+ A[1][1][46]+ A[3][1][45]+ 1,
A[4][0][3]= A[0][0][5]+ A[1][0][5]+ A[0][1][5]+ 1,

A[4][0][6]= A[0][0][8]+ A[1][0][8]+ A[0][1][8]+ A[3][1][7]+ 1,
A[4][0][25]= A[0][0][27]+ A[1][0][27]+ A[0][1][27]+ 1,
A[0][1][49]= A[0][0][49]+ A[1][0][49]+ A[4][0][47]+ 1,

A[4][0][44]=0, A[4][0][2] = 1.

Table 11. Conditions to distinguish Keccak-512
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Conditional Cube Variables

A[0][0][14]=A[0][1][14]=v0, A[2][0][23]=A[2][1][23]=v1,A[2][0][24]=A[2][1][24]=v2,
A[2][0][43]=A[2][1][43]=v3, A[2][0][44]=v4, A[2][1][44]=v4+v5, A[2][2][44]=v5,

A[3][0][56]=A[3][1][56]=v6, A[3][0][58]=A[3][1][58]=v7, A[0][1][57]=A[0][2][57]=v8,
A[0][1][58]=A[0][2][58]=v9, A[1][1][49]=A[1][2][49]=v10, A[1][1][50]=A[1][2][50]=v11,
A[2][1][41]=A[2][2][41]=v12, A[0][0][20]=A[0][2][20]=v13, A[1][0][13]=A[1][2][13]=v14,

A[2][0][0]=A[2][2][0]=v15, A[2][0][16]=A[2][2][16]=v16

Bit Conditions

A[0][0][1]= A[3][0][2]+ A[0][1][1]+ A[3][1][2]+ A[4][1][2]+ A[0][2][1]
A[0][0][2]= A[3][0][3]+ A[0][1][2]+ A[3][1][3]+ A[4][1][3]+ A[0][2][2]+ 1

A[0][0][5]= A[3][0][6]+ A[0][1][5]+ A[3][1][6]+ A[0][2][5]+ 1
A[0][0][7]= A[3][0][8]+ A[0][1][7]+ A[3][1][8]+ A[0][2][7]

A[0][0][9]= A[3][0][10]+ A[0][1][9]+ A[3][1][10]+ A[0][2][9]
A[0][0][12]= A[2][0][11]+ A[0][1][12]+ A[2][1][11]+ A[0][2][12]+ A[2][2][11]+ 1

A[0][0][15]= A[2][0][14]+ A[0][1][15]+ A[2][1][14]+ A[0][2][15]+ A[2][2][14]
A[0][0][16]= A[2][0][15]+ A[0][1][16]+ A[2][1][15]+ A[0][2][16]+ A[2][2][15]

A[0][0][19]= A[2][0][18]+ A[0][1][19]+ A[2][1][18]+ A[0][2][19]+ A[2][2][18]+ 1
A[0][0][22]= A[3][0][23]+ A[0][1][22]+ A[3][1][23]+ A[4][1][23]+ A[0][2][22]+ A[2][2][24]+ 1

A[0][0][28]= A[1][0][29]+ A[2][0][27]+ A[2][0][28]
+ A[4][0][29]+ A[0][1][28]+ A[0][1][29]+ A[1][1][28]+ A[2][1][27]+ A[2][1][28]

+ A[4][1][29]+ A[0][2][28]+ A[0][2][29]+ A[1][2][28]+ A[2][2][27]+ A[2][2][28]+ 1
A[0][0][29]= A[1][0][29]+ A[2][0][28]+ A[0][1][29]+ A[2][1][28]+ A[0][2][29]+ A[2][2][28]+ 1

A[0][0][30]= A[1][0][29]+ A[4][0][30]+ A[1][1][29]+ A[4][1][30]+ A[1][2][29]+ 1
A[0][0][34]= A[2][0][33]+ A[0][1][34]+ A[1][1][34]+ A[2][1][33]+ A[0][2][34]+ A[2][2][33]

A[0][0][39]= A[4][0][37]+ A[0][1][39]+ A[4][1][37]+ A[0][2][39]+ 1
A[0][0][40]= A[3][0][41]+ A[0][1][40]+ A[3][1][41]+ A[4][1][41]+ A[0][2][40]+ 1

A[0][0][42]= A[2][0][41]+ A[0][1][42]+ A[0][2][42]
A[0][0][43]= A[2][0][42]+ A[0][1][43]+ A[1][1][43]+ A[2][1][42]+ A[0][2][43]+ A[2][2][42]+ 1
A[0][0][46]= A[1][2][46]+ A[2][0][45]+ A[0][1][46]+ A[2][1][45]+ A[0][2][46]+ A[2][2][45]+ 1
A[0][0][48]= A[1][0][48]+ A[2][0][47]+ A[0][1][48]+ A[2][1][47]+ A[0][2][48]+ A[2][2][47]+ 1

A[0][0][49]= A[2][0][48]+ A[2][0][49]+ A[3][0][48]+ A[0][1][49]+ A[2][1][48]
+ A[3][1][48]+ A[0][2][49]+ A[2][2][48]

A[0][0][60]= A[2][0][59]+ A[0][1][60]+ A[2][1][59]+ A[0][1][60]+ A[2][2][59]+ 1
A[0][0][63]= A[3][0][0]+ A[0][1][63]+ A[3][1][0]+ A[0][2][63]+ 1

A[1][0][8]= A[3][0][7]+ A[1][1][8]+ A[3][1][7]+ A[1][2][8]
A[1][0][22]= A[0][1][23]+ A[1][1][22]+ A[1][2][22]+ A[2][2][24]+ 1

A[1][0][23]= A[4][0][24]+ A[0][1][24]+ A[1][1][23]+ A[4][1][24]+ A[1][2][23]+ 1
A[1][0][25]= A[3][0][24]+ A[1][1][25]+ A[3][1][24]+ A[1][2][25]+ 1

A[1][0][28]= A[1][0][29]+ A[2][0][28]+ A[4][0][29]+ A[0][1][29]+ A[1][1][28]+
A[2][1][28]+ A[4][1][29]+ A[0][2][29]+ A[1][2][28]+ A[2][2][28]
A[1][0][44]= A[3][0][43]+ A[1][1][44]+ A[3][1][43]+ A[1][2][44]
A[1][0][45]= A[3][0][44]+ A[1][1][45]+ A[3][1][44]+ A[1][2][45]

A[1][0][49]= A[2][0][49]+ A[3][0][48]+ A[3][1][48]+ 1
A[1][0][50]= A[4][0][51]+ A[0][1][51]+ A[4][4][51]+ 1

A[1][0][51]= A[3][0][50]+ A[1][1][51]+ A[3][1][50]+ A[1][2][51]+ A[2][2][51]
A[1][0][59]= A[4][0][60]+ A[1][1][59]+ A[4][1][60]+ A[1][2][59]

A[2][0][2]= A[4][0][1]+ A[2][1][2]+ A[4][1][1]+ A[2][2][2]
A[2][0][4]= A[2][1][4]+ A[2][2][4]

A[2][0][5]= A[4][0][4]+ A[2][1][5]+ A[4][1][4]+ A[2][2][5]
A[2][0][7]= A[4][0][6]+ A[2][1][7]+ A[3][1][7]+ A[4][1][6]+ A[2][2][7]

A[2][0][22]= A[4][0][21]+ A[2][1][22]+ A[4][1][21]+ A[2][2][22]
A[2][0][25]= A[4][0][24]+ A[2][1][25]+ A[4][0][24]+ A[2][2][25]

A[2][0][30]= A[4][0][29]+ A[2][1][30]+ A[3][1][30]+ A[4][1][29]+ A[2][2][30]
A[2][0][31]= A[4][0][30]+ A[2][1][31]+ A[3][1][31]+ A[4][1][30]+ A[2][2][31]

A[2][0][38]= A[4][0][37]+ A[2][1][38]+ A[4][1][37]+ A[2][2][38]
A[2][0][39]= A[3][0][41]+ A[2][1][39]+ A[3][1][41]+ A[4][1][41]+ A[2][2][39]
A[2][0][50]= A[4][0][49]+ A[2][1][50]+ A[3][1][50]+ A[4][1][49]+ A[2][2][50]

A[2][0][51]= A[2][2][51]+ 1
A[2][0][62]= A[3][0][0]+ A[1][1][63]+ A[2][1][62]+ A[3][1][0]+ A[2][2][62]

A[2][0][63]= A[4][0][62]+ A[2][1][63]+ A[4][1][62]+ A[2][2][63]
A[3][0][22]= A[4][0][24]+ A[0][1][24]+ A[3][1][22]+ A[4][1][24]
A[3][0][40]= A[4][0][37]+ A[3][1][40]+ A[4][1][37]+ A[4][1][40]

A[3][0][49]= A[4][0][51]+ A[0][1][51]+ A[3][1][49]+ A[4][1][51]+ A[2][2][50]+ 1
A[4][0][2]= A[4][1][2]+ 1

A[4][0][22]= A[3][1][23]+ A[4][1][22]+ A[2][2][23]
A[4][0][23]= A[4][1][23]+ A[2][2][24]

A[4][0][50]= A[2][1][51]+ A[3][1][51]+ A[4][1][50]+ 1
A[0][1][20]= A[2][0][19]+ A[2][1][19]+ A[2][2][19]+ 1

A[1][2][40]= 1 A[4][1][0]= 1 A[1][2][19]= 1
A[1][2][20]= 1 A[1][1][40]= 1 A[2][1][8]= 0 A[1][1][15]= 1

Table 12. Conditions to Distinguish Keccak-384
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Conditional Cube Variables
A[0][0][3]=A[1][2][2]=v0, A[0][1][3]=A[2][1][33]=A[2][2][33]=v0+v25, A[1][0][2]=v0+v17,

A[0][0][6]=A[1][0][5]=A[1][2][5]=v1, A[0][1][6]=A[2][1][36]=A[2][2][36]=v1+v17,
A[0][0][9]=A[0][1][9]=A[2][1][39]=A[2][2][39]=A[1][0][8]=A[1][2][8]=v2,

A[0][0][11]=A[1][0][10]=v3, A[0][1][11]=A[2][1][41]=A[2][2][41]=v3+v18, A[1][2][10]=v3+v16,
A[0][0][14]=A[2][1][44]=A[2][2][44]=A[1][0][13]=A[1][2][13]=v4, A[0][1][14]=v4+v16+v26,

A[0][0][16]=v5, A[0][1][16]=A[2][1][46]=A[2][2][46]=v5+v19, A[1][0][15]=v5+v20+v27, A[1][2][15]=v5+v27,
A[0][0][19]=A[1][0][18]=A[1][2][18]=v6, A[0][1][19]=A[2][1][49]=A[2][2][49]=v6+v20,

A[0][0][21]=A[0][1][21]=A[2][1][51]=A[2][2][51]=v7, A[1][0][20]=v7+v21+v28, A[1][2][20]=v7+v28,
A[0][0][22]=A[2][1][52]=A[2][2][52]=A[1][0][21]=v8, A[0][1][22]=A[1][2][21]=v8+v14,
A[0][0][24]=A[1][0][23]=A[1][2][23]=v9, A[0][1][24]=A[2][1][54]=A[2][2][54]=v9+v21,

A[0][0][27]=A[2][1][57]=A[2][2][57]=A[1][0][26]=A[1][2][26]=v10, A[0][1][27]=v10+v28,
A[0][0][29]=A[1][0][28]=v11, A[0][1][29]=A[2][1][59]=A[2][2][59]=v11+v22, A[1][2][28]=v11+v15,

A[0][1][32]=v12+v15+v29, A[0][0][32]=A[2][1][62]=A[2][2][62]=A[1][0][31]=A[1][2][31]=v12,
A[0][0][62]=A[1][2][61]=v13, A[0][1][62]=A[2][1][28]=A[2][2][28]=v13+v23, A[1][0][61]=v13+v24,

A[3][1][6]=A[3][2][6]=A[1][3][21]=A[0][1][25]=A[0][3][25]=v14,
A[3][1][13]=A[3][2][13]=v15+v29, A[1][3][28]=A[0][3][32]=v15,
A[3][1][59]=A[3][2][59]=v16+v26, A[1][3][10]=A[0][3][14]=v16

A[1][3][2]=A[4][0][40]=A[4][2][40]=A[0][3][6]=v17,
A[1][0][7]=A[4][0][45]=A[4][2][45]=v18+v26, A[1][3][7]=A[0][3][11]=v18

A[1][0][12]=A[1][3][12]=A[4][0][50]=A[4][2][50]=A[0][3][16]=v19,
A[1][3][15]=A[0][3][19]=v20, A[4][0][53]=A[4][2][53]=v20+v27,
A[1][3][20]=A[0][3][24]=v21, A[4][0][58]=A[4][2][58]=v21+v28,

A[1][0][25]=A[4][0][63]=A[4][2][63]=v22+v29, A[1][3][25]=A[0][3][29]=v22,
A[1][0][58]=A[1][3][58]=A[4][0][32]=A[4][2][32]=A[0][3][62]=v23,

A[1][3][61]=A[4][0][35]=A[4][2][35]=A[0][1][1]=A[0][3][1]=A[2][1][31]=A[2][2][31]=v24,
A[1][0][63]=A[1][3][63]=A[4][0][37]=A[4][2][37]=A[0][3][3]=v25,

A[1][2][7]=A[0][2][14]=v26, A[0][2][22]=A[3][1][3]=A[3][2][3]=v27
A[0][2][27]=A[3][1][8]=A[3][2][8]=v28, A[1][2][25]=A[0][2][32]=v29, A[2][0][55]=A[2][1][55]=v30

A[0][2][60]=A[0][3][60]=v31, A[0][1][37]=A[0][3][37]=v32

Table 13. Conditional Cube Variables to Distinguish Keccak-224


