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Abstract. Key-homomorphic properties of cryptographic objects have
proven to be useful, both from a theoretical as well as a practical perspec-
tive. Important cryptographic objects such as pseudorandom functions
or (public key) encryption have been studied previously with respect to
key-homomorphisms. Interestingly, however, signature schemes have not
been explicitly investigated in this context so far.

We close this gap and initiate the study of key-homomorphic signa-
tures, which turns out to be an interesting and versatile concept. In do-
ing so, we firstly propose a definitional framework for key-homomorphic
signatures distilling various natural flavours of key-homomorphic prop-
erties. Those properties aim to generalize larger classes of existing signa-
ture schemes, which makes it possible to infer general statements about
signature schemes from those classes by simply making black-box usage
of the respective properties. We then employ our definitional framework
to show elegant and simple compilers from classes of schemes satisfying
different types of key-homomorphisms to a number of other interesting
primitives such as ring signature schemes, (universal) designated verifier
signature schemes and multisignature schemes.

Moreover, we introduce the notion of multikey-homomorphic signa-
tures. Such schemes provide homomorphic properties on the message
space of signatures under different keys. We discuss key-homomorphisms
in this context and present some first constructive results from key-
homomorphic schemes. Finally, we discuss some interesting open prob-
lems and an application of multikey-homomorphic schemes to verifiable
delegation of computations.

Keywords. key-homomorphic signatures · ring signatures · (universal)
designated verifier signatures · multisignatures · multikey-homomorphic
signatures

1 Introduction

The design of cryptographic schemes that possess certain homomorphic prop-
erties on their message space has witnessed significant research within the last
years. In the domain of encryption, the first candidate construction of fully ho-
momorphic encryption (FHE) due to Gentry [Gen09] has initiated a fruitful
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area of research with important applications to computations on (outsourced)
encrypted data. In the domain of signatures, the line of work on homomorphic
signatures [JMSW02], i.e., signatures that are homomorphic with respect to the
message space, has only quite recently attracted attention. Firstly, due to the
introduction of computing on authenticated data [ABC+12]. Secondly, due to
the growing interest in the application to verifiable delegation of computations
(cf. [Cat14] for a quite recent overview), and, finally, due to the recent construc-
tion of fully homomorphic signatures [GVW15, BFS14].

In this paper we are interested in another type of homomorphic schemes, so
called key-homomorphic schemes. Specifically, we study key-homomorphic sig-
nature schemes, that is, signature schemes which are homomorphic with respect
to the key space. As we will show in this paper, this concept turns out to be a
very interesting and versatile tool.

Previous Work. While we are the first to explicitly study key-homomorphic
properties of signatures, some other primitives have already been studied with
respect to key-homomorphic properties previously. Applebaum et al. in [AHI11]
studied key-homomorphic symmetric encryption schemes in context of related
key attacks (RKAs). Recently, Dodis et al. [DMS16] have shown that any such
key-homomorphic symmetric encryption schemes implies public key encryption.
Rothblum [Rot11] implicitly uses key malleability to construct (weakly) homo-
morphic public key bit-encryption schemes from private key ones. Goldwasser
et al. in [GLW12], and subsequently Tessaro and Wilson in [TW14], use pub-
lic key encryption schemes with linear homomorphisms over their keys (and
some related properties) to construct bounded-collusion identity-based encryp-
tion (IBE). Recently, Boneh et al. introduced the most general notion of fully
key-homomorphic encryption [BGG+14]. In such a scheme, when given a cipher-
text under a public key pk, anyone can translate it into a ciphertext to the same
plaintext under public key (f(pk), f) for any efficiently computable function f .

Another line of work recently initiated by Boneh et al. [BLMR13] is con-
cerned with key-homomorphic pseudorandom functions (PRFs) and pseudo ran-
dom generators (PRGs). Loosely speaking, a secure PRF family F : K×X → Y,
is key-homomorphic if the keys live in a group (K,+), and, given two evaluations
F (k1, x) and F (k2, x) for the same value under two keys, one can efficiently com-
pute F (k1 + k2, x). Such PRFs turn out to yield interesting applications such
as distributed PRFs, symmetric key proxy re-encryption or updatable encryp-
tion. Continuing the work in this direction, alternative constructions [BP14] and
extended functionality in the form of constrained key-homomorphic PRFs have
been proposed [BFP+15]. We note that the result from Dodis et al. [DMS16],
although not mentioned, answers the open question posed by Boneh et al.
[BLMR13] “whether key-homomorphic PRFs whose performance is comparable
to real-world block ciphers such as AES exist” in a negative way.

When switching to the field of signatures, we can define key-homomorphisms
in various different ways, of which we subsequently sketch two to provide a
first intuition. One notion is to require that given two signatures for the same
message m valid under some pk1 and pk2 respectively, one can publicly compute
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a signature to message m that is valid for a public key pk′ that is obtained via
some operation on pk1 and pk2. Another variant for instance is to require that,
given a signature σ to a message m that verifies under pk, σ can be adapted to
a signature to m under pk′. Thereby, pk and pk′ have a well defined relationship
(cf. Section 3 for the details).

Although key-homomorphic signatures have never been discussed or stud-
ied explicitly, some implicit use of key-homomorphisms can be found. A re-
cent work by Kiltz et al. [KMP16] introduces a property for canonical iden-
tification schemes denoted as random self-reducibility. This basically formal-
izes the re-randomization of key-pairs as well as adapting parts of transcripts
of identification protocols consistently. Earlier, Fischlin and Fleischhacker in
[FF13] used re-randomization of key-pairs implicitly in their meta reduction
technique against Schnorr signatures. This concept has recently been formal-
ized, yielding the notion of signatures with re-randomizable keys [FKM+16]. In
such schemes the EUF-CMA security notion is slightly tweaked, by additionally
allowing the adversary to see signatures under re-randomized keys. Such signa-
tures with re-randomizable keys are then used as basis of an elegant construc-
tion of unlinkable sanitizable signatures (cf. [FKM+16]). Allowing the adversary
to also access signatures under re-randomized (related) keys, has earlier been
studied in context of security of signature schemes against related-key attacks
(RKAs) [BCM11, BPT12]. In this context, the goal is to prevent that signature
schemes have key-homomorphic properties that allow to adapt signatures under
related keys to signatures under the original key (cf. e.g., [MSM+15]).

Contribution. Now, we briefly summarize the contributions in this paper:

– We initiate the study of key-homomorphic signature schemes. In doing so,
we propose various natural definitions of key-homomorphic signatures, gen-
eralizing larger classes of existing signature schemes. This generalization
makes it possible to infer general statements about signature schemes from
those classes by simply making black-box usage of the respective proper-
ties. Thereby, we rule out certain combinations of key-homomorphism and
unforgeability notions.

– We employ our definitional framework to present compilers from classes of
schemes providing different types of key-homomorphisms to other interesting
variants of signature schemes such as ring signatures, (universal) designated
verifier signatures or multisignatures. The so obtained constructions, be-
sides being very efficient, are simple and elegant from a construction and
security analysis point of view. Basically, for ring signatures and (universal)
designated verifier signatures, one computes a signature using any suitable
key-homomorphic scheme under a freshly sampled key and then proves a
simple relation over public keys only. Multisignatures are directly implied
by signatures with certain key-homomorphic properties.

– We introduce the notion of multikey-homomorphic signatures. Such schemes
provide homomorphic properties on the message space of signatures under
different keys. This can be seen as a step towards establishing the signature

3



counterpart of multikey (fully) homomorphic encryption [LTV12, CM15,
MW16, PS16a, BP16]. We discuss key-homomorphisms in this context and
present some first constructive results from key-homomorphic signatures that
yield multikey-homomorphic signatures with a succinct verification key. Fi-
nally, we discuss some interesting open problems and highlight that multikey-
homomorphic signatures have interesting applications in verifiable delegation
of computations.

– As a contribution of independent interest, we strengthen the security model
of universal designated verifier signatures by proposing a stronger designated
verifier unforgeability notion, which we term simulation-sound designated
verifier unforgeability. We prove that schemes obtained from our compiler
satisfy this strong notion, i.e., we can use a certain class of key-homomorphic
signatures in a black-box way to convert them to universal designated verifier
signatures which are secure in this strengthened model. This yields numerous
instantiations being the first satisfying such a strong notion.

2 Preliminaries

We denote algorithms by sans-serif letters, e.g., A,B. If not stated otherwise, all
algorithms are required to run in polynomial time and return a special symbol ⊥
on error. By y ← A(x), we denote that y is assigned the output of the potentially
probabilistic algorithm A on input x and fresh random coins. Similarly, y←R S
means that y is sampled uniformly at random from a set S and we use Q←∪ z
as a shorthand for Q ← Q ∪ {z}. We let [n] := {1, . . . , n} and write Pr[Ω : E ]
to denote the probability of an event E over the probability space Ω. We use
C to denote challengers of security experiments, and Cκ to make the security
parameter explicit. A function ε(·) : N→ R≥0 is called negligible, iff it vanishes
faster than every inverse polynomial, i.e., ∀ k : ∃ nk : ∀ n > nk : ε(n) < n−k.
Finally, we use poly(·) to denote a polynomial function.

One-Way Functions. Below, we recall the notion of one-way functions.

Definition 1. A function f : Dom(f) → R(f) is called a one-way function, if
(1) there exists a PPT algorithm A1 so that ∀ x ∈ Dom(f) : A1(x) = f(x), and
if (2) for every PPT algorithm A2 there is a negligible function ε(·) such that it
holds that

Pr
[
x←R Dom(f), x? ← A2(1κ, f(x)) : f(x) = f(x?)

]
≤ ε(κ).

Unless stated otherwise, we assume Dom(f) to be efficiently sampleable.

Signature Schemes. Subsequently, we recall the definition of signature schemes.

Definition 2. A signature scheme Σ is a triple (KeyGen, Sign,Verify) of PPT
algorithms, which are defined as follows:
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KeyGen(1κ) : This algorithm takes a security parameter κ as input and outputs
a secret (signing) key sk and a public (verification) key pk with associated
message space M (we may omit to make the message space M explicit).

Sign(sk,m) : This algorithm takes a secret key sk and a message m ∈ M as
input and outputs a signature σ.

Verify(pk,m, σ) : This algorithm takes a public key pk, a message m ∈M and a
signature σ as input and outputs a bit b ∈ {0, 1}.

We note that for a signature scheme many independently generated public keys
may be with respect to the same parameters PP, e.g., some elliptic curve group
parameters. In such a case we introduce an additional algorithm PGen which
is run by some (trusted) party to obtain PP ← PGen(1κ) and key generation
requires PP (which implicitly contain the security parameter) to produce keys
as (sk, pk)← KeyGen(PP). Moreover, we assume that PP is included in all public
keys.

Besides the usual correctness property, Σ needs to provide some unforge-
ability notion. Below, we present two standard notions required in our context
(ordered from weak to strong). We start with universal unforgeabiltity under no
message attacks (UUF-NMA security).

Definition 3 (UUF-NMA). A signature scheme Σ is UUF-NMA secure, if for all
PPT adversaries A there is a negligible function ε(·) such that

Pr

[
(sk, pk)← KeyGen(1κ), m?←R M,
σ? ← A(pk,m?)

: Verify(pk,m?, σ?) = 1

]
≤ ε(κ).

The most common notion is existential unforgeability under adaptively chosen
message attacks (EUF-CMA security).

Definition 4 (EUF-CMA). A signature scheme Σ is EUF-CMA secure, if for all
PPT adversaries A there is a negligible function ε(·) such that

Pr

[
(sk, pk)← KeyGen(1κ),
(m?, σ?)← ASign(sk,·)(pk)

:
Verify(pk,m?, σ?) = 1 ∧

m? /∈ QSign

]
≤ ε(κ),

where the environment keeps track of the queries to the signing oracle via QSign.

Non-Interactive Proof Systems. Now, we recall a standard definition of
non-interactive proof systems (Π). Therefore, let LR be an NP-language with
witness relation R defined as LR = {x | ∃ w : R(x,w) = 1}.

Definition 5. A non-interactive proof system Π is a tuple of algorithms (Setup,
Proof, Verify), which are defined as follows:

Setup(1κ) : This algorithm takes a security parameter κ as input, and outputs a
common reference string crs.

Proof(crs, x, w) : This algorithm takes a common reference string crs, a state-
ment x, and a witness w as input, and outputs a proof π.
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Verify(crs, x, π) : This algorithm takes a common reference string crs, a state-
ment x, and a proof π as input, and outputs a bit b ∈ {0, 1}.

We note that Proof is not required to run in polynomial time. If it, however,
is required we talk about a non-interactive argument system. We require Π to
be complete, sound, and adaptively witness-indistinguishable. Subsequently, we
recall formal definition of those properties.

Definition 6 (Completeness). A non-interactive proof system Π is complete,
if for every adversary A it holds that

Pr

[
crs← Setup(1κ), (x?, w?)← A(crs),
π ← Proof(crs, x?, w?)

:
Verify(crs, x?, π) = 1

∧ (x?, w?) ∈ R

]
= 1.

Definition 7 (Soundness). A non-interactive proof system Π is sound, if for
every PPT adversary A there is a negligible function ε(·) such that

Pr

[
crs← Setup(1κ), (x?, π?)← A(crs) :

Verify(crs, x?, π?) = 1
∧ x? /∈ LR

]
≤ ε(κ).

If ε = 0, we have perfect soundness.

Definition 8 (Adaptive Witness-Indistinguishability). A non-interactive
proof system Π is adaptively witness-indistinguishable, if for every PPT adver-
sary A there is a negligible function ε(·) such that

Pr
[
crs← Setup(1κ), b←R {0, 1}, b? ← AP(crs,·,·,·,b)(crs) : b = b?

]
≤ ε(κ),

where P(crs, x, w0, w1, b) := Proof(crs, x, wb), and P returns ⊥ if (x,w0) /∈
R ∨ (x,w1) /∈ R.

If ε = 0, we have perfect adaptive witness-indistinguishability. Furthermore, we
require Π to admit proofs of knowledge, which are defined as follows.

Definition 9 (Proof of Knowledge). A non-interactive proof system Π ad-
mits proofs of knowledge, if there exists a PPT extractor E = (E1,E2) such that
for every PPT adversary A there is a negligible function ε1(·) such that∣∣∣∣∣Pr

[
crs← Setup(1κ) : A(crs) = 1

]
−

Pr
[
(crs, τ)← E1(1κ) : A(crs) = 1

] ∣∣∣∣∣ ≤ ε1(κ),

and for every PPT adversary A there is a negligible function ε2(·) such that

Pr

[
(crs, τ)← E1(1κ), (x?, π?)← A(crs),
w ← E2(crs, τ, x?, π?)

:
Verify(crs, x?, π?) = 1 ∧

(x?, w) /∈ R

]
≤ ε2(κ).
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Security of Multiparty Signatures. In multiparty signature schemes one
often relies on the so called knowledge of secret key (KOSK) assumption within
security proofs, where the adversary is required to reveal the secret keys it utilizes
to the environment. This is important to prevent rogue-key attacks, i.e., attacks
where the adversary constructs public keys based on existing public keys in the
system and must not know the secret key corresponding to the resulting public
keys.

To prevent such rogue-key attacks, Ristenpart and Yilek [RY07] introduced
and formalized an abstract key-registration concept for multiparty signatures.
Any such key-registration protocol is represented as a pair of interactive algo-
rithms (RegP,RegV). A party registering a key runs RegP with inputs public key
pk and private key sk. A certifying authority (CA) runs RegV, where the last
message is from RegV to RegP and contains either a pk or a distinguished symbol
⊥. For instance, in the plain model RegP(pk, sk) simply sends pk to the CA and
RegV on receiving pk simply returns pk. For the KOSK assumption, RegP(pk, sk)
simply sends (pk, sk) to the CA, which checks if (sk, pk) ∈ KeyGen(PP) and if so
replies with pk and ⊥ otherwise.

To resemble the KOSK assumption in real protocols without revealing the
secret key, one can require the adversary to prove knowledge of it’s secret key
in a way that it can be straight-line extracted by the environment. We require
this for all our constructions in this paper. Yet, we do not make it explicit to
avoid complicated models and we simply introduce an RKey oracle that allows
the adversary to register key pairs. We stress that our goal is not to study
multiparty signatures with respect to real world key-registration procedures, as
done in [RY07].

3 Key-Homomorphic Signatures

In this section, we introduce a definitional framework for key-homomorphic sig-
nature schemes. In doing so, we propose different natural notions and relate the
definitions to previous work that already implicitly used functionality that is
related or covered by our definitions.1

We focus on signature schemes Σ = (KeyGen,Sign,Verify), where the secret
and public key elements live in groups (H,+) and (G, ·), respectively. We start
with the notion of an efficiently computable homomorphism between secret keys
and public keys in analogy to [TW14]. Such a functionality has been used recently
in [FKM+16] to define the notion of signatures with re-randomizable keys.

Definition 10 (Secret Key to Public Key Homomorphism). A signature
scheme Σ provides a secret key to public key homomorphism, if there exists an
efficiently computable map µ : H → G such that for all sk, sk′ ∈ H it holds
that µ(sk + sk′) = µ(sk) · µ(sk′), and for all (sk, pk) ← KeyGen, it holds that
pk = µ(sk).

1 We note that the first parts (up to Definition 12) of this section are slightly more
general versions of definitions from previous work of us (currently in submission)
where the focus is, however, not on key-homomorphisms.
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We stress that secret keys and public keys may be vectors containing elements
of H and G respectively. Then, the operations +, · and the map µ are applied
component wise. To keep the definitions compact, we however do not make that
fact explicit.

In the discrete logarithm setting, where we often have sk←R Zp and pk = gsk

with g being the generator of some prime order p group G, it is obvious that
there exists µ : sk 7→ gsk that is efficiently computable.

Now, we can introduce the first flavour of key-homomorphic signatures, where
we focus on the class of functions Φ+ representing linear shifts and note that
one could easily adapt our definition to other suitable classes Φ of functions
instead of linear shifts. We stress that we consider Φ as a finite set of functions,
all with the same domain and range, and they usually depend on the public
key of the signature scheme (which we will not make explicit). Moreover, Φ
admits an efficient membership test, is efficiently samplable, and, its functions
are efficiently computable. Definition 11 in combination with the adaptability
of signatures (Definition 12) or perfect adaption (Definition 13), can be seen as
being in the fashion of key-homomorphic encryption schemes [AHI11].

Definition 11 (Φ+-Key-Homomorphic Signatures). A signature scheme is
called Φ+-key-homomorphic, if it provides a secret key to public key homomor-
phism and an additional PPT algorithm Adapt, defined as:

Adapt(pk,m, σ,∆) : Takes a public key pk, a message m, a signature σ, and a
function ∆ ∈ Φ+ as input, and outputs a public key pk′ and a signature σ′,

such that for all ∆ ∈ Φ+ and all (pk, sk)← KeyGen(1κ), all messages m and all
σ ← Sign(sk,m) and (pk′, σ′)← Adapt(pk,m, σ,∆) it holds that

Pr[Verify(pk′,m, σ′) = 1] = 1 ∧ pk′ = ∆(pk).

For simplicity we sometimes identify a function ∆ ∈ Φ+ with its “shift amount”
∆ ∈ H. To illustrate this concept, we take a look at Schnorr signatures.

Schnorr Signatures. Let G be a group of prime order p generated by g and
H : {0, 1}∗ → Zp be a hash function. KeyGen chooses sk←R Zp and outputs
(sk, pk) ← (sk, gsk); Sign given sk and message m, chooses r←R Zp, computes
R ← gr, c = H(R,m), y = r + sk · c mod p and outputs σ ← (c, y). Finally,
Verify given pk, message m and σ = (c, y) outputs 1 if c = H(pk−cgy,m), and 0
otherwise. Now, let us adapt a given signature σ to a new public key pk′ = pk·g∆
corresponding to sk′ = sk +∆ mod p. Therefore, we simply set σ′ ← (c, y′) with
y′ = y+ c ·∆ mod p. It is easy to see that Verify on input (pk′,m, σ′) will always
output 1.

An interesting property in the context of key-homomorphic signatures is
whether adapted signatures look like freshly generated signatures. Therefore, we
introduce two different flavours of such a notion, inspired by the context hiding
notion for P -homomorphic signatures [ABC+12, ALP12] as well as the adapt-
ability notion from [FHS15] for equivalence class signatures [HS14]. We also note
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that Kiltz et al. [KMP16] have recently used a notion related to Definition 12 (de-
noted as random self-reducibility) in context of canonical identification schemes.

Definition 12 (Adaptability of Signatures). A Φ+-key-homomorphic sig-
nature scheme provides adaptability of signatures, if for every κ ∈ N and every
message m, it holds that Adapt(pk,m,Sign(sk,m), ∆) and (pk · µ(∆),Sign(sk +
∆,m)) as well as (sk, pk) and (sk′, µ(sk′)) are identically distributed, where (sk,
pk)← KeyGen(1κ), sk′←R H, and ∆←R Φ+.

Coming back to Schnorr signatures, we immediately see that they are adaptable
according to Definition 12 and all schemes that satisfy the stronger notion from
Definition 13 below also satisfy this notion.

An even stronger notion for the indistinguishability of fresh signatures and
adapted signatures on the same message is achieved when requiring the distri-
butions to be indistinguishable even when the initial signature used in Adapt is
known.

Definition 13 (Perfect Adaption). A Φ+-key-homomorphic signature scheme
provides perfect adaption, if for every κ ∈ N, every message m, and every signa-
ture σ ← Sign(sk,m), it holds that (σ,Adapt(pk,m, σ,∆)) and (σ, pk ·µ(∆),Sign(
sk +∆,m)) as well as (sk, pk) and (sk′, µ(sk′)) are identically distributed, where
(sk, pk)← KeyGen(1κ), sk′←R H, and ∆←R Φ+.

One immediately sees that Schnorr signatures do not satisfy Definition 13 as the
randomness r remains fixed. However, we note that there are various existing
schemes that satisfy Definition 13. For example, BLS signatures [BLS04] or the
recent re-randomizable scheme by Pointcheval and Sanders [PS16b] or the well
known Waters signatures [Wat05] to name some (cf. Appendix C for a more
formal treatment).

When looking at Definition 11, one could ask whether it is possible to replace
∆ in the Adpat algorithm with its public key µ(∆). However, it is easily seen
that the existence of such an algorithm contradicts even the weakest security
guarantees the underlying signature scheme would need to provide, i.e., universal
unforgeability under no-message attacks (UUF-NMA security).

Lemma 1. There cannot be an UUF-NMA secure Φ+-key-homomorphic signa-
ture scheme Σ for which there exists a modified Adapt′ algorithm taking µ(∆)
instead of ∆ that still satisfies Definition 11.

Proof. We prove this by showing that any such scheme implies an adversary
against UUF-NMA security of Σ. Let us assume that an UUF-NMA challenger
provides a public key pk? and a target message m?. Run (sk, pk)← KeyGen(1κ)
being compatible with public key pk?, compute σ ← Sign(sk,m?), then compute
pk′ = pk? · pk−1 and obtain a forgery σ? for message m? under the target public
key pk? by running (σ?, pk?)← Adapt(pk,m?, σ, pk′). ut

Now, we move to a definition that covers key-homomorphic signatures where the
adaption of a set of signatures, each to the same message, to a signature for the
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same message under a combined public key does not even require the knowledge
of the relation between the secret signing keys.

Definition 14 (Publicly Key-Homomorphic Signatures). A signature sche-
me is called publicly key-homomorphic, if it provides a secret key to public key
homomorphism and an additional PPT algorithm Combine, defined as:

Combine((pki)
n
i=1,m, (σi)

n
i=1) : Takes public keys (pki)i∈[n], a message m, signa-

tures (σi)i∈[n] as input, and outputs a public key p̂k and a signature σ̂,

such that for all n > 1, all ((ski, pki) ← KeyGen(1κ))ni=1, all messages m and

all (σi ← Sign(ski,m))i∈[n] and (p̂k, σ̂) ← Combine((pki)
n
i=1,m, (σi)

n
i=1) it holds

that

p̂k =

n∏
i=1

pki ∧ Pr[Verify(p̂k,m, σ̂) = 1] = 1.

Analogously to Definitions 12 and 13, one can define indistinguishability of fresh
and combined signatures, but we omit it here as it is straight forward. We want to
mention that Definition 14 is, for instance, satisfied by BLS signatures, Waters’
signatures with shared Waters’ hash parameters (cf. [LOS+06]), as well as the
scheme with shared parameters assuming synchronized time in [CHP12] being
a variant of the CL signature scheme [CL04] (cf. Appendix C for a more formal
treatment).

4 Applications

In this section we show how the various key-homomorphic properties defined
in the previous section facilitate the black-box construction of ring signatures,
universal designated verifier signatures as well as multisignatures.

4.1 Ring Signatures

Ring signature schemes [RST01] are a variant of signature schemes that allow a
member of an ad-hoc group R (the so called ring), defined by the member’s pub-
lic verification keys, to anonymously sign a message on behalf of R. Given a ring
signature and all public keys for R, one can verify the validity of such a signature
with respect toR, but it is infeasible to identify the actual signer. Ring signatures
have proven to be an interesting tool for numerous applications. The two main
lines of work in the design of ring signatures target reducing the signature size or
removing the requirement for random oracles (e.g., [DKNS04, CGS07, GK15]).
We provide a construction that does not require random oracles and has lin-
ear signature size. It provides an alternative very simple generic framework to
construct ring signatures in addition to existing ones (cf. [BKM09, BK10]).

Subsequently, we formally define ring signature schemes (adopting [BKM09])
and note that the model implicitly assumes knowledge of secret keys [RY07] as
discussed in Section 2.
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Definition 15. A ring signature scheme RS is a tuple RS = (Setup,Gen,Sign,
Verify) of PPT algorithms, which are defined as follows.

Setup(1κ) : This algorithm takes as input a security parameter κ and outputs
public parameters PP.

Gen(PP) : This algorithm takes as input the public parameter PP and outputs a
keypair (sk, pk).

Sign(PP, ski,m,R) : This algorithm takes as input the public parameters PP, a
secret key ski, a message m ∈M and a ring R = (pkj)j∈[n] of n public keys
such that pki ∈ R. It outputs a signature σ.

Verify(PP,m, σ,R) : This algorithm takes as input the public parameters PP, a
message m ∈M, a signature σ and a ring R. It outputs a bit b ∈ {0, 1}.

A secure ring signature scheme needs to be correct, unforgeable, and anony-
mous. While we omit the obvious correctness definition, we subsequently pro-
vide formal definitions for the remaining properties following [BKM09]. We note
that [BKM09] formalized multiple variants of these properties, where we always
use the strongest one.

Unforgeability requires that without any secret key ski that corresponds to
a public key pki ∈ R, it is infeasible to produce valid signatures with respect to
arbitrary such rings R.

Definition 16 (Unforgeability). A ring signature scheme provides unforge-
ability, if for all PPT adversaries A, there exists a negligible function ε(·) such
that it holds that

Pr

{(sk, pk)← Gen(1κ)}i∈[poly(κ)],
O ← {Sig(·, ·, ·),Key(·)},
(m?, σ?,R?)← AO({pki}i∈[poly(κ)])

:
Verify(m?, σ?,R?) = 1 ∧

(·,m?,R?) /∈ QSign ∧
R? ⊆ {pki}i∈[poly(κ)]\QKey

 ≤ ε(κ),

where Sig(i,m,R) := Sign(ski,m,R), Sig returns ⊥ if pki /∈ R ∨ i /∈ [poly(κ)],
and QSig records the queries to Sig. Furthermore, Key(i) returns ski and QKey

records the queries to Key.

Anonymity requires that it is infeasible to tell which ring member produced a
certain signature as long as there are at least two honest members in the ring.

Definition 17 (Anonymity). A ring signature scheme provides anonymity, if
for all PPT adversaries A and for all polynomials n(·), there exists a negligible
function ε(·) such that it holds that

Pr


{(ski, pki)← Gen(1κ)}i∈[poly(κ)],
b←R {0, 1}, O ← {Sig(·, ·, ·)},
(m, j0, j1,R, st)← AO({pki}i∈[poly(κ)]),
σ ← Sign(skjb ,m,R),
b? ← AO(st, σ, {ski}i∈[poly(κ)]\j0)

:
b = b? ∧

{pkj0 , pkj1} ⊆ R

 ≤ 1/2 + ε(κ),

where Sig(i,m,R) := Sign(ski,m,R).
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Our Construction. In Scheme 1 we present our black-box construction of ring
signatures from any Φ+-key-homomorphic EUF-CMA secure signature scheme
Σ with adaptable signatures and any witness indistinguishable proof system
admitting proofs of knowledge. The idea behind the scheme is as follows. A ring
signature for message m consists of a signature for m using Σ with a randomly
generated key pair together with a proof of knowledge attesting the knowledge of
the “shift amount” from the random public key to (at least) one of the public keys
in the ringR.2 Very briefly, unforgeability then holds because—given a valid ring
signature—one can always extract a valid signature of one of the ring members.
Anonymity holds because the witness indistinguishability of the proof system
guarantees that signatures of different ring members are indistinguishable.

Upon signing, we need to prove knowledge of a witness for the following NP
relation R.

((pk,R, cpk), sk′) ∈ R ⇐⇒ ∃ pki ∈ R ∪ {cpk} : pki = pk · µ(sk′)

For the sake of compactness, we assume that the relation is implicitly defined
by the scheme. One can obtain a straight forward instantiation by means of
disjunctive proofs of knowledge [CDS94] (similar as it is done in many known
constructions), one could use the following NP relation R.

((pk,R, cpk), sk′) ∈ R ⇐⇒
(
∨pki∈R pki = pk · µ(sk′)

)
∨ cpk = pk · µ(sk′)

Using this approach, however, yields signatures of linear size. To reduce the
signature size, one could, e.g., follow the approach of [DKNS04].

Setup(1κ) : Run crs ← Π.Setup(1κ), (csk, cpk) ← Σ.KeyGen(1κ), set PP ← (1κ, crs, pk)
and return PP.

Gen(PP) : Run (ski, pki)← Σ.KeyGen(1κ) and return (ski, pki).

Sign(PP, ski,m,R) : Parse PP as (1κ, crs) and return ⊥ if µ(ski) /∈ R. Otherwise, return
σ ← (δ, pk, π), where

(sk, pk)← KeyGen(1κ), δ ← Σ.Sign(sk,m), and

π ← Π.Proof(crs, (pk,R, cpk), (ski − sk)).

Verify(PP,m, σ,R) : Parse PP as (1κ, crs) and σ as (δ, pk, π) and return 1 if the following
holds, and 0 otherwise:

Σ.Verify(pk,m, δ) = 1 ∧ Π.Verify(crs, (pk,R, cpk), π) = 1.

Scheme 1: Black-Box Construction of Ring Signatures

2 For technical reasons we need to include an additional public key cpk into R.
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Theorem 1. If Σ is correct, EUF-CMA secure, and provides adaptability of sig-
natures, Π is complete, witness indistinguishable, and admits proofs of knowledge,
then Scheme 1 is correct, unforgeable, and anonymous.

We prove the theorem above in Appendix A.

Removing the CRS. It is important to note that when opting for an instan-
tiation of Scheme 1 in the ROM one can completely avoid the CRS. Firstly,
when using Schnorr proofs made non-interactive using the Fiat-Shamir trans-
form [FS86] as proof system Π (cf. [FKMV12]) one does not require crs. Sec-
ondly, instead of including (csk, cpk) in PP one can use a neat trick by Abe and
Okamoto [AO00]. In particular, using a random oracle H : {0, 1}∗ → G one
can freshly obtain cpk← H(R) upon signature generation and verification; the
reduction is still able to simulate signatures by programming the random oracle.

4.2 Universal Designated Verifier Signatures

Designated verifier signatures [JSI96] are an interesting variant of signatures,
where the signer chooses a designated verifier upon signing a message, and given
this signature only the designated verifier is convinced of its authenticity. The
idea behind those constructions is to ensure that the designated verifier can
“fake” signatures which are indistinguishable from signatures of the original
signer. Universal designated verifier signatures (UDVS) [SBWP03] further extend
this concept by introducing an additional party, which performs the designation
process by converting a conventional signature to a designated-verifier one. There
exists quite a lot of work on UDVS, and, most notably, in [SS08] it was shown how
to convert a large class of signature schemes to UDVS. Their approach can thus
be seen as related to our approach, yet they do not rely on key-homomorphisms
and they only achieve weaker security guarantees.3

While one can interpret designated verifier signatures as a special case of
ring signatures where |R| = 2, i.e., the ring is composed of the public keys of
signer and designated verifier (as noted in [RST01, BKM09]), there seems to be
no obvious black-box relation turning ring signatures into UDVS. Mainly, since
UDVS require the functionality to convert standard signatures to designated
verifier ones.4

To this end, we explicitly treat constructions of UDVS from key-homomorphic
signatures subsequently. We start by recalling the security model from [SBWP03]
including some notational adaptations and a strengthened version of the DV-
unforgeability notion which we introduce here.

3 We also note that [SS08] informally mention that their approach is also useful to
construct what they call hierarchical ring signatures. However their paradigm is not
useful to construct ring signatures as we did in the previous section.

4 We, however, note that an extension of the UDVS model to universal designated
verifier ring signatures would be straight forward and also our scheme would be
straight forwardly extensible using the same techniques as in Scheme 1.
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Definition 18. A universal designated verifier signature scheme UDVS builds
up on a conventional signature scheme Σ = (PGen,KeyGen,Sign,Verify) and
additionally provides the PPT algorithms (DVGen,Desig,Sim,DVerify), which are
defined as follows.

DVGen(PP) : This algorithm takes the public parameters PP as input and gener-
ates and outputs a designated-verifier key pair (vsk, vpk).

Desig(pk, vpk,m, σ) : This algorithm takes a signer public key pk, a designated-
verifier public key vpk, a message m, and a valid signature σ as input, and
outputs a designated-verifier signature δ.

Sim(pk, vsk,m) : This algorithm takes a signer public key pk, a designated-verifier
secret key vsk, and a message m as input, and outputs a designated-verifier
signature δ.

DVerify(pk, vsk,m, δ) : This algorithm takes a signer public key pk, a designated-
verifier secret key vsk, a message m, and a designated-verifier signature δ as
input, and outputs a bit b ∈ {0, 1}.

Subsequently we formally recall the security properties, where we omit the ob-
vious correctness notion. For the remaining notions we largely follow [SBWP03,
SS08].

DV-unforgeability captures the intuition that it should be infeasible to come
up with valid designated verifier signatures where no corresponding original sig-
nature exists. Subsequently, we introduce a stronger variant of DV-unforgeability,
which we term simulation-sound DV-unforgeability. This notion additionally pro-
vides the adversary with an oracle to simulate designated-verifier signatures on
other messages for the targeted designated verifier. It is easy to see that our
notion implies DV-unforgeability in the sense of [SBWP03].

Definition 19 (Simulation-Sound DV-Unforgeability). An UDVS provides
DV-unforgeability, if for all PPT adversaries A, there exists a negligible function
ε(·) such that it holds that

Pr


PP← PGen(1κ),
(sk, pk)← KeyGen(PP),
(vsk, vpk)← DVGen(PP),
O ← {Sig(sk, ·), Vrfy(pk, vsk, ·, ·),
S(pk, vsk, ·)},
(m?, δ?)← AO(pk, vpk)

:
DVerify(pk, vsk,m?, δ?) = 1 ∧

m? /∈ QSig ∧ m? /∈ QSim

 ≤ ε(κ),

where Sig(sk,m) := Sign(sk,m), Vrfy(pk, vsk,m, δ) := DVerify(pk, vsk,m, δ), and
S(pk, vsk,m) := Sim(pk, vsk,m). Furthermore, the environment keeps tracks of
the messages queried to Sig and S via QSig and QSim, respectively.

Non-transferability privacy models the requirement that the designated verifier
can simulate signatures which are indistinguishable from honestly designated
signatures.
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Definition 20 (Non-Transferability Privacy). An UDVS provides non-trans-
ferability privacy, if for all PPT adversaries A, there exists a negligible function
ε(·) such that it holds that

Pr


PP← PGen(1κ), (sk, pk)← KeyGen(PP),
b←R {0, 1}, O ← {Sig(sk, ·),RKey(·, ·, ·)},
(m?, st)← AO(pk), σ ← Sign(sk,m?),

b? ← AO∪{SoD(pk,·,m?,σ,b)}(st)

:
b = b? ∧

m? /∈ QSig

 ≤ 1/2 + ε(κ),

where the oracles are defined as follows:

Sig(sk,m) : This oracle computes σ ← Sign(sk,m) and returns σ.
RKey(i, vsk, vpk) : This oracle checks whether DVK[i] 6= ⊥ and returns ⊥ if so.

Otherwise, it checks whether (vsk, vpk) is a valid output of DVGen and sets
DVK[i]← (vsk, vpk) if so.

SoD(pk, i,m, σ, b): This oracle obtains (vsk, vpk) ← DVK[i] and returns ⊥ if no
entry for i exists. Then, if b = 0, it computes δ ← Sim(pk, vsk,m), and, if
b = 1 it computes δ ← Desig(pk, vpk,m, σ). In the end it returns δ. This
oracle can only be called once.

Further, the environment maintains a list QSig keeping track of the Sig queries.

The notion above captures non-transferability privacy in the sense of [SS08]. This
notion can be strengthened to what we call strong non-transferability privacy
which allows multiple calls to SoD (as in [SBWP03]). While non-transferability
privacy is often sufficient in practice, we will prove that our construction provides
strong non-transferability privacy (clearly implying non-transferability privacy)
to obtain the most general result.

Our Construction. In Scheme 2, we present our construction of UDVS from
any Φ+-key-homomorphic EUF-CMA secure Σ with perfect adaption of signa-
tures, any witness indistinguishable Π which admits proofs of knowledge, and
any one way function f .5 Our construction uses the “OR-trick” [JSI96], which is
well known in the context of DVS. Upon computing designations and simulations
of designated-verifier signatures, we require to prove knowledge of witnesses for
the following NP relation R:

((pk, vpk), (sk, vsk)) ∈ R ⇐⇒ pk = µ(sk) ∨ vpk = f(vsk).

The nice thing when choosing R this way is that we can simulate proofs while
the proof system is set up to provide soundness by either using sk or vsk as a
simulation trapdoor.6 For brevity we assume that the parameters PP generated
upon setup are implicit in every pk and vpk generated by Gen and DVGen re-
spectively. Furthermore, we assume that R is implicitly defined by the scheme.

5 We note that our construction borrows ideas from earlier work of us on a variant of
redactable signatures (currently in submission).

6 Note that this is similar to the generic conversion of witness indistinguishable proof
systems to zero-knowledge proof systems [FLS90].
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DVGen(PP) : Run vsk←R Dom(f), set vpk← f(vsk) and return (vsk, vpk).

Desig(pk, vpk,m, σ) : Output δ ← (pk′, σR, π), where

(sk′, pk′)← Σ.KeyGen(1κ), (pkR, σR)← Σ.Adapt(pk,m, σ, sk′),

π ← Π.Proof(crs, (pk′, vpk), (sk′,⊥)).

Sim(pk, vsk,m) : Output δ ← (pk′, σR, π), where

(skR, pkR)← Σ.KeyGen(1κ), pk′ ← pkR · pk−1, σR ← Σ.Sign(skR,m),

π ← Π.Proof(crs, (pk′, f(vsk)), (⊥, vsk)).

DVerify(pk, vsk,m, δ) : Parse δ as (pk′, σR, π) and return 1 if the following holds, and 0
otherwise:

Σ.Verify(pk · pk′,m, σR) = 1 ∧ Π.Verify(crs, (pk′, f(vsk)), π) = 1.

Scheme 2: Black-Box Construction of UDVS

Theorem 2. If Σ is EUF-CMA secure and perfectly adapts signatures, f is a
one-way function, and Π is witness indistinguishable and admits proofs of knowl-
edge, then Scheme 2 is correct, simulation-sound DV-unforgeable, and provides
strong non-transferability privacy.

We prove the theorem above in Appendix B and note that if non-transferability
privacy is sufficient, Σ only needs to be adaptable. Then, one can for instance
also instantiate Scheme 2 with the very efficient Schnorr signature scheme.

4.3 Multisignatures

A multisignature scheme [IN83] is a signature scheme that allows a group of sign-
ers to jointly compute a compact signature for a message. Well known schemes
are the BMS [Bol03] and the WMS [LOS+06] that are directly based on the
BLS [BLS04] and the Waters’ signature scheme [Wat05] respectively. Both of
them are secure under the knowledge of secret key (KOSK) assumption, but
can be shown to also be secure under (slightly tweaked) real-world proofs of
possession protocols [RY07].

Our construction can be seen as a generalization of the paradigm behind all
existing multisignature schemes. Making this paradigm explicit eases the search
for new schemes, i.e., one can simply check whether a particular signature scheme
is publicly key-homomorphic. For instance, as we show in Appendix C.4, the
modified CL signature scheme from [CHP12] provides this homomorphism, and,
therefore, directly yields a new instantiation of multisignatures.

We now give a formal definition of multisignatures, where we follow Risten-
part and Yilek [RY07]. But as already noted in Section 2, we use the KOSK
modeled via RKey for simplicity. Nevertheless, we stress that we could use any
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other key-registration that provides extractability or also the extractable key-
verification notion by Bagherzandi and Jarecki [BJ08]. This does not make any
difference for our subsequent discussion as long as the secret keys are extractable.

Definition 21. A multisignature scheme MS is a tuple (PGen,KeyGen,Sign,
Verify) of PPT algorithms, which are defined as follows:

PGen(1κ) : This paramter generation algorithm takes a security parameter κ and
produces global parameters PP (including the security parameters and a de-
scription of the message space M).

KeyGen(PP) : This algorithm takes the global parameters PP as input and outputs
a secret (signing) key sk and a public (verification) key pk.

Sign : This is an interactive multisignature algorithm executed by a group of
signers who intend to sign the same message m. Each signer Si executes
Sign on public inputs PP, public key multiset PK, message m and secret input
its secret ski and outputs a multisignature σ.

Verify(PP, PK,m, σ) : This algorithm takes public parameters PP, a public key mul-
tiset PK, a message m and a multisignature σ as input and outputs a bit
b ∈ {0, 1}.

The above tuple of algorithms must satisfy correctness, which basically states
that Verify(PP, PK,m,Sign(PP, PK,m, sk)) = 1 for any m honestly generated PP and
when every participant correctly follows the algorithms. Besides correctness, we
require existential unforgeability under a chosen message attack against a single
honest player.

Definition 22 (MSEUF-CMA). A multisignature scheme MS is MSEUF-CMA
secure, if for all PPT adversaries A there is a negligible function ε(·) such that

Pr


PP← PGen(1κ),
(sk?, pk?)← KeyGen(1κ),
O ← {Sign(·, ·),RKey(·, ·, ·)},
(PK?,m?, σ?)← AO(PP, pk?)

:
Verify(PP, PK?,m?, σ?) = 1 ∧
pk? ∈ PK

? ∧ m? /∈ QSign ∧
(PK? \ {pk?}) \ QRKey = ∅)

 ≤ ε(κ),

where the environment maintains keeps track of signing and registration queries
via QSign and QRKey, respectively. The adversary has access to the following or-
acles:

Sign(PK,m) : This oracle obtains a public key set PK and returns ⊥ if pk? /∈
PK. Otherwise it simulates a new instance of Sign(PP, PK,m, sk?) forwarding
messages to and from A appropriately and sets QSign←∪ m.

RKey(sk, pk) : This oracle checks if (sk, pk) ∈ KeyGen(PP) and sets QRKey←∪ pk
if so.

Our Construction. Subsequently, we restrict ourselves to non-interactive Sign
protocols, which basically means that every signer Si locally computes a sig-
natures σi and then broadcasts it to all other signers in PK. Furthermore, we
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PGen(1κ) : Run PP← Σ.PGen(1κ) and return PP.

KeyGen(PP) : Run (sk, pk)← Σ.KeyGen(PP) and return (sk, pk).

Sign(PP, PK,m, sk) : Let i ∈ [n]. Every participating Si with pki ∈ PK proceeds as follows:

– Compute σi ← Σ.Sign(ski,m) and broadcast σi.

– Receive all signatures σj for j 6= i.

– Compute (pk, σ)← Combine(PK,m, (σ`)`∈[n]) and output σ.

Verify(PP, PK,m, σ) : Return 1 if the following holds and 0 otherwise:

Σ.Verify
(∏

pk∈PK
pk,m, σ

)
= 1.

Scheme 3: Black-Box Construction of Multisignatures

consider the signature scheme Σ to work with common parameters PP and in
Scheme 3 let us for the sake of presentation assume that PK := (pk1, . . . , pkn) is
an ordered set instead of a multiset.

Theorem 3. If Σ is correct, EUF-CMA secure, and publicly key-homomorphic,
then Scheme 3 is MSEUF-CMA secure.

Proof. We show that an efficient adversary A against MSEUF-CMA can be effi-
ciently turned into an efficient EUF-CMA adversary for Σ. To do so, we simulate
the environment for A by obtaining pk? from an EUF-CMA challenger of Σ,
then setting PP accordingly, and starting A on (PP, pk?). Additionally, we record
the secret keys provided to RKey in a list KEY indexed by the respective public
keys, i.e., KEY[pk] ← sk. Whenever a signature with respect to pk? is required
we use the Sign oracle provided by the challenger. Eventually, the adversary
outputs (PK?,m?, σ?) such that Σ.Verify(

∏
pk∈PK?

pk,m?, σ?) = 1, pk? ∈ PK
?, all

other keys in PK
? were registered, yet m? was never queried to the signing oracle.

We compute sk′ ←
∑

pk∈PK?\{pk?}}−KEY[pk], compute σ′ ← Σ.Sign(sk′,m?), ob-

tain (pk?, σ) ← Combine((
∏

pk∈PK?
pk,
∏

pk∈PK?\{pk?} pk−1),m?, (σ?, σ′)) and out-

put (m?, σ) as a forgery. ut

5 Homomorphisms on Key and Message Space

As already mentioned in Section 1, signature schemes with homomorphic prop-
erties on their message space [JMSW02] are well known. With such schemes, it
is possible for anyone to derive a signature for a message m′ from signatures on
messages (mi)i∈[n] under some public key pk as long as m′ = f(m1, . . . ,mn) for
f ∈ F , where F is the set of so called admissible functions (determined by the
scheme). Among others (cf. [ABC+12, ALP12]) there are schemes for linear func-
tions [BFKW09, Fre12], polynomial functions of higher degree [BF11, CFW14]
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and meanwhile even (levelled) fully homomorphic signatures supporting arbi-
trary functions [GVW15, BFS14]. However, all existing constructions consider
these homomorphisms under a single key. While in context of encryption, con-
structions working with distinct keys, i.e., so called multikey-homomorphic en-
cryption schemes [LTV12, CM15, MW16, PS16a], are known, such a feature has
never been investigated in context of signatures so far.

In this section we close this gap and initiate the study of so called multikey-
homomorphic signatures and in particular propose a definitional framework for
such schemes that support a homomorphic property on the message space under
distinct keys and moreover discuss the usefulness of an additional homomorphic
property on the key space for such schemes. Moreover, we discuss potential
applications of such schemes and interesting open questions.

5.1 Multikey-Homomorphic Signatures

Below we present and discuss what we call multikey-homomorphic signatures,
where the homomorphic property on the message space is defined with respect
to a class F of admissible functions (e.g., represented as arithmetic circuits). In
contrast to the notions from Section 3, which capture additional properties of
conventional signature schemes, multikey-homomorphic signatures are a separate
building block. To this end we explicitly formalize the algorithms as well as the
required correctness and unforgeability notion. We stress that as the focus of
this work lies on key-homomorphic schemes we will also focus on these aspects in
this section. Although we present a general definition of multikey-homomorphic
schemes which, in analogy to the encryption case, i.e., [LTV12, CM15, MW16,
PS16a, BP16], support the input of a set of public keys into the verification of
a combined signature, we focus on schemes who use a succinct representation of
a combined public key in the verification below.

Definition 23 (Multikey-Homomorphic Signatures). A multikey-homo-
morphic signatures scheme for a class F of admissible functions, is a tuple of
the following PPT algorithms:

PGen(1κ) : Takes a security parameter κ as input, and outputs parameters PP.
KeyGen(PP) : Takes parameters PP as input, and outputs a keypair (sk, pk) (we

assume that PP is included in pk).
Sign(sk,m, τ) : Takes a secret key sk, a message m, and a tag τ as input, and

outputs a signature σ.
Verify(pk,m, σ, τ) : Takes a public key pk a message m, a signature σ, and a tag

τ as input, and outputs a bit b.
Combine((pki)i∈[n], (mi)i∈[n], f, (σi)i∈[n], τ) : Takes public keys (pki)i∈[n], mes-

sages (mi)i∈[n], a function f ∈ F , signatures (σi)i∈[n], and a tag τ as input,

and outputs a public key p̂k and a signature σ̂.
Verify′(p̂k, m̂, f, σ̂, τ) : Takes a combined public key p̂k, a message m̂, a function

f , a signature σ̂, and a tag τ as input, and outputs a bit b.

Subsequently, we formalize the security properties one would expect from such
schemes.
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Definition 24 (Correctness). A multikey-homomorphic signature scheme for
a class F of admissible functions is correct, if for all security parameters κ, for
all 1 ≤ n ≤ poly(κ), all ((ski, pki) ← KeyGen(1κ))i∈[n], all messages (mi)i∈[n],
all tags τ , all functions f ∈ F , all functions f ′ /∈ F , and all signatures (σi ←
Sign(ski,mi, τ))ni=1 and results (p̂k, σ̂)← Combine((pki)i∈[n], (mi)i∈[n], f, (σi)i∈[n],
τ) it holds that

(Verify(pki,mi, σi, τ) = 1)i∈[n] ∧ (pki ∈ p̂k)i∈[n] ∧
Verify′(p̂k, m̂, f, σ̂, τ) = 1 ∧ Verify′(·, ·, f ′, ·, ·) = 0,

where m̂ = f(m1, . . . ,mn).

Definition 25 (Unforgeability). A multikey-homomorphic signature scheme
for a class F of admissible functions is unforgeable, if for every PPT adversary
A there exists a negligible function ε(·) such that it holds that

Pr


PP← PGen(1κ),
(sk, pk)← KeyGen(PP),
O ← {Sig(·, ·)},
(p̂k

?

, m̂?, f?, σ̂?, τ?)← AO(pk),

:

Verify′(p̂k
?

, m̂?, f?, σ̂?, τ?) = 1 ∧(
pk ∈ p̂k

?

∧ @ m ∈M :
(m̂? ∈ R(f?(· · · ,m, · · · )) ∧

(m, τ?) ∈ QSig)
)
∨ m̂? /∈ R(f?)

 ≤ ε(κ),

where Sig(m, τ) := Sign(sk,m, τ) and QSig records the Sig queries.

Observe that Definition 23 neither puts restrictions on the size of signatures σ̂
nor public keys p̂k. To really benefit from the functionality provided by multikey-
homomorphic signatures, one may additionally require that p̂k is succinct. In-
spired by [BGI14], we subsequently provide a formal definition.

Definition 26 (Key Succinctness). A multikey-homomorphic signature sch-
eme is called key succinct, if for all κ ∈ N, for all n ≤ poly(κ), for all PP ←
PGen(1κ), for all ((ski, pki) ← KeyGen(PP))i∈[n], for all (mi)i∈[n] ∈ Mn, all

(σi ← Sign(ski,mi))i∈[n], all (p̂k, σ̂) ← Combine((pki)i∈[n], (mi)i∈[n], f, (σi)i∈[n])
it holds that

|p̂k| ≤ poly(κ).

It turns out that secret key to public key homomorphic signature schemes already
imply the existence of key succinct multikey-homomorphic signature schemes for
a class F of functions with polynomially many members.

Lemma 2. If there exists an EUF-CMA secure secret key to public key homomor-
phic signature scheme Σ, then there exists a key succinct multikey-homomor-phic
signature scheme ΣF for a class F of functions with polynomially many mem-
bers.

Proof. We prove this lemma by constructing such a scheme. In particular, we
base the construction on a wrapped version ΣF = (KeyGenF ,SignF ,VerifyF )
of the secret key to public key homomorphic signature scheme Σ = (KeyGen,
Sign,Verify), where KeyGenF (1κ) := KeyGen(1κ), SignF (sk,m, τ) := Sign(sk,
m||τ ||F) and VerifyF (pk,m, σ, τ) := Verify(pk,m||τ ||F , σ). Then Combine and
Verify′ can be defined as follows:
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Combine((pki)i∈[n], (mi)i∈[n], f, (σi)i∈[n], τ) : If f /∈ F return ⊥. Otherwise, com-

pute σ̂ ← ((pki,mi, σi))i∈[n] and p̂k←
∏n
i=1 pki and return p̂k and σ̂.

Verify′(p̂k, m̂, f, σ̂, τ) : Return 1, if (VerifyF (pki,mi, σi, τ) = 1)i∈[n] ∧ m̂ =

f(m1, . . . ,mn) ∧ p̂k =
∏n
i=1 pki ∧ f ∈ F , and 0 otherwise.

It is immediate that correctness holds. For unforgeability, note that since Verify′(

p̂k
?

, m̂?, f?, σ̂?, τ?) = 1 by definition, we know that p̂k =
∏
i∈[n] pki, where

(pki)i∈[n] is contained in the signature. Thus, we can simply engage with an
EUF-CMA challenger to obtain pk and simulate the game without knowing sk
by using the Sign oracle provided by the EUF-CMA challenger. If the adversary
eventually outputs a forgery, we either have an EUF-CMA forgery which hap-
pens with negligible probability or a message m̂? /∈ R(f?) which happens with
probability 0 as Verify′ does not accept such an input. Thus, the overall success
probability of any PPT adversary is negligible. ut

While this proves the existence of key succinct multikey-homomorphic signa-
tures, a major open question is whether it is also possible to come up with
schemes which provide signature succinctness as defined below.

Definition 27 (Signature Succinctness). A multikey-homomorphic signa-
ture scheme is called signature succinct, if for all κ ∈ N, for all n ≤ poly(κ),
for all PP← PGen(1κ), for all ((ski, pki)← KeyGen(PP))i∈[n], for all (mi)i∈[n] ∈
Mn, all (σi ← Sign(ski,mi))i∈[n], all (p̂k, σ̂) ← Combine((pki)i∈[n], (mi)i∈[n], f,
(σi)i∈[n]) it holds that

|σ̂| ≤ poly(κ).

Finally, one could also define a notion in the vein of function privacy in the
context of functional signatures [BGI14], i.e., although Combine takes a function
f , the output of Combine would be required to be indistinguishable for any f ′

that evaluates to the same output on the same input. Ultimately, one could even
ask for a stronger property requiring that the signatures output by Combine look
identical to signatures produced by Sign.

5.2 Discussion

We consider it as an interesting open problem to find constructions of the various
flavors of multikey-homomorphic signatures discussed above. It seems that using
indistinguishability obfuscation in similar fashion as it is done in the context of
universal signature aggregators [HKW15] is a viable direction to obtain signature
succinctness. However, as the focus in this paper lies on key-homomorphisms,
we leave a thorough investigation as future work. Another interesting question
in this direction is whether one can achieve key and signature succinctness at
the same time.

Subsequently, we informally discuss some further observations.
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Related Concepts. Firstly, it seems that our notions are related to the prop-
erties one would expect from aggregate signatures [BGLS03] and the related
notion of screening [BGR98]. Furthermore, they also seem to be related to batch
verification of signatures [CHP12] and the recent notion of universal signature
aggregators [HKW15].

Application to Delegation of Computation. Secondly, the concept of multi-
key-homomorphic signatures seem to be a very interesting concept in the domain
of verifiable delegation of computation on outsourced data.

Let us recall that homomorphic signatures for a class F can be used to certify
computations on signed data for any f ∈ F . Assume that some entity who
holds a data set (m1, . . . ,mn), is in possession of a secret key sk and produces
signatures (σ1, . . . , σn) for each respective message in the data set. Then, she
can outsource the authenticated data set (m1, σ1), . . . , (mn, σn) to some remote
server (e.g., the cloud). Later, for any function f ∈ F , the server can be asked to
compute m̂ = f(m1, . . . ,mn) and is able to deliver a succinct proof (signature)
σ̂ certifying the correctness of the computation. Anyone, given the public key
pk of the data holder, the result m̂, corresponding signature σ̂ and the function
f , can then verify whether the computation by the server has been performed
correctly without needing to know the original data.

Now, there are many scenarios with many different signers each of them
holding a distinct secret key ski and each of them periodically authenticates
some data item mi,j and sends it to a server. Then, the server could compute a
function f over inputs authenticated by different secret keys. Think for instance
of environmental sensors that periodically send authenticated measurements to a
server and this server can then compute on these authenticated measurements.
The result can then be verified under the respective public keys or in case of
a scheme with key succinctness the results are verifiable for anyone under a
compact public key p̂k (which can be computed from all the single public keys
once and pre-distributed). Consequently, the concept of multikey-homomorphic
signatures seems to be an interesting and viable direction for extending the scope
of verifiable delegation of computation on outsourced data based on signatures.
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A Proof of Theorem 1

We show that Theorem 1 holds by proving the subsequent lemmas.

Lemma 3. If Σ is correct, and Π is complete, then Scheme 1 is correct.

Lemma 3 follows from inspection and the proof is therefore omitted.

Lemma 4. If Σ is EUF-CMA secure, and provides adaptability of signatures,
and Π admits proofs of knowledge, then Scheme 1 is unforgeable.

Proof. In front of an adversary, we randomly guess it’s strategy and either follow
(1) or (2).

(1) We show that a Type-(1) adversary has negligible success probability.

Game 0: The original unforgeability game.
Game 1: As Game 0, but instead of generating crs upon setup, we obtain crs

from a witness indistinguishability challenger Cwiκ upon Setup. Furthermore,
we also store csk.

Transition - Game 0 → Game 1: This change is conceptual, i.e., Pr[S0] = Pr[S1].
Game 2: As Game 1, but inside the Sig oracle we execute the following modified

Sign algorithm Sign′ which additionally takes csk as input.

Sign(PP, ski,m,R, csk ) : Parse PP as (1κ, crs) and return bot if µ(ski) /∈ R.
Otherwise, return σ ← (δ, pk, π), where

(sk, pk)← KeyGen(1κ), δ ← Σ.Sign(sk,m), and

π ← Π.Proof(crs, (pk,R, cpk), (csk− sk) ).

Transition - Game 1 → Game 2: A distinguisher betweenD1→2 is a distinguisher
for adaptive witness indistinguishability of Π, i.e., |Pr[S2]−Pr[S1]| ≤ εwi(κ).

Game 3: As Game 2, but upon Setup we generate (crs, τ)← Π.E1(1κ) and
store the trapdoor τ .

Transition - Game 2 → Game 3: A distinguisher D2→3 distinguishes an honest
CRS from an extraction CRS, i.e., |Pr[S3]− Pr[S2]| ≤ εe1(κ).

Game 4: As Game 3, but for every forgery (m?, σ?,R?) output by the adver-
sary, we parse σ? as (δ?, pk?, π?), extract the witness sk′ ← Π.E2(crs, τ, (pk?,
R?), π?). If the extraction fails we abort.
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Transition - Game 3 → Game 4: The success probability in Game 2 is the same
as in Game 1, unless the extraction fails. That is, Pr[S4] = (1−εe2(κ))·Pr[S3].

Game 5: As Game 4, but we abort if we have extracted sk′ such that cpk =
pk? · µ(sk′).

Transition - Game 4 → Game 5: If we abort our guess regarding the adversarial
strategy was wrong, i.e., Pr[S5] = 1

2 · Pr[S4].
Game 6: As Game 5, but we guess the index i the adversary will attack at the

beginning of the game, and abort if our guess is wrong, i.e., pki 6= pk? ·µ(sk′).
Transition - Game 5 → Game 6: The success probability in Game 5 is the same

as in Game 6, unless our guess is wrong, i.e., Pr[S6] = 1
poly(κ) · Pr[S5].

Game 7: As Game 6, but instead of running KeyGen for user i, we engage with
an EUF-CMA challenger of Σ to obtain pki.

Transition - Game 6 → Game 7: This change is conceptual, i.e., Pr[S6] = Pr[S7].

If the adversary outputs a forgery (m?, σ?,R?) in Game 5 we compute (pki, σi)←
Adapt(pk?,m?, σ?, sk′) and return (σi,m

?) as a valid forgery for Σ. That is,
Pr[S7] ≤ εf(κ) and we obtain the following bound for the success probability

of a Type-(1) adversary, i.e., Pr[S0] ≤ 2·poly(κ)·εf(κ)
1−εe2(κ) + εe1(κ) + εwi(κ) which is

negligible.

(2) We show that a Type-(2) adversary has negligible success probability.

Game 0: The original unforgeability game.

Game 1: As Game 0, but upon Setup we generate (crs, τ)← Π.E1(1κ) and
store the trapdoor τ .

Transition - Game 0 → Game 1: A distinguisher D0→1 distinguishes an honest
CRS from an extraction CRS, i.e., |Pr[S1]− Pr[S0]| ≤ εe1(κ).

Game 2: As Game 1, but for every forgery (m?, σ?,R?) output by the adver-
sary, we parse σ? as (δ?, pk?, π?), extract the witness sk′ ← Π.E2(crs, τ, (pk?,
R?), π?). If the extraction fails we abort.

Transition - Game 1 → Game 2: The success probability in Game 1 is the same
as in Game 2, unless the extraction fails. That is, Pr[S2] = (1−εe2(κ))·Pr[S1].

Game 3: As Game 2, but we abort if we have extracted sk′ such that cpk 6=
pk? · µ(sk′).

Transition - Game 2 → Game 3: If we abort our guess regarding the adversarial
strategy was wrong, i.e., Pr[S3] = 1

2 · Pr[S2].
Game 4: As Game 3, but instead of honestly generating (csk, cpk) upon Setup

we engage with an EUF-CMA challenger of Σ to obtain cpk and set csk← ⊥.
Transition - Game 3 → Game 4: This change is conceptual, i.e., Pr[S3] = Pr[S4].

If the adversary outputs a forgery (m?, σ?,R?) in Game 3 we compute (cpk, σ)←
Adapt(pk?,m?, σ?, sk′) and return (σ,m?) as a valid forgery for Σ. Thus, we have
that Pr[S4] ≤ εf(κ) and we obtain the following bound for the success probability

of a Type-(1) adversary, i.e., Pr[S0] ≤ 2·εf(κ)
1−εe2(κ) + εe1(κ) which is negligible.

Overall Bound. The overall success probability is bounded by the maximum
success probabilities in (1) and (2), which proves the lemma. ut
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Lemma 5. If Σ provides adaptability of signatures and Π is witness indistin-
guishable, then Scheme 1 is anonymous.

Proof. We show that a simulation of the anonymity game for b = 0 is indistin-
guishable from a simulation of the anonymity game with b = 1.

Game 0: The anonymity game with b = 0.
Game 1: As Game 0, but instead of generating crs upon setup, we obtain crs

from a witness indistinguishability challenger Cwiκ upon Setup.
Transition - Game 0 → Game 1: This change is conceptual, i.e., Pr[S0] = Pr[S1].
Game 2: As Game 1, but instead of obtaining σ via Sign, we execute the fol-

lowing modified algorithm Sign′, which, besides PP, m and R, takes sk0 and
sk1 as input:

Sign′(PP, sk0, sk1,m,R) : Parse PP as (1κ, crs) and return bot if µ(sk0) /∈
R ∨ µ(sk1) /∈ R . Otherwise, return σ ← (σ, pk, π), where

(sk, pk)← Σ.KeyGen(1κ), σ ← Σ.Sign(sk,m), and

π ← Π.Proof(crs, (pk,R), ( sk1 − sk)).

Transition - Game 1 → Game 2: A distinguisher betweenD1→2 is a distinguisher
for adaptive witness indistinguishability of Π, i.e., |Pr[S2]−Pr[S1]| ≤ εwi(κ).

In Game 2, we have a simulation for b = 1; |Pr[S2] − Pr[S0]| ≤ εwi(κ), which
proves the lemma. ut

B Proof of Theorem 2

We subsequently show that Theorem 2 holds where we note that if non-transf-
erability privacy is sufficient, Σ only needs to be adaptable.

Lemma 6. If Σ is EUF-CMA secure and perfectly adapts signatures, f is a one-
way function, and Π is witness indistinguishable and admits proofs of knowledge,
then Scheme 2 is simulation-sound DV-unforgeable.

Proof. We show that an adversary against DV-unforgeability is either (1) an
EUF-CMA adversary for Σ, or (2) an adversary against the one-wayness of f .
In front of an adversary we randomly guess it’s strategy uniformly at random;
taking both cases together then proves the lemma.

(1) We followingly bound the success probability for an EUF-CMA forger, where
we let qSim ≤ poly(κ) be the number Sim queries.

Game 0: The original DV-unforgeability game.
Game 1: As Game 0, but instead of generating (sk, pk) ← Gen(PP), we obtain

pk from an EUF-CMA challenger. Further, whenever a signature under pk is
required we use the Sign oracle provided by the challenger.
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Transition - Game 0 → Game 1: This change is conceptual, i.e., Pr[S0] = Pr[S1].
Game 2: As Game 1, but inside the Sim oracle we execute the following mod-

ified Sim algorithm Sim′, where Cf denotes an EUF-CMA challenger.

Sim(pk, vsk,m) : Output δ = (pk′, σR, π), where

pkR ← Cfκ , pk′ ← pkR · pk−1, σR ← Cfκ.Sign(m) ,

π ← Π.Proof(crs, (pk′, f(vsk)), (⊥, vsk)).

Further, the environment keeps a mapping from public keys pkR to chal-
lengers Cfκ.

Transition - Game 1 → Game 2: This change is conceptual, i.e., Pr[S1] = Pr[S2].

Game 3: As Game 2, but we obtain crs upon Setup using (crs, τ)← Π.E1(1κ)
and store the trapdoor τ .

Transition - Game 2 → Game 3: A distinguisher D2→3 distinguishes an honest
CRS from an extraction CRS, i.e., |Pr[S2]− Pr[S3]| ≤ εe1(κ).

Game 4: As Game 3, but for every forgery (m?, δ?) output by the adversary, we
parse δ? as (pk′?, σ?

R, π
?) and extract the witness (sk′, vsk)← Π.E2(crs, τ, (pk′?,

vpk), π?).
Transition - Game 3 → Game 4: The success probability in Game 3 is the same

as in Game 4, unless the extraction fails. That is, Pr[S4] = (1−εe2(κ))·Pr[S3].
Game 5: As in Game 4, but whenever the adversary outputs a valid forgery,

we check whether pk · pk′ corresponds to a pkR obtained from a challenger
in the Sim oracle, or whether we have extracted sk′ such that µ(sk′) = pk′.
If not, we abort as we are in case (2).

Transition - Game 4 → Game 5: If we abort our guess regarding the adversarial
strategy was wrong, i.e., Pr[S5] = 1

2 · Pr[S4].

In Game 5, we can directly output (m?, σ?

R) as a forgery for Σ if pk · pk′ cor-
responds to a pkR obtained from a challengers within Sim, or, if µ(sk′) = pk′,
we can obtain (pk, σ) ← Σ.Adapt(pk · pk′,m?, σ?

R,−sk′) and output (m?, σ) as a
forgery for Σ. Taking the union bound yields Pr[S5] ≤ (qSim + 1) · εf(κ), and we

obtain Pr[S0] ≤ 2·(qSim+1)·εf(κ)
1−εe2(κ) + εe1(κ) which is negligible.

(2) Subsequently we bound the success probability for a one-wayness adversary.

Game 0: The original DV-unforgeability game.
Game 1: As Game 0, but we simulate the Vrfy oracle by using the following

modified DVerify algorithm DVerify′ which takes vpk instead of vsk as input.

DVerify′(pk, vpk ,m, δ) : Parse δ as (pk′, σR, π) and return 1 if the follow-
ing holds, and 0 otherwise:

Σ.Verify(pk · pk′,m, σR) = 1 ∧ Π.Verify(crs, (pk′, vpk ), π) = 1.

Transition Game 0 → Game 1: This change is conceptual, i.e., Pr[S0] = Pr[S1].
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Game 2: As Game 1, but instead of generating crs upon setup, we obtain crs
from a witness indistinguishability challenger Cwiκ upon Setup.

Transition - Game 1 → Game 2: This change is conceptual, i.e., Pr[S1] = Pr[S2].

Game 3: As Game 2, but inside the Sim oracle we execute the following mod-
ified Sim algorithm Sim′ which additionally takes sk and vpk as input.

Sim′(pk, vsk,m, sk, vpk ) : Output δ ← (pk′, σR, π), where

σ ← Σ.Sign(sk,m) ,

(sk′, pk′)← Σ.KeyGen(1κ), (pkR, σR)← Σ.Adapt(µ(sk),m, σ, sk′) ,

π ← Π.Proof(crs, (pk′, vpk ), (⊥, vsk)).

Transition - Game 2 → Game 3: Under perfect adaption of signatures this change
is conceptual, i.e., Pr[S2] = Pr[S3].

Game 4: As Game 3, but we further modify Sim′, which now runs without vsk,
as follows.

Sim′(pk,m, sk, vpk) : Output δ ← (pk′, σR, π), where

σ ← Σ.Sign(sk,m),

(sk′, pk′)← Σ.KeyGen(1κ), (pkR, σR)← Σ.Adapt(µ(sk),m, σ, sk′),

π ← Π.Proof(crs, (pk′, vpk), (sk,⊥) ).

Transition - Game 3 → Game 4: A distinguisher betweenD3→4 is a distinguisher
for adaptive witness indistinguishability of Π, i.e., |Pr[S4]−Pr[S3]| ≤ εwi(κ).

Game 5: As Game 4, but instead of generating (vsk, vpk) ← DVGen(PP), we
obtain vpk from an EUF-CMA challenger for Σ and set vsk← ⊥.

Transition - Game 4 → Game 5: This change is conceptual, i.e., Pr[S4] = Pr[S5].

Game 6: As Game 5, but we obtain crs upon Setup using (crs, τ)← Π.E1(1κ)
and store the trapdoor τ .

Transition - Game 5 → Game 6: A distinguisher D5→6 distinguishes an honest
CRS from an extraction CRS, i.e., |Pr[S6]− Pr[S5]| ≤ εe1(κ).

Game 7: As Game 6, but for every forgery (m?, δ?) output by the adversary, we
parse δ? as (pk′?, σ?

R, π
?), extract the witness (sk′, vsk) ← Π.E2(crs, τ, (pk′?,

vpk), π?).

Transition - Game 6 → Game 7: The success probability in Game 6 is the same
as in Game 7, unless the extraction fails. That is, Pr[S7] = (1−εe2(κ))·Pr[S6].

Game 8: As Game 7, but whenever the adversary outputs a valid forgery, we
check whether we have extracted vsk such that f(vsk) 6= vpk and abort if so
(as we are in the other case).

Transition - Game 7 → Game 8: If we abort our guess regarding the adversarial
strategy was wrong, i.e., Pr[S8] = 1

2 · Pr[S7].
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In Game 8, we output vsk and break the one-wayness of the one-way function.

Thus, Pr[S8] ≤ εow(κ) and we obtain Pr[S0] ≤ 2·εow(κ)
1−εe2(κ) + εe1(κ) + εwi(κ).

Overall Bound. The overall success probability is bounded by the maximum
success probabilities in (1) and (2), which proves the lemma. ut

Lemma 7. If Σ perfectly adapts signatures, and Π is witness indistinguishable,
then Scheme 2 is strongly non-transferable private.

Proof. We bound the success probability using a sequence of games.

Game 0: The original non-transferability privacy game.
Game 1: As Game 0, but instead of generating crs upon setup, we obtain crs

from a witness indistinguishability challenger Cwiκ upon Setup.
Transition - Game 0 → Game 1: This change is conceptual, i.e., Pr[S0] = Pr[S1].
Game 2: As Game 1, but inside SoD we execute the following modified the

Desig algorithm Desig′ which additionally takes vsk as input:

Desig′(pk, vpk,m, σ, vsk ) : Output δ ← (pk′, σR, π), where

(sk′, pk′)← Σ.KeyGen(1κ), (pkR, σR)← Σ.Adapt(pk,m, σ, sk′),

π ← Π.Proof(crs, (pk′, vpk), (⊥, vsk) ).

Transition - Game 1 → Game 2: A distinguisher betweenD1→2 is a distinguisher
for adaptive witness indistinguishability of Π, i.e., |Pr[S2]−Pr[S1]| ≤ εwi(κ).

Game 3: As Game 2, but we further modify Desig′ as follows:

Desig′(pk, vpk,m, σ, vsk) : Output δ ← (pk′, σR, π), where

(skR, pkR)← Σ.KeyGen(1κ), pk′ ← pkR · pk−1, σR ← Σ.Sign(skR,m) ,

π ← Π.Proof(crs, (pk′, vpk), (⊥, vsk)).

Transition - Game 2 → Game 3: By the perfect adaption of signatures, this
change is conceptual, i.e., Pr[S2] = Pr[S3].

In Game 3, Desig′ is identical to Sim; SoD is simulated independently of b and
|Pr[S3]− Pr[S0]| ≤ εwi(κ), which proves the lemma. ut

C Examples of Key-Homomorphic Signature Schemes

Subsequently we give some examples of signature schemes providing key-homo-
morphic properties. Therefore let BGGen be a bilinear group generator which on
input of a security parameter 1κ and a type parameter t ∈ {1, 2, 3} outputs a
bilinear group description BG. If t = 2, BG is defined as (G1,G2,GT , p, e, g, g̃, ψ),
where G1 = 〈g〉,G2 = 〈g̃〉, and GT are three groups of prime order p with
κ = log2 p, e is a bilinear map G1×G2 → GT , and ψ is an isomorphism G2 → G1.
If t = 3 the isomorphism ψ is missing. If t = 1 we have that G1 = G2 denoted
as G.
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C.1 BLS Signatures [BLS04]

In Scheme 4 we recall BLS signatures in a Type 3 setting (cf. [CHKM10] for a
treatment of security of this BLS variant). We stress that the properties which
we discuss below are equally valid for the original BLS scheme in [BLS04] in-
stantiated in a Type 2 setting.

PGen(1κ) : Run BG ← BGGen(1κ, 3), choose a hash function H : M→ G1 uniformly
at random from hash function family {Hk}k, set PP← (BG, H).

KeyGen(PP) : Choose x←R Zp, set pk← (PP, g̃x), sk← (pk, x), and return (sk, pk).
Sign(sk,m) : Return σ ← H(m)x.
Verify(pk,m, σ) : Verify whether e(H(m), g̃x) = e(σ, g̃) and return 1 if so and 0 other-

wise.

Scheme 4: Type 3 BLS Signatures

Lemma 8. BLS signatures are perfectly adaptable according to Definition 13.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying
the perfect adaptability notion.

Adapt(pk,m, σ,∆) : Let ∆ ∈ Zp and pk = (PP, g̃x). Return (pk′, σ′), where pk′ ←
(PP, g̃x · g̃∆) and σ′ ← σ ·H(m)∆.

It is immediate that adapted signatures are identical to fresh signatures under
pk′ = (PP, g̃x+∆). ut

Lemma 9. BLS signatures are publicly key-homomorphic according to Defini-
tion 14.

Proof. We prove the lemma above by presenting a suitable Combine algorithm.

Combine((pki)
n
i=1,m, (σi)

n
i=1) : Let pki = (PP, g̃xi). Run p̂k ← (PP,

∏n
i=1 g̃

xi),

and σ̂ ←
∏n
i=1 σi and return p̂k and σ̂. ut

C.2 Waters Signatures [Wat05]

Below we recall Waters signatures with shared hashing parameters as presented
in [CHKM10]. We stress that while perfect adaption equally applies to the orig-
inal scheme in [Wat05], the public key-homomorphic property requires different
public keys to share the same Water’s hash parameters. Consequently, we only
present the variant from [CHKM10], which is reasonable in a multi-user setting.

Lemma 10. Waters signatures are perfectly adaptable according to Definition 13.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying
the perfect adaptability notion.
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PGen(1κ) : Run BG ← BGGen(1κ, 3), choose U = (u0, . . . un)←R Gk1 , and define H :
M→ G1 as H(m) := u0 ·

∏n
i=1 u

mi
i , where M = {0, 1}n. Set PP← (BG, U,H).

KeyGen(PP) : Choose x←R Zp, set pk← (PP, e(gx, g̃)), sk← (pk, gx), and return (sk, pk).
Sign(sk,m) : Choose r←R Zp, set α← gx ·H(m)r, β ← g̃r, γ ← gr and return (α, β, γ).
Verify(pk,m, σ) : Verify whether e(α, g̃) = e(gx, g̃) ·e(H(m), β) ∧ e(γ, g̃) = e(g, β) and

return 1 if it holds and 0 otherwise.

Scheme 5: Waters Signatures with Shared Hash Parameters

Adapt(pk,m, σ,∆) : Let ∆ ∈ G1, σ = (α, β, γ), and pk = (PP, e(gx, g̃)). Choose
r′←R Zp, compute σ′ ← (α ·∆ ·H(m)r

′
, β · g̃r′ , γ ·gr′) and pk′ ← (PP, e(gx, g̃) ·

e(∆, g̃)).

Signatures output by Adapt are identically distributed as fresh signatures under
randomness r + r′ und key pk = (PP, e(gx ·∆, g̃)), which proves the lemma. ut

Lemma 11. Waters signatures are publicly key-homomorphic according to Def-
inition 14.

Proof. We prove the lemma above by presenting a suitable Combine algorithm.

Combine((pki)
n
i=1,m, (σi)

n
i=1) : Let σi = (αi, βi, γi) and pki = (PP, e(gxi , g̃)).

Run p̂k ← (PP,
∏n
i=1 e(g

xi , g̃)) and σ̂ ← (
∏n
i=1 αi,

∏n
i=1 βi,

∏n
i=1 γi) and re-

turn p̂k and σ̂. ut

C.3 PS Signatures [PS16b]

In Scheme 6 we recall a recent signature scheme from [PS16b], which provides
perfect adaption, but is not publicly key-homomorphic.

PGen(1κ) : Run BG← BGGen(1κ, 3) set PP← BG.
KeyGen(PP) : Choose x, y←R Zp, compute X̃ ← g̃x, Ỹ ← g̃y and set pk ← (PP, X̃, Ỹ ),

sk← (pk, x, y), and return (sk, pk).
Sign(sk,m) : Choose h←R G∗1 and return σ ← (h, h(x+y·m)).
Verify(pk,m, σ) : Parse σ as (σ1, σ2) and check whether σ1 6= 1G1 and e(σ1, X̃ · Ỹ m) =

e(σ2, g̃) holds. If both checks hold return 1 and 0 otherwise.

Scheme 6: PS Signatures

Lemma 12. PS signatures are perfectly adaptable according to Definition 13.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying
the perfect adaptability notion.

Adapt(pk,m, σ,∆) : Parse pk as (PP, X̃, Ỹ ), σ as (σ1, σ2) and ∆ as (∆1, ∆2) ∈ Z2
p

and choose r←R Zp. Compute pk′ ← (PP, X̃ · g̃∆1 , Ỹ · g̃∆2) and σ′ ← (σr1, (σ2 ·
σ∆1+∆2m
1 )r) and return (pk′, σ′).
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The key pk′ = (g̃x+∆1 , g̃y+∆2) and σ′ = (hr, (hr)x+∆1+m(y+∆2)) output by the
Adapt algorithm is identically distributed to a fresh signature under randomness
hr and pk′. ut

It is easy to see, that PS signatures are, however, not publicly key-homomorphic
as independently generated signatures are computed with respect to different
bases h with unknown discrete logarithms. Consequently, there is no efficient
means to obtain a succinct representation of σ̂ that is suitable for Verify.

C.4 CL Signature Variant [CHP12]

While the original pairing-based CL signature scheme [CL04] does not satisfy
any of the key-homomorphic properties discussed in this paper, we recall a CL
signature variant from [CHP12] in Scheme 7 which does.

PGen(1κ) : Run BG← BGGen(1κ, 1), choose some polynomially bound set Ψ and hash
functions H1 : Ψ → G, H2 : Ψ → G , H3 :M× Ψ → Zp uniformly at random from
suitable hash function families. Set PP← (BG, H1, H2, H3).

KeyGen(PP) : Choose x←R Zp and set pk← (PP, gx), sk← (pk, x), and return (sk, pk).
Sign(sk, (m,ψ)) : If it is the first call to Sign during time period ψ ∈ Ψ , then compute

w ← H3(m,ψ), a← H1(ψ), b← H2(ψ) and return σ ← axbxw. Otherwise abort.
Verify(pk, (m,ψ), σ) : Compute w ← H3(m,ψ), a ← H1(ψ), b ← H2(ψ) and check

whether e(σ, g) = e(a,X) · e(b,X)w holds. If so return 1 and 0 otherwise.

Scheme 7: CL Signature Variant

Lemma 13. Adapted CL signatures are perfectly adaptable according to Defini-
tion 13.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying
the perfect adaptability notion.

Adapt(pk, (m,ψ), σ,∆) : Parse pk as (PP, X) and compute w ← H3(m,ψ), a ←
H1(ψ), b← H2(ψ). Compute pk′ ← (PP, X · g∆) and σ′ ← σ · a∆ · b∆·w and
return (pk′, σ′).

It is easy to see that adapted signatures are identical to fresh signatures under
pk′ = (PP, X · g∆). ut

Lemma 14. Adapted CL signatures are publicly key-homomorphic according to
Definition 14.

Proof. We prove the lemma above by presenting a suitable Combine algorithm.

Combine((pki)
n
i=1,m, (σi)

n
i=1) : Let pki = (PP, gxi). Run p̂k← (PP,

∏n
i=1 g

xi and

σ̂ ← (
∏n
i=1 σi) and return p̂k and σ̂. ut
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