Key-Homomorphic Signatures and Applications to Multiparty Signatures and Non-Interactive Zero-Knowledge

David Derler and Daniel Slamanig

IAIK, Graz University of Technology, Austria {david.derler|daniel.slamanig}@tugraz.at

Abstract. Key-homomorphic properties of cryptographic objects have proven to be useful, both from a theoretical as well as a practical perspective. Important cryptographic objects such as pseudorandom functions or (public key) encryption have been studied previously with respect to key-homomorphisms. Interestingly, however, signature schemes have not been explicitly investigated in this context so far.

We close this gap and initiate the study of key-homomorphic signatures, which turns out to be an interesting and versatile concept. In doing so, we firstly propose a definitional framework for key-homomorphic signatures distilling various natural flavours of key-homomorphic properties. Those properties aim to generalize larger classes of existing signature schemes, which makes it possible to infer general statements about signature schemes from those classes by simply making black-box use of the respective properties. We then employ our definitional framework to show elegant and simple compilers from classes of schemes admitting different types of key-homomorphisms to a number of other interesting primitives such as ring signature schemes, (universal) designated verifier signature schemes, simulation-sound extractable arguments of knowledge, and multisignature schemes. Additionally, using the formalisms provided by our framework, we can prove a tight implication from single-user security to key-prefixed multi-user security for a class of schemes admitting a certain key-homomorphism.

Moreover, we introduce the notion of multikey-homomorphic signatures. Such schemes provide homomorphic properties on the message space of signatures under different keys. We discuss key-homomorphisms in this context and present some first constructive results from key-homomorphic schemes. Finally, we discuss some interesting open problems and an application of multikey-homomorphic schemes to verifiable delegation of computations.

Keywords. key-homomorphic signatures \cdot ring signatures \cdot (universal) designated verifier signatures \cdot simulation sound extractable argument systems \cdot multisignatures \cdot multi-user signatures \cdot multikey-homomorphic signatures

The authors have been supported by EU H2020 project Prismacloud, grant agreement $n^{\circ}644962$.

Table of Contents

Ke	y-Homomorphic Signatures and Applications
	David Derler and Daniel Slamanig
1	Introduction
2	Preliminaries
3	Key-Homomorphic Signatures
4	Applications
	4.1 Ring Signatures
	4.2 Universal Designated Verifier Signatures
	4.3 Simulation Sound Extractable Argument Systems
	4.4 Multisignatures
	4.5 Tight Multi-User Security from Key-Homomorphisms
5	Homomorphisms on Key and Message Space
	5.1 Multikey-Homomorphic Signatures
	5.2 Discussion
6	Conclusion
A	Proof of Theorem 1
В	Proof of Theorem 2
\mathbf{C}	Proof of Theorem 3
D	Examples of Key-Homomorphic Signature Schemes
	D.1 BLS Signatures [BLS04]
	D.2 Waters Signatures [Wat05]
	D.3 PS Signatures [PS16b]
	D.4 CL Signature Variant [CHP12]

1 Introduction

The design of cryptographic schemes that possess certain homomorphic properties on their message space has witnessed significant research within the last years. In the domain of encryption, the first candidate construction of fully homomorphic encryption (FHE) due to Gentry [Gen09] has initiated a fruitful area of research with important applications to computations on (outsourced) encrypted data. In the domain of signatures, the line of work on homomorphic signatures [JMSW02], i.e., signatures that are homomorphic with respect to the message space, has only quite recently attracted attention. Firstly, due to the introduction of computing on authenticated data [ABC+12]. Secondly, due to the growing interest in the application to verifiable delegation of computations (cf. [Cat14] for a quite recent overview), and, finally, due to the recent construction of fully homomorphic signatures [GVW15, BFS14].

In this paper we are interested in another type of homomorphic schemes, so called key-homomorphic schemes. Specifically, we study key-homomorphic signature schemes, that is, signature schemes which are homomorphic with respect to the key space. As we will show in this paper, this concept turns out to be a very interesting and versatile tool.

Previous Work. While we are the first to explicitly study key-homomorphic properties of signatures, some other primitives have already been studied with respect to key-homomorphic properties previously. Applebaum et al. in [AHI11] studied key-homomorphic symmetric encryption schemes in context of related key attacks (RKAs). Recently, Dodis et al. [DMS16] have shown that any such key-homomorphic symmetric encryption schemes implies public key encryption. Rothblum [Rot11] implicitly uses key malleability to construct (weakly) homomorphic public key bit-encryption schemes from private key ones. Goldwasser et al. in [GLW12], and subsequently Tessaro and Wilson in [TW14], use public key encryption schemes with linear homomorphisms over their keys (and some related properties) to construct bounded-collusion identity-based encryption (IBE). Recently, Boneh et al. introduced the most general notion of fully key-homomorphic encryption [BGG+14]. In such a scheme, when given a ciphertext under a public key pk, anyone can translate it into a ciphertext to the same plaintext under public key (f(pk), f) for any efficiently computable function f.

Another line of work recently initiated by Boneh et al. [BLMR13] is concerned with key-homomorphic pseudorandom functions (PRFs) and pseudo random generators (PRGs). Loosely speaking, a secure PRF family $F: \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$, is key-homomorphic if the keys live in a group $(\mathcal{K}, +)$, and, given two evaluations $F(k_1, x)$ and $F(k_2, x)$ for the same value under two keys, one can efficiently compute $F(k_1 + k_2, x)$. Such PRFs turn out to yield interesting applications such as distributed PRFs, symmetric key proxy re-encryption or updatable encryption. Continuing the work in this direction, alternative constructions [BP14] and extended functionality in the form of constrained key-homomorphic PRFs have been proposed [BFP+15]. We note that the result from Dodis et al. [DMS16], although not mentioned, answers the open question posed by Boneh et al.

[BLMR13] "whether key-homomorphic PRFs whose performance is comparable to real-world block ciphers such as AES exist" in a negative way.

When switching to the field of signatures, we can define key-homomorphisms in various different ways, of which we subsequently sketch two to provide a first intuition. One notion is to require that given two signatures for the same message m valid under some pk_1 and pk_2 respectively, one can publicly compute a signature to message m that is valid for a public key pk' that is obtained via some operation on pk_1 and pk_2 . Another variant for instance is to require that, given a signature σ to a message m that verifies under pk , σ can be adapted to a signature to m under pk' . Thereby, pk and pk' have a well defined relationship (cf. Section 3 for the details).

Although key-homomorphic signatures have never been discussed or studied explicitly, some implicit use of key-homomorphisms can be found. A recent work by Kiltz et al. [KMP16] introduces a property for canonical identification schemes denoted as random self-reducibility. This basically formalizes the re-randomization of key-pairs as well as adapting parts of transcripts of identification protocols consistently. Earlier, Fischlin and Fleischhacker in [FF13] used re-randomization of key-pairs implicitly in their meta reduction technique against Schnorr signatures. This concept has recently been formalized, yielding the notion of signatures with re-randomizable keys [FKM⁺16]. In such schemes the EUF-CMA security notion is slightly tweaked, by additionally allowing the adversary to see signatures under re-randomized keys. These signatures with re-randomizable keys are then used as basis of an elegant construction of unlinkable sanitizable signatures (cf. [FKM+16]). Allowing the adversary to also access signatures under re-randomized (related) keys, has earlier been studied in context of security of signature schemes against related-key attacks (RKAs) [BCM11, BPT12]. In this context, the goal is to prevent that signature schemes have key-homomorphic properties that allow to adapt signatures under related keys to signatures under the original key (cf. e.g., [MSM+15]).

Concurrent Work. Fiore et al. [FMNP16] in independent and concurrent work introduce the concept of multi-key homomorphic authenticators (MACs and signatures). As this work is only related to our Section 5, we defer a discussion to this section. In another independent work Lai et al. [LTWC16] study different flavours of multi-key homomorphic signatures with homomorphisms on the message and/or key space and show equivalences of different types of such multi-key homomorphic signatures (which are all implied by zk-SNARKS). What they call multi-key key-message-homomorphic signatures can be seen as related to our notion of key-homomorphisms. Yet, our works target totally different directions. Their approach is top-down, i.e., the focus is on introducing new primitives and showing implications between them. In contrast, our approach is bottom-up, i.e., our focus lies on distilling additional properties of larger classes of existing schemes, to (1) obtain new insights regarding generic construction paradigms involving schemes from those classes, and (2) to obtain new instantiations by solely analyzing schemes with respect to their properties.

Contribution. Now, we briefly summarize the contributions in this paper:

- We initiate the study of key-homomorphic signature schemes. In doing so, we propose various natural definitions of key-homomorphic signatures, generalizing larger classes of existing signature schemes. This generalization makes it possible to infer general statements about signature schemes from those classes by simply making black-box use of the respective properties. Thereby, we rule out certain combinations of key-homomorphism and existing unforgeability notions of signatures.
- We employ our definitional framework to present compilers from classes of schemes providing different types of key-homomorphisms to other interesting variants of signature schemes such as ring signatures, (universal) designated verifier signatures or multisignatures. The so obtained constructions, besides being very efficient, are simple and elegant from a construction and security analysis point of view. Basically, for ring signatures, (universal) designated verifier signatures and weakly simulation sound extractable argument systems, one computes a signature using any suitable key-homomorphic scheme under a freshly sampled key and then proves a simple relation over public keys only. For simulation sound extractable argument systems we additionally require a strong one-time signature scheme. Multisignatures are directly implied by signatures with certain key-homomorphic properties.
- Using the formalisms provided by our framework we prove a theorem which tightly relates the single-user existential unforgeability under chosen message attacks (EUF-CMA) of a class of schemes admitting a particular key-homomorphism to its key-prefixed multi-user EUF-CMA security. This theorem addresses a frequently occurring question in the context of standardization and generalizes existing theorems [Ber15, Lac16] (where such implications are proven for concrete signature schemes) so that it is applicable to a larger class of signature schemes.
- We give examples of existing signature schemes admitting types of keyhomomorphisms we define. Using our compilers, this directly yields previously unknown instantiations of all variants of signature schemes mentioned above. Likewise, our general theorem for multi-user security attests the multi-user security for schemes whose multi-user security has not been studied previously.
- We introduce the notion of multikey-homomorphic signatures. Such schemes provide homomorphic properties on the message space of signatures under different keys. This can be seen as a step towards establishing the signature counterpart of multikey (fully) homomorphic encryption [LTV12, CM15, MW16, PS16a, BP16]. We discuss key-homomorphisms in this context and present some first constructive results from key-homomorphic signatures that yield multikey-homomorphic signatures with a succinct verification key. Finally, we discuss some interesting open problems and highlight that multikey-homomorphic signatures have interesting applications in verifiable delegation of computations.
- As a contribution of independent interest, we strengthen the security model
 of universal designated verifier signatures by proposing a stronger designated
 verifier unforgeability notion, which we term simulation-sound designated

verifier unforgeability. We prove that schemes obtained from our compiler satisfy this strong notion, i.e., we can use a certain class of key-homomorphic signatures in a black-box way to convert them to universal designated verifier signatures which are secure in this strengthened model. This yields various instantiations being the first satisfying such a strong notion.

2 Preliminaries

We denote algorithms by sans-serif letters, e.g., A, B. If not stated otherwise, all algorithms are required to run in polynomial time and return a special symbol \bot on error. By $y \leftarrow A(x)$, we denote that y is assigned the output of the potentially probabilistic algorithm A on input x and fresh random coins. Similarly, $y \stackrel{R}{\leftarrow} S$ means that an element is sampled uniformly at random from a set S and assigned to y, and we use $Q \stackrel{\sqcup}{\leftarrow} z$ as a shorthand for $Q \leftarrow Q \cup \{z\}$. We let $[n] := \{1, \ldots, n\}$ and write $\Pr[\Omega : \mathcal{E}]$ to denote the probability of an event \mathcal{E} over the probability space Ω . We use \mathcal{C} to denote challengers of security experiments, and \mathcal{C}_{κ} to make the security parameter explicit. A function $\varepsilon(\cdot) : \mathbb{N} \to \mathbb{R}_{\geq 0}$ is called negligible, iff it vanishes faster than every inverse polynomial, i.e., $\forall k : \exists n_k : \forall n > n_k : \varepsilon(n) < n^{-k}$. We use ρ to denote the success ration of an adversary, i.e., the quotient of its success probability and its running time. Finally, we use $\operatorname{poly}(\cdot)$ to denote a polynomial function.

One-Way Functions. Below, we recall the notion of one-way functions.

Definition 1. A function $f : \mathsf{Dom}(f) \to \mathsf{R}(f)$ is called a one-way function, if (1) there exists a PPT algorithm \mathcal{A}_1 so that $\forall \ x \in \mathsf{Dom}(f) : \mathcal{A}_1(x) = f(x)$, and if (2) for every PPT algorithm \mathcal{A}_2 there is a negligible function $\varepsilon(\cdot)$ such that it holds that

$$\Pr\left[x \xleftarrow{\scriptscriptstyle R} \mathsf{Dom}(f), \ x^{\star} \leftarrow \mathcal{A}_2(1^{\kappa}, f(x)) \ : \ f(x) = f(x^{\star})\right] \leq \varepsilon(\kappa).$$

Unless stated otherwise, we assume Dom(f) to be efficiently sampleable.

Signature Schemes. Subsequently, we recall the definition of signature schemes.

Definition 2. A signature scheme Σ is a triple (KeyGen, Sign, Verify) of PPT algorithms, which are defined as follows:

KeyGen(1^{κ}): This algorithm takes a security parameter κ as input and outputs a secret (signing) key sk and a public (verification) key pk with associated message space \mathcal{M} (we may omit to make the message space \mathcal{M} explicit).

Sign(sk, m): This algorithm takes a secret key sk and a message $m \in \mathcal{M}$ as input and outputs a signature σ .

Verify(pk, m, σ): This algorithm takes a public key pk, a message $m \in \mathcal{M}$ and a signature σ as input and outputs a bit $b \in \{0, 1\}$.

We note that for a signature scheme many independently generated public keys may be with respect to the same parameters PP, e.g., some elliptic curve group

parameters. In such a case we introduce an additional algorithm PGen which is run by some (trusted) party to obtain $PP \leftarrow PGen(1^{\kappa})$ and key generation requires PP (which implicitly contain the security parameter) to produce keys as $(sk, pk) \leftarrow KeyGen(PP)$. Moreover, we then assume that PP is included in all public keys.

Besides the usual correctness property, Σ needs to provide some unforgeability notion. Below, we present two standard notions required in our context (ordered from weak to strong). We start with universal unforgeability under no message attacks (UUF-NMA security).

Definition 3 (UUF-NMA). A signature scheme Σ is UUF-NMA secure, if for all PPT adversaries \mathcal{A} there is a negligible function $\varepsilon(\cdot)$ such that

$$\Pr\left[\begin{array}{l} (\mathsf{sk},\mathsf{pk}) \leftarrow \mathsf{KeyGen}(1^\kappa), \ m^\star \xleftarrow{\scriptscriptstyle R} \mathcal{M}, \\ \sigma^\star \leftarrow \mathcal{A}(\mathsf{pk},m^\star) \end{array} \right] \leq \varepsilon(\kappa).$$

The most common notion is existential unforgeability under adaptively chosen message attacks (EUF-CMA security).

Definition 4 (EUF-CMA). A signature scheme Σ is EUF-CMA secure, if for all PPT adversaries A there is a negligible function $\varepsilon(\cdot)$ such that

$$\Pr \begin{bmatrix} (\mathsf{sk},\mathsf{pk}) \leftarrow \mathsf{KeyGen}(1^\kappa), \\ (m^\star,\sigma^\star) \leftarrow \mathcal{A}^{\mathsf{Sign}(\mathsf{sk},\cdot)}(\mathsf{pk}) \end{bmatrix} : \begin{array}{c} \mathsf{Verify}(\mathsf{pk},m^\star,\sigma^\star) = 1 \; \land \\ m^\star \notin \mathcal{Q}^{\mathsf{Sign}} \end{bmatrix} \leq \varepsilon(\kappa),$$

where the environment keeps track of the queries to the signing oracle via Q^{Sign} .

Non-Interactive Proof Systems. Now, we recall a standard definition of non-interactive proof systems Π . Our definitions are inspired by [Gro06]. Therefore, let L_R be an NP-language with witness relation R defined as $L_R = \{x \mid \exists w : R(x, w) = 1\}$.

Definition 5. A non-interactive proof system Π is a tuple of algorithms (Setup, Proof, Verify), which are defined as follows:

Setup(1^{κ}): This algorithm takes a security parameter κ as input, and outputs a common reference string crs.

Proof(crs, x, w): This algorithm takes a common reference string crs, a statement x, and a witness w as input, and outputs a proof π .

Verify(crs, x, π): This algorithm takes a common reference string crs, a statement x, and a proof π as input, and outputs a bit $b \in \{0, 1\}$.

Now, we recall formal definitions of the security properties. We thereby relax our definitions to computationally sound proof systems (argument systems).

Definition 6 (Completeness). A non-interactive proof system Π is complete, if for every adversary A it holds that

$$\Pr\left[\begin{matrix} \mathsf{crs} \leftarrow \mathsf{Setup}(1^\kappa), \ (x^\star, w^\star) \leftarrow \mathcal{A}(\mathsf{crs}), \\ \pi \leftarrow \mathsf{Proof}(\mathsf{crs}, x^\star, w^\star) \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right. \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot \\ \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot & \cdot \end{matrix} \right] \\ \left. \begin{matrix} \cdot & \cdot & \cdot &$$

Definition 7 (Soundness). A non-interactive proof system Π is sound, if for every PPT adversary A there is a negligible function $\varepsilon(\cdot)$ such that

$$\Pr\left[\operatorname{crs} \leftarrow \operatorname{Setup}(1^\kappa), \ (x^\star, \pi^\star) \leftarrow \mathcal{A}(\operatorname{crs}) \ : \ \begin{array}{c} \operatorname{Verify}(\operatorname{crs}, x^\star, \pi^\star) = 1 \\ \wedge \ x^\star \notin L_R \end{array}\right] \leq \varepsilon(\kappa).$$

Definition 8 (Adaptive Witness-Indistinguishability). A non-interactive proof system Π is adaptively witness-indistinguishable, if for every PPT adversary A there is a negligible function $\varepsilon(\cdot)$ such that

$$\Pr \Big[\mathsf{crs} \leftarrow \mathsf{Setup}(1^\kappa), \ b \overset{\scriptscriptstyle R}{\leftarrow} \{0,1\}, \ b^\star \leftarrow \mathcal{A}^{\mathcal{P}(\mathsf{crs},\cdot,\cdot,\cdot,b)}(\mathsf{crs}) \ : \ b = b^\star \Big] \ \leq \varepsilon(\kappa),$$

where $\mathcal{P}(\mathsf{crs}, x, w_0, w_1, b) \coloneqq \mathsf{Proof}(\mathsf{crs}, x, w_b)$, and \mathcal{P} returns \bot if $(x, w_0) \notin R \lor (x, w_1) \notin R$.

If $\varepsilon = 0$, we have perfect adaptive witness-indistinguishability.

Definition 9 (Adaptive Zero-Knowledge). A non-interactive proof system Π is adaptively zero-knowledge, if there exists a PPT simulator $S = (S_1, S_2)$ such that for every adversary A there is a negligible function $\varepsilon(\cdot)$ such that

$$\left| \begin{array}{l} \Pr \Big[\mathsf{crs} \leftarrow \mathsf{Setup}(1^\kappa) \ : \ \mathcal{A}^{\mathcal{P}(\mathsf{crs},\cdot,\cdot)}(\mathsf{crs}) = 1 \Big] \ - \\ \Pr \Big[(\mathsf{crs},\tau) \leftarrow \mathsf{S}_1(1^\kappa) \ : \ \mathcal{A}^{\mathcal{S}(\mathsf{crs},\tau,\cdot,\cdot)}(\mathsf{crs}) = 1 \Big] \end{array} \right| \leq \varepsilon(\kappa),$$

where, τ denotes a simulation trapdoor. Thereby, \mathcal{P} and \mathcal{S} return \perp if $(x, w) \notin R$ or $\pi \leftarrow \mathsf{Proof}(\mathsf{crs}, x, w)$ and $\pi \leftarrow \mathsf{S}_2(\mathsf{crs}, \tau, x)$, respectively, otherwise.

If $\varepsilon = 0$, we have perfect adaptive zero-knowledge. It is easy to show that adaptive zero-knowledge implies adaptive witness indistinguishability.

Definition 10 (Proof of Knowledge). A non-interactive proof system Π admits proofs of knowledge, if there exists a PPT extractor $E = (E_1, E_2)$ such that for every PPT adversary A there is a negligible function $\varepsilon_1(\cdot)$ such that

$$\left| \begin{array}{l} \Pr \big[\mathsf{crs} \leftarrow \mathsf{Setup}(1^\kappa) \ : \ \mathcal{A}(\mathsf{crs}) = 1 \big] \ - \\ \Pr \big[(\mathsf{crs}, \xi) \leftarrow \mathsf{E}_1(1^\kappa) \ : \ \mathcal{A}(\mathsf{crs}) = 1 \big] \end{array} \right| \leq \varepsilon_1(\kappa),$$

and for every PPT adversary A there is a negligible function $\varepsilon_2(\cdot)$ such that

$$\Pr\left[\begin{matrix} (\mathsf{crs},\tau) \leftarrow \mathsf{E}_1(1^\kappa), \ (x^\star,\pi^\star) \leftarrow \mathcal{A}(\mathsf{crs}), \\ w \leftarrow \mathsf{E}_2(\mathsf{crs},\xi,x^\star,\pi^\star) \end{matrix} \right] \leq \varepsilon_2(\kappa).$$

Definition 11 (Simulation Sound Extractability). An adaptively zero-knowledge non-interactive proof system Π is simulation sound extractable, if there exists a PPT extractor E = (S, E) such that for every adversary $\mathcal A$ it holds that

$$\begin{vmatrix} \Pr \big[(\mathsf{crs}, \tau) \leftarrow \mathsf{S}_1(1^\kappa) \ : \ \mathcal{A}(\mathsf{crs}, \tau) = 1 \big] \ - \\ \Pr \big[(\mathsf{crs}, \tau, \xi) \leftarrow \mathsf{S}(1^\kappa) \ : \ \mathcal{A}(\mathsf{crs}, \tau) = 1 \big] \end{vmatrix} = 0,$$

and for every PPT adversary A there is a negligible function $\varepsilon_2(\cdot)$ such that

$$\Pr \begin{bmatrix} (\mathsf{crs}, \tau, \xi) \leftarrow \mathsf{S}(1^\kappa), & \mathsf{Verify}(\mathsf{crs}, x^\star, \pi^\star) = 1 \ \land \\ (x^\star, \pi^\star) \leftarrow \mathcal{A}^{\mathcal{S}(\mathsf{crs}, \tau, \cdot)}(\mathsf{crs}), & : \ (x^\star, \pi^\star) \notin \mathcal{Q}_{\mathsf{S}} \ \land \ (x^\star, w) \notin R \end{bmatrix} \leq \varepsilon_2(\kappa),$$

where $\mathcal{S}(\mathsf{crs}, \tau, x) \coloneqq \mathsf{S}_2(\mathsf{crs}, \tau, x)$ and \mathcal{Q}_S keeps track of the queries to and answers of \mathcal{S} .

Definition 12 (Weak Simulation Sound Extractability). An adaptively zero-knowledge non-interactive proof system Π is weakly simulation sound extractable, if it satisfies Definition 11 with the following modified winning condition: Verify(crs, x^* , π^*) = 1 \wedge (x^* , \cdot) \notin Q_S \wedge (x^* , w) \notin R.

Security of Multiparty Signatures. In multiparty signature schemes one often relies on the so called knowledge of secret key (KOSK) assumption within security proofs, where the adversary is required to reveal the secret keys it utilizes to the environment. This is important to prevent rogue-key attacks, i.e., attacks where the adversary constructs public keys based on existing public keys in the system so that it is not required to know the secret key corresponding to the resulting public keys.

To prevent such rogue-key attacks, Ristenpart and Yilek [RY07] introduced and formalized an abstract key-registration concept for multiparty signatures. Any such key-registration protocol is represented as a pair of interactive algorithms (RegP, RegV). A party registering a key runs RegP with inputs public key pk and private key sk. A certifying authority (CA) runs RegV, where the last message is from RegV to RegP and contains either a pk or \bot . For instance, in the plain model RegP(pk, sk) simply sends pk to the CA and RegV on receiving pk simply returns pk. For the KOSK assumption, RegP(pk, sk) simply sends (pk, sk) to the CA, which checks if (sk, pk) \in KeyGen(PP) and if so replies with pk and \bot otherwise.

To resemble the KOSK assumption in real protocols without revealing the secret key, one can require the adversary to prove knowledge of it's secret key in a way that it can be straight-line extracted by the environment. We require this for all our constructions in this paper. Yet, we do not make it explicit to avoid complicated models and we simply introduce an RKey oracle that allows the adversary to register key pairs. We stress that our goal is not to study multiparty signatures with respect to real world key-registration procedures, as done in [RY07].

3 Key-Homomorphic Signatures

In this section, we introduce a definitional framework for key-homomorphic signature schemes. In doing so, we propose different natural notions and relate the

definitions to previous work that already implicitly used functionality that is related or covered by our definitions.¹

We focus on signature schemes $\Sigma = (KeyGen, Sign, Verify)$, where the secret and public key elements live in groups $(\mathbb{H}, +)$ and (\mathbb{G}, \cdot) , respectively. We start with the notion of an efficiently computable homomorphism between secret keys and public keys in analogy to [TW14]. Such a functionality has been used recently in [FKM+16] to define the notion of signatures with re-randomizable keys.

Definition 13 (Secret Key to Public Key Homomorphism). A signature scheme Σ provides a secret key to public key homomorphism, if there exists an efficiently computable map $\mu: \mathbb{H} \to \mathbb{G}$ such that for all $\mathsf{sk}, \mathsf{sk}' \in \mathbb{H}$ it holds that $\mu(\mathsf{sk} + \mathsf{sk}') = \mu(\mathsf{sk}) \cdot \mu(\mathsf{sk}')$, and for all $(\mathsf{sk}, \mathsf{pk}) \leftarrow \mathsf{KeyGen}$, it holds that $\mathsf{pk} = \mu(\mathsf{sk})$.

We stress that secret keys and public keys may be vectors containing elements of \mathbb{H} and \mathbb{G} respectively. Then, the operations +, \cdot and the map μ are applied componentwise. To keep the definitions compact, we however do not make this explicit.

In the discrete logarithm setting, where we often have $\mathsf{sk} \stackrel{\mathcal{R}}{\leftarrow} \mathbb{Z}_p$ and $\mathsf{pk} = g^{\mathsf{sk}}$ with g being the generator of some prime order p group \mathbb{G} , it is obvious that there exists $\mu : \mathsf{sk} \mapsto g^{\mathsf{sk}}$ that is efficiently computable.

Now, we can introduce the first flavour of key-homomorphic signatures, where we focus on the class of functions Φ^+ representing linear shifts and note that one could easily adapt our definition to other suitable classes Φ of functions instead of linear shifts. We stress that we consider Φ as a finite set of functions, all with the same domain and range, and they usually depend on the public key of the signature scheme (which we will not make explicit). Moreover, Φ admits an efficient membership test, is efficiently samplable, and, its functions are efficiently computable. Definition 14 together with the adaptability of signatures (Definition 15) or perfect adaption (Definition 16) are inspired by key-homomorphic encryption schemes [AHI11].

Definition 14 (Φ^+ -Key-Homomorphic Signatures). A signature scheme is called Φ^+ -key-homomorphic, if it provides a secret key to public key homomorphism and an additional PPT algorithm Adapt, defined as:

Adapt(pk, m, σ, Δ): Takes a public key pk, a message m, a signature σ , and a function $\Delta \in \Phi^+$ as input, and outputs a public key pk' and a signature σ' ,

such that for all $\Delta \in \Phi^+$ and all $(pk, sk) \leftarrow KeyGen(1^{\kappa})$, all messages m and all $\sigma \leftarrow Sign(sk, m)$ and $(pk', \sigma') \leftarrow Adapt(pk, m, \sigma, \Delta)$ it holds that

$$\Pr[\mathsf{Verify}(\mathsf{pk}', m, \sigma') = 1] = 1 \land \mathsf{pk}' = \Delta(\mathsf{pk}).$$

For simplicity we sometimes identify a function $\Delta \in \Phi^+$ with its "shift amount" $\Delta \in \mathbb{H}$. To illustrate this concept, we take a look at Schnorr signatures [Sch91].

¹ We note that the first parts (up to Definition 15) are slightly more general versions of definitions that we earlier have used in context of redactable signatures [DKS16].

Schnorr Signatures. Let \mathbb{G} be a group of prime order p generated by g and $H:\{0,1\}^* \to \mathbb{Z}_p$ be a hash function. KeyGen chooses $\mathsf{sk} \xleftarrow{\mathcal{R}} \mathbb{Z}_p$ and outputs $(\mathsf{sk},\mathsf{pk}) \leftarrow (\mathsf{sk},g^{\mathsf{sk}})$; Sign given sk and message m, chooses $r \xleftarrow{\mathcal{R}} \mathbb{Z}_p$, computes $R \leftarrow g^r$, $c \leftarrow H(R,m)$, $y \leftarrow r + \mathsf{sk} \cdot c \mod p$ and outputs $\sigma \leftarrow (c,y)$. Finally, Verify given pk , message m and $\sigma = (c,y)$ outputs 1 if $c = H(\mathsf{pk}^{-c}g^y,m)$, and 0 otherwise. Now, let us adapt a given signature σ to a new public key $\mathsf{pk}' = \mathsf{pk} \cdot g^\Delta$ corresponding to $\mathsf{sk}' = \mathsf{sk} + \Delta \mod p$. Therefore, we simply set $\sigma' \leftarrow (c,y')$ with $y' \leftarrow y + c \cdot \Delta \mod p$. It is easy to see that Verify on input $(\mathsf{pk}', m, \sigma')$ will always output 1.

An interesting property in the context of key-homomorphic signatures is whether adapted signatures look like freshly generated signatures. Therefore, we introduce two different flavours of such a notion, inspired by the context hiding notion for *P*-homomorphic signatures [ABC⁺12, ALP12] as well as the adaptability notion from [FHS15] for equivalence class signatures [HS14]. We also note that Kiltz et al. [KMP16] have recently used a notion related to Definition 15 (denoted as random self-reducibility) in context of canonical identification schemes.

Definition 15 (Adaptability of Signatures). A Φ^+ -key-homomorphic signature scheme provides adaptability of signatures, if for every $\kappa \in \mathbb{N}$ and every message m, it holds that $\mathsf{Adapt}(\mathsf{pk}, m, \mathsf{Sign}(\mathsf{sk}, m), \Delta)$ and $(\mathsf{pk} \cdot \mu(\Delta), \mathsf{Sign}(\mathsf{sk} + \Delta, m))$ as well as $(\mathsf{sk}, \mathsf{pk})$ and $(\mathsf{sk}', \mu(\mathsf{sk}'))$ are identically distributed, where $(\mathsf{sk}, \mathsf{pk}) \leftarrow \mathsf{KeyGen}(1^\kappa)$, $\mathsf{sk}' \overset{\mathcal{E}}{\leftarrow} \mathbb{H}$, and $\Delta \overset{\mathcal{E}}{\leftarrow} \Phi^+$.

Coming back to Schnorr signatures, we immediately see that they are adaptable according to Definition 15.

An even stronger notion for the indistinguishability of fresh signatures and adapted signatures on the same message is achieved when requiring the distributions to be indistinguishable *even* when the initial signature used in Adapt is known. All schemes that satisfy this stronger notion (stated below) also satisfy Definition 15.

Definition 16 (Perfect Adaption). $A \Phi^+$ -key-homomorphic signature scheme provides perfect adaption, if for every $\kappa \in \mathbb{N}$, every message m, and every signature $\sigma \leftarrow \mathsf{Sign}(\mathsf{sk}, m)$, it holds that $(\sigma, \mathsf{Adapt}(\mathsf{pk}, m, \sigma, \Delta))$ and $(\sigma, \mathsf{pk} \cdot \mu(\Delta), \mathsf{Sign}(\mathsf{sk} + \Delta, m))$ as well as $(\mathsf{sk}, \mathsf{pk})$ and $(\mathsf{sk}', \mu(\mathsf{sk}'))$ are identically distributed, where $(\mathsf{sk}, \mathsf{pk}) \leftarrow \mathsf{KeyGen}(1^\kappa)$, $\mathsf{sk}' \xleftarrow{\kappa} \mathbb{H}$, and $\Delta \xleftarrow{\kappa} \Phi^+$.

One immediately sees that Schnorr signatures do not satisfy Definition 16 as the randomness r remains fixed. However, we note that there are various existing schemes that satisfy Definition 16. For example, BLS signatures [BLS04] or the recent re-randomizable scheme by Pointcheval and Sanders [PS16b] or the well known Waters signatures [Wat05] to name some (cf. Appendix D for a more formal treatment).

When looking at Definition 14, one could ask whether it is possible to replace Δ in the Adpat algorithm with its public key $\mu(\Delta)$. However, it is easily seen that the existence of such an algorithm contradicts even the weakest security

guarantees the underlying signature scheme would need to provide, i.e., universal unforgeability under no-message attacks (UUF-NMA security).

Lemma 1. There cannot be an UUF-NMA secure Φ^+ -key-homomorphic signature scheme Σ for which there exists a modified PPT algorithm Adapt' taking $\mu(\Delta)$ instead of Δ that still satisfies Definition 14.

Proof. We prove this by showing that any such scheme implies an adversary against UUF-NMA security of Σ . Let us assume that an UUF-NMA challenger provides a public key pk^* and a target message m^* . Run $(\mathsf{sk}, \mathsf{pk}) \leftarrow \mathsf{KeyGen}(1^\kappa)$ being compatible with public key pk^* , compute $\sigma \leftarrow \mathsf{Sign}(\mathsf{sk}, m^*)$, then compute $\mathsf{pk}' \leftarrow \mathsf{pk}^* \cdot \mathsf{pk}^{-1}$ and obtain a forgery σ^* for message m^* under the target public key pk^* by running $(\sigma^*, \mathsf{pk}^*) \leftarrow \mathsf{Adapt}(\mathsf{pk}, m^*, \sigma, \mathsf{pk}')$.

Now, we move to a definition that covers key-homomorphic signatures where the adaption of a *set of* signatures, each to the same message, to a signature for the same message under a combined public key does not even require the knowledge of the relation between the secret signing keys.

Definition 17 (Publicly Key-Homomorphic Signatures). A signature scheme is called publicly key-homomorphic, if it provides a secret key to public key homomorphism and an additional PPT algorithm Combine, defined as:

Combine($(pk_i)_{i=1}^n, m, (\sigma_i)_{i=1}^n$): Takes public keys $(pk_i)_{i \in [n]}$, a message m, signatures $(\sigma_i)_{i \in [n]}$ as input, and outputs a public key pk and a signature $\hat{\sigma}$,

 $such \ that \ for \ all \ n>1, \ all \ ((\mathsf{sk}_i,\mathsf{pk}_i) \leftarrow \mathsf{KeyGen}(1^\kappa))_{i=1}^n, \ all \ messages \ m \ and \ all \ (\sigma_i \leftarrow \mathsf{Sign}(\mathsf{sk}_i,m))_{i\in[n]} \ and \ (\hat{\mathsf{pk}},\hat{\sigma}) \leftarrow \mathsf{Combine}((\mathsf{pk}_i)_{i=1}^n,m,(\sigma_i)_{i=1}^n) \ it \ holds \ that$

$$\hat{\mathsf{pk}} = \prod_{i=1}^n \mathsf{pk}_i \quad \land \quad \mathsf{Pr}[\mathsf{Verify}(\hat{\mathsf{pk}}, m, \hat{\sigma}) = 1] = 1.$$

Analogously to Definitions 15 and 16, one can define indistinguishability of fresh and combined signatures, but we omit it here as it is straight forward. We want to mention that Definition 17 is, for instance, satisfied by BLS signatures, Waters' signatures with shared Waters' hash parameters (cf. [LOS+06]), as well as the scheme with shared parameters assuming synchronized time in [CHP12] being a variant of the CL signature scheme [CL04] (cf. Appendix D for a more formal treatment).

4 Applications

In this section we show how the various key-homomorphic properties defined in the previous section facilitate the black-box construction of ring signatures, universal designated verifier signatures as well as multisignatures.

4.1 Ring Signatures

Ring signature schemes [RST01] allow a member of an ad-hoc group \mathcal{R} (the so called ring), defined by the member's public verification keys, to anonymously sign a message on behalf of \mathcal{R} . Given a ring signature and all public keys for \mathcal{R} , one can verify the validity of such a signature with respect to \mathcal{R} , but it is infeasible to identify the actual signer, i.e., the signer is unconditionally anonymous. Due to this anonymity feature ring signatures have proven to be an interesting tool for numerous applications, most notable for whistleblowing. The two main lines of work in the design of ring signatures target reducing the signature size or removing the requirement for random oracles (e.g., [DKNS04, CGS07, GK15]). We provide a construction that does not require random oracles and has linear signature size. It provides an alternative very simple generic framework to construct ring signatures in addition to existing ones (cf. [BKM09, BK10]). For example, Schnorr signatures, or the schemes discussed in Appendix D, are suitable candidates to obtain novel instantiations.

Subsequently, we formally define ring signature schemes (adopting [BKM09]) and note that the model implicitly assumes knowledge of secret keys [RY07] as discussed in Section 2.

Definition 18. A ring signature scheme RS is a tuple RS = (Setup, Gen, Sign, Verify) of PPT algorithms, which are defined as follows.

Setup(1^{κ}): This algorithm takes as input a security parameter κ and outputs public parameters PP.

 $\mathsf{Gen}(\mathsf{PP})$: This algorithm takes as input the public parameter PP and outputs a keypair (sk, pk).

Sign(PP, $\operatorname{sk}_i, m, \mathcal{R}$): This algorithm takes as input the public parameters PP, a secret key sk_i , a message $m \in \mathcal{M}$ and a ring $\mathcal{R} = (\operatorname{pk}_j)_{j \in [n]}$ of n public keys such that $\operatorname{pk}_i \in \mathcal{R}$. It outputs a signature σ .

Verify(PP, m, σ, \mathcal{R}): This algorithm takes as input the public parameters PP, a message $m \in \mathcal{M}$, a signature σ and a ring \mathcal{R} . It outputs a bit $b \in \{0, 1\}$.

A secure ring signature scheme needs to be correct, unforgeable, and anonymous. While we omit the obvious correctness definition, we subsequently provide formal definitions for the remaining properties following [BKM09]. We note that Bender et al. in [BKM09] have formalized multiple variants of these properties, where we always use the strongest one.

Unforgeability requires that without any secret key sk_i that corresponds to a public key $\mathsf{pk}_i \in \mathcal{R}$, it is infeasible to produce valid signatures with respect to arbitrary such rings \mathcal{R} .

Definition 19 (Unforgeability). A ring signature scheme provides unforgeability, if for all PPT adversaries A, there exists a negligible function $\varepsilon(\cdot)$ such that it holds that

$$\Pr \begin{bmatrix} \{(\mathsf{sk},\mathsf{pk}) \leftarrow \mathsf{Gen}(1^\kappa)\}_{i \in [\mathsf{poly}(\kappa)]}, & \mathsf{Verify}(m^\star,\sigma^\star,\mathcal{R}^\star) = 1 \ \land \\ \mathcal{O} \leftarrow \{\mathsf{Sig}(\cdot,\cdot,\cdot),\mathsf{Key}(\cdot)\}, & : & (\cdot,m^\star,\mathcal{R}^\star) \notin \mathcal{Q}^{\mathsf{Sign}} \ \land \\ (m^\star,\sigma^\star,\mathcal{R}^\star) \leftarrow \mathcal{A}^{\mathcal{O}}(\{\mathsf{pk}_i\}_{i \in [\mathsf{poly}(\kappa)]}) & \mathcal{R}^\star \subseteq \{\mathsf{pk}_i\}_{i \in [\mathsf{poly}(\kappa)] \backslash \mathcal{Q}^{\mathsf{Key}}} \end{bmatrix} \leq \varepsilon(\kappa),$$

where $\operatorname{Sig}(i, m, \mathcal{R}) := \operatorname{Sign}(\operatorname{sk}_i, m, \mathcal{R})$, $\operatorname{Sig}\ returns \perp if\ \operatorname{pk}_i \notin \mathcal{R} \lor i \notin [\operatorname{poly}(\kappa)]$, and $\mathcal{Q}^{\operatorname{Sig}}\ records\ the\ queries\ to\ \operatorname{Sig}\ .$ Furthermore, $\operatorname{Key}(i)\ returns\ \operatorname{sk}_i\ and\ \mathcal{Q}^{\operatorname{Key}}$ records the queries to Key .

Anonymity requires that it is infeasible to tell which ring member produced a certain signature as long as there are at least two honest members in the ring.

Definition 20 (Anonymity). A ring signature scheme provides anonymity, if for all PPT adversaries A and for all polynomials $n(\cdot)$, there exists a negligible function $\varepsilon(\cdot)$ such that it holds that

$$\Pr \begin{bmatrix} \{(\mathsf{sk}_i,\mathsf{pk}_i) \leftarrow \mathsf{Gen}(1^\kappa)\}_{i \in [\mathsf{poly}(\kappa)]}, \\ b \overset{\mathcal{L}}{\leftarrow} \{0,1\}, \ \mathcal{O} \leftarrow \{\mathsf{Sig}(\cdot,\cdot,\cdot)\}, \\ (m,j_0,j_1,\mathcal{R},\mathsf{st}) \leftarrow \mathcal{A}^{\mathcal{O}}(\{\mathsf{pk}_i\}_{i \in [\mathsf{poly}(\kappa)]}), \\ \sigma \leftarrow \mathsf{Sign}(\mathsf{sk}_{j_b},m,\mathcal{R}), \\ b^\star \leftarrow \mathcal{A}^{\mathcal{O}}(\mathsf{st},\sigma,\{\mathsf{sk}_i\}_{i \in [\mathsf{poly}(\kappa)] \setminus j_0}) \end{bmatrix} \leq 1/2 + \varepsilon(\kappa),$$

where $Sig(i, m, \mathcal{R}) := Sign(sk_i, m, \mathcal{R})$.

Our Construction. In Scheme 1 we present our black-box construction of ring signatures from any Φ^+ -key-homomorphic EUF-CMA secure signature scheme Σ with adaptable signatures and any simulation sound extractable argument system Π . The idea behind the scheme is as follows. A ring signature for message m consists of a signature for m using Σ with a randomly generated key pair together with a proof of knowledge attesting the knowledge of the "shift amount" from the random public key to (at least) one of the public keys in the ring \mathcal{R} . Very briefly, unforgeability then holds because—given a valid ring signature—one can always extract a valid signature of one of the ring members. Anonymity holds because the witness indistinguishability of the argument system guarantees that signatures of different ring members are indistinguishable.

Upon signing, we need to prove knowledge of a witness for the following \mathbf{NP} relation R.

$$((\mathsf{pk}, \mathcal{R}), \mathsf{sk}') \in R \iff \exists \mathsf{pk}_i \in \mathcal{R} : \mathsf{pk}_i = \mathsf{pk} \cdot \mu(\mathsf{sk}')$$

For the sake of compactness, we assume that the relation is implicitly defined by the scheme. One can obtain a straight forward instantiation by means of disjunctive proofs of knowledge [CDS94] (similar as it is done in many known constructions). Therefore one could use the following NP relation R.

$$((\mathsf{pk}, \mathcal{R}), \mathsf{sk}') \in R \iff \bigvee_{\mathsf{pk}_i \in \mathcal{R}} \mathsf{pk}_i = \mathsf{pk} \cdot \mu(\mathsf{sk}')$$

Using this approach, however, yields signatures of linear size. To reduce the signature size, one could, e.g., follow the approach of [DKNS04].

Theorem 1. If Σ is correct, EUF-CMA secure, and provides adaptability of signatures, Π is complete and weakly simulation sound extractable, then Scheme 1 is correct, unforgeable, and anonymous.

```
Setup(1^{\kappa}): Run crs \leftarrow \Pi.Setup(1^{\kappa}), set PP \leftarrow (1^{\kappa}, crs) and return PP.

Gen(PP): Run (\mathsf{sk}_i, \mathsf{pk}_i) \leftarrow \Sigma.KeyGen(1^{\kappa}) and return (\mathsf{sk}_i, \mathsf{pk}_i).

Sign(PP, \mathsf{sk}_i, m, \mathcal{R}): Parse PP as (1^{\kappa}, crs) and return \bot if \mu(\mathsf{sk}_i) \notin \mathcal{R}. Otherwise, return \sigma \leftarrow (\delta, \mathsf{pk}, \pi), where

(\mathsf{sk}, \mathsf{pk}) \leftarrow KeyGen(1^{\kappa}), \delta \leftarrow \Sigma.Sign(\mathsf{sk}, m), and \pi \leftarrow \Pi.Proof(crs, (\mathsf{pk}, \mathcal{R}), (\mathsf{sk}_i - \mathsf{sk})).

Verify(PP, m, \sigma, \mathcal{R}): Parse PP as (1^{\kappa}, crs) and \sigma as (\delta, \mathsf{pk}, \pi) and return 1 if the following holds, and 0 otherwise:

\Sigma.Verify(\mathsf{pk}, m, \delta) = 1 \wedge \Pi.Verify(crs, (\mathsf{pk}, \mathcal{R}), \pi) = 1.
```

Scheme 1: Black-Box Construction of Ring Signatures

We prove the theorem above in Appendix A.

Removing the CRS. It is important to note that when opting for an instantiation of Scheme 1 in the ROM one can completely avoid the CRS. Firstly, when using Schnorr proofs made non-interactive using the Fiat-Shamir transform [FS86] as argument system Π (cf. [FKMV12]) one does not require crs.

4.2 Universal Designated Verifier Signatures

In designated verifier signatures [JSI96] a signer chooses a designated verifier upon signing a message and, given this signature, only the designated verifier is convinced of its authenticity. The idea behind those constructions is to ensure that the designated verifier can "fake" signatures which are indistinguishable from signatures of the original signer. Universal designated verifier signatures (UDVS) [SBWP03] further extend this concept by introducing an additional party, which performs the designation process by converting a conventional signature to a designated-verifier one. There exists quite a lot of work on UDVS, and, most notably, in [SS08] it was shown how to convert a large class of signature schemes to UDVS. Their approach can be seen as related to our approach, yet they do not rely on key-homomorphisms and they only achieve weaker security guarantees.²

While one can interpret designated verifier signatures as a special case of ring signatures where $|\mathcal{R}|=2$, i.e., the ring is composed of the public keys of signer and designated verifier (as noted in [RST01, BKM09]), there seems to be no obvious black-box relation turning ring signatures into UDVS. Mainly, since

 $^{^2}$ We also note that [SS08] informally mention that their approach is also useful to construct what they call hierarchical ring signatures. However their paradigm is not useful to construct ring signatures as we did in the previous section.

 UDVS require the functionality to convert standard signatures to designated verifier ones. 3

To this end, we explicitly treat constructions of UDVS from key-homomorphic signatures subsequently. We start by recalling the security model from [SBWP03] including some notational adaptations and a strengthened version of the DV-unforgeability notion which we introduce here.

Definition 21. A universal designated verifier signature scheme UDVS builds up on a conventional signature scheme $\Sigma = (\mathsf{PGen}, \mathsf{KeyGen}, \mathsf{Sign}, \mathsf{Verify})$ and additionally provides the PPT algorithms (DVGen, Desig, Sim, DVerify), which are defined as follows.

DVGen(PP): This algorithm takes the public parameters PP as input and generates and outputs a designated-verifier key pair (vsk, vpk).

Desig(pk, vpk, m, σ): This algorithm takes a signer public key pk, a designated-verifier public key vpk, a message m, and a valid signature σ as input, and outputs a designated-verifier signature δ .

 $\mathsf{Sim}(\mathsf{pk},\mathsf{vsk},m)$: This algorithm takes a signer public key pk , a designated-verifier secret key vsk , and a message m as input, and outputs a designated-verifier signature δ .

DVerify(pk, vsk, m, δ): This algorithm takes a signer public key pk, a designated-verifier secret key vsk, a message m, and a designated-verifier signature δ as input, and outputs a bit $b \in \{0, 1\}$.

Subsequently we formally recall the security properties, where we omit the obvious correctness notion. For the remaining notions we largely follow [SBWP03, SS08].

DV-unforgeability captures the intuition that it should be infeasible to come up with valid designated verifier signatures where no corresponding original signature exists. Subsequently, we introduce a stronger variant of DV-unforgeability, which we term *simulation-sound DV-unforgeability*. This notion additionally provides the adversary with an oracle to simulate designated-verifier signatures on other messages for the targeted designated verifier. It is easy to see that our notion implies DV-unforgeability in the sense of [SBWP03].

Definition 22 (Simulation-Sound DV-Unforgeability). An UDVS provides simulation-sound DV-unforgeability, if for all PPT adversaries A, there exists a negligible function $\varepsilon(\cdot)$ such that it holds that

$$\Pr \begin{bmatrix} \Pr \leftarrow \mathsf{PGen}(1^\kappa), \\ (\mathsf{sk}, \mathsf{pk}) \leftarrow \mathsf{KeyGen}(\mathsf{PP}), \\ (\mathsf{vsk}, \mathsf{vpk}) \leftarrow \mathsf{DVGen}(\mathsf{PP}), \\ \mathcal{O} \leftarrow \{\mathsf{Sig}(\mathsf{sk}, \cdot), \ \mathsf{Vrfy}(\mathsf{pk}, \mathsf{vsk}, \cdot, \cdot), \\ \mathsf{S}(\mathsf{pk}, \mathsf{vsk}, \cdot)\}, \\ (m^\star, \delta^\star) \leftarrow \mathcal{A}^{\mathcal{O}}(\mathsf{pk}, \mathsf{vpk}) \end{bmatrix} \leq \varepsilon(\kappa),$$

 $^{^3}$ We, however, note that an extension of the UDVS model to universal designated verifier ring signatures would be straight forward and also our scheme would be straight forwardly extensible using the same techniques as in Scheme 1.

where $\operatorname{Sig}(\operatorname{sk},m) := \operatorname{Sign}(\operatorname{sk},m)$, $\operatorname{Vrfy}(\operatorname{pk},\operatorname{vsk},m,\delta) := \operatorname{DVerify}(\operatorname{pk},\operatorname{vsk},m,\delta)$, and $\operatorname{S}(\operatorname{pk},\operatorname{vsk},m) := \operatorname{Sim}(\operatorname{pk},\operatorname{vsk},m)$. Furthermore, the environment keeps tracks of the messages queried to Sig and S via $\operatorname{Q^{Sig}}$ and $\operatorname{Q^{Sim}}$, respectively.

Non-transferability privacy models the requirement that the designated verifier can simulate signatures which are indistinguishable from honestly designated signatures.

Definition 23 (Non-Transferability Privacy). An UDVS provides non-transferability privacy, if for all PPT adversaries A, there exists a negligible function $\varepsilon(\cdot)$ such that it holds that

$$\Pr \begin{bmatrix} \Pr \leftarrow \mathsf{PGen}(1^\kappa), \ (\mathsf{sk}, \mathsf{pk}) \leftarrow \mathsf{KeyGen}(\mathsf{PP}), \\ b \overset{\mathcal{R}}{\leftarrow} \{0, 1\}, \ \mathcal{O} \leftarrow \{\mathsf{Sig}(\mathsf{sk}, \cdot), \mathsf{RKey}(\cdot, \cdot, \cdot)\}, \\ (m^\star, \mathsf{st}) \leftarrow \mathcal{A}^{\mathcal{O}}(\mathsf{pk}), \ \sigma \leftarrow \mathsf{Sign}(\mathsf{sk}, m^\star), \\ b^\star \leftarrow \mathcal{A}^{\mathcal{O} \cup \{\mathsf{SoD}(\mathsf{pk}, \cdot, m^\star, \sigma, b)\}}(\mathsf{st}) \end{bmatrix} \leq 1/2 + \varepsilon(\kappa),$$

where the oracles are defined as follows:

 $\mathsf{Sig}(\mathsf{sk}, m) : \mathit{This oracle computes } \sigma \leftarrow \mathsf{Sign}(\mathsf{sk}, m) \ \mathit{and returns } \sigma.$

RKey(i, vsk, vpk): This oracle checks whether DVK[i] $\neq \perp$ and returns \perp if so. Otherwise, it checks whether (vsk, vpk) is a valid output of DVGen and sets DVK[i] \leftarrow (vsk, vpk) if so.

SoD(pk, i, m, σ , b): This oracle obtains (vsk, vpk) \leftarrow DVK[i] and returns \bot if no entry for i exists. Then, if b=0, it computes $\delta \leftarrow$ Sim(pk, vsk, m), and, if b=1 it computes $\delta \leftarrow$ Desig(pk, vpk, m, σ). In the end it returns δ . This oracle can only be called once.

Further, the environment maintains a list Q^{Sig} keeping track of the Sig queries.

The notion above captures non-transferability privacy in the sense of [SS08]. This notion can be strengthened to what we call strong non-transferability privacy which allows multiple calls to SoD (as in [SBWP03]). While non-transferability privacy is often sufficient in practice, we will prove that our construction provides strong non-transferability privacy (clearly implying non-transferability privacy) to obtain the most general result.

Our Construction. In Scheme 2, we present our construction of UDVS from any Φ^+ -key-homomorphic EUF-CMA secure Σ with perfect adaption of signatures, any simulation sound extractable argument system Π , and any one way function f. Our construction uses the "OR-trick" [JSI96], known from DVS.⁴ Upon computing designations and simulations of designated-verifier signatures, we require to prove knowledge of witnesses for the following **NP** relation R:

$$((pk, vpk), (sk, vsk)) \in R \iff pk = \mu(sk) \lor vpk = f(vsk).$$

For brevity we assume that the parameters PP generated upon setup are implicit in every pk and vpk generated by Gen and DVGen respectively. Furthermore, we assume that R is implicitly defined by the scheme.

⁴ We note that our construction is inspired by earlier work of us on a variant of redactable signatures [DKS16].

Scheme 2: Black-Box Construction of UDVS

Theorem 2. If Σ is EUF-CMA secure and perfectly adapts signatures, f is a one-way function, and Π is weakly simulation sound extractable, then Scheme 2 is correct, simulation-sound DV-unforgeable, and provides strong non-transferability privacy.

We prove the theorem above in Appendix B. We note that if non-transferability privacy is sufficient, Σ only needs to be adaptable. Then, besides the candidate schemes presented in Appendix D, one can also instantiate Scheme 2 with the very efficient Schnorr signature scheme.

4.3 Simulation Sound Extractable Argument Systems

We show that simulation sound extractable argument systems can be constructed from witness indistinguishable argument systems admitting proofs of knowledge, EUF-CMA secure signature schemes that adapt signatures, and strong one-time signatures. Then we proceed in showing that for weak simulation sound extractability, we do not even require stong one-time signatures. Before we start, we define strong one-time signature schemes.

Definition 24 (Strong One-Time Signature Scheme). A strong one-time signature scheme Σ_{ot} provides the same interface as a conventional signature scheme Σ and satisfies the following unforgeability notion: For all PPT adversaries $\mathcal A$ there is a negligible function $\varepsilon(\cdot)$ such that

$$\Pr \begin{bmatrix} (\mathsf{sk},\mathsf{pk}) \leftarrow \mathsf{KeyGen}(1^\kappa), \\ (m^\star,\sigma^\star) \leftarrow \mathcal{A}^{\mathsf{Sign}(\mathsf{sk},\cdot)}(\mathsf{pk}) \end{bmatrix} : \quad \begin{array}{c} \mathsf{Verify}(\mathsf{pk},m^\star,\sigma^\star) = 1 \ \land \\ (m^\star,\sigma^\star) \notin \mathcal{Q}^{\mathsf{Sign}} \end{bmatrix} \leq \varepsilon(\kappa), \\ \end{array}$$

where the oracle $Sign(sk, m) := \Sigma.Sign(sk, m)$ can only be called once.

An efficient example of a strong one-time signature scheme can be found in [Gro06]. For our construction, first let L be an arbitrary **NP**-language $L = \{x \mid \exists w : R(x,w) = 1\}$, for which we aim to construct a simulation sound extractable argument system, and let L' be defined as follows:

$$((x,\mathsf{cpk},\mathsf{pk}),(w,\mathsf{csk}-\mathsf{sk})) \in L' \iff (x,w) \in R \ \lor \ \mathsf{cpk} = \mathsf{pk} \cdot \mu(\mathsf{csk}-\mathsf{sk}).$$

In Scheme 3 we present our construction of a simulation sound extractable argument system Π_{sse} for L. Our technique is inspired by [GMY03, GMY06, Gro06] but conceptually simpler. This is mainly due to the fact that the adaptability of the used signature scheme allows us to get rid of the encryption scheme, and, consequently, also the requirement to prove statements about encrypted values.

Essentially, the intuition of our construction is the following. We use a combination of an adaptable EUF-CMA secure signature scheme Σ and a strong one-time signature scheme Σ_{ot} to add the required non-malleability guarantees to the underlying argument system.⁵ Upon each proof computation, we use Σ to "certify" the public key of a newly generated key pair of Σ_{ot} . The associated secret key of Σ_{ot} is then used to sign the parts of the proof which must be nonmalleable. Adaptability of Σ makes it possible to also use newly generated keys of Σ upon each proof computation. In particular, the relation associated to L' is designed so that the second clause in the OR statement is the "shift amount" required to shift such signatures to signatures under a key cpk in the crs. A proof for $x \in L$ is easy to compute when given w such that $(x, w) \in R$. One does not need a satisfying assignment for the second clause in the OR statement, and can thus compute all signatures under newly generated keys. To simulate proofs, however, we can set up crs in a way that we know csk corresponding cpk, compute the "shift amount" and use it as a satisfying witness for the second clause in the OR statement. Under this strategy, the witness indistinguishability of the underlying argument system for L', the crs indistinguishability provided by the proof of knowledge property, and the secret-key to public-key homomorphism of Σ guarantees the zero-knowledge property of our argument system for L.

What remains is to argue that we can use the extractor of the underlying argument system for L' as an extractor for L in the simulation sound extractability setting. In fact, under the strategy we use, we never have to simulate proofs for statements outside L' which is sufficient for the extractor for L' to work with overwhelming probability. Furthermore, we can show that the probability to extract a valid witness for the second clause in the OR statement is negligible, as this either yields a forgery with respect to $\Sigma_{\rm ot}$ under some ${\sf pk}_{\rm ot}$ previously obtained from the simulator (if the adversary modified any of the non-malleable parts of a proof previously obtained via the simulator) or for Σ under cpk (if ${\sf pk}_{\rm ot}$ has never been certified). Now we know, however, that the extractor for L' works with overwhelming probability by definition, which means that we will extract a satisfying witness for $x \in L$ with overwhelming probability.

 $^{^{5}}$ Σ_{ot} is only required as the signatures produced by Σ may be malleable on their own.

```
\mathsf{Setup}(1^{\kappa}): \mathrm{Run}\;\mathsf{crs}_{\mathsf{\Pi}} \leftarrow \mathsf{\Pi}.\mathsf{Setup}(1^{\kappa}),\; (\mathsf{csk},\mathsf{cpk}) \leftarrow \mathsf{\Sigma}.\mathsf{KeyGen}(1^{\kappa}) \; \mathrm{and} \; \mathrm{return}\; \mathsf{crs} \leftarrow (\mathsf{csk},\mathsf{cpk}) 
           crs_{\Pi}, cpk).
\mathsf{Proof}(\mathsf{crs}, x, w) : \mathsf{Run}(\mathsf{sk}, \mathsf{pk}) \leftarrow \Sigma.\mathsf{KeyGen}(1^{\kappa}), (\mathsf{sk}_{\mathsf{ot}}, \mathsf{pk}_{\mathsf{ot}}) \leftarrow \Sigma_{\mathsf{ot}}.\mathsf{KeyGen}(1^{\kappa}), \text{ and }
           return \pi \leftarrow (\pi_{\Pi}, \mathsf{pk}, \sigma, \mathsf{pk}_{\mathsf{ot}}, \sigma_{\mathsf{ot}}), where
                                    \pi_{\Pi} \leftarrow \Pi.\mathsf{Proof}(\mathsf{crs},(x,\mathsf{cpk},\mathsf{pk}),(w,\perp)), \, \sigma \leftarrow \Sigma.\mathsf{Sign}(\mathsf{sk},\mathsf{pk}_{\mathsf{ot}}), \, \, \mathsf{and} \,
                                     \sigma_{\mathsf{ot}} \leftarrow \Sigma_{\mathsf{ot}}.\mathsf{Sign}(\mathsf{sk}_{\mathsf{ot}}, \pi_{\mathsf{\Pi}}||x||\mathsf{pk}||\sigma).
Verify(crs, x, \pi): Parse \pi as (\pi_{\Pi}, pk, \sigma, pk_{ot}, \sigma_{ot}) and return 1 if the following holds and
           0 otherwise:
                                            \Pi. \text{Verify}(\text{crs}, (x, \text{cpk}, \text{pk}), \pi_{\Pi}) = 1 \land \Sigma. \text{Verify}(\text{pk}, \text{pk}_{\text{ot}}) = 1 \land
                                            \Sigma_{\text{ot}}. Verify(\mathsf{pk}_{\mathsf{ot}}, \pi_{\mathsf{\Pi}} ||x|| \mathsf{pk} ||\sigma) = 1.
S_1(1^{\kappa}): \operatorname{Run} (\operatorname{crs}_{\Pi}, \bot) \leftarrow \Pi.E_1(1^{\kappa}), (\operatorname{csk}, \operatorname{cpk}) \leftarrow \Sigma.\operatorname{KeyGen}(1^{\kappa}) \text{ and } \operatorname{return} (\operatorname{crs}, \tau),
                                                                                      \mathsf{crs} \leftarrow (\mathsf{crs}_{\Pi}, \mathsf{cpk}) \text{ and } \tau \leftarrow \mathsf{csk}.
\mathsf{S}_2(\mathsf{crs},\tau,x):\ \mathrm{Parse}\ \tau\ \mathrm{as}\ \mathsf{csk},\ \mathrm{run}\ (\mathsf{sk},\mathsf{pk})\leftarrow \Sigma.\mathsf{KeyGen}(1^\kappa),\ (\mathsf{sk}_\mathsf{ot},\mathsf{pk}_\mathsf{ot})\leftarrow \Sigma_\mathsf{ot}.\mathsf{KeyGen}(1^\kappa)
           1^{\kappa}), and return \pi \leftarrow (\pi_{\Pi}, \mathsf{pk}, \sigma, \mathsf{pk}_{\mathsf{ot}}, \sigma_{\mathsf{ot}}), where
                             \pi_{\Pi} \leftarrow \Pi.\mathsf{Proof}(\mathsf{crs}, (x, \mathsf{cpk}, \mathsf{pk}), (\bot, \mathsf{csk} - \mathsf{sk})), \ \sigma \leftarrow \Sigma.\mathsf{Sign}(\mathsf{sk}, \mathsf{pk}_{\mathsf{ot}}), \ \mathrm{and}
                            \sigma_{\mathsf{ot}} \leftarrow \Sigma_{\mathsf{ot}}.\mathsf{Sign}(\mathsf{sk}_{\mathsf{ot}}, \pi_{\mathsf{\Pi}}||x||\mathsf{pk}||\sigma).
\mathsf{S}(1^{\kappa}): \mathrm{Run}\ (\mathsf{crs}_{\Pi}, \xi) \leftarrow \Pi.\mathsf{E}_1(1^{\kappa}),\ (\mathsf{csk}, \mathsf{cpk}) \leftarrow \Sigma.\mathsf{KeyGen}(1^{\kappa}) \ \mathrm{and}\ \mathrm{return}\ (\mathsf{crs}, \tau, \xi),
            where
                                                                                      \mathsf{crs} \leftarrow (\mathsf{crs}_{\Pi}, \mathsf{cpk}) \text{ and } \tau \leftarrow \mathsf{csk}.
\mathsf{E}(\mathsf{crs},\xi,x,\pi): \ \mathrm{Run} \ (w,\perp) \leftarrow \mathsf{\Pi}.\mathsf{E}_2(\mathsf{crs},\xi,x,\pi) \ \mathrm{and} \ \mathrm{return} \ x.
```

Scheme 3: Simulation Sound Extractable Argument System Π_{sse} .

Theorem 3. Let Π be a complete, witness indistinguishable non-interactive argument system that admits proofs of knowledges for the language L', let Σ be an EUF-CMA secure signature scheme that adapts signatures, and let Σ_{ot} be a strong one-time signature scheme, then the argument system Π_{sse} is a complete, simulation sound extractable argument system for language L.

We prove the theorem in Appendix C.

Weak Simulation Sound Extractability. If one allows the proofs to be malleable and only requires non-malleability with respect to the statements one can omit the strong one-time signature scheme and directly sign $\pi_{\Pi}||x||$ pk using Σ . We refer to this modified argument system as Π_{wsse} .

Theorem 4. Let Π be a complete, witness indistinguishable non-interactive argument system that admits proofs of knowledges for the language L', and let Σ be an EUF-CMA secure signature scheme that adapts signatures, then the argument system Π_{wsse} is a complete, weakly simulation sound extractable argument system for language L.

Proof (Sketch). The proof for the theorem above is exactly the same as the one for simulation sound extractability in Appendix C, except that we do not need to engage with challengers for the one-time signature scheme (i.e., in Game 2 nothing is changed) and $Pr[F_2]$ is exactly the same as extracting a forgery for Σ in the transition between Game 3 and Game 4.

Ring Signatures and UDVS from Weaker Assumptions. One might choose to apply the techniques we used in this section to obtain ring signatures and UDVS without requiring weak simulation sound extractability from the argument system. However, this would lead to a more complicated construction in case of ring signatures and a to a more complicated security analysis in the case of UDVS. To this end we choose the more modular approach and combine Theorem 4 with the respective theorems (Theorem 1 and Theorem 2) from the previous sections, to obtain the following corollaries. Those corollaries state that it is actually sufficient to require witness indistinguishable argument systems admitting proofs of knowledge to instantiate the respective schemes, as those argument systems can be generically extended to weakly simulation sound extractable ones using our results.

Corollary 1. Ring signatures can be instantiated from correct, EUF-CMA secure, adaptable signature schemes Σ , and complete, witness indistinguishable non-interactive argument systems Π that admit proofs of knowledge.

Corollary 2. UDVS can be instantiated from correct, EUF-CMA secure, adaptable signature schemes Σ , and complete, witness indistinguishable non-interactive argument systems Π that admit proofs of knowledge.

Signatures of Knowledge. Also note that using our techniques in a non-black box way directly yields signatures of knowledge [CL06]. That is, a signature of knowledge on a message m with respect to statement x is simply a proof with respect to x, where m is additionally included upon computing the signature using Σ_{ot} , i.e., one signs $\pi_{\Pi}||x||\text{pk}||\sigma||m$. Then one obtains signatures of knowledge in the strong sense [BCC+15], where even the signature (i.e., the proof) is non-malleable. If security in the original sense—the counterpart of weak simulation-sound extractability where the signature (i.e., the proof π) itself may be malleable—is sufficient, one can even omit the strong one-time signature scheme and directly sign $\pi_{\Pi}||x||\text{pk}||m$ using Σ .

As already mentioned in [CL06], a straight forward application of signatures of knowledge is the construction of ring signatures. Obtaining such a construction using our techniques presented in this section can be seen as a non-black-box alternative to the results for ring signatures presented in Section 4.1.

Additionally we note that our technique provides nice properties when it comes to converting Groth-Sahai proofs [GS08] over pairing product equations to simulation-sound extractable arguments of knowledge. We can use Waters' signatures as described in Appendix D.2. Here the secret keys as well as the shift amounts are group elements and the required relations can be proven using a few simple pairing product equations. Thus our technique constitutes an alternative

to known techniques and yields conceptually simpler constructions with favorable properties regarding efficiency when, e.g., compared to [Gro06, BFG13]

4.4 Multisignatures

A multisignature scheme [IN83] is a signature scheme that allows a group of signers to jointly compute a compact signature for a message. Well known schemes are the BMS [Bol03] and the WMS [LOS+06] that are directly based on the BLS [BLS04] and variants of the Waters' signature scheme [Wat05] respectively. Both of them are secure under the knowledge of secret key (KOSK) assumption, but can be shown to also be secure under (slightly tweaked) real-world proofs of possession protocols [RY07].

Our construction can be seen as a generalization of the paradigm behind all existing multisignature schemes. Making this paradigm explicit eases the search for new schemes, i.e., one can simply check whether a particular signature scheme is publicly key-homomorphic. For instance, as we show in Appendix D.4, the modified CL signature scheme from [CHP12] provides this key-homomorphism, and, therefore, directly yields a new instantiation of multisignatures.

We now give a formal definition of multisignatures, where we follow Ristenpart and Yilek [RY07]. As already noted in Section 2, we use the KOSK modeled via RKey for simplicity. Nevertheless, we stress that we could use any other key-registration that provides extractability or also the extractable key-verification notion by Bagherzandi and Jarecki [BJ08]. This does not make any difference for our subsequent discussion as long as the secret keys are extractable.

Definition 25. A multisignature scheme MS is a tuple (PGen, KeyGen, Sign, Verify) of PPT algorithms, which are defined as follows:

 $\mathsf{PGen}(1^\kappa)$: This parameter generation algorithm takes a security parameter κ and produces global parameters PP (including the security parameters and a description of the message space \mathcal{M}).

KeyGen(PP): This algorithm takes the global parameters PP as input and outputs a secret (signing) key sk and a public (verification) key pk.

Sign: This is an interactive multisignature algorithm executed by a group of signers who intend to sign the same message m. Each signer S_i executes Sign on public inputs PP, public key multiset PK, message m and secret input its secret sk_i and outputs a multisignature σ .

Verify(PP, PK, m, σ): This algorithm takes public parameters PP, a public key multiset PK, a message m and a multisignature σ as input and outputs a bit $b \in \{0,1\}$.

The above tuple of algorithms must satisfy correctness, which basically states that $\mathsf{Verify}(\mathsf{PP},\mathsf{PK},m,\mathsf{Sign}(\mathsf{PP},\mathsf{PK},m,\mathsf{sk}))=1$ for any m, any honestly generated PP and when every participant correctly follows the algorithms. Besides correctness, we require existential unforgeability under a chosen message attack against a single honest player.

Definition 26 (MSEUF-CMA). A multisignature scheme MS is MSEUF-CMA secure, if for all PPT adversaries A there is a negligible function $\varepsilon(\cdot)$ such that

$$\Pr \begin{bmatrix} \Pr \leftarrow \mathsf{PGen}(1^\kappa), & \mathsf{Verify}(\mathsf{PP}, \mathsf{PK}^\star, m^\star, \sigma^\star) = 1 \ \land \\ (\mathsf{sk}^\star, \mathsf{pk}^\star) \leftarrow \mathsf{KeyGen}(1^\kappa), & \mathsf{pk}^\star \in \mathsf{PK}^\star \land m^\star \notin \mathcal{Q}^{\mathsf{Sign}} \land \\ \mathcal{O} \leftarrow \{\mathsf{Sign}(\cdot, \cdot), \mathsf{RKey}(\cdot, \cdot, \cdot)\}, & \mathsf{pk}^\star \in \mathsf{PK}^\star \land m^\star \notin \mathcal{Q}^{\mathsf{Sign}} \land \\ (\mathsf{PK}^\star, m^\star, \sigma^\star) \leftarrow \mathcal{A}^{\mathcal{O}}(\mathsf{PP}, \mathsf{pk}^\star) & (\mathsf{PK}^\star \setminus \{\mathsf{pk}^\star\}) \setminus \mathcal{Q}^{\mathsf{RKey}} = \emptyset) \end{bmatrix} \leq \varepsilon(\kappa),$$

where the environment keeps track of signing and registration queries via Q^{Sign} and Q^{RKey} , respectively. The adversary has access to the following oracles:

Sign(PK, m): This oracle obtains a public key set PK and returns \bot if $pk^* \notin PK$. Otherwise it simulates a new instance of Sign(PP, PK, m, sk^*) forwarding messages to and from A appropriately and sets $\mathcal{Q}^{Sign} \stackrel{\smile}{\leftarrow} m$.

 $\mathsf{RKey}(\mathsf{sk},\mathsf{pk}): \ \mathit{This} \ \mathit{oracle} \ \mathit{checks} \ \mathit{if} \ (\mathsf{sk},\mathsf{pk}) \in \mathsf{KeyGen}(\mathsf{PP}) \ \mathit{and} \ \mathit{sets} \ \mathcal{Q}^{\mathsf{RKey}} \overset{\cup}{\leftarrow} \mathsf{pk} \ \mathit{if} \ \mathit{so}.$

Our Construction. Subsequently, we restrict ourselves to non-interactive Sign protocols, which basically means that every signer S_i locally computes a signatures σ_i and then broadcasts it to all other signers in PK. Furthermore, we consider the signature scheme Σ to work with common parameters PP and in Scheme 4 let us for the sake of presentation assume that PK := (pk_1, \ldots, pk_n) is an ordered set instead of a multiset.

```
\mathsf{PGen}(1^{\kappa}): \operatorname{Run} \mathsf{PP} \leftarrow \Sigma.\mathsf{PGen}(1^{\kappa}) \text{ and return PP}.
```

 $\mathsf{KeyGen}(\mathsf{PP}): \mathrm{Run}\; (\mathsf{sk},\mathsf{pk}) \leftarrow \Sigma. \mathsf{KeyGen}(\mathsf{PP}) \; \mathrm{and} \; \mathrm{return}\; (\mathsf{sk},\mathsf{pk}).$

 $\mathsf{Sign}(\mathsf{PP},\mathsf{PK},m,\mathsf{sk}): \ \mathrm{Let} \ i \in [n]. \ \mathrm{Every} \ \mathrm{participating} \ S_i \ \mathrm{with} \ \mathsf{pk}_i \in \mathsf{PK} \ \mathrm{proceeds} \ \mathrm{as} \ \mathrm{follows}:$

- Compute $\sigma_i \leftarrow \Sigma.\mathsf{Sign}(\mathsf{sk}_i, m)$ and broadcast σ_i .
- Receive all signatures σ_i for $j \neq i$.
- Compute $(pk, \sigma) \leftarrow Combine(PK, m, (\sigma_{\ell})_{\ell \in [n]})$ and output σ .

Verify(PP, PK, m, σ): Return 1 if the following holds and 0 otherwise:

$$\Sigma$$
. Verify $(\prod_{\mathsf{pk}\in\mathsf{PK}}\mathsf{pk},m,\sigma)=1$.

Scheme 4: Black-Box Construction of Multisignatures

Theorem 5. If Σ is correct, EUF-CMA secure, and publicly key-homomorphic, then Scheme 4 is MSEUF-CMA secure.

Proof. We show that an efficient adversary $\mathcal A$ against MSEUF-CMA can be efficiently turned into an efficient EUF-CMA adversary for Σ . To do so, we simulate the environment for $\mathcal A$ by obtaining pk^\star from an EUF-CMA challenger of Σ ,

then setting PP accordingly, and starting \mathcal{A} on (PP, pk*). Additionally, we record the secret keys provided to RKey in a list KEY indexed by the respective public keys, i.e., KEY[pk] \leftarrow sk. Whenever a signature with respect to pk* is required we use the Sign oracle provided by the challenger. Eventually, the adversary outputs (PK*, m^* , σ^*) such that Σ . Verify($\prod_{\mathsf{pk}\in\mathsf{PK}^*}\mathsf{pk}, m^*, \sigma^*$) = 1, pk* \in PK*, all other keys in PK* were registered, yet m^* was never queried to the signing oracle. We compute sk' $\leftarrow \sum_{\mathsf{pk}\in\mathsf{PK}^*\setminus\{\mathsf{pk}^*\}\}} -\mathsf{KEY}[\mathsf{pk}]$, compute $\sigma' \leftarrow \Sigma$. Sign(sk', m^*), obtain (pk*, σ) \leftarrow Combine(($\prod_{\mathsf{pk}\in\mathsf{PK}^*}\mathsf{pk}, \prod_{\mathsf{pk}\in\mathsf{PK}^*\setminus\{\mathsf{pk}^*\}}\mathsf{pk}^{-1}$), m^* , (σ^*, σ')) and output (m^*, σ) as a forgery.

4.5 Tight Multi-User Security from Key-Homomorphisms

When using signature schemes in practice, it is often argued that EUF-CMA security does not appropriately capture the requirements appearing in practical settings [GMS02, MS04]. Currently we experience a growing interest in the multiuser setting (e.g., [BJLS16, GHKW16, KMP16]), where an adversary can attack one out of various public keys instead of a single one. This setting is also a frequently discussed topic on the mailing list of the CFRG.⁶

Since many schemes have already been investigated regarding their singleuser security, an important question in this context is whether one can infer statements about the multi-user security of a certain scheme based on its singleuser security. Without using any further properties of the signature scheme, every naïve reduction looses a factor of N, where N is the number of users in the system [GMS02]. Such a reduction is non-tight and drastically reduces the security guarantees a scheme provably provides. Thus, it is important to come up with tight security reductions. This was done in [GMS02], where a tight implication from single-user EUF-CMA to multi-user EUF-CMA for Schnorr signatures was proven. Unfortunately, a flaw in this proof was discovered by Bernstein in [Ber15], where it was also shown that single-user EUF-CMA tightly implies key-prefixed mulit-user EUF-CMA for Schnorr signatures. Recently, Lacharité in [Lac16] showed this tight implication under key-prefixing for BLS [BLS04] signatures and BGLS [BGLS03] aggregate signatures. Subsequent to the work in [Ber15], Kiltz et al. in [KMP16] study multi-user security of random selfreducible canonical identification schemes when turned to signatures in the random oracle model using the Fiat-Shamir heuristic. They show that for such schemes single-user security tightly implies multi-user security without keyprefixing. This, in particular, holds for Schnorr signatures.

Our theorem essentially generalizes the work of [Ber15, Lac16] to be applicable to a larger class of signature schemes. For example, using our results from Appendix D, it attests the multi-user EUF-CMA security of various variants of Water's signatures [Wat05], PS signatures [PS16b], and the CL signature [CHP12] variant from [CHP12], which was previously unknown. Further-

⁶ https://www.ietf.org/mail-archive/web/cfrg/current/maillist.html

⁷ For instance, assuming 2³⁰ keys in a system, such a reduction loss requires to significantly increase the parameters.

more, it can be seen as orthogonal to the work of [KMP16], where the requirement of key-prefixing is avoided at the cost of tailoring the results to a class of signature schemes from specific canonical identification schemes in the random oracle model.

Subsequently, we will first recall a definition of multi-user EUF-CMA and then prove Theorem 6, which formalizes the main result of this section.

Definition 27 (MU-EUF-CMA). A signature scheme Σ is MU-EUF-CMA secure, if for all PPT adversaries A there is a negligible function $\varepsilon(\cdot)$ such that

$$\Pr\left[\begin{cases} \{(\mathsf{sk}_i,\mathsf{pk}_i) \leftarrow \mathsf{KeyGen}(1^\kappa)\}_{i \in [\mathsf{poly}(\kappa)]}, \\ (i^\star,m^\star,\sigma^\star) \leftarrow \mathcal{A}^{\mathsf{Sign}(\cdot,\cdot)}(\{\mathsf{pk}_i\}_{i \in [\mathsf{poly}(\kappa)]}) \end{cases} : \begin{array}{c} \mathsf{Verify}(\mathsf{pk}_{i^\star},m^\star,\sigma^\star) = 1 \; \land \\ (i^\star,m^\star) \notin \mathcal{Q}^{\mathsf{Sign}} \end{cases} \leq \varepsilon(\kappa),$$

where $\mathsf{Sign}(i,m) := \Sigma.\mathsf{Sign}(\mathsf{sk}_i,m)$ and the environment keeps track of the queries to the signing oracle via $\mathcal{Q}^{\mathsf{Sign}}$.

Theorem 6. Let $\Sigma = (\text{KeyGen}, \text{Sign}, \text{Verify})$ be a signature scheme which provides adaptability of signatures where the success ratio of any EUF-CMA adversary is ρ . Then the success ratio of any adversary against MU-EUF-CMA of $\Sigma' = (\text{KeyGen}', \text{Sign}', \text{Verify}')$ is $\rho' \approx \rho$, where $\text{KeyGen}'(1^{\kappa}) := \text{KeyGen}(1^{\kappa})$, $\text{Sign}'(\text{sk}, m) := \text{Sign}(\text{sk}, \mu(\text{sk})||m)$, and $\text{Verify}(\text{pk}, m, \sigma) := \text{Verify}(\text{pk}, \text{pk}||m, \sigma)$.

Proof. First, our reduction $\mathcal R$ obtains a public key pk_1 from an EUF-CMA challenger $\mathcal C$ and initializes an empty list SK. It sets $\mathsf{SK}[1] \leftarrow 0$, and for $2 \leq i \leq \mathsf{poly}(\kappa)$, it chooses $\mathsf{SK}[i] \xleftarrow{\mathcal R} \mathbb H$, and sets $\mathsf{pk}_i \leftarrow \mathsf{pk}_1 \cdot \mu(\mathsf{SK}[i])$. Then, it starts $\mathcal A$ on $\{\mathsf{pk}_i\}_{i\in[\mathsf{poly}(\kappa)]}$ and simulates Sign' inside the $\mathsf{Sign}(\cdot,\cdot)$ oracle as follows (where $\mathcal C.\mathsf{Sign}(\cdot)$ denotes the signing oracle provided by $\mathcal C$).

 $\begin{aligned} \mathsf{Sign}(i,m) : & \text{ Obtain } \sigma \leftarrow \mathcal{C}.\mathsf{Sign}(\mathsf{pk}_i||m), \text{ compute } (\mathsf{pk}_i,\sigma') \leftarrow \mathsf{Adapt}(\mathsf{pk}_1,\mathsf{pk}_i||m,\\ & \sigma, \mathsf{SK}[i]), \text{ and return } \sigma'. \end{aligned}$

Eventually, \mathcal{A} outputs a forgery $(i^{\star}, m^{\star}, \sigma^{\star})$, where $(i^{\star}, m^{\star}) \notin \mathcal{Q}^{\mathsf{Sign}}$ by definition. Thus, \mathcal{R} has never sent $\mathsf{pk}_{i^{\star}}||m^{\star}$ to the sign oracle of \mathcal{C} and can obtain $(\mathsf{pk}_1, \sigma'^{\star}) \leftarrow \mathsf{Adapt}(\mathsf{pk}_{i^{\star}}, \mathsf{pk}_{i^{\star}}||m^{\star}, \sigma^{\star}, -\mathsf{SK}[i])$ and output $(\mathsf{pk}_{i^{\star}}||m^{\star}, \sigma'^{\star})$ as an EUF-CMA forgery. Due to adaptability of signatures the simulation of the oracle is perfect; the running time of \mathcal{R} is approximately the same as the running time of \mathcal{A} which concludes the proof.

It is quite straight forward to see that such an implication can also be proven for weaker unforgeability notions. Essentially the security proof would be analogous, but without the need to simulate the signing oracle. Furthermore, it is important to note that for key-recovery attacks, where no signatures need to be simulated, a secret key to public key homomorphism would be sufficient to tightly relate the single-user setting to the key-prefixed multi-user setting.

5 Homomorphisms on Key and Message Space

As already mentioned in Section 1, signature schemes with homomorphic properties on their message space [JMSW02] are well known. With such schemes, it

is possible for anyone to derive a signature for a message m' from signatures on messages $(m_i)_{i \in [n]}$ under some public key pk as long as $m' = f(m_1, \ldots, m_n)$ for $f \in \mathcal{F}$, where \mathcal{F} is the set of so called admissible functions (determined by the scheme). Among others (cf. [ABC⁺12, ALP12]) there are schemes for linear functions [BFKW09, Fre12], polynomial functions of higher degree [BF11, CFW14] and meanwhile even (levelled) fully homomorphic signatures supporting arbitrary functions [GVW15, BFS14]. However, all existing constructions consider these homomorphisms under a single key. While in context of encryption, constructions working with distinct keys, i.e., so called multikey-homomorphic encryption schemes [LTV12, CM15, MW16, PS16a], are known, such a feature has never been investigated in context of signatures so far.

In this section we close this gap and initiate the study of so called multikey-homomorphic signatures and in particular propose a definitional framework for such schemes that support a homomorphic property on the message space under distinct keys. Moreover, we discuss potential applications of such schemes.

Concurrent Work. In independent and concurrent work, Fiore et al. [FMNP16] introduced the concept of multikey-homomorphic authenticators, which also covers multikey-homomorphic signatures. They also present a construction of multikey-homomorphic signatures from standard lattices based on the fully homomorphic signatures in [GVW15]. Their model and construction focuses on achieving succinct combined signatures, whereas the focus of our construction (feasibility result) is on achieving succinct combined keys. We also note that the independent and concurrent work of Lai et al. [LTWC16] yields a multikey-homomorphic signature scheme with succinct combined keys and signatures. However, they require rather heavy tools (and assumptions) such as zk-SNARKS, while our feasibility result for succinct combined keys only requires a very mild assumption.

5.1 Multikey-Homomorphic Signatures

Below we present and discuss what we call multikey-homomorphic signatures, where the homomorphic property on the message space is defined with respect to a class \mathcal{F} of admissible functions (e.g., represented as arithmetic circuits). In contrast to the notions from Section 3, which capture additional properties of conventional signature schemes, multikey-homomorphic signatures are a separate building block. To this end we explicitly formalize the algorithms as well as the required correctness and unforgeability notion. We stress that, as the focus of this work lies on key-homomorphic schemes, we will also focus on these aspects in this section. In particular, while we present a general definition of multikey-homomorphic schemes which, in analogy to the encryption case, i.e., [LTV12, CM15, MW16, PS16a, BP16], support the input of a set of public keys into the verification of a combined signature, we focus on schemes who use a succinct representation of a combined public key in the verification below.

Definition 28 (Multikey-Homomorphic Signatures). A multikey-homomorphic signature scheme for a class \mathcal{F} of admissible functions, is a tuple of the following PPT algorithms:

 $\mathsf{PGen}(1^\kappa)$: Takes a security parameter κ as input, and outputs parameters PP . Key $\mathsf{Gen}(\mathsf{PP})$: Takes parameters PP as input, and outputs a keypair (sk, pk) (we assume that PP is included in pk).

Sign(sk, m, τ): Takes a secret key sk, a message m, and a tag τ as input, and outputs a signature σ .

Verify(pk, m, σ, τ): Takes a public key pk a message m, a signature σ , and a tag τ as input, and outputs a bit b.

Combine($(\mathsf{pk}_i)_{i \in [n]}, (m_i)_{i \in [n]}, f, (\sigma_i)_{i \in [n]}, \tau$): Takes public keys $(\mathsf{pk}_i)_{i \in [n]},$ messages $(m_i)_{i \in [n]},$ a function $f \in \mathcal{F}$, signatures $(\sigma_i)_{i \in [n]},$ and a tag τ as input, and outputs a public key $\hat{\mathsf{pk}}$ and a signature $\hat{\sigma}$.

Verify'(\hat{pk} , \hat{m} , f, $\hat{\sigma}$, τ): Takes a combined public key \hat{pk} , a message \hat{m} , a function f, a signature $\hat{\sigma}$, and a tag τ as input, and outputs a bit b.

Subsequently, we formalize the security properties one would expect from such schemes.

Definition 29 (Correctness). A multikey-homomorphic signature scheme for a class \mathcal{F} of admissible functions is correct, if for all security parameters κ , for all $1 \leq n \leq \mathsf{poly}(\kappa)$, all $((\mathsf{sk}_i, \mathsf{pk}_i) \leftarrow \mathsf{KeyGen}(1^\kappa))_{i \in [n]}$, all messages $(m_i)_{i \in [n]}$, all tags τ , all functions $f \in \mathcal{F}$, all functions $f' \notin \mathcal{F}$, and all signatures $(\sigma_i \leftarrow \mathsf{Sign}(\mathsf{sk}_i, m_i, \tau))_{i=1}^n$ and results $(\hat{\mathsf{pk}}, \hat{\sigma}) \leftarrow \mathsf{Combine}((\mathsf{pk}_i)_{i \in [n]}, (m_i)_{i \in [n]}, f, (\sigma_i)_{i \in [n]}, \tau)$ it holds that

$$(\mathsf{Verify}(\mathsf{pk}_i, m_i, \sigma_i, \tau) = 1)_{i \in [n]} \ \land \ (\mathsf{pk}_i \in \hat{\mathsf{pk}})_{i \in [n]} \ \land \\ \mathsf{Verify}'(\hat{\mathsf{pk}}, \hat{m}, f, \hat{\sigma}, \tau) = 1 \ \land \ \mathsf{Verify}'(\cdot, \cdot, f', \cdot, \cdot) = 0,$$

where $\hat{m} = f(m_1, \dots, m_n)$.

Definition 30 (Unforgeability). A multikey-homomorphic signature scheme for a class \mathcal{F} of admissible functions is unforgeable, if for every PPT adversary \mathcal{A} there exists a negligible function $\epsilon(\cdot)$ such that it holds that

$$\Pr \begin{bmatrix} \Pr \leftarrow \mathsf{PGen}(1^\kappa), & \mathsf{Verify'}(\hat{\mathsf{pk}}^\star, \hat{m}^\star, f^\star, \hat{\sigma}^\star, \tau^\star) = 1 \ \land \\ (\mathsf{sk}, \mathsf{pk}) \leftarrow \mathsf{KeyGen}(\mathsf{PP}), & (\mathsf{pk} \in \hat{\mathsf{pk}}^\star \ \land \ \nexists \ m \in \mathcal{M} : \\ \mathcal{O} \leftarrow \{\mathsf{Sig}(\cdot, \cdot)\}, & (\hat{m}^\star \in \mathsf{R}(f^\star(\cdots, m, \cdots)) \ \land \\ (\hat{\mathsf{pk}}^\star, \hat{m}^\star, f^\star, \hat{\sigma}^\star, \tau^\star) \leftarrow \mathcal{A}^{\mathcal{O}}(\mathsf{pk}), & (m, \tau^\star) \in \mathcal{Q}^{\mathsf{Sig}}) \big) \ \lor \ \hat{m}^\star \notin \mathsf{R}(f^\star) \end{bmatrix} \leq \epsilon(\kappa),$$

where $Sig(m, \tau) := Sign(sk, m, \tau)$ and Q^{Sig} records the Sig queries.

Observe that Definition 28 neither puts restrictions on the size of signatures $\hat{\sigma}$ nor public keys \hat{pk} . To really benefit from the functionality provided by multikey-homomorphic signatures, one may additionally require that \hat{pk} is succinct. Inspired by [BGI14], we subsequently provide a formal definition.

Definition 31 (Key Succinctness). A multikey-homomorphic signature scheme is called key succinct, if for all $\kappa \in \mathbb{N}$, for all $n \leq \operatorname{poly}(\kappa)$, for all $\operatorname{PP} \leftarrow \operatorname{PGen}(1^{\kappa})$, for all $((\operatorname{sk}_i,\operatorname{pk}_i) \leftarrow \operatorname{KeyGen}(\operatorname{PP}))_{i\in[n]}$, for all $(m_i)_{i\in[n]} \in \mathcal{M}^n$, all $(\sigma_i \leftarrow \operatorname{Sign}(\operatorname{sk}_i,m_i))_{i\in[n]}$, all $(\hat{\operatorname{pk}},\hat{\sigma}) \leftarrow \operatorname{Combine}((\operatorname{pk}_i)_{i\in[n]},(m_i)_{i\in[n]},f,(\sigma_i)_{i\in[n]})$ it holds that

$$|\hat{\mathsf{pk}}| \leq \mathsf{poly}(\kappa)$$
.

It turns out that secret key to public key homomorphic signature schemes already imply the existence of key succinct multikey-homomorphic signature schemes for a class \mathcal{F} of functions with polynomially many members.

Lemma 2. If there exists an EUF-CMA secure secret key to public key homomorphic signature scheme Σ , then there exists a key succinct multikey-homomorphic signature scheme $\Sigma_{\mathcal{F}}$ for a class \mathcal{F} of functions with polynomially many members.

Proof. We prove this lemma by constructing such a scheme. In particular, we base the construction on a wrapped version $\Sigma_{\mathcal{F}} = (\mathsf{KeyGen}_{\mathcal{F}}, \mathsf{Sign}_{\mathcal{F}}, \mathsf{Verify}_{\mathcal{F}})$ of the secret key to public key homomorphic signature scheme $\Sigma = (\mathsf{KeyGen}, \mathsf{Sign}, \mathsf{Verify})$, where $\mathsf{KeyGen}_{\mathcal{F}}(1^{\kappa}) := \mathsf{KeyGen}(1^{\kappa})$, $\mathsf{Sign}_{\mathcal{F}}(\mathsf{sk}, m, \tau) := \mathsf{Sign}(\mathsf{sk}, m||\tau||\mathcal{F})$ and $\mathsf{Verify}_{\mathcal{F}}(\mathsf{pk}, m, \sigma, \tau) := \mathsf{Verify}(\mathsf{pk}, m||\tau||\mathcal{F}, \sigma)$. Then Combine and Verify' can be defined as follows:

Combine($(\mathsf{pk}_i)_{i\in[n]}, (m_i)_{i\in[n]}, f, (\sigma_i)_{i\in[n]}, \tau$): If $f \notin \mathcal{F}$ return \bot . Otherwise, compute $\hat{\sigma} \leftarrow ((\mathsf{pk}_i, m_i, \sigma_i))_{i\in[n]}$ and $\hat{\mathsf{pk}} \leftarrow \prod_{i=1}^n \mathsf{pk}_i$ and return $\hat{\mathsf{pk}}$ and $\hat{\sigma}$. Verify'($\hat{\mathsf{pk}}, \hat{m}, f, \hat{\sigma}, \tau$): Return 1, if $(\mathsf{Verify}_{\mathcal{F}}(\mathsf{pk}_i, m_i, \sigma_i, \tau) = 1)_{i\in[n]} \land \hat{m} = f(m_1, \ldots, m_n) \land \hat{\mathsf{pk}} = \prod_{i=1}^n \mathsf{pk}_i \land f \in \mathcal{F}$, and 0 otherwise.

It is immediate that correctness holds. For unforgeability, note that since $\mathsf{Verify'}(\mathsf{pk}^\star, \hat{m}^\star, f^\star, \hat{\sigma}^\star, \tau^\star) = 1$ by definition, we know that $\mathsf{pk} = \prod_{i \in [n]} \mathsf{pk}_i$, where $(\mathsf{pk}_i)_{i \in [n]}$ is contained in the signature. Thus, we can simply engage with an EUF-CMA challenger to obtain pk and simulate the game without knowing sk by using the Sign oracle provided by the EUF-CMA challenger. If the adversary eventually outputs a forgery, we either have an EUF-CMA forgery which happens with negligible probability or a message $\hat{m}^\star \notin \mathsf{R}(f^\star)$ which happens with probability 0 as $\mathsf{Verify'}$ does not accept such an input. Thus, the overall success probability of any PPT adversary is negligible.

While this proves the existence of key succinct multikey-homomorphic signatures, one could also ask for signature succinctness as defined below.

Definition 32 (Signature Succinctness). A multikey-homomorphic signature scheme is called signature succinct, if for all $\kappa \in \mathbb{N}$, for all $n \leq \operatorname{poly}(\kappa)$, for all $\operatorname{pp} \leftarrow \operatorname{PGen}(1^{\kappa})$, for all $((\operatorname{sk}_i,\operatorname{pk}_i) \leftarrow \operatorname{KeyGen}(\operatorname{pp}))_{i \in [n]}$, for all $(m_i)_{i \in [n]} \in \mathcal{M}^n$, all $(\sigma_i \leftarrow \operatorname{Sign}(\operatorname{sk}_i,m_i))_{i \in [n]}$, all $(\widehat{\operatorname{pk}},\widehat{\sigma}) \leftarrow \operatorname{Combine}((\operatorname{pk}_i)_{i \in [n]},(m_i)_{i \in [n]},f,(\sigma_i)_{i \in [n]})$ it holds that

$$|\hat{\sigma}| < \mathsf{poly}(\kappa)$$
.

Finally, one could also define a notion in the vein of function privacy in the context of functional signatures [BGI14], i.e., although Combine takes a function f, the output of Combine would be required to be indistinguishable for any f' that evaluates to the same output on the same input. Ultimately, one could even ask for a stronger property requiring that the signatures output by Combine look identical to signatures produced by Sign.

5.2 Discussion

We consider it to be interesting to find constructions of the various flavors of multikey-homomorphic signatures discussed above. It seems that using indistinguishability obfuscation in similar fashion as it is done in the context of universal signature aggregators [HKW15] is a viable direction to obtain signature succinctness. However, as the focus in this paper lies on key-homomorphisms, we leave a thorough investigation as future work. Subsequently, we informally discuss some further observations.

Related Concepts. Firstly, it seems that our notions are related to the properties one would expect from aggregate signatures [BGLS03] and the related notion of screening [BGR98]. Furthermore, they also seem to be related to batch verification of signatures [CHP12] and the recent notion of universal signature aggregators [HKW15].

Application to Delegation of Computation. Secondly, the concept of multi-key-homomorphic signatures seem to be a very interesting concept in the domain of verifiable delegation of computation on outsourced data.

Let us recall that homomorphic signatures for a class \mathcal{F} can be used to certify computations on signed data for any $f \in \mathcal{F}$. Assume that some entity who holds a data set (m_1, \ldots, m_n) , is in possession of a secret key sk and produces signatures $(\sigma_1, \ldots, \sigma_n)$ for each respective message in the data set. Then, she can outsource the authenticated data set $(m_1, \sigma_1), \ldots, (m_n, \sigma_n)$ to some remote server (e.g., the cloud). Later, for any function $f \in \mathcal{F}$, the server can be asked to compute $\hat{m} = f(m_1, \ldots, m_n)$ and is able to deliver a succinct proof (signature) $\hat{\sigma}$ certifying the correctness of the computation. Anyone, given the public key pk of the data holder, the result \hat{m} , corresponding signature $\hat{\sigma}$ and the function f, can then verify whether the computation by the server has been performed correctly without needing to know the original data.

Now, there are many scenarios with many different signers each of them holding a distinct secret key sk_i and each of them periodically authenticates some data item $m_{i,j}$ and sends it to a server. Then, the server could compute a function f over inputs authenticated by different secret keys. Think for instance of environmental sensors that periodically send authenticated measurements to a server and this server can then compute on these authenticated measurements. The result can then be verified under the respective public keys or in case of a scheme with key succinctness the results are verifiable for anyone under a compact public key $\hat{\mathsf{pk}}$ (which can be computed from all the single public keys once and pre-distributed). Consequently, the concept of multikey-homomorphic

signatures seems to be an interesting and viable direction for extending the scope of verifiable delegation of computation on outsourced data based on signatures.

6 Conclusion

In this paper we introduce a definitional framework distilling various natural flavours of key-homomorphisms for signatures, and, thereby, generalize larger classes of existing signature schemes. We present elegant and simple compilers turning classes of schemes admitting particular key-homomorphisms into ring signatures, universal designated verifier signatures, as well as multisignatures. Furthermore, we also prove a tight implication from single-user security to key-prefixed multi-user security for a class of schemes admitting a certain key-homomorphism. We give examples of existing signature schemes admitting the introduced key-homomorphisms, which yields to novel instantiations of the various schemes. Furthermore, it attests the multi-user security of various schemes which were previously unknown to provide multi-user security. Finally, we introduce the notion of multikev homomorphic signatures and show that a secret-key to public-key homomorphism implies the existence of key-succinct multikey-homomorphic signatures. As a contribution of independent interest we also strengthen the security model of universal designated verifier signatures and present the first construction being secure in this strengthened model.

Acknowledgements. We thank the anonymous referees from TCC 2016-B for their valuable comments.

References

- [ABC⁺12] Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, Abhi Shelat, and Brent Waters. Computing on authenticated data. In *Theory of Cryptography 9th Theory of Cryptography Conference, TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings*, 2012.
- [AHI11] Benny Applebaum, Danny Harnik, and Yuval Ishai. Semantic Security under Related-Key Attacks and Applications. In *Innovations in Computer Science - ICS 2011*, 2011.
- [ALP12] Nuttapong Attrapadung, Benoît Libert, and Thomas Peters. Computing on Authenticated Data: New Privacy Definitions and Constructions. In Advances in Cryptology ASIACRYPT 2012 18th International Conference on the Theory and Application of Cryptology and Information Security, Beijing, China, December 2-6, 2012. Proceedings, 2012.
- [BCC⁺15] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth, and Christophe Petit. Short accountable ring signatures based on DDH. In Computer Security ESORICS 2015 20th European Symposium on Research in Computer Security, Vienna, Austria, September 21-25, 2015, Proceedings, Part I, pages 243–265, 2015.
- [BCM11] Mihir Bellare, David Cash, and Rachel Miller. Cryptography Secure against Related-Key Attacks and Tampering. In Advances in Cryptology - ASI-ACRYPT 2011, 2011.

- [Ber15] Daniel J. Bernstein. Multi-user schnorr security, revisited. IACR Cryptology ePrint Archive, 2015, 2015.
- [BF11] Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial functions. In *Advances in Cryptology–EUROCRYPT 2011*. 2011.
- [BFG13] David Bernhard, Georg Fuchsbauer, and Essam Ghadafi. Efficient signatures of knowledge and DAA in the standard model. In Applied Cryptography and Network Security 11th International Conference, ACNS 2013, Banff, AB, Canada, June 25-28, 2013. Proceedings, pages 518–533, 2013.
- [BFKW09] Dan Boneh, David Mandell Freeman, Jonathan Katz, and Brent Waters. Signing a Linear Subspace: Signature Schemes for Network Coding. In Public Key Cryptography, 2009.
- [BFP+15] Abhishek Banerjee, Georg Fuchsbauer, Chris Peikert, Krzysztof Pietrzak, and Sophie Stevens. Key-Homomorphic Constrained Pseudorandom Functions. In Theory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015, 2015.
- [BFS14] Xavier Boyen, Xiong Fan, and Elaine Shi. Adaptively secure fully homomorphic signatures based on lattices. Cryptology ePrint Archive, Report 2014/916, 2014.
- [BGG⁺14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully Key-Homomorphic Encryption, Arithmetic Circuit ABE and Compact Garbled Circuits. In Advances in Cryptology EUROCRYPT 2014, 2014.
- [BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom functions. In Public-Key Cryptography PKC 2014 17th International Conference on Practice and Theory in Public-Key Cryptography, Buenos Aires, Argentina, March 26-28, 2014. Proceedings, 2014.
- [BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted signatures from bilinear maps. In Advances in Cryptology EUROCRYPT 2003, International Conference on the Theory and Applications of Cryptographic Techniques, Warsaw, Poland, May 4-8, 2003, Proceedings, 2003.
- [BGR98] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification for modular exponentiation and digital signatures. In Advances in Cryptology - EUROCRYPT '98, International Conference on the Theory and Application of Cryptographic Techniques, Espoo, Finland, May 31 - June 4, 1998, Proceeding, 1998.
- [BJ08] Ali Bagherzandi and Stanislaw Jarecki. Multisignatures using proofs of secret key possession, as secure as the diffie-hellman problem. In Security and Cryptography for Networks, 6th International Conference, SCN 2008, Amalfi, Italy, September 10-12, 2008. Proceedings, 2008.
- [BJLS16] Christoph Bader, Tibor Jager, Yong Li, and Sven Schäge. On the impossibility of tight cryptographic reductions. In Advances in Cryptology EUROCRYPT 2016 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II, 2016.
- [BK10] Zvika Brakerski and Yael Tauman Kalai. A framework for efficient signatures, ring signatures and identity based encryption in the standard model. *IACR Cryptology ePrint Archive*, 2010.

- [BKM09] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger definitions, and constructions without random oracles. J. Cryptology, 22(1), 2009.
- [BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key Homomorphic PRFs and Their Applications. In *Advances in Cryptology CRYPTO 2013*, 2013.
- [BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. *J. Cryptology*, 17(4), 2004.
- [Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group signature scheme. In Public Key Cryptography PKC 2003, 6th International Workshop on Theory and Practice in Public Key Cryptography, Miami, FL, USA, January 6-8, 2003, Proceedings, 2003.
- [BP14] Abhishek Banerjee and Chris Peikert. New and Improved Key-Homomorphic Pseudorandom Functions. In Advances in Cryptology -CRYPTO 2014 - 34th Annual Cryptology Conference, 2014.
- [BP16] Zvika Brakerski and Renen Perlman. Lattice-based fully dynamic multikey FHE with short ciphertexts. In Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I, 2016.
- [BPT12] Mihir Bellare, Kenneth G. Paterson, and Susan Thomson. RKA security beyond the linear barrier: Ibe, encryption and signatures. In Advances in Cryptology ASIACRYPT 2012 18th International Conference on the Theory and Application of Cryptology and Information Security, Beijing, China, December 2-6, 2012. Proceedings, 2012.
- [Cat14] Dario Catalano. Homomorphic signatures and message authentication codes. In Security and Cryptography for Networks 9th International Conference, SCN 2014, Amalfi, Italy, September 3-5, 2014. Proceedings, 2014.
- [CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowledge and simplified design of witness hiding protocols. In Advances in Cryptology - CRYPTO '94, 14th Annual International Cryptology Conference, Santa Barbara, California, USA, August 21-25, 1994, Proceedings, 1994.
- [CFW14] Dario Catalano, Dario Fiore, and Bogdan Warinschi. Homomorphic signatures with efficient verification for polynomial functions. In Advances in Cryptology—CRYPTO 2014. 2014.
- [CGS07] Nishanth Chandran, Jens Groth, and Amit Sahai. Ring signatures of sublinear size without random oracles. In Automata, Languages and Programming, 34th International Colloquium, ICALP 2007, Wroclaw, Poland, July 9-13, 2007, Proceedings, 2007.
- [CHKM10] Sanjit Chatterjee, Darrel Hankerson, Edward Knapp, and Alfred Menezes. Comparing two pairing-based aggregate signature schemes. *Des. Codes Cryptography*, 55(2-3), 2010.
- [CHP12] Jan Camenisch, Susan Hohenberger, and Michael Østergaard Pedersen. Batch verification of short signatures. *J. Cryptology*, 25(4), 2012.
- [CL04] Jan Camenisch and Anna Lysyanskaya. Signature Schemes and Anonymous Credentials from Bilinear Maps. In Advances in Cryptology CRYPTO 2004, 24th Annual International Cryptology Conference, 2004.
- [CL06] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In Advances in Cryptology CRYPTO 2006, 26th Annual International Cryp-

- tology Conference, Santa Barbara, California, USA, August 20-24, 2006, Proceedings, pages 78–96, 2006.
- [CM15] Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled FHE from learning with errors. In Advances in Cryptology CRYPTO 2015
 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, 2015.
- [DKNS04] Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor Shoup. Anonymous identification in ad hoc groups. In Advances in Cryptology EUROCRYPT 2004, International Conference on the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings, 2004.
- [DKS16] David Derler, Stephan Krenn, and Daniel Slamanig. Signer-Anonymous Designated-Verifier Redactable Signatures for Cloud-Based Data Sharing. In Cryptology and Network Security - 15th International Conference, CANS 2016, Milan, Italy, November 14-16, 2016, Proceedings (to appear), 2016.
- [DMS16] Yevgeniy Dodis, Ilya Mironov, and Noah Stephens-Davidowitz. Message transmission with reverse firewalls secure communication on corrupted machines. In Advances in Cryptology CRYPTO 2016 36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I, 2016.
- [FF13] Marc Fischlin and Nils Fleischhacker. Limitations of the meta-reduction technique: The case of schnorr signatures. In Advances in Cryptology EUROCRYPT 2013, 32nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, 2013.
- [FHS15] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practical round-optimal blind signatures in the standard model. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, 2015.
- [FKM+16] Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider, Dominique Schröder, and Mark Simkin. Efficient Unlinkable Sanitizable Signatures from Signatures with Re-randomizable Keys. In Public-Key Cryptography - PKC 2016 - 19th IACR International Conference on Practice and Theory in Public-Key Cryptography, 2016.
- [FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi. On the non-malleability of the fiat-shamir transform. In Progress in Cryptology - INDOCRYPT 2012, 13th International Conference on Cryptology in India, Kolkata, India, December 9-12, 2012. Proceedings, 2012.
- [FMNP16] Dario Fiore, Aikaterini Mitrokotsa, Luca Nizzardo, and Elena Pagnin. Multi-key homomorphic authenticators. IACR Cryptology ePrint Archive, 2016, 2016.
- [Fre12] David Mandell Freeman. Improved security for linearly homomorphic signatures: A generic framework. In *Public Key Cryptography PKC 2012 15th International Conference on Practice and Theory in Public Key Cryptography, Darmstadt, Germany, May 21-23, 2012. Proceedings, 2012.*
- [FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature problems. In *Advances in Cryptology CRYPTO '86*, Santa Barbara, California, USA, 1986, Proceedings, 1986.
- [Gen09] Craig Gentry. Fully Homomorphic Encryption using Ideal Lattices. In 41st Annual ACM Symposium on Theory of Computing, STOC 2009, 2009.

- [GHKW16] Romain Gay, Dennis Hofheinz, Eike Kiltz, and Hoeteck Wee. Tightly cca-secure encryption without pairings. In Advances in Cryptology EU-ROCRYPT 2016 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I, 2016.
- [GK15] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak a secret and spend a coin. In Advances in Cryptology EUROCRYPT 2015 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, 2015.
- [GLW12] Shafi Goldwasser, Allison B. Lewko, and David A. Wilson. Bounded-Collusion IBE from Key Homomorphism. In Theory of Cryptography 9th Theory of Cryptography Conference, TCC 2012, 2012.
- [GMS02] Steven D. Galbraith, John Malone-Lee, and Nigel P. Smart. Public key signatures in the multi-user setting. Inf. Process. Lett., 83(5), 2002.
- [GMY03] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-knowledge protocols using signatures. In Advances in Cryptology EURO-CRYPT 2003, International Conference on the Theory and Applications of Cryptographic Techniques, Warsaw, Poland, May 4-8, 2003, Proceedings, pages 177–194, 2003.
- [GMY06] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zeroknowledge protocols using signatures. J. Cryptology, 19(2):169–209, 2006.
- [Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures. In Advances in Cryptology ASIACRYPT 2006, 12th International Conference on the Theory and Application of Cryptology and Information Security, Shanghai, China, December 3-7, 2006, Proceedings, pages 444–459, 2006.
- [GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Advances in Cryptology EUROCRYPT 2008, 27th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings, pages 415–432, 2008.
- [GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic signatures from standard lattices. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, 2015.
- [HKW15] Susan Hohenberger, Venkata Koppula, and Brent Waters. Universal signature aggregators. In Advances in Cryptology EUROCRYPT 2015 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II. 2015.
- [HS14] Christian Hanser and Daniel Slamanig. Structure-preserving signatures on equivalence classes and their application to anonymous credentials. In Advances in Cryptology ASIACRYPT 2014 20th International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, 2014.
- [IN83] K. Itakura and K. Nakamura. A public-key cryptosystem suitable for digital multisignatures. NEC Research & Development, 71, 1983.

- [JMSW02] Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner. Homomorphic signature schemes. In Topics in Cryptology - CT-RSA 2002, The Cryptographer's Track at the RSA Conference, 2002, San Jose, CA, USA, February 18-22, 2002, Proceedings, 2002.
- [JSI96] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated verifier proofs and their applications. In Advances in Cryptology EURO-CRYPT '96, International Conference on the Theory and Application of Cryptographic Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding, 1996.
- [KMP16] Eike Kiltz, Daniel Masny, and Jiaxin Pan. Optimal security proofs for signatures from identification schemes. In Advances in Cryptology CRYPTO 2016 36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, 2016.
- [Lac16] Marie-Sarah Lacharité. Security of bls and bgls signatures in a multi-user setting. Arcticerypt 2016 Talk, http://arcticerypt.b.uib.no/files/ 2016/07/Slides-Lacharite.pdf, 2016.
- [LOS⁺06] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential aggregate signatures and multisignatures without random oracles. In Advances in Cryptology EUROCRYPT 2006, 25th Annual International Conference on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 June 1, 2006, Proceedings, 2006.
- [LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, 2012.
- [LTWC16] Russell W. F. Lai, Raymond K. H. Tai, Harry W. H. Wong, and Sherman S. M. Chow. A zoo of homomorphic signatures: Multi-key and keyhomomorphism. Cryptology ePrint Archive, Report 2016/834, 2016.
- [MS04] Alfred Menezes and Nigel P. Smart. Security of signature schemes in a multi-user setting. *Des. Codes Cryptography*, 33(3), 2004.
- [MSM+15] Hiraku Morita, Jacob C. N. Schuldt, Takahiro Matsuda, Goichiro Hanaoka, and Tetsu Iwata. On the security of the schnorr signature scheme and DSA against related-key attacks. In Information Security and Cryptology ICISC 2015 18th International Conference, Seoul, South Korea, November 25-27, 2015, Revised Selected Papers, 2015.
- [MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key FHE. In Advances in Cryptology - EUROCRYPT 2016 -35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II, 2016.
- [PS16a] Chris Peikert and Sina Shiehian. Multi-key FHE from lwe, revisited. *IACR Cryptology ePrint Archive*, 2016.
- [PS16b] David Pointcheval and Olivier Sanders. Short Randomizable Signatures. In Topics in Cryptology CT-RSA 2016 The Cryptographers' Track at the RSA Conference 2016, 2016.
- [Rot11] Ron Rothblum. Homomorphic Encryption: From Private-Key to Public-Key. In *Theory of Cryptography 8th Theory of Cryptography Conference*, TCC 2011, 2011.

- [RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Advances in Cryptology - ASIACRYPT 2001, 7th International Conference on the Theory and Application of Cryptology and Information Security, Gold Coast, Australia, December 9-13, 2001, Proceedings, 2001.
- [RY07] Thomas Ristenpart and Scott Yilek. The Power of Proofs-of-Possession: Securing Multiparty Signatures against Rogue-Key Attacks. In *Advances in Cryptology EUROCRYPT 2007*, 2007.
- [SBWP03] Ron Steinfeld, Laurence Bull, Huaxiong Wang, and Josef Pieprzyk. Universal designated-verifier signatures. In Advances in Cryptology ASI-ACRYPT 2003, 9th International Conference on the Theory and Application of Cryptology and Information Security, Taipei, Taiwan, November 30 December 4, 2003, Proceedings, 2003.
- [Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. J. Cryptology, 4(3), 1991.
- [SS08] Siamak Fayyaz Shahandashti and Reihaneh Safavi-Naini. Construction of universal designated-verifier signatures and identity-based signatures from standard signatures. In Public Key Cryptography PKC 2008, 11th International Workshop on Practice and Theory in Public-Key Cryptography, Barcelona, Spain, March 9-12, 2008. Proceedings, 2008.
- [TW14] Stefano Tessaro and David A. Wilson. Bounded-collusion identity-based encryption from semantically-secure public-key encryption: Generic constructions with short ciphertexts. In *Public-Key Cryptography - PKC 2014*, 2014.
- [Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In Advances in Cryptology EUROCRYPT 2005, 24th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, 2005.

A Proof of Theorem 1

We show that Theorem 1 holds by proving the subsequent lemmas.

Lemma 3. If Σ is correct, and Π is complete, then Scheme 1 is correct.

Lemma 3 follows from inspection and the proof is therefore omitted.

Lemma 4. If Σ is EUF-CMA secure, and provides adaptability of signatures, and Π is weakly simulation sound extractable, then Scheme 1 is unforgeable.

Proof. We prove unforgeability using a sequence of games where we let $q_s \leq \text{poly}(\kappa)$ be the number of Sign queries.

Game 0: The original unforgeability game.

Game 1: As Game 0, but instead of generating crs upon setup, we obtain $(crs, \tau) \leftarrow \Pi.S_1(1^{\kappa})$ and store τ . Furthermore, we simulate all proofs, i.e., replace all calls to $\Pi.\mathsf{Proof}(\mathsf{crs}, x, w)$ by $\Pi.\mathsf{S}_2(\mathsf{crs}, \tau, x)$.

Transition - Game $0 \to Game \ 1$: A distinguisher between Game 0 and 1 distinguishes an honest crs from a simulation crs, i.e., $|\Pr[S_0] - \Pr[S_1]| \le \varepsilon_s(\kappa)$.

Game 2: As Game 1, but inside the Sig oracle we execute the following modified Sign algorithm Sign'.

Sign(PP, $\mathsf{sk}_i, m, \mathcal{R}$): Parse PP as $(1^{\kappa}, \mathsf{crs})$ and return bot if $\mu(\mathsf{sk}_i) \notin \mathcal{R}$. Otherwise, return $\sigma \leftarrow (\delta, \mathsf{pk}, \pi)$, where

pk
$$\leftarrow C_{\kappa}^{\mathsf{f}}$$
, sk $\leftarrow \bot$, $\delta \leftarrow C_{\kappa}^{\mathsf{f}}.\mathsf{Sign}(m)$, and $\pi \leftarrow \mathsf{\Pi}.\mathsf{S}_{2}(\mathsf{crs},\tau,(\mathsf{pk},\mathcal{R}))$.

Transition - Game $1 \to Game \ 2$: This change is conceptual, i.e., $\Pr[S_1] = \Pr[S_2]$. Game 3: As Game 2, but we obtain crs using $(\operatorname{crs}, \tau, \xi) \leftarrow \Pi.S(1^{\kappa})$ upon setup and store τ and ξ .

Transition - Game $2 \to Game 3$: This change is conceptual, i.e., $Pr[S_2] = Pr[S_3]$.

Game 4: As Game 3, but for every forgery $(m^*, \sigma^*, \mathcal{R}^*)$ output by the adversary, we parse σ^* as $(\delta^*, \mathsf{pk}^*, \pi^*)$. If pk^* corresponds to a Sign' call we continue. Otherwise we extract the witness $\mathsf{sk}' \leftarrow \mathsf{\Pi.E}(\mathsf{crs}, \xi, (\mathsf{pk}^*, \mathcal{R}^*), \pi^*)$ and abort if the extraction fails.

Transition - Game 3 \rightarrow Game 4: The success probability in Game 4 is the same as in Game 3, unless we have to abort, which can be upper bounded by the probability of the extractor to fail. That is, $|\Pr[S_3] - \Pr[S_4]| \leq \varepsilon_e(\kappa)$.

Game 5: As Game 4, but we guess the index i the adversary will attack at the beginning of the game, and abort if our guess is wrong and pk^* does not correspond to a Sign' query.

Transition - Game 4 \rightarrow Game 5: The success probability in Game 4 is the same as in Game 5, unless our guess is wrong, i.e., $\Pr[S_5] = (\frac{1}{\mathsf{poly}(\kappa)} + \mathsf{Pr}[\mathsf{pk}^{\star}]) \cdot \mathsf{Pr}[S_4] \geq \frac{1}{\mathsf{poly}(\kappa)} \cdot \mathsf{Pr}[S_4]$.

Game 6: As Game 5, but instead of running KeyGen for user i, we engage with an EUF-CMA challenger of Σ to obtain pk_i .

Transition - Game $5 \to Game\ 6$: This change is conceptual, i.e., $\Pr[S_5] = \Pr[S_6]$.

If the adversary outputs a forgery $(m^*, \sigma^*, \mathcal{R}^*)$ in Game 6 we can directly output (δ^*, m^*) as a valid forgery for Σ if pk^* corresponds to a Sign' call. Otherwise, we compute $(\mathsf{pk}_i, \sigma_i) \leftarrow \mathsf{Adapt}(\mathsf{pk}^*, m^*, \delta^*, \mathsf{sk}')$ and return (σ_i, m^*) as a valid forgery for Σ . That is, $\mathsf{Pr}[S_6] \leq (q_\mathsf{s}+1) \cdot \varepsilon_\mathsf{f}(\kappa)$ and we obtain $\mathsf{Pr}[S_0] \leq (1+q_\mathsf{s}) \cdot \mathsf{poly}(\kappa) \cdot \varepsilon_\mathsf{f}(\kappa) + \varepsilon_\mathsf{e}(\kappa) + \varepsilon_\mathsf{s}(\kappa)$ as a bound for the success probability which concludes the proof.

Lemma 5. If Σ provides adaptability of signatures and Π is witness indistinguishable, then Scheme 1 is anonymous.

Proof. We show that a simulation of the anonymity game for b = 0 is indistinguishable from a simulation of the anonymity game with b = 1.

Game 0: The anonymity game with b = 0.

Game 1: As Game 0, but instead of generating crs upon setup, we obtain crs from a witness indistinguishability challenger C_{κ}^{wi} upon Setup.

Transition - Game $0 \to Game 1$: This change is conceptual, i.e., $Pr[S_0] = Pr[S_1]$.

Game 2: As Game 1, but instead of obtaining σ via Sign, we execute the following modified algorithm Sign', which, besides PP, m and \mathcal{R} , takes sk_0 and sk_1 as input:

$$\begin{split} \mathsf{Sign}'(\mathsf{PP},\mathsf{sk}_0,\mathsf{sk}_1,m,\mathcal{R}) : & \text{ Parse PP as } (1^\kappa,\mathsf{crs}) \text{ and return bot if } \mu(\mathsf{sk}_0) \notin \\ \mathcal{R} & \boxed{\vee \mu(\mathsf{sk}_1) \notin \mathcal{R}}. \text{ Otherwise, return } \sigma \leftarrow (\delta,\mathsf{pk},\pi), \text{ where} \\ & (\mathsf{sk},\mathsf{pk}) \leftarrow \Sigma.\mathsf{KeyGen}(1^\kappa), \ \delta \leftarrow \Sigma.\mathsf{Sign}(\mathsf{sk},m), \text{ and} \\ & \pi \leftarrow \Pi.\mathsf{Proof}(\mathsf{crs},(\mathsf{pk},\mathcal{R}),(\boxed{\mathsf{sk}_1}-\mathsf{sk})). \end{split}$$

Transition - Game $1 \to Game \ 2$: A distinguisher between $\mathcal{D}^{1 \to 2}$ is a distinguisher for adaptive witness indistinguishability of Π , i.e., $|\Pr[S_2] - \Pr[S_1]| \le \varepsilon_{\mathsf{wi}}(\kappa)$.

In Game 2, we have a simulation for b=1; $|\Pr[S_2] - \Pr[S_0]| \leq \varepsilon_{\mathsf{wi}}(\kappa)$, which proves the lemma.

B Proof of Theorem 2

We subsequently show that Theorem 2 holds where we note that if non-transferability privacy is sufficient, Σ only needs to be adaptable.

Lemma 6. If Σ is correct, and Π is complete, then Scheme 2 is correct.

Lemma 6 follows from inspection and the proof is therefore omitted.

Lemma 7. If Σ is EUF-CMA secure and perfectly adapts signatures, f is a one-way function, and Π is weakly simulation sound extractable, then Scheme 2 is simulation-sound DV-unforgeable.

Proof. We followingly bound the success probability of an adversary using a sequence of games, where we let $q_{\mathsf{Sim}} \leq \mathsf{poly}(\kappa)$ be the number Sim queries.

Game 0: The original DV-unforgeability game.

Game 1: As Game 0, but instead of generating $(\mathsf{sk}, \mathsf{pk}) \leftarrow \mathsf{Gen}(\mathsf{PP})$, we obtain pk from an EUF-CMA challenger. Further, whenever a signature under pk is required we use the Sign oracle provided by the challenger. In addition, we simulate the Vrfy oracle by using vpk instead of $f(\mathsf{vsk})$ inside the DVerify algorithm.

Transition - Game $0 \to Game 1$: This change is conceptual, i.e., $\Pr[S_0] = \Pr[S_1]$. Game 2: As Game 1, but instead of generating crs upon setup, we obtain $(\operatorname{crs}, \tau) \leftarrow \Pi.S_1(1^{\kappa})$ and store τ . Furthermore, we simulate all proofs, i.e.,

replace all calls to Π .Proof(crs, x, w) by Π .S₂(crs, τ, x).

Transition - Game 1 \rightarrow Game 2: A distinguisher between Game 0 and 1 distinguishes an honest crs from a simulation crs, i.e., $|\Pr[S_1] - \Pr[S_2]| \le \varepsilon_s(\kappa)$.

Game 3: As Game 2, but inside the Sim oracle we execute the following modified Sim algorithm Sim', where C^f denotes an EUF-CMA challenger.

$$\begin{split} \mathsf{Sim}'(\mathsf{pk},\mathsf{vsk},m): \ \mathrm{Output} \ \delta &= (\mathsf{pk}',\sigma_\mathsf{R},\pi), \ \mathrm{where} \\ & \boxed{\mathsf{pk}_\mathsf{R} \leftarrow \mathcal{C}^\mathsf{f}_\kappa}, \ \mathsf{pk}' \leftarrow \mathsf{pk}_\mathsf{R} \cdot \mathsf{pk}^{-1}, \ \boxed{\sigma_\mathsf{R} \leftarrow \mathcal{C}^\mathsf{f}_\kappa.\mathsf{Sign}(m)}, \\ & \pi \leftarrow \mathsf{\Pi}.\mathsf{S}_2(\mathsf{crs},\tau,(\mathsf{pk}',\mathsf{vpk})). \end{split}$$

Further, the environment keeps a mapping from public keys pk_R to challengers \mathcal{C}_{ϵ}^f .

Transition - Game $2 \to Game \ 3$: This change is conceptual, i.e., $\Pr[S_2] = \Pr[S_3]$.

Game 4: As Game 3, but we obtain vpk from a one-wayness challenger and set $\mathsf{vsk} \leftarrow \bot$.

Transition - Game 3 \rightarrow Game 4: This change is conceptual, i.e., $Pr[S_3] = Pr[S_4]$.

Game 5: As Game 4, but we obtain crs using $(crs, \tau, \xi) \leftarrow \Pi.S(1^{\kappa})$ upon setup and store τ and ξ .

Transition - Game $4 \to Game 5$: This change is conceptual, i.e., $Pr[S_4] = Pr[S_5]$.

Game 6: As Game 5, but for every forgery (m^*, δ^*) output by the adversary, we parse δ^* as $(pk'^*, \sigma_R^*, \pi^*)$. If $pk \cdot pk'$ corresponds to a pk_R from a Sim' execution we continue. Otherwise, we extract the witness $(sk', vsk) \leftarrow \Pi.E(crs, \xi, (pk'^*, vpk), \pi^*)$.

Transition - Game 5 \rightarrow Game 6: The success probability in Game 5 is the same as in Game 6, unless we have to abort, which can be upper bounded by the probability of the extractor to fail. Thus, $|\Pr[S_5] - \Pr[S_6]| \le \varepsilon_e(\kappa)$.

In Game 6, we can directly output (m^*, σ_R^*) as a forgery for Σ if $\mathsf{pk} \cdot \mathsf{pk}'$ corresponds to a pk_R obtained from a challengers within Sim. Otherwise we either have either extracted vsk so that $f(\mathsf{vsk}) = \mathsf{vpk}$ and we can output vsk to the one-wayness challenger, or we have extracted sk' such that $\mu(\mathsf{sk}) = \mathsf{pk}$ and can obtain $(\mathsf{pk}, \sigma) \leftarrow \Sigma$.Adapt $(\mathsf{pk} \cdot \mathsf{pk}', m^*, \sigma_R^*, -\mathsf{sk}')$ and output (m^*, σ) as a forgery for Σ . Taking the union bound yields $\mathsf{Pr}[S_6] \leq (q_{\mathsf{Sim}} + 1) \cdot \varepsilon_\mathsf{f}(\kappa) + \varepsilon_\mathsf{ow}(\kappa)$, and we obtain $\mathsf{Pr}[S_0] \leq (q_{\mathsf{Sim}} + 1) \cdot \varepsilon_\mathsf{f}(\kappa) + \varepsilon_\mathsf{ow}(\kappa) + \varepsilon_\mathsf{e}(\kappa) + \varepsilon_\mathsf{s}(\kappa)$ which is negligible. \square

Lemma 8. If Σ perfectly adapts signatures, and Π is witness indistinguishable, then Scheme 2 is strongly non-transferable private.

Proof. We bound the success probability using a sequence of games.

Game 0: The original non-transferability privacy game.

Game 1: As Game 0, but instead of generating crs upon setup, we obtain crs from a witness indistinguishability challenger $\mathcal{C}_{\kappa}^{\mathsf{wi}}$ upon Setup.

Transition - Game $0 \to Game 1$: This change is conceptual, i.e., $Pr[S_0] = Pr[S_1]$.

Game 2: As Game 1, but inside SoD we execute the following modified the Desig algorithm Desig' which additionally takes vsk as input:

$$\begin{split} \mathsf{Desig'}(\mathsf{pk},\mathsf{vpk},m,\sigma,\overline{\mathsf{vsk}}) : & \text{Output } \delta \leftarrow (\mathsf{pk'},\sigma_\mathsf{R},\pi), \text{ where} \\ & (\mathsf{sk'},\mathsf{pk'}) \leftarrow \Sigma.\mathsf{KeyGen}(1^\kappa), \ (\mathsf{pk}_\mathsf{R},\sigma_\mathsf{R}) \leftarrow \Sigma.\mathsf{Adapt}(\mathsf{pk},m,\sigma,\mathsf{sk'}), \\ & \pi \leftarrow \mathsf{\Pi}.\mathsf{Proof}(\mathsf{crs},(\mathsf{pk'},\mathsf{vpk}),\overline{(\bot,\mathsf{vsk})}). \end{split}$$

Transition - Game 1 \rightarrow Game 2: A distinguisher between $\mathcal{D}^{1\to 2}$ is a distinguisher for adaptive witness indistinguishability of Π , i.e., $|\Pr[S_2] - \Pr[S_1]| \leq \varepsilon_{\mathsf{wi}}(\kappa)$.

Game 3: As Game 2, but we further modify Desig' as follows:

$$\begin{split} \mathsf{Desig'}(\mathsf{pk},\mathsf{vpk},m,\sigma,\mathsf{vsk}) : & \text{Output } \delta \leftarrow (\mathsf{pk'},\sigma_\mathsf{R},\pi), \text{ where} \\ & \underbrace{ \left((\mathsf{sk}_\mathsf{R},\mathsf{pk}_\mathsf{R}) \leftarrow \Sigma.\mathsf{KeyGen}(1^\kappa), \ \mathsf{pk'} \leftarrow \mathsf{pk}_\mathsf{R} \cdot \mathsf{pk}^{-1}, \ \sigma_\mathsf{R} \leftarrow \Sigma.\mathsf{Sign}(\mathsf{sk}_\mathsf{R},m) \right)}_{\pi} \\ & \pi \leftarrow \mathsf{\Pi}.\mathsf{Proof}(\mathsf{crs},(\mathsf{pk'},\mathsf{vpk}),(\bot,\mathsf{vsk})). \end{split}$$

Transition - Game $2 \to Game \ 3$: By the perfect adaption of signatures, this change is conceptual, i.e., $\Pr[S_2] = \Pr[S_3]$.

In Game 3, Desig' is identical to Sim. This means that SoD is simulated independently of b and $|\Pr[S_3] - \Pr[S_0]| \le \varepsilon_{\mathsf{wi}}(\kappa)$, which proves the lemma.

C Proof of Theorem 3

We show that Theorem 3 holds by proving the subsequent lemmas.

Lemma 9. If Π is complete and Σ is correct, Π_{sse} is complete.

The lemma above follows from inspection and the proof is therefore omitted.

Lemma 10. If Π is witness indistinguishable and admits proofs of knowledge, and Σ provides a secret-key to public-key homomorphism, then Π_{sse} is zero-knowledge.

Proof. We subsequently prove that zero-knowledge follows from witness indistinguishability.

Game 0: The zero-knowledge game, where we use the real $\mathsf{Proof}(\mathsf{crs},\cdot,\cdot)$ algorithm on witnesses (w,\bot) to reply to queries of the adversary.

Game 1: As Game 0, but we store csk upon Setup.

Transition Game $0 \to Game\ 1$: This change is conceptual, i.e., $Pr[S_0] = Pr[S_1]$.

Game 2: As Game 1, but use the following modified Proof algorithm Proof' which additionally takes csk as input:

$$\begin{split} & \operatorname{Proof}'(\mathsf{crs}, x, w, \overline{\mathsf{csk}}) : \operatorname{Run} \ (\mathsf{sk}, \mathsf{pk}) \ \leftarrow \ \Sigma. \mathsf{KeyGen}(1^\kappa), \ (\mathsf{sk}_\mathsf{ot}, \mathsf{pk}_\mathsf{ot}) \ \leftarrow \\ & \Sigma_\mathsf{ot}. \mathsf{KeyGen}(1^\kappa), \ \text{and} \ \operatorname{return} \ \pi \leftarrow (\pi_\mathsf{\Pi}, \mathsf{pk}, \sigma, \mathsf{pk}_\mathsf{ot}, \sigma_\mathsf{ot}), \ \text{where} \\ & \pi_\mathsf{\Pi} \leftarrow \mathsf{\Pi}. \mathsf{Proof}(\mathsf{crs}, (x, \mathsf{cpk}, \mathsf{pk}), \overline{(\bot, \mathsf{csk} - \mathsf{sk})}), \ \sigma \leftarrow \Sigma. \mathsf{Sign}(\mathsf{sk}, \mathsf{pk}_\mathsf{ot}), \ \text{and} \\ & \sigma_\mathsf{ot} \leftarrow \Sigma_\mathsf{ot}. \mathsf{Sign}(\mathsf{sk}_\mathsf{ot}, \pi_\mathsf{\Pi} ||x|| \mathsf{pk} ||\sigma). \end{split}$$

Transition - Game $1 \to Game \ 2$: We present a hybrid game which shows that both games are indistinguishable under the witness indistinguishability of the argument system. First, we conceptually change the Setup algorithm to Setup' which obtains crs_{Π} from a witness indistinguishability challenger:

$$\mathsf{Setup}(1^\kappa): \ \mathrm{Run} \ \overline{\mathsf{crs}_\Pi \leftarrow \mathcal{C}_\kappa^{\mathsf{wi}}}, \ (\mathsf{csk}, \mathsf{cpk}) \leftarrow \Sigma.\mathsf{KeyGen}(1^\kappa), \ \mathrm{return} \ \mathsf{crs} \leftarrow (\mathsf{crs}_\Pi, \mathsf{cpk}).$$

The change above is only conceptual. Furthermore, we use the following Proof" algorithm instead of Proof':

$$\begin{split} & \operatorname{\mathsf{Proof}}''(\mathsf{crs}, x, w, \boxed{\mathsf{csk}}) : \operatorname{Run} \ (\mathsf{sk}, \mathsf{pk}) \ \leftarrow \ \Sigma.\mathsf{KeyGen}(1^\kappa), \ (\mathsf{sk}_{\mathsf{ot}}, \mathsf{pk}_{\mathsf{ot}}) \ \leftarrow \\ & \Sigma_{\mathsf{ot}}.\mathsf{KeyGen}(1^\kappa), \ \operatorname{and} \ \operatorname{return} \ \pi \leftarrow (\pi_\Pi, \mathsf{pk}, \sigma, \mathsf{pk}_{\mathsf{ot}}, \sigma_{\mathsf{ot}}), \ \operatorname{where} \\ & \boxed{\pi_\Pi \leftarrow \mathcal{C}^{\mathsf{wi}}_\kappa((x, \mathsf{cpk}, \mathsf{pk}), (w, \bot), (\bot, \mathsf{csk} - \mathsf{sk}))}, \ \sigma \leftarrow \Sigma.\mathsf{Sign}(\mathsf{sk}, \mathsf{pk}_{\mathsf{ot}}), \ \operatorname{and} \\ & \sigma_{\mathsf{ot}} \leftarrow \Sigma_{\mathsf{ot}}.\mathsf{Sign}(\mathsf{sk}_{\mathsf{ot}}, \pi_\Pi ||x||\mathsf{pk}||\sigma). \end{split}$$

Now depending of whether the challenger uses the first witness (b=0) or the second witness (b=1) we either simulate Game 1 or Game 2. More precisely, Proof" produces the identical distribution as Proof if b=0 and the identical distribution to Proof' if b=1. That is $|\Pr[S_1] - \Pr[S_2]| \le \epsilon_{wi}(\kappa)$.

Game 3: As Game 2, but we further modify $\mathsf{Proof'}$ so that it no longer takes w as input:

Proof'(crs,
$$x$$
, csk): Run (sk, pk) $\leftarrow \Sigma$.KeyGen(1 $^{\kappa}$), (sk_{ot}, pk_{ot}) $\leftarrow \Sigma$ _{ot}.KeyGen(1 $^{\kappa}$), and return $\pi \leftarrow (\pi_{\Pi}, pk, \sigma, pk_{ot}, \sigma_{ot})$, where
$$\pi_{\Pi} \leftarrow \Pi$$
.Proof(crs, $(x, cpk, pk), (\bot, csk - sk)), \sigma \leftarrow \Sigma$.Sign(sk, pk_{ot}), and
$$\sigma_{ot} \leftarrow \Sigma_{ot}$$
.Sign(sk_{ot}, $\pi_{\Pi} ||x||pk||\sigma$).

Transition - Game $2 \to Game \ 3$: This change is conceptual, i.e., $\Pr[S_2] = \Pr[S_3]$. **Game 4:** As Game 3, but instead of obtaining crs using Setup, we obtain $(\operatorname{crs}, \tau) \leftarrow \mathsf{S}_1$ (observe that $\tau = \operatorname{csk}$, so we still know csk). Now the setup is already as in the second distribution of the zero-knowledge game.

Transition - Game $3 \to Game \ 4$: A crs output by S_1 is indistinguishable from an honest crs under the CRS indistinguishability provided by the proof of knowledge property (observe that S_1 internally uses E_1 to obtain crs). Thus, $|\Pr[S_3] - \Pr[S_4]| \le \varepsilon_{pok1}(\kappa)$.

Game 5: As Game 4, but we further modify Proof' as follows:

$$\begin{split} & \mathsf{Proof'}(\mathsf{crs}, \boxed{\tau}, x) : \boxed{\mathsf{Parse} \ \tau \ \mathsf{as} \ \mathsf{csk}}. \ \mathsf{Run} \ (\mathsf{sk}, \mathsf{pk}) \ \leftarrow \ \Sigma. \mathsf{KeyGen}(1^\kappa), \ (\mathsf{sk}_{\mathsf{ot}}, \mathsf{pk}_{\mathsf{ot}}) \leftarrow \Sigma_{\mathsf{ot}}. \mathsf{KeyGen}(1^\kappa), \ \mathsf{and} \ \mathsf{return} \ \pi \leftarrow (\pi_{\mathsf{\Pi}}, \mathsf{pk}, \sigma, \mathsf{pk}_{\mathsf{ot}}, \sigma_{\mathsf{ot}}), \ \mathsf{where} \\ & \pi_{\mathsf{\Pi}} \leftarrow \mathsf{\Pi}. \mathsf{Proof}(\mathsf{crs}, (x, \mathsf{cpk}, \mathsf{pk}), (\bot, \mathsf{csk} - \mathsf{sk})), \ \sigma \leftarrow \Sigma. \mathsf{Sign}(\mathsf{sk}, \mathsf{pk}_{\mathsf{ot}}), \ \mathsf{and} \\ & \sigma_{\mathsf{ot}} \leftarrow \Sigma_{\mathsf{ot}}. \mathsf{Sign}(\mathsf{sk}_{\mathsf{ot}}, \pi_{\mathsf{\Pi}} ||x|| \mathsf{pk} ||\sigma). \end{split}$$

Now Proof' is equivalent to S_2 .

Transition - Game $4 \to Game 5$: This change is conceptual, i.e., $Pr[S_4] = Pr[S_5]$.

In Game 0 we simulate the first distribution of the zero-knowledge game whereas in Game 5 we simulate the second distribution. We have that $|\Pr[S_0] - \Pr[S_5]| \le \varepsilon_{\mathsf{wi}}(\kappa) + \varepsilon_{\mathsf{pok}1}(\kappa)$ which concludes the proof.

Now, we have already established the existence of a simulator by proving zero-knowledge and can go on by proving simulation sound extractability.

Lemma 11. If Π is witness indistinguishable and admits proof of knowledge and Σ is EUF-CMA secure and adapts signatures, then Π_{sse} is simulation sound extractable.

Proof. We show that even when the adversary sees simulated proofs for arbitrary statements, we are still able to extract a witness w from a proof π^* for a statement x^* so that $R(x^*, w) = 1$ as long as (x^*, π^*) does not correspond to an query-answer pair of the simulation oracle. By Lemma 10, we know that (S_1, S_2) is a suitable zero-knowledge simulator. In addition, we observe that the output of S is identical to S_1 when restricted to (crs, τ) . This completes CRS indistinguishability part of the proof. To prove the second part of simulation sound extractability we proceed using a sequence of games where we let $q \leq poly(\kappa)$ be the number of queries to the simulator.

Game 0: The original simulation sound extractability game.

Game 1: As Game 0, but we engage with an EUF-CMA challenger within S. That is, we execute the following modified S algorithm S':

$$S'(1^{\kappa}): \ \mathrm{Run} \ (\mathsf{crs}_{\Pi}, \xi) \leftarrow \Pi.\mathsf{E}_1(1^{\kappa}), \ \mathsf{cpk} \leftarrow \mathcal{C}^\mathsf{f}_{\kappa}, \ \mathrm{and} \ \mathrm{return} \ (\mathsf{crs}, \tau, \xi), \ \mathrm{where}$$

$$\mathsf{crs} \leftarrow (\mathsf{crs}_{\Pi}, \mathsf{cpk}) \ \mathrm{and} \ \tau \leftarrow \bot.$$

This also requires us to modify the S_2 algorithm used for simulation to obtain S_2' . Essentially, we leverage the adaptability of signatures to shift signatures obtained from the signing oracle provided by the EUF-CMA challenger under cpk to signatures under a random key. The "shift-amount" is then a valid witness for the relation.

$$\begin{split} \mathbf{S}_{2}'(\mathsf{crs},x): & \text{ Obtain } \boxed{\mathsf{sk}' \xleftarrow{R} \mathbb{H}, \ \mathsf{pk} \leftarrow \mathsf{cpk} \cdot \mu(\mathsf{sk}')}. \text{ Further, run } (\mathsf{sk}_{\mathsf{ot}},\mathsf{pk}_{\mathsf{ot}}) \leftarrow \\ & \boldsymbol{\Sigma}_{\mathsf{ot}}.\mathsf{KeyGen}(1^{\kappa}), \text{ and return } \boldsymbol{\pi} \leftarrow (\boldsymbol{\pi}_{\mathsf{\Pi}},\mathsf{pk},\boldsymbol{\sigma},\mathsf{pk}_{\mathsf{ot}},\boldsymbol{\sigma}_{\mathsf{ot}}), \text{ where} \\ & \boldsymbol{\pi}_{\mathsf{\Pi}} \leftarrow \mathsf{\Pi}.\mathsf{Proof}(\mathsf{crs},(x,\mathsf{cpk},\mathsf{pk}),(\bot, \boxed{-\mathsf{sk}'})), \boxed{\boldsymbol{\sigma}' \leftarrow \mathcal{C}_{\kappa}^{\mathsf{f}}.\mathsf{Sign}(\mathsf{pk}_{\mathsf{ot}})}, \\ & \boxed{(\boldsymbol{\sigma},\bot) \leftarrow \boldsymbol{\Sigma}.\mathsf{Adapt}(\mathsf{cpk},\mathsf{pk}_{\mathsf{ot}},\boldsymbol{\sigma}',\mathsf{sk}')}, \text{ and} \\ & \boldsymbol{\sigma}_{\mathsf{ot}} \leftarrow \boldsymbol{\Sigma}_{\mathsf{ot}}.\mathsf{Sign}(\mathsf{sk}_{\mathsf{ot}},\boldsymbol{\pi}_{\mathsf{\Pi}}||\boldsymbol{x}||\mathsf{pk}||\boldsymbol{\sigma}). \end{split}$$

Transition - Game $0 \to Game 1$: Under adaptability of signatures, this change is only conceptual, i.e., $Pr[S_0] = Pr[S_1]$.

Game 2: As Game 1, but we further modify S'_2 as follows: we engage with a strong one-time signature challenger in each call and keep a mapping from challengers to keys.

$$\begin{split} \mathsf{S}_2'(\mathsf{crs},x): & \text{ Obtain } \mathsf{sk}' \xleftarrow{^{\mathcal{R}}} \mathbb{H}, \; \mathsf{pk} \leftarrow \mathsf{cpk} \cdot \mu(\mathsf{sk}'). \; \text{Further, obtain } \boxed{\mathsf{pk}_{\mathsf{ot}} \leftarrow \mathcal{C}_\kappa^{\mathsf{ot}}} \\ & \text{and return } \pi \leftarrow (\pi_\Pi, \mathsf{pk}, \sigma, \mathsf{pk}_{\mathsf{ot}}, \sigma_{\mathsf{ot}}), \; \text{where} \\ & \pi_\Pi \leftarrow \Pi. \mathsf{Proof}(\mathsf{crs}, (x, \mathsf{cpk}, \mathsf{pk}), (\bot, -\mathsf{sk}')), \; \sigma' \leftarrow \mathcal{C}_\kappa^{\mathsf{f}}. \mathsf{Sign}(\mathsf{pk}_{\mathsf{ot}}), \\ & (\sigma, \bot) \leftarrow \Sigma. \mathsf{Adapt}(\mathsf{cpk}, \mathsf{pk}_{\mathsf{ot}}, \sigma', \mathsf{sk}'), \; \text{and} \\ & \boxed{\sigma_{\mathsf{ot}} \leftarrow \mathcal{C}_\kappa^{\mathsf{ot}}. \mathsf{Sign}(\pi_\Pi ||x||\mathsf{pk}||\sigma)}. \end{split}$$

Transition - Game $1 \to Game \ 2$: This change is conceptual, i.e., $\Pr[S_1] = \Pr[S_2]$. Game 3: As Game 2, but we assume that E_2 used inside E does not fail to extract a valid witness with respect to L'.

Transition - Game $2 \to Game \ 3$: We bound the probability that the adversary outputs a tuple (x^*, π^*) in Game 3 so that E_2 fails. We refer to this event as F_1 . For the sake of contradiction assume that $\mathsf{Pr}[F_1]$ is non-negligible. Then we could obtain crs_Π from a proof of knowledge challenger and set $\xi \leftarrow \bot$ within S'_1 . Whenever the adversary outputs (x^*, π^*) we output it to the challenger. Now, the probability for our reduction to win the proof of knowledge game is exactly $\mathsf{Pr}[F_1]$. That is, we have that $|\mathsf{Pr}[S_2] - \mathsf{Pr}[S_3]| \le \varepsilon_{\mathsf{e}2}(\kappa)$.

Game 4: As Game 3, but we assume that for every tuple (x^*, π^*) output by the adversary, E never fails to output a witness w so that R(x, w) = 1.

Transition Game $3 \to Game\ 4$: We bound the probability that the adversary manages to come up with a tuple (x^\star, π^\star) , where $\pi^\star = (\pi_\Pi^\star, \mathsf{pk}^\star, \sigma^\star, \mathsf{pk}_{\mathsf{ot}}^\star, \sigma_{\mathsf{ot}}^\star)$, so that we extract $(\bot, \mathsf{sk}_e) \leftarrow \mathsf{E}_2(\mathsf{crs}, \xi, x^\star, \pi^\star)$ inside E. We refer to this event as F_2 . If F_2 happens, we obtain a signature $(\sigma_f, \mathsf{cpk}) \leftarrow \Sigma.\mathsf{Adapt}(\mathsf{pk}^\star, \mathsf{pk}_{\mathsf{ot}}^\star, \sigma^\star, \mathsf{sk}_e)$. By definition of the game we know that (x^\star, π^\star) is not a query-answer pair of the simulator. Thus, we have two cases: (1) A signature on $\mathsf{pk}_{\mathsf{ot}}^\star$ was never obtained from the EUF-CMA challenger and we can output $(\mathsf{pk}_{\mathsf{ot}}^\star, \sigma_f)$ as a valid EUF-CMA forgery. (2) A signature on $\mathsf{pk}_{\mathsf{ot}}^\star$ was previously obtained. Then we have by definition that either $\pi_\Pi^\star ||x^\star|| \mathsf{pk}^\star ||\sigma^\star$ or $\sigma_{\mathsf{ot}}^\star$ is different from the tuple signed by the strong one-time signature challenger upon simulation and we can output $(\pi_\Pi^\star ||x^\star|| \mathsf{pk}^\star ||\sigma^\star, \sigma_{\mathsf{ot}}^\star)$ as a forgery for the strong one-time signature scheme to the respective challenger. Taking the union bound yields $|\mathsf{Pr}[S_3] - \mathsf{Pr}[S_4]| \leq q \cdot \varepsilon_{\mathsf{ot}}(\kappa) + \varepsilon_{\mathsf{f}}(\kappa)$.

In Game 4, we always extract a witness w such that $R(x^*, w) = 1$, i.e., $\Pr[S_4] = 0$; Game 0 and Game 4 are computationally indistinguishable. Overall, we obtain $\Pr[S_0] \leq q \cdot \varepsilon_{\mathsf{ot}}(\kappa) + \varepsilon_{\mathsf{f}}(\kappa) + \varepsilon_{\mathsf{e}2}(\kappa)$, which completes the proof.

D Examples of Key-Homomorphic Signature Schemes

Subsequently we give some examples of signature schemes providing key-homomorphic properties. Therefore let BGGen be a bilinear group generator which on input of a security parameter 1^{κ} and a type parameter $t \in \{1, 2, 3\}$ outputs a bilinear group description BG. If t = 2, BG is defined as $(\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, p, e, g, \tilde{g}, \psi)$, where $\mathbb{G}_1 = \langle g \rangle$, $\mathbb{G}_2 = \langle \tilde{g} \rangle$, and \mathbb{G}_T are three groups of prime order p with $\kappa = \log_2 p$, e is a bilinear map $\mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$, and ψ is an isomorphism $\mathbb{G}_2 \to \mathbb{G}_1$. If t = 3 the isomorphism ψ is missing. If t = 1 we have that $\mathbb{G}_1 = \mathbb{G}_2$ denoted as \mathbb{G} .

D.1 BLS Signatures [BLS04]

In Scheme 5 we recall BLS signatures in a Type 3 setting (cf. [CHKM10] for a treatment of security of this BLS variant). We stress that the properties which

we discuss below are equally valid for the original BLS scheme in [BLS04] instantiated in a Type 2 setting.

Scheme 5: Type 3 BLS Signatures

Lemma 12. BLS signatures are perfectly adaptable according to Definition 16.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying the perfect adaptability notion.

$$\begin{array}{l} \mathsf{Adapt}(\mathsf{pk}, m, \sigma, \Delta) : \ \mathrm{Let} \ \Delta \in \mathbb{Z}_p \ \mathrm{and} \ \mathsf{pk} = (\mathsf{PP}, \tilde{g}^x). \ \mathrm{Return} \ (\mathsf{pk'}, \sigma'), \ \mathrm{where} \ \mathsf{pk'} \leftarrow (\mathsf{PP}, \tilde{g}^x \cdot \tilde{g}^\Delta) \ \mathrm{and} \ \sigma' \leftarrow \sigma \cdot H(m)^\Delta. \end{array}$$

It is immediate that adapted signatures are identical to fresh signatures under $pk' = (PP, \tilde{g}^{x+\Delta})$.

Lemma 13. BLS signatures are publicly key-homomorphic according to Definition 17.

Proof. We prove the lemma above by presenting a suitable Combine algorithm.

Combine
$$((\mathsf{pk}_i)_{i=1}^n, m, (\sigma_i)_{i=1}^n)$$
: Let $\mathsf{pk}_i = (\mathsf{PP}, \tilde{g}^{x_i})$. Run $\hat{\mathsf{pk}} \leftarrow (\mathsf{PP}, \prod_{i=1}^n \tilde{g}^{x_i})$, and $\hat{\sigma} \leftarrow \prod_{i=1}^n \sigma_i$ and return $\hat{\mathsf{pk}}$ and $\hat{\sigma}$.

D.2 Waters Signatures [Wat05]

Below we recall Waters signatures with shared hashing parameters in the Type-3 bilinear group setting as used in [BFG13] (a similar variant is presented in [CHKM10]). We note that for Waters' signatures without shared hash parameters [Wat05] it seems to be impossible to define an Adapt algorithm satisfying Definition 14.

Lemma 14. Waters signatures with shared hash parameters are perfectly adaptable according to Definition 16.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying the perfect adaptability notion.

Adapt(pk, m, σ, Δ): Let $\Delta \in \mathbb{Z}_p$ and compute $\Delta_1 \leftarrow g^{\Delta}$ and $\Delta_2 \leftarrow \tilde{g}^{\Delta}$. Otherwise let $\sigma = (\alpha, \beta, \gamma)$, and pk = (PP, \tilde{g}^x). Choose $r' \stackrel{R}{\leftarrow} \mathbb{Z}_p$, compute $\sigma' \leftarrow (\alpha \cdot \Delta_1 \cdot H(m)^{r'}, \beta \cdot \tilde{g}^{r'}, \gamma \cdot g^{r'})$ and pk' \leftarrow (PP, $\tilde{g}^x \cdot \Delta_2$).

```
\begin{array}{l} \mathsf{PGen}(1^\kappa): \ \mathrm{Run} \ \mathsf{BG} \leftarrow \mathsf{BGGen}(1^\kappa,3), \ \mathrm{choose} \ U = (u_0,\dots u_n) \xleftarrow{\mathcal{R}} \mathbb{G}_1^k, \ \mathrm{and} \ \mathrm{define} \ H: \\ \mathcal{M} \to \mathbb{G}_1 \ \mathrm{as} \ H(m) \coloneqq u_0 \cdot \prod_{i=1}^n u_i^{m_i}, \ \mathrm{where} \ \mathcal{M} = \{0,1\}^n. \ \mathrm{Set} \ \mathsf{PP} \leftarrow (\mathsf{BG},U,H). \\ \mathsf{KeyGen}(\mathsf{PP}): \ \mathsf{Choose} \ x \xleftarrow{\mathcal{R}} \mathbb{Z}_p, \ \mathrm{set} \ \mathsf{pk} \leftarrow (\mathsf{PP},\tilde{g}^x), \ \mathsf{sk} \leftarrow (\mathsf{pk},x), \ \mathrm{and} \ \mathrm{return} \ (\mathsf{sk},\mathsf{pk}). \\ \mathsf{Sign}(\mathsf{sk},m): \ \mathsf{Choose} \ r \xleftarrow{\mathcal{R}} \mathbb{Z}_p, \ \mathrm{set} \ \alpha \leftarrow g^x \cdot H(m)^r, \ \beta \leftarrow \tilde{g}^r, \gamma \leftarrow g^r \ \mathrm{and} \ \mathrm{return} \ (\alpha,\beta,\gamma). \\ \mathsf{Verify}(\mathsf{pk},m,\sigma): \ \mathsf{Verify} \ \mathrm{whether} \ e(\alpha,\tilde{g}) = e(g,\tilde{g}^x) \cdot e(H(m),\beta) \ \land \ e(\gamma,\tilde{g}) = e(g,\beta) \ \mathrm{and} \\ \ \mathrm{return} \ 1 \ \mathrm{if} \ \mathrm{it} \ \mathrm{holds} \ \mathrm{and} \ 0 \ \mathrm{otherwise}. \end{array}
```

Scheme 6: Waters Signatures with Shared Hash Parameters

Signatures output by Adapt are identically distributed as fresh signatures under randomness r + r' und key $pk = (PP, \tilde{g}^x \cdot \Delta_2)$, which proves the lemma.

When instantiating our argument system from Section 4.3 with Groth-Sahai proofs, it is beneficial to use $\mathsf{sk} \leftarrow (\mathsf{pk}, g^x, \tilde{g}^x)$ as secret key. The associated secret key space would then be all tuples $(\Delta_1, \Delta_2) \in \mathbb{H} \subset \mathbb{G}_1 \times \mathbb{G}_2$ where $e(\Delta_1, \tilde{g}) = e(g, \Delta_2)$ and also $\Delta \in \mathbb{H}$. This is favourable regarding the extractability properties of the Groth-Sahai proof system.

Lemma 15. Waters signatures are publicly key-homomorphic according to Definition 17.

Proof. We prove the lemma above by presenting a suitable Combine algorithm.

```
Combine((\mathsf{pk}_i)_{i=1}^n, m, (\sigma_i)_{i=1}^n): Let \sigma_i = (\alpha_i, \beta_i, \gamma_i) and \mathsf{pk}_i = (\mathsf{PP}, \tilde{g}^{x_i}). Run \hat{\mathsf{pk}} \leftarrow (\mathsf{PP}, \prod_{i=1}^n \tilde{g}^{x_i})) and \hat{\sigma} \leftarrow (\prod_{i=1}^n \alpha_i, \prod_{i=1}^n \beta_i, \prod_{i=1}^n \gamma_i) and return \hat{\mathsf{pk}} and \hat{\sigma}.
```

D.3 PS Signatures [PS16b]

In Scheme 7 we recall a recent signature scheme from [PS16b], which provides perfect adaption, but is not publicly key-homomorphic.

```
\begin{array}{l} \mathsf{PGen}(1^\kappa): \ \mathrm{Run} \ \mathsf{BG} \leftarrow \mathsf{BGGen}(1^\kappa,3) \ \mathrm{set} \ \mathsf{PP} \leftarrow \mathsf{BG}. \\ \mathsf{KeyGen}(\mathsf{PP}): \ \mathrm{Choose} \ x,y \xleftarrow{R} \mathbb{Z}_p, \ \mathrm{compute} \ \tilde{X} \leftarrow \tilde{g}^x, \ \tilde{Y} \leftarrow \tilde{g}^y \ \mathrm{and} \ \mathrm{set} \ \mathsf{pk} \leftarrow (\mathsf{PP},\tilde{X},\tilde{Y}), \\ \mathsf{sk} \leftarrow (\mathsf{pk},x,y), \ \mathrm{and} \ \mathrm{return} \ (\mathsf{sk},\mathsf{pk}). \\ \mathsf{Sign}(\mathsf{sk},m): \ \mathrm{Choose} \ h \xleftarrow{R} \mathbb{G}_1^* \ \mathrm{and} \ \mathrm{return} \ \sigma \leftarrow (h,h^{(x+y\cdot m)}). \\ \mathsf{Verify}(\mathsf{pk},m,\sigma): \ \mathrm{Parse} \ \sigma \ \mathrm{as} \ (\sigma_1,\sigma_2) \ \mathrm{and} \ \mathrm{check} \ \mathrm{whether} \ \sigma_1 \neq 1_{\mathbb{G}_1} \ \mathrm{and} \ e(\sigma_1,\tilde{X}\cdot\tilde{Y}^m) = \\ e(\sigma_2,\tilde{g}) \ \mathrm{holds}. \ \mathrm{If} \ \mathrm{both} \ \mathrm{checks} \ \mathrm{hold} \ \mathrm{return} \ 1 \ \mathrm{and} \ 0 \ \mathrm{otherwise}. \end{array}
```

Scheme 7: PS Signatures

Lemma 16. PS signatures are perfectly adaptable according to Definition 16.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying the perfect adaptability notion.

Adapt(pk, m, σ, Δ): Parse pk as (PP, \tilde{X}, \tilde{Y}), σ as (σ_1, σ_2) and Δ as $(\Delta_1, \Delta_2) \in \mathbb{Z}_p^2$ and choose $r \stackrel{R}{\leftarrow} \mathbb{Z}_p$. Compute pk' \leftarrow (PP, $\tilde{X} \cdot \tilde{g}^{\Delta_1}, \tilde{Y} \cdot \tilde{g}^{\Delta_2}$) and $\sigma' \leftarrow (\sigma_1^r, (\sigma_2 \cdot \sigma_1^{\Delta_1 + \Delta_2 m})^r)$ and return (pk', σ').

The key $\mathsf{pk}' = (\tilde{g}^{x+\Delta_1}, \tilde{g}^{y+\Delta_2})$ and $\sigma' = (h^r, (h^r)^{x+\Delta_1 + m(y+\Delta_2)})$ output by the Adapt algorithm is identically distributed to a fresh signature under randomness h^r and pk' .

It is easy to see, that PS signatures are, however, not publicly key-homomorphic as independently generated signatures are computed with respect to different bases h with unknown discrete logarithms. Consequently, there is no efficient means to obtain a succinct representation of $\hat{\sigma}$ that is suitable for Verify.

D.4 CL Signature Variant [CHP12]

While the original pairing-based CL signature scheme [CL04] does not satisfy any of the key-homomorphic properties discussed in this paper, we recall a CL signature variant from [CHP12] in Scheme 8 which does.

```
PGen(1<sup>\(\kappa\)</sup>): Run BG \(\lefta\) BGGen(1<sup>\(\kappa\)</sup>, 1), choose some polynomially bound set \(\Psi\) and hash functions \(H_1: \Psi \rightarrow \mathbb{G}, H_2: \Psi \rightarrow \mathbb{G}, H_3: \mathcal{M} \times \Psi \rightarrow \mathbb{Z}_p \) uniformly at random from suitable hash function families. Set PP \((\lefta\) (BG, \(H_1, H_2, H_3\)).

KeyGen(PP): Choose \(x \binom{R}{\times} \mathbb{Z}_p \) and set pk \((-(PP, g^x)), \) sk \((-(pk, x)), \) and return (sk, pk).

Sign(sk, \((m, \psi))\)): If it is the first call to Sign during time period \(\psi \in \Psi, \), then compute \(x \lefta H_3(m, \psi), a \lefta H_1(\psi), b \lefta H_2(\psi)\) and return \(\sigma \lefta a^x b^{xw}\). Otherwise abort.

Verify(pk, \((m, \psi), \sigma): Compute \(w \lefta H_3(m, \psi), a \lefta H_1(\psi), b \lefta H_2(\psi)\) and check whether \(e(\sigma, g) = e(a, X) \cdot e(b, X)^w\) holds. If so return 1 and 0 otherwise.
```

Scheme 8: CL Signature Variant

Lemma 17. Adapted CL signatures are perfectly adaptable according to Definition 16.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying the perfect adaptability notion.

Adapt(pk, (m, ψ) , σ , Δ): Parse pk as (PP, X) and compute $w \leftarrow H_3(m, \psi)$, $a \leftarrow H_1(\psi)$, $b \leftarrow H_2(\psi)$. Compute pk' \leftarrow (PP, $X \cdot g^{\Delta}$) and $\sigma' \leftarrow \sigma \cdot a^{\Delta} \cdot b^{\Delta \cdot w}$ and return (pk', σ').

It is easy to see that adapted signatures are identical to fresh signatures under $pk' = (PP, X \cdot g^{\Delta})$.

Lemma 18. Adapted CL signatures are publicly key-homomorphic according to Definition 17.

Proof. We prove the lemma above by presenting a suitable Combine algorithm.

Combine($(\mathsf{pk}_i)_{i=1}^n, m, (\sigma_i)_{i=1}^n$): Let $\mathsf{pk}_i = (\mathsf{PP}, g^{x_i})$. Run $\hat{\mathsf{pk}} \leftarrow (\mathsf{PP}, \prod_{i=1}^n g^{x_i})$ and $\hat{\sigma} \leftarrow (\prod_{i=1}^n \sigma_i)$ and return $\hat{\mathsf{pk}}$ and $\hat{\sigma}$.