
Proofs of Data Residency: Checking whether Your
Cloud Files Have Been Relocated

Hung Dang, Erick Purwanto, Ee-Chien Chang
School of Computing, National University of Singapore

{hungdang,erickp,changec}@comp.nus.edu.sg

Abstract—While cloud storage services offer manifold benefits
such as cost-effectiveness or elasticity, there also exists various
security and privacy concerns. Among such concerns, we pay
our primary attention to data residency – a notion that requires
outsourced data to be retrievable in its entirety from local drives
of a storage server in-question. We formulate such notion under
a security model called Proofs of Data Residency (PODR).
PODR can be employed to check whether the data is replicated
across different storage servers, or combined with storage server
geolocation to “locate” the data in the cloud. We make key
observations that the data residency checking protocol should
exclude all server-side computation and each challenge should
ask for no more than a single atomic fetching operation. We
illustrate challenges and subtleties in protocol design by showing
potential attacks to naive constructions. Next, we present a secure
PODR scheme structured as a timed challenge-response protocol.
Two implementation variants of the proposed solution, namely
N-RESCHECK and E-RESCHECK, describe an interesting use-
case of trusted computing, in particular the use of Intel SGX,
in cryptographic timed challenge-response protocols whereby
having the verifier co-locating with the prover offers security
enhancement. Finally, we conduct extensive experiments to ex-
hibit potential attacks to insecure constructions and validate the
performance as well as the security of our solution.

I. INTRODUCTION

The growth of information has made data-generation out-
pace storage availability [46]. This has given rise to cloud
data storage models, as offered by various well-known cloud
service providers [2], [6]. Cloud storage models have gained
significant popularity, and offer manifold benefits including
cost-effectiveness and elasticity. They also present data owners
with a simple view of the outsourced files, abstracting away
the underlying file-layout and/or storage mechanisms that they
employ to maintain the data. While the abstraction is appeal-
ing, the lack of understanding of the underlying mechanisms
adds to various security concerns on whether the service
providers are upholding the service level agreement contract
(SLA).

Various real-world incidents and application scenarios have
demonstrated that those security concerns are realistic. A
cloud crash disaster could permanently destroy the outsourced
data [4]. Such a threat prompts the needs of testing for fault
tolerance of the storage system, and checking whether the files
are backed-up across multiple geographically separate storage
servers [23]. In addition, various legislation and directives
regulating the possessing and storage of data across national
borders motivate paying attention to locations at which the
files are maintained [36], [3], [5]. In view of these concerns,

it is desired to have technical means that verify whether the
files are indeed maintained in accordance with the agreements.

Existing works have studied techniques that allow data
owners to obtain assurance on the locations of their cloud files.
In particular, Gondree et al. [28] attempt to bind the storage
to a geographical location, thus geolocating the data in the
cloud. Bowers et al. [23] present a timed challenge-response
protocol to check whether a file is distributed across multiple
storage units. Benson et al. [20] investigate the correlation of
network latency and geographical distance and employ a set
of friendly landmarks to verify that files are replicated across
multiple drives in a single datacenter. Nevertheless, due to the
noisy network environment, it is still technically challenging
to accurately and reliably geolocate the outsourced data.

In this paper, we take a different approach to address these
problems. Instead of attempting to verify the geographical
location of the data, we focus on a more modest goal of
verifying the residency of the outsourced data in a server.
We ask for a proof asserting the fact that an outsourced file
F is indeed maintained in its entirety on the local drives of
the server in-question. It is worth noting that the definition
of data residency provides more information on the data’s
maintenance than just the retrievability of the data, which
has been extensively studied under the notions of Proofs of
Retrievability (PoR) and Provable Data Possession (PDP) [32],
[17], [43], [42]. The data residency can be an integral com-
ponent in auditing other contractual assurances. For instance,
one can first employ existing host geolocating techniques [35],
[30], [24] to geographically locate a storage server, and then
attest the residency of the outsourced file on that server to
affirm geolocation of the data. It can also be utilised to assess
fault-tolerance degree of a storage system or to prove that the
file is replicated at different geographically separate servers,
by checking the residency of the file on each of the servers.

We formulate the notion of data residency under a security
model called Proof of Data Residency (PODR). Our model
takes into consideration behaviour of storage devices and
capabilities of dishonest storage providers (i.e. adversaries).
Since the providers control the servers and network under
their purview, they are able to derive a more accurate noise
estimation, which could provide the adversary an advantage
in evading data residency checking. In addition, the providers
could potentially exploit parallelism, data compression tech-
niques or hardware accelerations to influence the challenge-
response latencies, which are the main sources of information



to be relied on in residency checking. In view of these chal-
lenges, we introduce a notion of atomic fetching operation –
one which the prover must invoke in every challenge-response
interaction – and consider a powerful adversary who can
reduce all processing time for any challenge to the equivalent
of a single atomic fetching, and able to sample the noise before
making decisions.

We propose techniques to obtain proofs of data residency.
A data residency checking is structured as a timed challenge-
response protocol. Our solution adopts an authenticator-based
PoR [34], [32] as an underlying cryptographic primitive
to attest the file’s retrievability. In addition, it assesses the
response latencies incurred to establish the data residency.
We discuss two implementation variants. The first variant,
N-RESCHECK, allows a remote verifier to obtain proofs of
data residency over the network, while the second variant,
E-RESCHECK, necessitates a presence of an trusted unit on
the server in-question. With the recent initiatives on trusted
computing platform, most notably Intel SGX technology [8],
it is of great interest to investigate a timed challenge-response
protocol whereby having the verifier residing in an protected
enclave on the prover’s physical server enhances the security.

Our study suggests two general guidelines in the design
of an efficient and secure PODR protocol. First, it is nec-
essary to minimise or even eliminate the computation to be
carried out by the prover. Preferably, during the verification
process, the prover should only fetch and send data to the
verifier. Previous works [28], [20] also advocate no server-
side computation. Interestingly, their arguments are motivated
by practical concerns on usability (since the cloud storage’s
API may not be extensive enough to support the required
computation) and the needs to reduce server’s computation
load for cost-saving. In contrast, our observations are moti-
vated by the security requirements. This guideline explains
our choice of the authenticator-based PoR scheme as the
underlying cryptographic primitive. Second, it is crucial to
lower the response latencies incurred by an honest prover,
even with an increase in performance overhead. This suggests
fetching only a single data block of small size (e.g. as small
as 64 bytes) for each response, which entails the use of very
short authentication tags (say eight bits), in contrary to most
known PoR constructions that utilise long tags [32], [43], [42].
We note that long authentication tags are necessary to thwart
chosen-message attacks whereby the adversary has access to
the verification oracle. Our application settings, on the other
hands, limit the number of times the dishonest prover can
invoke the verification oracle and thus allow the use of short
authentication tags without compromising security.

We empirically show that for insecure constructions, the ad-
versary can evade detection by over-clocking the computation
or employing parallelism. Furthermore, we conduct extensive
experiments to evaluate our proposed solution. The experiment
results support the needs of small block size (around 64
bytes in all of our settings). Very low false acceptance rate
and storage overhead can be achieved with authentication
tags that are as small as eight bits. The experimental stud-

ies also demonstrate the level of improvement obtained by
incorporating trusted computing. In particular, for the same
performance requirements of 23% storage expansion (among
which 21.5% due to error-erasure code and another 1.5%
due to authentication tags) and audit size of 300 challenges,
E-RESCHECK achieves an order of magnitude lower false
acceptance rate (3.9 × 10−10 vs. 6.7 × 10−09) and several
orders of magnitude lower false rejection rate (2.6 × 10−22

vs. 7.3 × 10−08) in comparison with N-RESCHECK. This
illustrates an interesting use-case of trusted computing where
security can be enhanced by having the verifier of a crypto-
graphic protocol co-locating with the prover.

In summary, our paper makes the following contributions:
• We present a security definition of Proofs of Data Resi-

dency in a presence of a powerful adversary who is able
to reduce the time taken for processing any challenge
down to the equivalent of an atomic fetching operation,
and able to foresee all timing measurements.

• We discuss and empirically show potential attacks on
insecure PODR constructions.

• We propose a secure and efficient PODR protocol and
analyse its security. We describe two implementation
variants of the proposed protocol: N-RESCHECK and
E-RESCHECK, illustrating an interesting use-case of
trusted computing, in particular the use of Intel SGX,
in cryptographic timed challenge-response protocols.

• We conduct extensive experiments to evaluate our solu-
tion, and show that the proposed PODR protocol obtains
negligible false acceptance and false rejection rates with
reasonable storage overhead and audit size.

The rest of this paper is organized as follows. We pro-
vide background on pertinent notions of PoR, geolocation
and Intel SGX in Section II before stating our problem in
Section III. Next, we present our definition of Proofs of
Data Residency in Section IV. We discuss potential attacks
on insecure constructions in Section V and propose a secure
protocol in Section VI. Experimental evaluation is presented in
Section VII while related works are surveyed in Section VIII.
Finally, we conclude our work in Section IX.

II. PRELIMINARIES

In this section, we briefly provide background on the closely
related notions of PoR and summarize key characteristics of
Intel SGX technology.

A. Proofs of Retrievability

Initially proposed by Juels and Kaliski [32], PoR enables the
data owner to audit the storage server on the data preservation.
The main idea behind PoR is to encode the original data using
a redundant encoding (such as the error-erasure Reed-Solomon
code [39]), authenticate all the blocks of the encoded data
before sending them to the storage server. Due to the redundant
encoding, the storage provider has to discard or tamper with a
considerable portion of the blocks to cause data loss. However,
if a considerable portion of the blocks is lost, the verifier can
detect this incident with overwhelming probability.

2



A PoR scheme is executed in a challenge-response fashion.
The verifier V may issue a random challenge (which may
contain one or various queries) at any time, and to which the
prover P has to respond correctly to assert for its possession
and the retrievability of the file. The first construction by Juels
and Kaliski [32] has been followed by various variants [26],
[22], [44], [45] and is also extended to the dynamic set-
ting [43]. A similar notion known as Provable Data Possession
(PDP) is proposed by Ateniese et al. [17]. It is commonly
believed that PDP provides weaker security guarantees than
PoR in a sense that even if the prover passes the PDP audit,
there is still a non-negligible probability that the verifier cannot
fully recover the original outsourced file [43].

B. Host Geolocation

While the notion of data residency concerns over the fact
that the data is kept intact on local drives of a storage server, it
implicitly assumes that the geographic location of the storage
server is known to the verifier. Thus, also of interest are
techniques to geographically locate an online party. Since
machines/systems on the Internet can be uniquely identified
by an IP address, this problem asks for a mapping from an IP
address to a geographic location. It would have been trivial
if the IP address system was designed to incorporate geo-
graphic information, unfortunately, it was not the case. Several
proposals have been presented to address this problem [35],
[30], [24]. Common among them are observations that major
backbone Internet providers usually associate their host names
with geographical clues, and that data travelling across the
Internet are often routed via these backbone Internet providers’
nodes. Moreover, a route that a data packet travels through
can be identified using trace engines such as Traceroute
utility [14]. When matching the intermediary computer nodes
in the routing information of a packet against those of the
backbone Internet providers, a target host (the destination of
the packet in question) can be roughly located [24]. However,
this technique alone does not offer fine granularity. When the
packet is approaching its destination, it will be transferred
using smaller networks to which geographical clues are not
associated. At that granularity, the WHOIS servers [29] are
queried to infer more precise location of the host. Other
approaches rely on a premise that the latency in transmitting a
packet between a pair of hosts is a function of the geographical
distance among them, or a combination of partial IP-to-
location and BGP prefix information to derive the target host’s
location [35].

C. Intel SGX

Intel SGX [8] is a set of extensions that provision the
protected execution environments (aka trusted environments or
enclaves). The TCB of such enclaves comprises solely of the
processors and the code that the enclaves’ owner places inside
them, which is arguably minimal. Each enclave is associated
with a region on physical memory, which we shall call enclave
memory. All access to enclave memory are protected by
the processor. In another word, code and data loaded to the

enclaves cannot be disclosed or modified by the untrusted OS
or any other processes/software; any attempt to read or write
the enclave’s memory by a non-enclave code will be blocked.
On the other hand, enclave code may access enclave memory
as well as memory outside of the enclave region (if the OS
permits) [19]. Originally, memory pages can only be added
to the enclave during its creation; however since revision 2
of the SGX specification, enclave pages can be added via a
cooperation of the enclave and the (untrusted) OS [8] at any
time during its lifetime. We note enclave code has to be loaded
into the enclave during its creation.

Enclaves cannot directly execute OS-provided services such
as I/O. In order to access those services, enclaves have to
employ OCalls (calls executed by the enclave code to transfer
the control to non-enclave code) and ECalls (API for untrusted
applications to call in). These ECalls and OCalls constitute
the enclave boundary interface, enabling a communication
between the enclave code and the untrusted application to
service OS-provided functions. Care should be taken on each
and every ECall exposed to the untrusted application, as it
may open up an attack surface to the protected execution
environment.

SGX enables CPU-based attestation [15], enabling a remote
verifier to check if a specific software has been loaded
within the enclave by means of cryptography. Via the remote
attestation mechanism, the verifier can establish shared secrets
with the enclave, thus bootstrapping an end-to-end encrypted
channel via which sensitive data can be communicated.

III. THE PROBLEM

A. Overview

We consider a model comprising of two entities. The data
owner wishes to outsource a file F to a storage server and
insists that her data is maintained locally at the storage server.
A dishonest storage server has various economic incentives
to violate the agreement and may move some of the data
to another remote server. Hence, the data owner would like
to periodically verify that the file F can be retrieved in its
entirety from data maintained on the server’s local drives. We
refer to such verification as a data residency checking protocol.
In data residency checking, the data owner plays a role of a
verifier V , while the storage server plays a role of a prover
P . Hereafter, we shall refer to the data owner as verifier, and
storage provider as prover.

A data residency checking is structured as a timed
challenge-response protocol. In another word, it consists of
several challenge-response exchanges and for each response, V
also captures the response latency (i.e. round trip time between
the challenge and response). At the end of the protocol, V
relies on the validity of the responses, as well as their latencies,
to decide on accepting or rejecting the verification.

The retrievability of F can be checked using techniques
in PoR [32], [42], whereas the assurance of storage locality
relies on the response latency. Nevertheless, simply adopting a
secure PoR scheme together with latency assessment does not
necessarily provide the assurance on data residency, since a

3



dishonest server (i.e. adversary) could, through parallelism or
over-clocking the processor, distort the latency measurements.
Fortunately, the desired assurance is still possible, based on
a premise that P has to invoke some atomic operations to
prepare for each response, and such operations would take
longer time when the data are stored remotely. The goal of
our security model is to capture the above-mentioned factors.

B. Timing measurements

The response latency of a challenge is the round-trip-time
of the challenge and response (i.e., the elapsed time between
the moment the challenge is sent and the moment when the
corresponding response is received). The latency consists of
the following three portions:
• Challenge-response transmission time, which is incurred

by transmission of the challenge and response between V
and P . In the trusted computing setting where both V and
P reside in the same physical system, such transmission
time is short. In the setting where V and P are connected
in a networked environment, the time is significantly
larger and subjected to higher level of noise.

• Fetching time, which is incurred when P fetches the
required data from the storage. In cases where the prover
fetches the data from another remote server, the fetching
time include the transmission time between the prover
and the remote server, and the time incurred by the remote
server in loading the data from its storage device.

• Computation time, which is the total computation time
taken by P in producing the response from the data
fetched.

All these timings are probabilistic, and we call their distribu-
tions the environment profile E .

C. Threats Model: Adversary’s capability

We consider an adversary who is a dishonest prover, having
complete control over the storage, server and network within
its premises, and thus the adversary has the capability to
reduce the response latency in various fashions:

Computation time. We consider adversaries who can
speedup the computation time, for example via over-clocking
or parallelism. Since it is difficult to bound the speedup factor
which the adversaries can possibly achieve, we consider a
strong adversarial model where the computation time is not
included in the response latency for worst-case analysis. Note
that such assumption does not imply arbitrary computation
speedup by the dishonest prover, and we still require P to be
polynomial time.

Fetching time. When the data is stored on the prover’s local
drives, the fetching time is simply that of a read from the
local storage hardware. On the other hand, if the data to be
fetched is stored remotely, the fetching time comprises the
time taken to execute a read on the remote storage device,
and the time required to transmit the data from the remote
storage to the prover. A dishonest prover could apply various

techniques such as data compression or distributed file system
to reduce the storage loading, or the network transmission
time, which in-turn reduces the fetching time. To account for
this flexibility, we consider the fetching of a single byte as
atomic, and give the adversary the capability of reducing the
time taken to fetch any amount of data to the equivalent of
fetching a single byte.

Noise Measurement. Due to the noisy environment, all
the timing measurements are probabilistic. Nevertheless, a
dishonest prover may be able to get a good estimate of
the actual measurements. Such knowledge could help the
dishonest prover to increase the chance of evasion. For
example, let us consider an adversary who stores half of the
data blocks in local drives, and the others in remote storage.
If a challenge asks for a block stored in a remote storage,
he could either retrieve it from the remote storage or forge
the response. The knowledge of the actual response latency
incurred by fetching the block from remote storage and that
by reading it from local drives would benefit the adversary. In
particular, if the former is faster than the latter (perhaps due
to network congestion), the adversary will retrieve the correct
block from remote storage; otherwise, he may choose to forge
the block to meet the timing measurement constraint. In our
adversarial model, to acknowledge the adversary’s ability to
accurately estimate the timing measurements, we assume the
prover knows the actual measurements of all timings right in
the beginning of the verification session.

D. Threats Model: Adversary’s limitations

Limited access to verification oracle. We assume that the
data owner is less forgiving to dishonest provers who forge
the responses (instead of being late or admitting unable to
produce the responses). While the adversary may argue that
a response is not valid due to hardware failure, such event
is highly unlikely since most storage and networking system
has error detection/recovery mechanisms in-place. Hence, the
adversary has a very small number of chances (or even none)
for providing invalid responses. In other words, it has limited
access to a verification oracle.

As mentioned earlier, one of our key observations is the
enhancement brought by having very small block size, which
entails the use of short authentication tags (say eight bits
per tag). These short authentication tags are vulnerable to an
adversary who has multiple accesses to the verification oracle,
as discussed by Shacham et al. [42]. Since the adversary in
our model only has limited accesses to the verification oracle,
such attack vector is voided.

Atomic operation. A key assumption in our work is that of
an atomic operation. Such atomic operation would take longer
time when the data are stored remotely compared to when it
is stored on the storage server’s local drives. This assumption
in-turn is based on the premise that there are no technically
feasible and/or economically feasible mean for the dishonest

4



servers to reduce the time. In cases where the abovementioned
premise is not met, unfortunately, the assurance provided by
our schemes will not hold. Examples of those cases includes
a dishonest prover who claims to use rotational disks for local
drives, but employs flash storage (e.g., SSD) in a remote server
and connects to it via an out-of-band communication channel
such that the overall throughput outpaces that of the local
drives. Nevertheless, it is arguably reasonable to assume that
such out-of-band channel is not available and that the service
providers are economically rational (i.e., it could not afford
arbitrarily large and expensive resources in evading the data
residency checking) and will employ storage devices of the
same class (e.g., enterprise hard drives) on both local and
remote storage (if any).

IV. PROOFS OF DATA RESIDENCY

A. Setup and Audit Phases

A PODR scheme is to be carried out in two phases, Setup
and Audit:
• Setup: In the setup phase, V as a data owner generates a

secret key sk based on the security parameter λ. Next, V
encodes the file F into F̃ using the secret key sk. Finally,
V sends the encoded file F̃ to P , discards both F and F̃ ,
only keeps the secret key sk and some metadata needed
for conducting audit.

• Audit: In the audit phase, V conducts a data residency
checking by challenging P to prove that the original file
F can be reconstructed from data maintained in its local
drives. This phase comprises of two stages, challenge-
response and verification.

– Challenge-response: The verifier first obtains an
environment profile E based on which she could
assess the response latencies. The verifier V sends
v challenges to the prover, and P replies with the
corresponding responses. The challenges are sent
one-by-one. Upon receipt of a response or a special
symbol ⊥, the verifier V proceeds by carrying out
the following:
1) Generates and sends the next challenge to P . The

verifier can choose not to send any challenge.
2) Generates and sends a symbol ⊥ back to itself,

that will arrive at a time specified by V . The
verifier can choose not to send the symbol1.

Let 〈q1, . . . , qv〉 be the v challenges sent,
〈f1, . . . , fv〉 the corresponding responses, and
〈t1, . . . , tv〉 their latency. Let us call v the audit
size.

– Verification. Based on the challenges, the
corresponding responses and latencies 〈t1, . . . , tv〉,
together with the environment profile E , V decides
whether to accept P as passing the audit.

1The sending and receiving of the symbol ⊥ enable the verifier to send the
next challenge without waiting for response of previous challenge from the
prover, if need be.

Overall, the algorithms in a PODR scheme consists of:
(1) the key generation and file encoding algorithms used
during the setup, together with (2) the challenge generation
algorithms, (3) the verification algorithm used in the audit.
The scheme also implicitly requires an algorithm for the
prover to generate the responses.

B. Security and Adversarial Model

We now formalise the capabilities and constraints of
the adversary. First, let us define by T net, T loc and T rmt

three positive random variables, each follows a predefined
distribution. The random variable T net corresponds to the
challenge-response transmission time, T loc corresponds to
fetching time of an honest prover in producing the response,
and T rmt corresponds to the fetching time when the data is
loaded from a remote storage. The environment profile E
is a description of the distribution of T net, T loc and T rmt.
The prover also has access to, but cannot influence, the
environment profile E .

Storage preparation during setup. During the setup phase,
the prover applies transformation on the received encoded file
F̃ , obtaining 〈D, D̃〉. The portion D is to be kept in the local
drives, whereas D̃ is to be kept in the remote storage (D̃
could be empty). The prover initialises a cache C of finite size.

Response generation during audit. For each challenge qi,
the prover can choose to compute the response from one of
the three probabilistic algorithms R, R̃ or R̂. All of these
algorithms have access to the cache C, but differ from each
other in accessing to D and D̃: R only reads from the local
drives, R̃ reads from both local and remote storage, and R̂
does not read from any storage.

Given a challenge qi, the prover independently draws three
samples (tnet

i , tloc
i , trmt

i ) from the distributions T net, T loc, T rmt

respectively to obtain actual values of these three timings.
Next, the prover decides to take one of the following actions:

1) Send R(qi, D,C) as response and set

ti = tnet
i + tloc

i + δi;

2) Send R̃(qi, 〈D, D̃〉, C) as response and set

ti = tnet
i + trmt

i + δ̃i;

3) Send R̂(qi, C) as response and set

ti = tnet
i + δ̂i.

where δi, δ̃i and δ̂i are positive values chosen by the prover.
By the above definition, the prover can foresee all the timing
measurements and can influence the value of ti by adding
delays and choosing which algorithms he would use in
preparing the response. The cache C is updated after the
response is served.

5



Remarks. The above formulation implies a strong adversary
who (1) has the knowledge of the actual time taken to read
and transmit the data; (2) is able to produce the response
as fast as the atomic loading operation2; and (3) is able to
arbitrarily delay the response latency. As discussed in the
threat model, it is necessary to consider such strong adversary
since the dishonest prover would have full control of both the
local and remote servers.

C. Security definitions

Given the profile E , we say that a PODR scheme is (E ,
ψ)-secure if, for any prover who passes the verification with
probability at least ψ, there is a polynomial time algorithm to
reconstruct the original file F from D – a portion of data that
the prover stores locally (except with negligible probability of
failure). The randomness is taken over the random decisions
made by the probabilistic algorithms, and the sampling of the
timings.

For a PODR scheme and a profile E , we call the smallest
upper bound on ψ′ such that the scheme is (E , ψ′)-secure the
false acceptance rate (denoted by ψ). We call the probability
that the honest prover, who keeps entire F̃ in its local drives,
fails the verification the false rejection rate (denoted by γ).

V. POTENTIAL ATTACKS

In this section, we consider two data residency checking
protocols that incorporate latency measurements with well-
known PoR schemes [42], [32] in a straightforward manner,
and illustrate how a dishonest prover who has relocated
significant portion of the data to remote storages, to an extent
that the original file cannot be reconstructed from its local
drives, can evade detection.

We investigate an ability to evade detection of an adversary
A by comparing the two distributions: TP , the distribution of
response latencies incurred by an honest prover P , and TA -
that of the response latencies incurred by A. If the cumulative
distribution function (CDF) of TA stochastically dominates
TP , that is,

Pr(TA ≤ t) ≥ Pr(TP ≤ t) ∀t

then it is possible for A to add intentional delays so that these
two distributions are identical, successfully evading detection.

A. SW-PoR based data residency checking

Protocol. We first consider a data residency checking
constructed on top of the PoR scheme by Shacham and
Waters (SW-PoR) [42]. In this PoR scheme, each challenge
asks for v data blocks and their associated homomorphic
authentication tags. The response are aggregated from the
requested data blocks, resulting in a much smaller size. In a
SW-PoR based residency checking protocol, the verifier V
measures the response latencies, and accepts the prover as
passing the audit if the responses are valid (with respect to

2We stress that the prover’s algorithms are still polynomial time.

the SW-PoR scheme) and the response latencies are within
an expected threshold.

Dishonest Prover. We consider two adversaries who re-
locate the data to three remote storage servers and attempt
to reduce response latency by speeding up the computation
time required to generating the response. The first adversary –
denoted by AOC – over-clocks its processor in order to evade
the detection. AOC carries out the following steps in upon
receiving the challenge from the verifier:

1) The local server redirects the challenge to the three
remote servers.

2) The three remote servers concurrently load the data, and
send them to the local server.

3) The local server over-clocks its processor to aggregate
the data.

The second adversary – denoted by ADQ – parallelises the
aggregation in the following steps:

1) The local server redirects the challenge to the three
remote servers.

2) The three remote servers concurrently load the data,
aggregate them and send the intermediate results to the
local server.

3) The local server aggregates the received intermediate
results.

We conduct experimental studies to inspect the response
latencies of the honest prover in comparison with those of the
two adversaries. In these experiments, provers compute the
responses using a vCPU Intel Xeon Family running at base
clock speed of 2.5GHz, except for AOC who over-clocks its
processor, running at Turbo Boost speed of 3.3GHz [1].

Empirical results. We vary the block sizes (number of group
elements in each data block) as well as the number of data
block requested (i.e., audit size) in each challenge. We observe
that the response latencies of the three provers generally
follow normal distributions, each with different mean and
standard deviation. We depict these distributions in Figure 1
by showing their means and standard deviations. To give a
better intuition on the adversaries’ ability to evade latency
measurements, we show in Figure 2 CDFs of their response
latencies in experiments where audit size are 700 blocks, with
block size of 160 and 320 group elements. As can be seen
from the figure, the CDFs of ADQ’s latency measurements
stochastically dominate those of the honest prover. Hence,
ADQ can evade the detection by intentionally introducing
delays to the response time. Although the CDFs of AOC ’s
latency measurements do not stochastically dominate P’s, they
are similar and thus it requires challenge of significant size in
order to detect AOC’s violation of the SLA.

B. JK-PoR based residency checking

Protocol. One possible mitigation for the previous attack is
to adopt a PoR scheme in which the prover performs virtually
no computation in executing the residency checking, such as

6



300 500 700

0.6

0.8

1

Audit Size (v)

Ti
m

e
(s

ec
on

ds
)

P AOC ADQ

(a) Block size: 160

300 500 700

1

1.2

1.4

1.6

1.8

Audit Size (v)

Ti
m

e
(s

ec
on

ds
)

P AOC ADQ

(b) Block size: 320

Fig. 1: Response latencies incurred P , AOC and ADQ in SW-
PoR based residency checking. The error bars represent one
standard deviation.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Time (seconds)

C
D

F(
tim

e)

(a) Block size: 160

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Time (seconds)

C
D

F(
tim

e)

(b) Block size: 320

Fig. 2: CDF of the response latencies incurred by P , AOC and
ADQ in SW-PoR based residency checking.

the authenticator-based PoR [32], [34]. In this scheme, the
data owner pre-processes the file F using an error-erasure
code to create F̃ , partitions F̃ into m blocks, and appends a
MAC under secret key sk to each of them before outsourcing
them to the storage server. During the residency checking,
the verifier issues a single request that asks for v � m
randomly chosen data blocks (the value of v is determined
by the security setting of the scheme) and measures the
latency incurred by the storage provider in delivering all
those requested blocks.

Dishonest Prover. Although it is no longer possible to
speedup the response latency by over-clocking its processor or
employing parallelism, a dishonest storage provider can still
reduce the latency by distributing the fetching of the requested
blocks. With sufficient number of remote storage servers, the
reduction of fetching time can offset the additional latency
incurred by accessing the remote storage.

We empirically study the effectiveness of the dishonest
prover. In our experiments, the honest prover P follows the
protocol and keeps the user’s data in its own local drives,
while the dishonest prover A distributes the data blocks to
five different remote servers3, and pulls data blocks from
these servers in parallel to the local server upon requested.
Each data block is appended with a 160-bit MAC. The storage
servers are equipped with commodity storage hardware whose
read latency ranges from 12 to 15ms on average.

3Average round-trip time of transmitting a 64-byte packet between A and
these servers is 6.5m.

80 120 160

1.5

2

2.5

3

3.5

Audit Size (v)

Ti
m

e
(s

ec
on

ds
)

P A

(a) 512-byte block

80 120 160
1.5

2

2.5

3

3.5

4

Audit Size (v)

Ti
m

e
(s

ec
on

ds
)

P A

(b) 1024-bytes block

Fig. 3: Response latencies incurred by P and A in in JK-
PoR based residency checking. The error bars represent one
standard deviation.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Time (seconds)

C
D

F(
tim

e)
(a) 512-bytes block

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Time (seconds)

C
D

F(
tim

e)

(b) 1024-bytes block

Fig. 4: CDF of the response latencies incurred by P and A in
JK-PoR based residency checking.

Empirical results. We vary the number of blocks requested
in each audit from 80 to 160, as well as the block size (512
and 1024 bytes), and observe that the response latencies of
P and A generally follow normal distributions, each with
different mean and standard variation. We show the means and
standard deviations of these distributions in Figure 3. We also
depict in Figure 4 their CDFs for audits of size 160 blocks.
When the block size is 1024 bytes, although we do not have
stochastic dominances, the two CDFs are similar. With block
size of 512 bytes, the CDF of A’s s latency measurements
stochastically dominates that of P , implying it can always
evade the detection.

VI. PROPOSED CONSTRUCTION

In this section, we present our construction for PODR. Our
construction is built on top of the authenticator-based PoR
by Juels et al. [32], but with very short authentication tags.
We first give an overview of the setup and audit phases.
We propose two implementation variants for the residency
checking, a network-based implementation N-RESCHECK,
and a trusted computing-based implementation E-RESCHECK.
E-RESCHECK illustrates an interesting use-case of trusted
computing, where having the verifier of a cryptographic proto-
col co-locating with the prover enhances the security. Table I
summarises notations that are used throughout the rest of the
paper.

7



TABLE I: Summary and descriptions of the notations that are
used throughout the paper. Group I are parameters decided
in the setup phase. Group II are parameters and variables
involved in the audit phase. Group III are the security metrics
of our construction.

Notation Description
n number of blocks in the original file F
s0 F ’s block size
c expansion rate due to error-erasure code
m number of encoded blocks; m = (1 + c)× n
s authenticated block size; s = s0 + b
b bit length of authentication tags (MACs)

I

h total file expansion factor; h = (m× s)/(n× s0)
v audit size (i.e. number of challenge-responses)
d latency threshold
l late delivery threshold
qi ith challenge
fi ith response

II

ti measured latency of ith response
ψ false acceptance rateIII
γ false rejection rate

A. Setup
The original file F is divided into n blocks where the size

of each block is a parameter to be determined. The data owner
applies standard error-erasure code (such as the Reed-Solomon
code [39]) on F , generating F̃ . The encoded file F̃ consists
of m = (1+c)×n blocks (c > 0) such that knowledge of any
n blocks is sufficient to reconstruct F . We refer to the ratio
n/m as code rate. F̃ is identified by a particular file handle
and each block in F̃ is indexed by an unique integer i ∈ [1..m]
which is referred to as block ID. Every encoded data block in
F̃ is appended with a b-bit MAC of the block’s content and
ID under the secret key sk. After entrusting F̃ to the storage
provider, the data owner deletes all local copies, keeping only
the secret key sk and some metadata for verification.

B. Audit
To begin the residency checking, V first obtains an environ-

ment profile E (i.e. description of the distribution of T net, T loc

and T rmt) and decides on three parameters:
• v: The audit size, which is the number of blocks that she

would like to challenge P .
• d: The latency threshold, which is the threshold of a

response being declared late.
• l: The late delivery threshold, which is the number of late

responses (whose latency exceeds d) that V is willing to
tolerate.

In Section VII, we investigate how these parameters are to be
chosen.

Next, V executes the residency checking procedure detailed
in Algorithm 1. The algorithm utilises three functions. At the
start, INITIATEQUERY(v) chooses v block IDs at random4,

4This is not inconsistent with the description of the Audit phase in
Section IV. Since the block IDs are chosen at random and independent of
one another, choosing them all at once or at different times would not affect
the randomness. In addition, note that there is no sending and receiving of the
special symbol ⊥, in this residency checking procedure, the next challenge
can only be sent after response for the previous challenge is received.

each is a challenge asking the prover for the corresponding
data block. The challenge are then sent one-by-one. The
function REQUEST(qi) is an interaction between V and P
whereby V issues the challenge qi, and waits for the requested
block fi from the prover. If the prover provides an invalid
response (to be checked by the function ISVALID(sk, fi)), the
verifier determines that the response is forged and rejects the
audit. On the other hand, if all of the responses are valid,
the verifier will rely on the number of late responses (w.r.t
the latency threshold d) to make the decision. If such number
exceeds the late delivery threshold l, V rejects the audit.

Algorithm 1 Residency Checking

1: procedure RESIDENCYCHECKING(v, d, l)
2: Q← INITIATEQUERY(v)
3: late← 0; forged← false;
4: for each qi ∈ Q do
5: ti, fi ← REQUEST(qi);
6: if ISVALID(sk, fi) then
7: if ti > d then
8: late← late+ 1;
9: end if

10: else
11: forged← true;
12: end if
13: end for
14: if forged or (late > l) then
15: Reject;
16: else
17: Accept;
18: end if
19: end procedure

The parameters are chosen to meet the security and per-
formance requirements, in particular the false acceptance rate
(ψ), false rejection rate (γ) and total file expansion factor (h).
The three parameters b, c and s are to be decided during the
setup phase. The audit size v and the two thresholds d, l can
be determined during the audit phase, or predetermined so that
they are the same for all audit sessions. The parameters setting
also depends on the environment profile E . In practice, V can
obtain information on E using various mechanisms, depends
on the implementation details. We shall discuss two variants
in the following.

C. Network-based Implementation (N-RESCHECK)

The first implementation variant, N-RESCHECK, assumes
that the verifier V and the prover P communicate over the
network. In this variant, the environment profile E contains
information on network status. This information can be ob-
tained using various tools and techniques [7], [13], [31]. The
latency observed by V accounts for the data fetching time and
challenge-response transmission time.

Recall that guaranteeing the delivery of challenges and
responses is necessary, for P has to respond to every chal-
lenge. Our implementation employs the reliable TCP [38] for

8



transmission of challenges and responses, although it incurs
higher latency variance in comparison with other protocols
such as UDP [37], which suffers from packet loss. We note
that it is possible to design a residency checking protocol
which supports packet loss of known rate, to which UDP
can be adopted, so as to lower the latency variance. However,
as discussed previously, such variant introduces difficulties in
differentiating dishonest prover who relocates the data from
the one who discards some of the blocks.

The communication cost of N-RESCHECK is reasonable.
For a residency checking of size v on F̃ which consists
of m s-byte blocks, the overall communication cost is
(8s+ logm)× v bits. As we shall show later in Section VII,
an optimal choice of block size is 64 bytes and that of
challenge size v ranges from 250 to 400. With these
parameters, the overall communication cost for verifying the
residency of a 1GB file is only a few KBs.

Limitations. The assumption that N-RESCHECK makes on
the ability of V to obtain information regarding the network
status at audit time may not always be feasible. In addition, the
measured latency inevitably includes the transmission time of
the challenges and responses, adding noise to the measurement
and thus having a certain impact on the security of the
residency checking. To mitigate these limitations, we discuss
in the next section another implementation variant relying on
a presence of a trusted unit co-locating with the drives on
the storage server. Such trusted unit can be provisioned by
various implementation mechanisms, for example by utilizing
the recently released Intel SGX processors [12].

D. Trusted computing-based Implementation (E-RESCHECK)

The second implementation – E-RESCHECK – entrusts a
trusted unit on the prover’s storage server (i.e. the trusted
unit and the drives are both installed on the same server) to
carry out the residency checking. Such unit is responsible for
provisioning a protected execution environment (aka enclave).
Hereafter, we shall refer to this protected enclave as Verifying
Enclave (VE). The prover can neither tamper with VE opera-
tions, nor change the code and data loaded to it without being
detected by V . However, P can supply inputs for VE.

In E-RESCHECK, the environment profile E contains in-
formation on house keeping operations at the OS level on
P ′s server, which arguably can be accurately estimated. VE,
representing the verifier, conducts a residency checking as
specified in Algorithm 1. Unlike the previous variant, the
latency measured by VE accounts only for the fetching
time of the prover, excluding altogether the network time
required for transmission. Without the potentially noisy factor,
E-RESCHECK offers more reliable measurements, and thus is
more secure.

We treat the trusted unit as an abstraction so that it can be re-
alised by various mechanisms. Our implementation provisions
VE using Intel Skylake processors with SGX Enabled BIOS
support [12]. The code running inside VE – the verification
code – can be written by V , or by any other party but vetted

by V . In another word, the verifier can be assured of the
correctness of the verification code. Once VE is created, the
verification code is loaded into VE by an untrusted party (e.g.
P). While the untrusted party may load a wrong code into the
enclave, there exists an attestation mechanism [15] allowing V
to check if the correct code is loaded. Moreover, this attestation
mechanism also allows the verifier and VE to establish shared
secrets, which enable secure channel for their communication
(e.g. for the verifier to sends the secret key to VE or for VE
to send the residency checking result).

The Intel SGX specifications are well aligned with our
protocol and threat model. In specific, enclaves cannot directly
access OS-provided services (which are not trusted in the
thread models of SGX). They need to make OCall to an
interface routine to asks the untrusted application to handle
those services [9]. In our context, the fetching of the requested
block is performed by the prover, who is also untrusted. The
VE issues a query for a requested block by making an OCall
to the prover’s untrusted application, which then retrieves the
block and makes an ECall to pass it as input parameter to
VE. Since this ECall is invoked by the untrusted party, the
verification code needs to be written with care so that no
attack window is exposed. We refer readers to Intel SGX
programming reference for further details on coding guideline
for programming enclave code [10], [9].

The response latency is measured by VE as a duration
between an OCall and the corresponding ECall which passes
the requested block into VE. While getting a trusted source for
absolute time in SGX is challenging, there exists mechanisms
to measure relative time with respect to a reference point [47].
We note that absolute time is not necessary in our setting,
since what VE measures is an elapsed time between to
particular moments, to which relative time with respect to the
same stable reference point is sufficient.

Effect of block size on security. We highlight the effect of the
block size on the overall security. Rotational drives, in general,
are partitioned into sectors of 512 bytes5. These sectors are
physically aligned on the hardware device. When a data
block is written to disk, it may span across multiple sectors,
which are not necessarily physically contiguous. Reading such
data block may require multiple seeks, depending upon the
(relative) position of the sectors on the disk. This results in
substantial variance in atomic fetching time. On the other
hand, if the data block fits entirely in one physical sector, only
a single seek is required and thus the atomic fetching time is
less varied. To eliminate noise in timing measurements, it is
desired to have blocks of small size so that each data block
fits in a physical disk sector with high probability. We exhibit
the implication of the block size on security in greater details
in Section VII. Previous works on data geolocation [20], [28]

5Although hard drives with Advanced Format (AF) are divided into sectors
exceeding 512 bytes, we shall rely on the 512-byte sector format. The security
of our model is not affected when the storage devices use the advanced format.
However, if the protocols is designed with AF sector size, the security becomes
malleable on system equipped with legacy 512-byte sector-based HDDs.

9



did not take into consideration mechanisms and behaviours of
storage hardware with respect to the block size, resulting in
an oversight of the strong affect that the block size has on the
protocol’s security.

E. Security Analysis

The level of false acceptance/rejection rate of the
proposed protocol depends on various parameters, including
the environment profile E , the audit size v (number of
challenges), the bit length of the MACs b, the expansion
rate of the error-erasure code c, and the two thresholds d
and l. Also recall that during the setup phase, the original
data F of n blocks is encoded into F̃ of (1 + c)n blocks
such that knowledge of any n encoded blocks is sufficient to
reconstruct F .

False acceptance rate. Let us consider an adversary A who
keeps n− 1 blocks of F̃ on its local drives and the remaining
blocks in a remote storage. We denote the first portion by D,
and the other by D̃. Clearly, the original file F cannot be
reconstructed from D. We want to determine the acceptance
rate of this adversary, which in turn gives a bound on the false
acceptance rate.

Consider a challenge qi asking for a block fi, we say that
it is a hit if one of the following two conditions holds:

1) fi is in D̃ and the latency tnet
i + trmt

i > d;
2) fi is in D and the latency tnet

i + tloc
i > d,

where tnet
i is the transmission time of the qi and fi, tloc

i is the
fetching time of fi if it is stored locally, and trmt

i is its fetching
time if stored remotely.

For a challenge that is a hit, the adversary has two choices.
If the adversary chooses to load the response from the storage,
then the response will certainly arrive late and contribute one
count towards the number of late responses permitted by the
late delivery threshold l. On the other hand, if the adversary
chooses to forge the response, then the probability that the
response is valid is 2−b + µ(λ) where µ() is some negligible
function on the security parameter λ. Note that it is possible
that the transmission time tnet

i already exceeds the threshold
d, and thus the response will definitely be late even if the
adversary chooses to forge the response.

Let Hit be the number of hits among the v random
challenges. Given the set of hit challenges, the adversary A
chooses l of them where the responses are to be computed
from the storage, and the rests by forging. In choosing this
set of l hits challenges, the adversary will first select those
whose transmission time already exceeds l. For the remaining
Hit − l challenges, A forges the response. Note that such A
is optimal in the sense that all other choices lead to a lower
or equal probability of acceptance.

The probability that a challenge is hit can be derived from
the environment profile E , the latency threshold d and the
expansion rate c. Clearly Hit follows binomial distribution.
Furthermore, the probability that all x forged responses are

valid is 2−bx + µ(λ). Hence, the probability that A being
accepted is at most

Pr(Hit ≤ l) +
v−l∑
x=1

Pr(Hit = x+ l) · (2−bx + µ(λ))

The above is not an equality because we omit the cases where
more than l of challenges already have transmission time
exceeding d. Moreover, although the derivation is based on a
specific adversary A, it also serves as an upper bound of the
false acceptance rate. There is no lost of generality since, if
the original file F cannot be constructed from D, then there
is no more than n− 1 blocks in D.

The cache C (see Section IV-B) kept by the prover could
have some, but minor, effects on the false acceptance rate.
This is because the number of challenge collisions (i.e. two
challenges asking for the same block) is small, due to the
short audit session, and the fact that challenges are randomly
generated. Hence, in this security analysis, we ignore the
effect of the cache and only consider setting where the cache
size is 0.

False rejection rate. It is easy to derive the probability γ
whereby the honest prover, who keeps all the data locally, fails
to pass the verification. Let α be the probability the requested
block arrives later than the threshold d (i.e. tnet

i + tloc
i > d).

Hence, the false rejection rate is:

γ =

r∑
j=l+1

(
r

j

)
αj(1− α)r−j

False acceptance rate of PoR. For comparison, we consider
the false acceptance rate εDL of an adversary who keeps only
n− 1 blocks in local storage and discards the rest:

εDL ≤
(

2b + c

(1 + c)2b

)r

+ µ(λ)

Hence, if the integrity of the data is compromised, it will be
detected with an overwhelming probability 1− εDL.

VII. EVALUATIONS

In this section, we conduct experimental studies to evalu-
ate the performance and security of our residency checking
construction. In details, we investigate the effect of block size
s, the MAC length b, the audit size v and choice of the late
delivery threshold l on the false acceptance and false rejection
rates ψ and γ, respectively.

A. Setup

In our experiments, the honest prover P stores the data
as a whole in its local drives, while the dishonest prover
A relocates the data blocks by splitting large blocks whose
size are larger than 64 bytes into 64-byte segments and

10



10 15 20 25 300

50

100

150

Response Latency (ms)

P
A

(a) 1-byte blocks

10 15 20 25 300

50

100

150

Response Latency (ms)

P
A

(b) 8-byte blockss

10 15 20 25 300

50

100

150

Response Latency (ms)

P
A

(c) 16-byte blockss

10 15 20 25 300

50

100

150

Response Latency (ms)

P
A

(d) 32-byte blocks

10 15 20 25 300

50

100

150

Response Latency (ms)

P
A

(e) 64-byte blocks

10 15 20 25 300

50

100

150

Response Latency (ms)

P
A

(f) 128-byte blocks

10 15 20 25 300

50

100

150

Response Latency (ms)

P
A

(g) 256-byte blocks

10 15 20 25 300

50

100

150

Response Latency (ms)

P
A

(h) 512-byte blocks

10 15 20 25 300

50

100

150

Response Latency (ms)

P
A

(i) 1024-byte blocks

Fig. 5: Histograms of the response latencies incurred by honest
prover P and dishonest prover A in E-RESCHECK with
respect to different block sizes. P stores the blocks as-is in
its local drives, whereas A splits large blocks into 64-byte
segments and stores all the data at remote storages.

distributing them to remote storage servers6, and retrieves them
(simultaneously if possible) upon V’s requests.

All experiments are conducted on Ubuntu 14.04 commodity
systems equipped with quad-core Intel Skylake processors
with SGX Enabled BIOS support, 1TB hard drives with I/O
latency ranging from 12-15ms on average and 1GB Ether-
net cards. P and A are represented by different programs
running on the same physical system. In N-RESCHECK, the
provers and the verifier are located across countries7, while in
E-RESCHECK, the verification enclave VE resides on the same
physical system which hosts P and A. VE is provisioned using
Intel SGX SDK for Linux [11]. Unless stated otherwise, all
experiments are repeated for 100 times and the average results
are reported.

B. Effect of block size (s)

As discussed earlier, a large block may be scattered across
physical disk sectors, leading to higher and more varied
fetching time. Even worse, this potentially exposes an attack
vector whereby the adversary splits a large block into several
smaller segments so that it can retrieve them simultaneously
in an attempt of speeding up the fetching time. On the other
hand, unnecessarily small block size implies more blocks to be
handled, resulting in more involved housekeeping operations

6Average round-trip time of transmitting a 64-byte packet between A and
these servers is 6.5ms.

7Average round-trip time of transmitting a 64-byte packet between them is
12.7ms.

20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Response Latency (ms)

P
A

(a) 1-byte blocks

20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Response Latency (ms)

P
A

(b) 8-byte blocks

20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Response Latency (ms)

P
A

(c) 16-byte blocks

20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Response Latency (ms)

P
A

(d) 32-byte blocks

20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Response Latency (ms)

P
A

(e) 64-byte blocks

20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Response Latency (ms)

P
A

(f) 128-byte blocks

20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Response Latency (ms)

P
A

(g) 256-byte blocks

20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Response Latency (ms)

P
A

(h) 512-byte blocks

20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Response Latency (ms)

P
A

(i) 1024-byte blocks

Fig. 6: CDFs of response latencies incurred by P and A in
E-RESCHECK with respect to different block sizes.

and extra storage overhead incurred by the authentication tags.
In this first set of experiments, we would like to confirm
the effect of block size on security of our constructions, and
investigate the optimal block size for efficiency.

We vary the block size from one to 1024 bytes and measure
the response latencies incurred by an honest prover P and
an adversary A. We report the results in Figures 5, 6 for
E-RESCHECKand 7, 8 for N-RESCHECK.

Figure 5 shows histograms of 1000 response latencies
incurred by P and A in E-RESCHECK, with respect to
different block sizes. As can be seen, the block size has great
implication on fetching time. To be more specific, when the
block size ranges from one to 32 bytes, the fetching times of P
follow a normal distribution with mean 12.93ms and standard
variation of 0.73. As the block size increases, blocks are more
likely to span across physical sectors, increasing the variance
in fetching time. Figure 5f, 5g and 5h suggest that the fetching
times for blocks of sizes 128 to 512 bytes can be classified into
two groups, each follows a normal distribution with different
mean (12.93ms and 19.03ms where block size varies from 64
to 256 bytes, and 12.93ms and 21.52ms with 512-byte blocks).
This is even worse when the block size is increased to 1024-
bytes. The fetching times for 1024-byte blocks are divided
into three different groups (Figure 5i). Recall that the fetching
times are desired to be uniform, so as to have a reliable latency
assessment. Given such requirement, large blocks size (e.g.
larger than 64 bytes) are clearly not suitable for security in
our protocols.

The response latencies of A follow a normal distribution,
with mean 19.58ms and standard variation 2.71ms. For blocks
that are larger than 64 bytes, A splits them to 64 byte segments

11



20 25 30 35 40 450

50

100

150

Response Latency (ms)

P
A

(a) 1-byte blocks

20 25 30 35 40 450

50

100

150

Response Latency (ms)

P
A

(b) 8-byte blocks

20 25 30 35 40 450

50

100

150

Response Latency (ms)

P
A

(c) 16-byte blocks

20 25 30 35 40 450

50

100

150

Response Latency (ms)

P
A

(d) 32-byte blocks

20 25 30 35 40 450

50

100

150

Response Latency (ms)

P
A

(e) 64-byte blocks

20 25 30 35 40 450

50

100

150

Response Latency (ms)

P
A

(f) 128-byte blocks

20 25 30 35 40 450

50

100

150

Response Latency (ms)

P
A

(g) 256-byte blocks

20 25 30 35 40 450

50

100

150

Response Latency (ms)

P
A

(h) 512-byte blocks

20 25 30 35 40 450

50

100

150

Response Latency (ms)

P
A

(i) 1024-byte blocks

Fig. 7: Histograms of response latencies incurred by honest
prover P and dishonest prover A in N-RESCHECK with
respect to different block size. P stores the blocks as-is in its
local drives, while A splits large blocks into 64-byte segments
and stores all the data at remote storages.

and retrieves them in parallel in order to speed up the fetching
time. This explains why A’s fetching times for large blocks
are not divided into different groups as those of P . Comparing
across figures, one can see that as the block size increases,
differentiating latencies incurred by P and A becomes more
problematic, potentially resulting in higher false acceptance
and rejection rates. It even seems impossible when 1024-byte
blocks are used.

To get a better intuition on the effect of the block size on
the ability to distinguish P and A based on response latencies,
we show in Figure 6 CDFs of their response latencies in
E-RESCHECK, also with respect to different block sizes. As
the block size approaches 512 bytes, CDFs of P ′s response la-
tencies stop dominating those of A, suggesting complications
in distinguishing the latencies of the honest prover from those
of the adversary.

The effect of the block size on the response latency in
N-RESCHECK (depicted in Figure 7) is also noticeable, but
not as evident as in E-RESCHECK. This is because the
response latencies observed by V are the accumulation of
fetching time and challenge-response transmitting time. The
latter component is relatively similar for all the block sizes
considered in our experiments. The response latencies of P
follow normal distributions, with means ranging from 24.32ms
to 30.34ms and standard variation varying from 1.81ms to
2.52ms depending on the block sizes, while response latencies
of A follow normal distribution with mean approximately
31.22ms and standard variation oscillating around 3.18ms.

20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Response Latency (ms)

P
A

(a) 1-byte blocks

20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Response Latency (ms)

P
A

(b) 8-byte blocks

20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Response Latency (ms)

P
A

(c) 16-byte blocks

20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Response Latency (ms)

P
A

(d) 32-byte blocks

20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Response Latency (ms)

P
A

(e) 64-byte blocks

20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Response Latency (ms)

P
A

(f) 128-byte blocks

20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Response Latency (ms)

P
A

(g) 256-byte blocks

20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Response Latency (ms)

P
A

(h) 512-byte blocks

20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Response Latency (ms)

P
A

(i) 1024-byte blocks

Fig. 8: CDFs of response latencies incurred by P and A in
N-RESCHECK with respect to different block sizes.

1 2 4 8 16 32

10−8

10−7

b (bits)

Enclave
Network

(a) c = 10%

1 2 4 8 16 32
10−18

10−17

b (bits)

Enclave
Network

(b) c = 20%

1 2 4 8 16 32

10−36

10−35

10−34

b (bits)

Enclave
Network

(c) c = 40%

Fig. 9: Effect of MAC length on false acceptance rate. The
audit size is set to v = 300 challenges, and late delivery
threshold (l) set to eight.

Similar to the E-RESCHECK, it is harder to distinguish honest
and dishonest provers based on the response latencies as the
block size increases, and becomes impossible when the block
size reaches 512 bytes.

We demonstrate in Figure 8 CDFs of P and A’s response
latencies. Figures 8h and 8i especially show CDFs of the
adversary’s response latencies dominating those of the honest
prover, implying it has significant advantage in disguising its
response latencies and thus its behaviours as honest one. From
the results of this experiment set, it is apparent that the block
size has strong impact on the security of our protocols. A too
large block size would lead to failure in detecting adversarial
behaviours. We recommend the block size of 64 bytes for both
E-RESCHECK and N-RESCHECK, and use this block size in
all subsequent experiments.

C. Effect of MAC length (b)

In the second set of experiments, we examine the effect
of MAC length on the false acceptance rate ψ, with respect

12



2 4 8 16 32
10−55

10−40

10−25

10−10

l

ψ γ

(a) c = 10%

2 4 8 16 32
10−55

10−41

10−27

10−13

101

l

ψ γ

(b) c = 20%

2 4 8 16 32
10−55

10−41

10−27

10−13

101

l

ψ γ

(c) c = 40%

Fig. 10: Effect of the late delivery threshold l on the security
in E-RESCHECK. MAC length is set to eight bits, and audit
size is v = 300 challenges.

2 4 8 16 32
10−23

10−17

10−11

10−5

101

l

ψ γ

(a) c = 10%

2 4 8 16 32
10−23

10−17

10−11

10−5

101

l

ψ γ

(b) c = 20%

2 4 8 16 3210−44

10−33

10−22

10−11

100

l

ψ γ

(c) c = 40%

Fig. 11: Effect of the late delivery threshold l on the security
in N-RESCHECK. MAC length is set to eight bits, and audit
size is v = 300 challenges.

to different values of c ranging from 10% to 40%. The late
delivery threshold is set to five, and the audit size is v = 300
challenges.

Figure 9 shows the experiment results. ψ drops exponen-
tially – by at least an order of magnitude – when b increases
from one to four bits. To be more specific, ψ reduces from
10−7 to 10−8 when c = 10% in N-RESCHECK or 3.8×10−35
to 1.4×10−36 in E-RESCHECK when c = 40%. The reduction
becomes less evident as b approaches eight bits. Further
increasing b does not result in better false acceptance rate.
With eight bits MAC and the block size is set at 64 bytes as
suggested in the previous set of experiments, the expansion
rate due to authentications tags is as small as 1.5%.

In addition, when comparing across figures, it is evident
that larger error-erasure code’s expansion rate leads to lower
false acceptance rate and hence better security. It is also worth
noting that the false acceptance rates of E-RESCHECK are
consistently smaller than those of N-RESCHECK, suggesting
E-RESCHECK offers better security guarantee.

We also note that the use of short authentication tags (e.g.
eight bits MAC) does not compromise the ability to detect an
adversary who incurs data loss (i.e. keeping less than n data
blocks). For example, with parameter setting of c = 40%, v =
300 and eight bits MAC, the probability that such adversary
escapes the detection is less than 2−142.

D. Effect of late delivery threshold (l)

In the third set of experiments, we fix the MAC length at
eight bits, the audit size at v = 300 challenges, and investigate
the effect of late delivery threshold l on false acceptance rate
ψ and the false rejection rate γ.

200 250 300 350 400
10−11

10−9

10−7

10−5

10−3

v

ψ γ

(a) c = 10%

200 250 300 350 400
10−23

10−19

10−15

10−11

10−7

v

ψ γ

(b) c = 20%

200 250 300 350 400
10−50

10−39

10−28

10−17

10−6

v

ψ γ

(c) c = 40%

Fig. 12: Effect of audit size v on the security in E-RESCHECK.
MAC length is set to eight bits, and late delivery threshold is
set to eight.

200 250 300 350 400
10−10

10−8

10−6

10−4

10−2

v

ψ γ

(a) c = 10%

200 250 300 350 400
10−23

10−17

10−11

10−5

v

ψ γ

(b) c = 20%

200 250 300 350 40010−50

10−37

10−24

10−11

102

v

ψ γ

(c) c = 40%

Fig. 13: Effect of audit size v on the security in N-RESCHECK.
MAC length is set to eight bits, and late delivery threshold is
set to eight.

Figure 10 shows the results for E-RESCHECK, while Fig-
ure 11 for N-RESCHECK. As l increases from two to 32,
the false rejection rate γ drops exponentially – by upto 22
orders of magnitude for N-RESCHECK and almost 50 orders
of magnitude for E-RESCHECK. This suggests it is possible
to make the scheme more tolerable to environment noise.

However, increasing l leads to the growth of the false
acceptance rate ψ. For both implementations, ψ grows by eight
to 16 orders of magnitude when l increases from two to 16,
depending on the code rate of the error-erasure code in use.
For both implementations, when c = 10% and l is set to 32,
ψ raises upto 0.7.

As observed in our experiments, we suggest l be set to
eight, attaining γ as small as 5 × 10−10, while still keeping
ψ smaller than 10−6 even for c = 10%. We note that for
the same parameter settings, ψ drops exponentially when c
increases. For examples, in E-RESCHECK, ψ reduces by upto
30 orders of magnitude when c increases from 10% to 40%.

E. Effect of audit size (v)

In the last set of experiments, we study the effect of
audit size v on the overall security. We fix the MAC length
at eight bits, late delivery threshold is eight and examine
how v effects ψ and γ. The results are reported in Fig-
ure 12 (for E-RESCHECK) and 13 (for N-RESCHECK). For
E-RESCHECK, ψ reduces by eight to 26 orders of magnitude
when v varies from 200 to 400. Likewise, the reduction in
N-RESCHECK is similar. This suggests that we can make the
false acceptance rate ψ arbitrarily small by increasing the audit
size (i.e. issuing more challenges). Though expanding the audit
size leads to larger communication costs in N-RESCHECK,
the actual increase is only in KBs, which is reasonable. Note

13



that E-RESCHECK does not require transferring the challenges
and responses over the network, thus incurring no network
communication overhead.

Nevertheless, we observe that as v expands from 200 to 400
challenges, γ increases from 1.3×10−11 to 6.1×10−9 (almost
450×) in E-RESCHECK and from 4.6 × 10−4 to 3.7 × 10−2

(by 80×) in N-RESCHECK. While the increment of γ in
E-RESCHECK is much larger than that in N-RESCHECK, the
former witnesses the false rejection rate of only 6.1 × 10−9,
several order of magnitude smaller than the corresponding
value of the latter. The reason for such increases is because
larger audit size leads to greater exposure to the environment
noise; and the noise introduced by network transmission is
much greater than that of the house keeping operations at OS
level in the E-RESCHECK.

It is evident across all experiments that E-RESCHECK is
superior to N-RESCHECK. It offers better false acceptance and
rejection rates, incurs no network communication overhead,
and is less exposed to the environment noise.

VIII. RELATED WORKS

Proofs of Retrievability. Proofs of retrievability were first
proposed by Juels and Kaliski [32], and have been followed
by various works [42], [26], [43], [22], [44], [45]. While
these works address similar problems – auditing a remote
and untrusted storage server on data preservation – they differ
in their security models. A closely related technique is PDP,
initially discussed by Ateniese et al. [17]. While PDP assures
that most (but not necessarily all) of the data are stored, PoR
offers a stronger guarantee which enables a feature called
extraction, allowing the data owner to retrieve her file in
its entirety. Related to these two notions are memory check-
ing [21] by Blum et al. and sublinear authenticators by Naor
and Rothblum [34]. Later on, the notions of PoR and PDP
are also extended to dynamic settings [43], [27]. While there
are various efficient constructions in the literature [32], [42],
none of them has taken the location of data into consideration.
Our notion of PODR attains a proof that the original file F is
retrievable in its entirety from data stored locally at the storage
provider’s server.

Timed Challenge-Response Protocols. Timed challenge-
response protocols have been studied in various application
scenarios. Bowers et al. [23] present a remote assessment of
fault tolerance based on measuring the time taken by a server
to respond to a read request for a collection of file blocks.
In such an assessment, it is assumed that network latency can
be accurately estimated and deemed as a constant. Our model
makes a more reasonable assumption that the network latency
is probabilistic, only its distribution can be determined.

Benson et al. [20] and Gondree et al. [28] discuss tech-
niques to bind the storage to a geographical location, and
discuss various feasibility issues. Gondree et al.[28] propose
a framework that employs a set of known landmarks to
verify the storage geolocation. Benson et al. investigate the
correlation of network latency and geographical distance, and
suggest the use of such technique in verifying whether data are

indeed replicated in geographically separated datacenters. Our
construction, on the other hand, focuses on verifying whether
the original data can indeed be reconstructed from local drives
of the server-in-question. Another difference is that while those
proposals advocate minimising server-side computation due to
practical concerns on usability and for cost-saving, we discuss
such requirement from security perspective. Further, we stress
the impact of block size on the security of the protocol, which
has not been studied in previous works.

Locality of Storage. Incentives for storing data locally have
also been discussed by recent new cryptocurrencies propos-
als [33], [41]. Essentially, these proposals require miners to
construct a proof of retrievability during the mining, which in
turn is designed to encourage miners to store data locally as
opposed to outsourcing them to a remote storage. While these
works share with ours a concern on storage location, they only
incentivise local preservation of the data but do not enforce
such requirement. PODR, on the other hand, imposes local
preservation of the data and offers an auditing mechanism to
detect provers who do not follow the stipulation.

Protected Execution Environment. Various works have re-
lied on trusted computing to provision the protected execution
environment for secure services, such as query processing [18],
[16], MapReduce computation [25] and data analytic [40].
By making a realistic assumption on the presence of the
trusted environment, these works are able to offer security
with efficiency and at scale. Besides the trusted execution
environment, our construction employs a co-location of verifier
and the prover, which is made feasible by trusted computing
primitives, to enhance security.

IX. CONCLUSION

We have defined the security definition of Proofs of Data
Residency. PODR enables the data owner to obtain a proof
that the file F is retrievable in its entirety from local drives of
a storage server in-question. PODR can be an integral compo-
nent in auditing contractual assurances. In particular, it can be
combined with host geolocating to affirm geolocation of the
data, or utilised to access fault tolerance of a storage system,
by checking the residency of the files at different separate
storage servers. We show potential attacks on insecure con-
structions and propose a secure PODR scheme. The two imple-
mentations of the proposed construction, N-RESCHECK and
E-RESCHECK, illustrate an interesting use-case of trusted
computing, where having the verifier of a cryptographic pro-
tocol co-locating with the prover enhances the security.

The focus of this paper has been on static settings where
the data owner does not frequently update F . It would be an
interesting future work to extend our construction to support
dynamic data updates.

REFERENCES

[1] “Amazon EC2 instances,” https://aws.amazon.com/ec2/instance-types/.
[2] “Amazon S3,” https://aws.amazon.com/s3/.
[3] “Australian privacy act,” http://www.austlii.edu.au/au/legis/cth/consol

act/pa1988108/.

14



[4] “Business Insider. Amazon′s cloud crash disaster permanently
destroyed many customers data,” http://www.businessinsider.com/
amazon-lost-data-2011-4?IR=T&r=US&IR=T.

[5] “Data protection directive,” http://eur-lex.europa.eu/legal-content/EN/
TXT/?uri=URISERV%3Al14012.

[6] “Google Drive,” https://www.google.com/drive/.
[7] “hping,” http://www.hping.org/.
[8] “Intel SGX,” https://software.intel.com/en-us/sgx.
[9] “Intel SGX Enclave Writer’s Guide,” https://

software.intel.com/sites/default/files/managed/ae/48/
Software-Guard-Extensions-Enclave-Writers-Guide.pdf.

[10] “Intel SGX programming reference,” https://software.intel.com/sites/
default/files/managed/48/88/329298-002.pdf.

[11] “Intel SGX SDK for Linux,” https://github.com/01org/linux-sgx.
[12] “Intel Skylake processor,” http://ark.intel.com/products/codename/

37572/Skylake.
[13] “PsPing,” https://technet.microsoft.com/en-us/sysinternals/psping.aspx.
[14] “Traceroute,” http://linux.die.net/man/8/traceroute.
[15] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology

for cpu based attestation and sealing,” in HASP, 2013.
[16] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann, R. Rama-

murthy, and R. Venkatesan, “Orthogonal security with cipherbase,” in
CIDR, 2013.

[17] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, “Provable data possession at untrusted stores,” in CCS,
2007.

[18] S. Bajaj and R. Sion, “Trusteddb: A trusted hardware-based database
with privacy and data confidentiality,” in TKDE, 2014.

[19] A. Baumann, M. Peinado, and G. Hunt, “Shielding Applications from
an Untrusted Cloud with Haven,” in OSDI, 2014.

[20] K. Benson, R. Dowsley, and H. Shacham, “Do you know where your
cloud files are?” in CCSW, 2011.

[21] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor, “Checking
the correctness of memories,” Algorithmica, 1994.

[22] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of retrievability: Theory
and implementation,” in CCSW, 2009.

[23] K. D. Bowers, M. Van Dijk, A. Juels, A. Oprea, and R. L. Rivest, “How
to tell if your cloud files are vulnerable to drive crashes,” in CCS, 2011.

[24] G. Connolly, A. Sachenko, and G. Markowsky, “Distributed traceroute
approach to geographically locating ip devices,” in IDAACS, 2003.

[25] T. T. A. Dinh, P. Saxena, E.-C. Chang, B. C. Ooi, and C. Zhang, “M2R:
Enabling stronger privacy in mapreduce computation,” in USENIX
Security, 2015.

[26] Y. Dodis, S. Vadhan, and D. Wichs, “Proofs of retrievability via hardness
amplification,” in Theory of cryptography, 2009.

[27] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” in CCS, 2009.

[28] M. Gondree and Z. N. Peterson, “Geolocation of data in the cloud,” in
CODASPY, 2013.

[29] K. Harrenstien, M. K. Stahl, and E. J. Feinler, “NICNAME/WHOIS,”
RFC-954, 1985.

[30] C. Houri, “Method and systems for locating geographical locations of
online users,” 2003, uS Patent 6,665,715.

[31] H. Jiang and C. Dovrolis, “Passive estimation of TCP round-trip times,”
ACM SIGCOMM, 2002.

[32] A. Juels and B. S. Kaliski Jr, “PORs: Proofs of retrievability for large
files,” in CCS, 2007.

[33] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz, “Permacoin: Repur-
posing bitcoin work for data preservation,” in IEEE S&P, 2014.

[34] M. Naor and G. N. Rothblum, “The complexity of online memory
checking,” in FOCS, 2005.

[35] V. N. Padmanabhan and L. Subramanian, “An investigation of geo-
graphic mapping techniques for internet hosts,” in SIGCOMM, 2001.

[36] Z. N. Peterson, M. Gondree, and R. Beverly, “A position paper on
data sovereignty: The importance of geolocating data in the cloud.” in
HotCloud, 2011.

[37] J. Postel, “User datagram protocol,” 1980.
[38] ——, “Transmission control protocol,” 1981.
[39] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”

J. SIAM, 1960.
[40] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-

Ruiz, and M. Russinovich, “VC3: Trustworthy data analytics in the
cloud,” in IEEE S&P, 2015.

[41] B. Sengupta, S. Bag, S. Ruj, and K. Sakurai, “Retricoin: Bitcoin based
on compact proofs of retrievability,” in ICDCN, 2016.

[42] H. Shacham and B. Waters, “Compact proofs of retrievability,” Journal
of cryptology, 2013.

[43] E. Shi, E. Stefanov, and C. Papamanthou, “Practical dynamic proofs of
retrievability,” in CCS, 2013.

[44] E. Stefanov, M. van Dijk, A. Juels, and A. Oprea, “Iris: A scalable cloud
file system with efficient integrity checks,” in ACSAC, 2012.

[45] J. Xu and E.-C. Chang, “Towards efficient proofs of retrievability,” in
ASIACCS, 2012.

[46] I. N. Yezhkova, “Worldwide and U.S. enterprise storage systems forecast
update, 2015-2019. White Paper,” 2015.

[47] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town Crier:
An authenticated data feed for smart contracts,” in CCS, 2016.

15


