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Abstract

In this paper, algorithms for multivariate public key cryptography
and digital signature are described. Plain messages and encrypted mes-
sages are arrays, consisting of elements from a fixed finite ring or field.
The encryption and decryption algorithms are based on multivariate
mappings. The security of the private key depends on the difficulty of
solving a system of parametric simultaneous multivariate equations in-
volving polynomial or exponential mappings. The method is a general
purpose utility for most data encryption, digital certificate or digital
signature applications.

1 Introduction

1.1 Preliminary Discussion

The role of cryptographic algorithms is to provide information security
[9, 28, 42, 44, 45, 46]. In general, proper data encryption and authenti-
cation mechanisms with access control are the preferred means for a trusted
secure system [44, 45]. The most popular public key cryptosystems are the
RSA [41], NTRU Encrypt algorithm [21, 22, 23, 24], elliptic curve cryptog-
raphy (ECC) [27, 37, 43, 48], the algorithms based on diophantine equations
and discrete logarithms [33, 15], and those based on multivariate quadratic
polynomials [6, 29]. The RSA, the NTRU and the ECC are assumed to be
secure algorithms unless there are new breakthroughs in integer factoring
(for RSA), or in lattice reduction (for NTRU), or in elliptic curve discrete
logarithm techniques (for ECC) [11, 19].
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In this paper, algorithms for public key cryptography as well as digital
signature based on multivariate mappings are described, with plain and
encrypted message arrays consisting of elements from a fixed commutative
and finite ring or field. The keys can be built up starting from independently
chosen small degree polynomial or easy exponential mappings, resulting in
fast key generation and facilitating easy changes of keys as often as required.
The security depends on the difficulty of solving parametric simultaneous
multivariate equations involving polynomial or exponential mappings [8, 10,
16, 17, 35, 36, 12, 14] in the case of straightforward attacks, and on the
difficulty of finding the private keys in the case of key recovery attacks.

1.2 Notation

In the sequel, let Z be the set of integers, and let N be the set of positive
integers. For a positive integer n ≥ 2, let Z

n
be the ring of integers with

addition and multiplication mod n, and Z
∗
n
be the commutative group of in-

vertible elements in Z
n
, with respect to multiplication operation in Z

n
. Let

F be a finite field, consisting of pn elements for some positive integer n and
prime number p, and let F∗ be the multiplicative group of nonzero elements
in F. Let G be a finite cyclic group of order n ≥ 2. Let E be either F or Z

n

or G. If E = G, where G is equipped with only the group operation, then G

is isomorphic to Z
n
, where the group operation in G is identified with the

addition operation of Z
n
. The addition operation of Z is a primary opera-

tion, and the multiplication operation, that can be treated as a secondary
operation [34] over the additive group Z, is defined uniquely such that the
distribution laws hold true, with 1 as the multiplicative identity, rendering
Z as the commutative ring, and the same holds for Z

n
. Let E[x1 , . . . , xm

],
for m ∈ N, be the algebra of multivariate polynomials in m formal variables
x1 , . . . , xm with coefficients in E. Now, if G = F

∗, for a finite field F, then the
group operation in G coincides with the multiplication operation in F and
G[x1 , . . . , xm

] = F[x1 , . . . , xm
]. If m = 1, then E[x1 , . . . , xm

] is denoted by
E[x], with x = x1 . A variable with its name expressed in bold face assumes
values from a product space, which is a product of finitely many copies of
the same set, and each component of the variable, expressed in the corre-
sponding case without boldness and a positive integer subscript, assumes
values from the constituent component space, succinctly as, for example,
x = (x1 , . . . , xm) ∈ Em, for some m ∈ N.

1.3 Polynomials over Z
n

Let n =
∏r

i=1 p
l
i
i , where r and l

i
are positive integers, and p

i
are distinct

prime numbers, for 1 ≤ i ≤ r. Let q
i
= p

−l
i

i n =
∏r

j = 1
j 6= i

p
l
j
j , and let m

i
∈ N

be such that m
i
q
i
≡ 1 mod p

l
i
i , for 1 ≤ i ≤ r. Then, Z

n
= ⊕r

i=1mi
q
i
Z

p

l
i
i

.
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Now, a polynomial f(x) ∈ Z
n
[x] can be expressed as

∑r
i=1mi

q
i
f
i
(x),

for some unique polynomials f
i
(x) ∈ Z

p

l
i
i

[x], for 1 ≤ i ≤ r. For some

x ∈ Z and index i, where 1 ≤ i ≤ r, if p
i
| f(x), then gcd

(
f(x) mod p

l
i
i , p

i

)

= gcd
(
f
i
(x) , p

i

)
= p

i
6= 1. Thus, gcd(f(x), n) = 1, for every x ∈ Z

n
, if

and only if gcd(f
i
(x), p

i
) = 1, for every x ∈ Z

p

l
i
i

, for every index i, where

1 ≤ i ≤ r. Similarly, f is a surjective (hence bijective) mapping from Z
n

onto Z
n
, if and only if f

i
is a surjective (hence bijective) mapping from Z

p

l
i
i

onto Z
p

l
i
i

, or equivalently, f
i
(x) mod p

i
is a bijective mapping from Z

p
i
into

itself and, when l
i
≥ 2, f ′

i
(x) 6≡ 0 mod p

i
, for all x ∈ Z

p

l
i
i

, where f ′
i
is the

formal algebraic derivative of f
i
, for every index i, where 1 ≤ i ≤ r [31].

Now, if g(x) ∈ Z
n
[x], where g(x) =

∑r
i=1 mi

q
i
g
i
(x), for some g

i
(x) ∈ Z

p

l
i
i

[x],

for 1 ≤ i ≤ r, then f(x)g(x) =
∑r

i=1mi
q
i
f
i
(x)g

i
(x). Thus, (A) f(x) is a

unit in Z
n
[x], if and only if f

i
(x) is a unit, i.e., f

i
(x) mod p

i
∈ Z

∗
p
i
, for

every index i, where 1 ≤ i ≤ r, (B) f(x) is reducible in Z
n
[x], if and only

if f
i
(x) is reducible in Z

p

l
i
i

[x], for some index i, where 1 ≤ i ≤ r, and (C)

f(x) is irreducible in Z
n
[x], if and only if f

i
(x) is irreducible in Z

p

l
i
i

[x], or

equivalently, f
i
(x) mod p

i
is irreducible in Z

p
i
[x], for every index i, where

1 ≤ i ≤ r. Thus, for any positive integer k, Z
n
[x1 , . . . , xk

] can be expressed
as ⊕r

i=1mi
q
i
Z

p

l
i
i

[x1 , . . . , xk
].

1.4 Modular Exponentiation over Z
n

The modular exponentiation operation is extensively studied in connection
with the RSA cryptosystem [9, 28, 41, 42, 44, 45, 46]. In this section, the
modular exponentiation is extended to the situation, wherein the exponents
are functions. The security of the RSA system depends on the difficulty of
factorization of a positive integer into its prime factors. However, simplifica-
tion of computations as well as porting of variables from base level to expo-
nentiation level by a homomorphism requires availability of prime factors in
advance for both encryption and decryption, while working with multivariate
mappings involving functions as exponents. In the sequel, let ϕ be the Euler

phi function [9, 28, 42, 46]. Let n =
∏r

i=1 p
l
i
i , where r ∈ N, l

i
∈ N\{1} and

p
i
are distinct prime numbers, for 1 ≤ i ≤ r. Let EXP(Z

n
; [x1 , . . . , xm

])
be the smallest set of expressions, closed with respect to addition and mul-
tiplication, and containing expressions of the form a(x1 , . . . , xm)

b(x1 , ..., xm ),
where a(x1 , . . . , xm) ∈ Z

n
[x1 , . . . , xm

], and either

1. as a formal expression, b(x1 , . . . , xm) does not depend on (x1 , . . . , xm)
and evaluates to any fixed positive integer, or
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2. a(x1 , . . . , xm) evaluates to elements in Z
∗
n
, for all values of (x1 , . . . , xm)

in some domain of interest, which is a subset of Zm
n
, and b(x1 , . . . , xm)

is of the form c(h(x1), . . . , h(xm)), for some expression c(z1 , . . . , zm) ∈
EXP(Z

ϕ(n)
; [z1 , . . . , zm ]) and ring homomorphism h from Z

n
into Z

ϕ(n)
.

The condition in (1) above implies that Z
n
[x1 , . . . , xm

] ⊆ EXP
(
Z

n
; [x1 , . . . , xm

]
)
.

Thus, the integers in Z and those in Z
n
, for various modulus positive inte-

gers n ≥ 2, need to be distinguished clearly as separate elements. The
expressions in EXP(Z

n
; [x1 , . . . , xm

]) are turned into mappings, by iden-
tifying appropriate domains of values and interpretation for variables and
operations in the respective domains [12, 14, 34, 35]. For x ∈ Z

m
n

and
s ∈ N\{1}, such that s | n, let x mod s =

(
x1 mod s, . . . , xm mod s

)
. Let

f(x) ∈ Z
n
[x1 , . . . , xm

] be such that f(x) evaluates to elements in Z
∗
n
, for x ∈

X, for some X ⊆ Z
m
n
, and let f

i
(x) ∈ Z

p

l
i
i

[x1 , . . . , xm
], for 1 ≤ i ≤ r, be such

that f(x) =
∑r

i=1mi
q
i
f
i
(x mod p

l
i
i ). Now, for x ∈ X and k ∈ Z, the follow-

ing holds: (f(x))k = (f(x))k mod ϕ(n) =
∑r

i=1 mi
q
i
(f

i
(x mod p

l
i
i )

)k mod ϕ(n)

=
∑r

i=1mi
q
i
(f

i
(x mod p

l
i
i )

)k mod ϕ(p
l
i
i ). Let g(y) ∈ Z

ϕ(Z
n
)
[y1 , . . . , yn

] and

g
i
(z) ∈ Z

ϕ(p
l
i
i

)

[z1 , . . . , zn ] be such that the following holds: g
i
(y mod ϕ(p

l
i
i )

)
=

g(y) mod ϕ
(
p
l
i
i

)
, for 1 ≤ i ≤ r. Thus, f g(y)(x) =

∑r
i=1mi

q
i
f g(y)
i

(x) =
∑r

i=1mi
q
i
f
g
i
(y mod ϕ(p

l
i
i
))

i (x mod p
l
i
i ), for independent vectors x ∈ X and

y ∈ Z
n
ϕ(n)

. Now, ϕ(p
l
i
i ) = (p

i
− 1)p

l
i
−1

i , where l
i
≥ 2, for 1 ≤ i ≤ r. Let

w
i
= (p

i
− 1)−1 mod p

l
i
−1

i , and let h
i
: Z

p

l
i
i

→ Z
ϕ(p

l
i
i

)

be the map defined by

h
i
(x) = (p

i
− 1)(w

i
x mod p

l
i
−1

i ), for 1 ≤ i ≤ r. Then, h
i
is a ring homomor-

phism, for 1 ≤ i ≤ r. Now, let h(
∑r

i=1 mi
q
i
z
i
) = (h1(z1), . . . , hr(zr )), for

z
i
∈ Z

p

l
i
i

and 1 ≤ i ≤ r. Then, the map h is a ring homomorphism from the

ring ⊕r
i=1mi

q
i
Z

p

l
i
i

into the ring of direct product
∏r

i=1 Z
ϕ(p

l
i
i

)

. If the base

level and exponentiation level interpretation maps are I
base

and Iexponent,

respectively, then Iexponent can be chosen to be h ◦ I
base

, applied from right
to left in the written order, preserving the respective ring operations in the
base level and exponentiation level subexpressions. If l

i
= 1, for some in-

dex i, where 1 ≤ i ≤ r, then exponentiation along ith component can be
carried by interpreting Z

p
i
to be a finite field, and porting values of base

level expressions to exponentiation level expressions by discrete logarithm
mapping, as discussed in section 1.5.

1.5 Modular Exponentiation over F

Let F be a finite field containing pn elements and n = pn − 1, for some
prime number p and positive integer n. Let EXP(F ; [x1 , . . . , xm

]) be the
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smallest set of expressions, closed with respect to addition and multiplica-
tion, and containing expressions of the form a(x1 , . . . , xm)

b(x1 , ..., xm ), where
a(x1 , . . . , xm) ∈ F[x1 , . . . , xm

], and either

1. as a formal expression, b(x1 , . . . , xm) does not depend on (x1 , . . . , xm)
and evaluates to any fixed positive integer, or

2. a(x1 , . . . , xm) evaluates to elements in F
∗, for all values of (x1 , . . . , xm)

in some domain of interest, which is a subset of Gm, where G = F
∗,

and b(x1 , . . . , xm) is of the form c(h(x1), . . . , h(xm)), for some expres-
sion c(z1 , . . . , zm) ∈ EXP(Z

n
; [z1 , . . . , zm ]) and group isomorphism

h from G into Z
n
.

The condition in (1) above implies that F[x1 , . . . , xm
] ⊆ EXP

(
F ; [x1 , . . . , xm

]
)
.

For a primitive element a ∈ F
∗, let log

a
: F∗ → Z

n
be the discrete logarithm

function defined by log
a
(g) = x, exactly when ax = g, for g ∈ F

∗ and x ∈ Z
n
.

Thus, the group homomorphism h can be taken to be log
a
. If the base

level and exponentiation level interpretation maps are I
base

and I
exponent

,

respectively, then I
exponent

can be chosen to be log
a
◦ I

base
, applied from

right to left in the written order. For porting a subexpression involving
addition operation in F, such as, for example, f(x) ∈ F[x1 , . . . , xm

], where
f(x) 6= 0, for x ∈ Gm, where G = F

∗, occurring in a base level expression
to an exponentiation level, the base level subexpression is replaced by a
supplementary variable z, which is ported to first exponentiation level by the
discrete logarithm mapping. In the subsequent levels of exponentiation, the
interpretation is performed by applying ring homomorphisms, as discussed
in section 1.4.

2 Main Results

2.1 Parametric Injective Mappings

Let E be either F or Z
n
. Let G ⊆ E be the domain of interpretation for the

variables occurring in the mappings. For l ∈ {0} ∪ N and m ∈ N. a para-
metric multivariate injective mapping η(z1 , . . . , zl ; (x1 , . . . , xm)) from Gm

into Em is a multivariate injective mapping, which is an expression from ei-
ther E[x1 , . . . , xm

, z1 , . . . , zl ] or EXP(E ; [x1 , . . . , xm
, z1 , . . . , zl ]) with in-

terpretation conventions as discussed in sections 1.4-1.5, as appropriate,
for (x1 , . . . , xm) ∈ Gm and (z1 , . . . , zl) ∈ Z ⊆ El, and its parametric in-
verse η−1(z1 , . . . , zl ; (y1 , . . . , ym)) is such that, for every fixed (z1 , . . . , zl) ∈
Z, the following holds: if η(z1 , . . . , zl ; (x1 , . . . , xm)) = (y1 , . . . , ym), then
(x1 , . . . , xm) = η−1(z1 , . . . , zl ; (y1 , . . . , ym)), for every (x1 , . . . , xm) ∈ Gm

and (y1 , . . . , ym) ∈ Em. For example, let n be the set cardinality of G =
F
∗, a ∈ F

∗ be a fixed primitive element, which is made known in the
public key, and η(z1 , . . . , zl ; x) = f(z1 , . . . , zl)x

g(log
a
(z1 ), ..., loga (zl)), where

6



f(z
1
, . . . , z

l
) ∈ EXP

(
F ; [z

1
, . . . , z

l
]
)
and g(t

1
, . . . , t

l
) ∈ EXP

(
Z

n
; [t

1
, . . . , t

l
]
)

are such that f(z
1
, . . . , z

l
) 6= 0, for z

1
, . . . , z

l
∈ F

∗, and gcd
(
g(t

1
, . . . , t

l
), n) = 1,

for t
1
, . . . , t

l
∈ Z

n
. Then, η

(
z
1
, . . . , z

l
; x

)
is a parametric bijective mapping

from F
∗ into F

∗, with z1 , . . . , zl ∈ F
∗ as parameters, and η−1

(
z1 , . . . , zl

; x
)

= [ [f(z
1
, . . . , z

l
)]−1x ][ [g(log

a
(z1), ..., loga

(z
l
))]−1 mod n ].

2.1.1 Parametrization Methods

Let, for some positive integers k, l and m, g
i
(z1 , . . . , zl), 1 ≤ i ≤ k, be

a partition of unity of El, i.e.,
∑k

i=1 gi
(z1 , . . . , zl) = 1 and g

i
(z1 , . . . , zl) ·

g
j
(z1 , . . . , zl) = 0, i 6= j, 1 ≤ i, j ≤ k, for every (z1 , . . . , zl) ∈ El. Let

ζ
i
(z1 , . . . , zl ; x), 1 ≤ i ≤ k, x = (x1 , . . . , xm), be parametric multivari-

ate injective mappings from Gm into Em, that may or may not depend
on the parameters z1 , . . . , zl . Let φ

i
(z1 , . . . , zl) and χ

i
(z1 , . . . , zl) be ex-

pressions such that φ
i
(z1 , . . . , zl) evaluates to invertible elements in E, for

all (z1 , . . . , zl) ∈ El, 1 ≤ i ≤ k. Then, the expression η(z
1
, . . . , z

l
; x) =

∑k
i=1 gi

(z
1
, . . . , z

l
)·φ

i
(z

1
, . . . , z

l
)·[ζ

i
(z

1
, . . . , z

l
; x)+χ

i
(z

1
, . . . , z

l
)] is a paramet-

ric multivariate injective mapping, with its parametric inverse η−1(z
1
, . . . , z

l
; x)

=
∑k

i=1 gi
(z

1
, . . . , z

l
) · ζ−1

i
(z

1
, . . . , z

l
; y

i
) , where y

i, j
= [φ

i
(z

1
, . . . , z

l
)]−1 · x

j
−

χ
i
(z

1
, . . . , z

l
), 1 ≤ j ≤ m, x = (x

1
, . . . , x

m
), and y

i
= (y

i, 1
, . . . , y

i,m
),

1 ≤ i ≤ k. For public key cryptography hashing keys, it is possible to con-
struct parametric multivariate injective mappings in section 3.1 with any ex-
pressions φ

i
(z1 , . . . , zl) that evaluate to only invertible elements, 1 ≤ i ≤ k,

having only a small number of terms. For digital signature hashing keys
in section 3.1, however, the multivariate expressions φ

i
(z1 , . . . , zl) 6= 0,

1 ≤ i ≤ k, must be such that both φ
i
(z1 , . . . , zl) and its multiplicative in-

verse [φ
i
(z1 , . . . , zl)]

−1 are expressible with only a small number of terms
each.

2.1.2 Partition of Unity of F

Let f(z) ∈ EXP(F ; [z]), which is called a discriminating function, and let
K

f
be the codomain of f , i.e., K

f
= {f(x) : x ∈ F} = {a

i
: 1 ≤ i ≤ k}, for

some positive integer k. Let ℓ
i
(x) =

[
∏k

j = 1
j 6= i

(
a

i
−a

j

)
]−1

·
∏k

j = 1
j 6= i

(
f(x)−a

j

)
,

1 ≤ i ≤ k. Then, ℓ
i
(x) = 1, for x ∈ E

i
= {z ∈ F : f(z) − a

i
= 0}, and

ℓ
i
(x) = 0, for x ∈ F\E

i
, 1 ≤ i ≤ k. Thus, {E

i
: 1 ≤ i ≤ k} is a partition

of F, and ℓ
i
(x) is the characteristic function of the equivalence class E

i
,

1 ≤ i ≤ k. Now, the set {g
i
(z1 , . . . , zl) = ℓ

i
(h(z1 , . . . , zl)) : 1 ≤ i ≤ k},

where h(z1 , . . . , zl) ∈ EXP(F ; [z1 , . . . , zl ]), is a partition of unity of Fl.

Examples. (A) Let the vector space dimension of F be n as an extension field

of Z
p
, and let f(z) =

∑n
i=1 ai

zp
i−1

, where a
i
∈ F, 1 ≤ i ≤ n, be a noninvertible

linear operator from F into F, with Z
p
as the field. For every linear operator T

from F into F with Z
p
as the field, there exist scalars c

i
∈ F, 1 ≤ i ≤ n, such that

7



Tz =
∑n

i=1 ciz
p
i−1

[32]. Now, each equivalence class is an affine vector subspace
of the form {y + x : f(x) = 0, x ∈ F}, for some y ∈ F. Thus, if r is the rank
of f as linear operator from F into F with Z

p
as the field, then the nullity of f is

n− r, each equivalence class has pn−r elements, and there are k = pr equivalence
classes. For the number of equivalence classes to be small, the rank r of f must be
small, such as r = 1 or r = 2. (B) Let f(z) = zr, where r is a large positive
integer dividing pn − 1. Now, the equivalence classes are {0} and the cosets of
the congruence relation x ∼ y if and only if (x−1y)r = 1, for x, y ∈ F\{0}. Since
K

f
= {0} ∪ {zr : z ∈ F\{0}}, there are k = 1 + (pn − 1)/r equivalence classes.

2.1.3 Partition of Unity of Z
pl

Let s ∈ N be a divisor of (p − 1) and k = 1 + (p−1)
s

. Now, pl−1 ≥ l, for

any l ∈ N and prime number p. Let h(x) = xsp
l−1

, for x ∈ Z
pl
. Then,

(h(x))k−1 = 1, for x ∈ Z
⋆

pl
, and h(x) = 0, for x ∈ Z

pl
\Z⋆

pl
. Thus, the set

{xsp
l−1

: x ∈ Z
pl
} contains k distinct elements. Let x, y ∈ Z

pl
be such that

h(x) 6= h(y). If h(x) = 0 or h(y) = 0, then (h(y) − h(x)) ∈ Z
⋆

pl
. Now, let

x, y ∈ Z
⋆

pl
. If (x−1y)sp

l−1
= 1+bpt, for some b ∈ Z

⋆

pl
and t ∈ N, then, since 1+

bpt
∑k−1

i=1
(k−1)!

i!(k−i−1)!b
i−1p(i−1)t = (1 + bpt)k−1 = ((x−1y)sp

l−1
)k−1 = 1 mod pl,

it follows that either t ≥ l or (k−1)+
∑k−1

i=2
(k−1)!

i!(k−i−1)!b
i−1p(i−1)t = 0 mod pl−t.

However, since k = 1 + p−1
s
, and therefore, 1 ≤ k − 1 ≤ p − 1, it follows

that (k − 1) +
∑k−1

i=2
(k−1)!

i!(k−i−1)!b
i−1p(i−1)t = k − 1 mod p. Thus, if x, y ∈ Z

⋆

pl

and h(x) 6= h(y), then (x−1y)sp
l−1

− 1 6= 0 mod p, and hence if x, y ∈ Z
pl

and h(x) 6= h(y), then (h(y) − h(x)) ∈ Z
⋆

pl
. If a

j
∈ Z

pl
, 1 ≤ j ≤ k, are such

that {xsp
l−1

: x ∈ Z
pl
} = {a

j
: 1 ≤ j ≤ k}, then (a

i
− a

j
) ∈ Z

⋆

pl
, for i 6= j,

1 ≤ i, j ≤ k, and the Lagrange interpolation polynomials g
j
(x) ∈ Z

p
[x] can

be obtained for the equivalence classes E
j
= {xsp

l−1
= a

j
: x ∈ Z

pl
}. Thus,

corresponding to every homomorphism of Z⋆
p
into Z

⋆
p
, a partition of unity of

Z
pl
can be obtained.

2.1.4 Multivariate Polynomials that Evaluate to only Invertible
Elements

Let f(z) ∈ F[z] be a polynomial which is not surjective as a mapping from F

into F. Then, there exists an element c ∈ F, such that f(z)−c 6= 0, for every
z ∈ F. For a ∈ F\{0} and g(z1 , . . . , zl) ∈ F[z1 , . . . , zl ], a(f(g(z1 , . . . , zl))−
c) 6= 0, for every (z1 , . . . , zl) ∈ F

l.

Examples. (A) Let f(z) be a product of irreducible polynomials in F[z] of de-
gree 2 or more each. Then, c can be chosen to be 0. (B) Let the vector space

dimension of F be n as an extension field of Z
p
, and let f(z) =

∑n
i=1 aiz

p
i−1

, where

8



a
i
∈ F, 1 ≤ i ≤ n, be a noninvertible linear operator from F into F, with Z

p
as the

field. Then, for any basis {α1 , . . . , αn} for F, with Z
p
as the field, there exists an

index j, 1 ≤ j ≤ n, such that
∑n

i=1 aiz
p
i−1

− αj 6= 0, for every z ∈ F, and c can be
taken to be α

j
. (C) Let r ≥ 2 be a positive integer divisor of pn − 1, and let

f(z) = zr. Then, there exists an element c ∈ F\{0}, such that c(p
n
−1)/r 6= 1. Now,

since c(p
n
−1)/r 6= 0 and c(p

n
−1)/r 6= 1, it follows that f(z)− c 6= 0, for every z ∈ F.

If f(z) ∈ F[z] is such that f(z) 6= 0, for every z ∈ F, then [f(z)]−1 =
∑k

i=1 a
−1
i

ℓ
i
(z), where {a

i
: 1 ≤ i ≤ k} = {f(z) : z ∈ F}, and ℓ

i
(z) =

[
∏k

j = 1
j 6= i

(a
i
− a

j
)

]−1

·
∏k

j = 1
j 6= i

(f(z)− a
j
), 1 ≤ i ≤ k. Thus, for digital sig-

nature hashing keys in section 3.1, the appropriate choices for a nonvanishing
function f(z) 6= 0, z ∈ F, are those similar to the choice of discriminating
functions discussed at the end of section 2.1.2.

Let n =
∏r

i=1 p
l
i
i , where r ∈ N, l

i
∈ N and p

i
are distinct prime numbers,

for 1 ≤ i ≤ r, and f(z) ∈ Z
n
[z]. From section 1.3, it can be recalled

that, f(z) ∈ Z
∗
n
, for z ∈ Z

n
, if and only if for every i, where 1 ≤ i ≤ r,

f(z) mod p
i
∈ Z

∗
p
i
, for z ∈ Z

n
.

2.2 Univariate Bijective Mappings without Parameters

2.2.1 Single Variable Permutation Polynomials without Hashing

Examples in F[x] Bijective mappings in F[x], also called permutation poly-
nomials, are extensively studied as Dickson polynomials [13] in the litera-
ture. A comprehensive survey on Dickson polynomials can be found in
[1, 18, 31, 38, 39]. Some recent results are presented in [2, 3, 4]. If f(z) ∈ F[z]
is a permutation polynomial, then, for every a ∈ F\{0}, b ∈ F and nonnega-
tive integer i, the polynomial af(zp

i
)−b is a permutation polynomial. Some

easy examples are described in the following.

Examples. (A) Let F be a finite dimensional extension field of Z
p
of vector space

dimension n. Any polynomial f(z) =
∑n

i=1 ai
zp

i−1

, where a
i
∈ F, 1 ≤ i ≤ n, that

is an invertible linear operator from F onto F, with Z
p
as the field, is a permutation

polynomial. (B) Let r be a positive integer divisor of n, and f(z) = z
p
r

− az,

where a
(
∑n/r

i=1
p
(i−1)r )

6= 1. Then, for every z ∈ F\{0}, z
(pr−1)

− a 6= 0, since

z
p
n
−1 = z

(pr−1)
∑n/r

i=1
p
(i−1)r

= 1, and therefore, the null space of f(z), as a linear
operator from F into F with Z

p
as the field, is {0}. Thus, f(z) is a permutation

polynomial. (C) Let r be a positive integer relatively prime to (pn − 1). Then,
the polynomial f(z) = zr is a permutation polynomial.

Examples in Z
pl
[x] Let l ∈ N and p be a prime number. For any positive

integer n, Dickson polynomials that are permutation polynomials, having
nonvanishing derivatives over the finite field containing pn elements, are
found in [1, 2, 3, 4, 18, 31, 38, 39]. For a small prime number p, two methods
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for construction of permutation polynomials f(x) ∈ Z
p
[x], such that f ′(x) 6=

0 mod p, are described below. As a set, Z
p
is taken to be the set of integers

i, where 0 ≤ i ≤ p − 1. For p = 2, the only permutation polynomials are
f(x) = x and f(x) = x − 1, and in both cases, f ′(x) = 1 mod 2. Now, let
p ≥ 3 be a small prime number, such that the computations below are not
difficult for implementation. Let ℓ

i
(x) =

[∏
p−1
j = 0
j 6= i

(i− j)
]−1

·
∏

p−1
j = 0
j 6= i

(x− j) =

−
∏

p−1
j = 0
j 6= i

(x − j), for i ∈ Z
p
. Now, ℓ′

i
(x) = −

∑
p−1
j = 0
j 6= i

∏
p−1

k = 0
k 6∈ {i, j}

(x − k), for

i ∈ Z
p
, which implies that ℓ′

i
(j) = −

∏
p−1

k = 0
k 6∈ {i, j}

(j−k) = (j− i)−1 , for j 6= i

and j ∈ Z
p
, and ℓ′

i
(i) = −

∑
p−1
j = 0
j 6= i

∏
p−1

k = 0
k 6∈ {i, j}

(i− k) =
∑

p−1
j = 0
j 6= i

(i− j)−1 = 0 ,

for i ∈ Z
p
, since p ≥ 3. For a fixed permutation sequence {a

i
∈ Z

p
: 0 ≤

i ≤ p − 1} of Z
p
, either of the two procedures described below constructs

a permutation polynomial in f(x) ∈ Z
p
[x], such that f(i) = a

i
and f ′(i) 6≡

0 mod p, for i ∈ Z
p
.

Method 1 Let
∑

p−1
i=0 a

i
ℓ
i
(x) = b0 +

∑
p−1
i=1 b

i
xi, for some b

i
∈ Z

p
, for 0 ≤ i ≤

p−1, and let g(x) = c1 +
∑

p−1
i=2 c

i
xi−1, for some c

i
∈ Z

p
, for 1 ≤ i ≤ p−1, be

such that g(x) 6≡ 0 mod p, for every x ∈ Z
p
. Let ρ

i
= i−1c

i
and σ

i
= b

i
− ρ

i
,

for 1 ≤ i ≤ p − 1. Let f(x) = b0 +
∑

p−1
i=1 (ρi

xi + σ
i
xip). Then, f(x) ≡

b0 +
∑

p−1
i=1 b

i
xi mod p, for every x ∈ Z

p
, and f ′(x) ≡ ρ1 +

∑
p−1
i=2 iρ

i
xi−1 ≡

c1 +
∑

p−1
i=2 c

i
xi−1 mod p, for every x ∈ Z

p
, satisfying the stated requirement.

Method 2 Let b
i
, c

i
, σ ∈ Z

p
, for 0 ≤ i ≤ p − 1, be such that b0 = a0

and b
j
+ c

j
= a

j
, for 1 ≤ j ≤ p − 1, and let f(x) =

∑
p−1
i=0 (bi + xp−1c

i
−

σi)ℓ
i
(x) + σxp. It can be immediately verified that f(i) ≡ a

i
mod p, for

0 ≤ i ≤ p − 1, and f ′(x) =
∑

p−1
i=0 (bi + xp−1c

i
− σi)ℓ′

i
(x) + pσxp−1 + (p −

1)xp−2
∑

p−1
i=0 c

i
ℓ
i
(x), where p ≥ 3. Thus, the parameters c0 , σ, bj and c

j
,

for 1 ≤ j ≤ p − 1, need to be chosen such that f ′(x) 6≡ 0 mod p, for all
x ∈ Z

p
. Now, f(x) + σx =

∑
p−1
i=0 (bi + c

i
xp−1)ℓ

i
(x) + σxp, and f ′(x) +

σ =
∑

p−1
i=0 (bi + c

i
xp−1)ℓ′

i
(x) + pσxp−1 + (p − 1)xp−2

∑
p−1
i=0 c

i
ℓ
i
(x). Thus,

f ′(0) + σ ≡ −
∑

p−1
i=1 i−1b

i
mod p and f ′(j) + σ ≡

∑
p−1
i = 0
i 6= j

a
i
(j − i)−1 +

c0j
−1 − j−1c

j
mod p, for 1 ≤ j ≤ p− 1, which implies that every element in

the sequence of numbers (f ′(i)+ σ) mod p, for 0 ≤ i ≤ p− 1, is independent
of the choice of σ, and the condition that f ′(i) 6≡ 0 mod p, for 0 ≤ i ≤ p− 1,
is equivalent to that σ 6∈ {(f ′(i) + σ) mod p : 0 ≤ i ≤ p − 1}. For p ≥
3,

∑
p−1
i=0 i ≡

∑
p−1
i=0 1 ≡ 0 mod p, and since Z

p
is the splitting field of the

polynomial xp − x =
∏

p−1
i=0 (x − i), the elementary symmetric polynomials

sr(t1 , t2 , . . . , tn), which are homogeneous of degree r in n variables, for the
particular instances of parameters n = p and t

i
= i − 1, for 1 ≤ i ≤ p,

as defined in [30], are all congruent to 0 mod p, for 1 ≤ r ≤ p − 2. Thus,
∑

p−1
i=0 ir ≡

∑
p−1
i=0 1 ≡ 0 mod p, for r ∈ N, 1 ≤ r ≤ p − 2 and p ≥ 3, which

implies that for a nonzero polynomial g(x) ∈ Z
p
[x] of degree at most p− 2,
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∑
p−1
i=0 g(i) ≡ 0 mod p. Now, p

∑
p−1
i=0 ip−1 ≡ 0 mod p, and, for l ∈ N, such that

p+1 ≤ l ≤ 2p− 2, l
∑

p−1
i=0 i

l−1 ≡ l
∑

p−1
i=0 il−1−(p−1) ≡ l

∑
p−1
i=0 il−p ≡ 0 mod p,

since 1 ≤ l − p ≤ p − 2. Thus, for a nonzero polynomial h(x) ∈ Z
p
[x]

of degree at most 2p − 2,
∑

p−1
i=0 h′(i) ≡ 0 mod p. The coefficients c

i
, for

0 ≤ i ≤ p − 1, must be so chosen that the additional requirement that
f(x)+σx is a polynomial of degree at most 2p−2 can also be fulfilled. Now,
let λ

i
∈ Z

p
, for 0 ≤ i ≤ p− 1, be chosen, such that the cardinality of the set

Λ = {λ
i
: 0 ≤ i ≤ p−1} is at most p−1 and

∑
p−1
i=0 λ

i
= 0. Then, c

j
−c0 are

found from the condition f ′(j)+σ =
∑

p−1
i = 0
i 6= j

a
i
(j− i)−1− j−1(c

j
−c0) = λ

j
,

for 1 ≤ j ≤ p−1, and hence, f ′(0)+σ = −
∑

p−1
i=1 i−1b

i
= λ0 , for all choices of

c0 . Now, let σ be chosen from Z
p
\Λ, where the latter set is nonempty, since

the cardinality of Λ is at most p− 1, by the choices of λ
i
, for 0 ≤ i ≤ p− 1.

Finally, c0 is chosen, and b
j
and c

j
, for 1 ≤ j ≤ p − 1, are determined by

the aforementioned conditions.
For a small prime number p, positive integers l and r, such that l ≥ 2

and 1 ≤ r ≤ l, a bijective mapping f(x) ∈ Z
pl
[x] and y ∈ Z

pl
, the follow-

ing procedure computes xr ∈ Z
pr
, such that fr(xr) ≡ y mod pr, assuming

x1 ∈ Z
p
is known, such that f1(x1) ≡ y mod p, where fr(x) = f(x) mod pr,

applying the mod pr operation only to the coefficients. Let 2 ≤ r ≤ l,
where l ≥ 2, s ∈ N be such that

⌈
r
2

⌉
≤ s ≤ r − 1 and yr = y mod pr ∈

Z
pr
, and xs = f−1

s
(yr mod ps) ∈ Z

ps
has been computed. Let x̂s ∈ Z

pr

be such that x̂s ≡ xs mod ps. Since fr(x̂s) ≡ yr mod ps, it follows that
fr(x̂s) = yr + psgr, s(x̂s , yr), for some mapping gr, s(x̂s , yr), and therefore,

fr(x̂s + [f ′
r
(x̂s)]

−1 · [yr − fr(x̂s)]) ≡ fr(x̂s)+f ′
r
(x̂s)·[f

′
r
(x̂s)]

−1 ·[yr−fr(x̂s)] ≡

fr(x̂s) + [yr − fr(x̂s)] ≡ yr mod pr. Thus, f−1
r

(yr) = x̂s + [f ′
r
(x̂s)]

−1 · [yr −
fr(x̂s)] mod pr. If r = l, then the f−1(y) is just computed for y ∈ Z

pl
, and

the procedure can be stopped; otherwise, the previous steps are repeated,
replacing the current value of r by min{2r, l}.

Examples in EXP
(
F ; [z]

)
Let F be a finite field of pn elements, for some

prime number p and n ∈ N, such that pn ≥ 3, and let n = pn − 1. Let t ≥ 2
be a positive integer divisor of pn − 1, and let Ht = {xt = 1 : x ∈ F

∗}.
Let f(x) ∈ Z[x] be such that f(x) mod t yields a polynomial mapping from
Zt onto itself. It may be recalled that, as a set, Zt is assumed to consist of
integers i, where 0 ≤ i ≤ t − 1. Let a be a primitive element in F

∗. Now,
for x ∈ Ht , since xt = 1, applying log

a
operation on both sides, t log

a
x =

0 mod n, which implies that log
a
x is an integer multiple of n

t
= p

n−1
t

, for

every x ∈ Ht, and, since the cyclic subgroup generated by a
n

t is Ht, it
follows that log

a
is a bijective mapping of Ht onto n

t
· Z

n
= {( in

t
) mod n :

0 ≤ i ≤ t− 1}. Now, f(log
a
(x)) mod n, for x ∈ Ht , is an injective mapping,

when restricted to Ht, which can be modified appropriately, by changing
its constant term, if necessary, to obtain a polynomial g, which results in a
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bijective mapping from n
t
· Z

n
into itself, with respect to mod n operation.

Then, the mapping η(x) = ag(loga x), for x ∈ F
∗, is such that its restriction

to Ht is a bijective mapping from Ht onto itself.

2.2.2 Hybrid Single Variable Permutation Polynomials with Hash-
ing

Method 1 Let ℓ
i
(x) ∈ F[x], 1 ≤ i ≤ k, where k ∈ N, k ≥ 2, be indicator

functions of a partition {S
i
: 1 ≤ i ≤ k} of F. Let σ be a permutation

on {1, . . . , k}, such that the set cardinalities of S
i
and S

σ(i)
are equal, for

1 ≤ i ≤ k. Let g
i
be a mapping from F into F, such that g

i
(S

i
) = S

σ(i)
, for

1 ≤ i ≤ k. Thus, g
i
is one-to-one when restricted to S

i
, for 1 ≤ i ≤ k. Let

η(x) ∈ F[x] be a permutation polynomial, and χ(x) =
∑k

i=1 ℓi(x)η(gi
(x)).

Then, χ(F) =
⋃k

i=1 η(gi
(S

i
)) =

⋃k
i=1 η(Sσ(i)

), and since {S
σ(i)

: 1 ≤ i ≤ k}
is a partition of F, χ(x) is a surjective (hence bijective) polynomial from F

onto F. For inverting χ(x) = y, for fixed y ∈ F, let ξ = η−1(y). Now, there
exists exactly one index i, where 1 ≤ i ≤ k, such that ξ ∈ S

σ(i)
= g

i
(S

i
),

and therefore, the unique element x ∈ S
i
, such that x = g−1

i
(ξ), satisfies

χ(x) = y. If f
i
, for 1 ≤ i ≤ k, are mappings from F into F, such that

f
i
(g

i
(x)) = x, for x ∈ S

i
, then χ−1(y) =

∑k
i=1 ℓσ(i)

(η−1(y))f
i
(η−1(y)), for

y ∈ F. The case of bijective mappings in EXP(F ; [x]) can be similarly
discussed. In the following examples, the corresponding examples in section
2.1.2 are revisited.

Examples. (A) Let T (x) =
∑n

i=1 ai
xp

i−1

, a
i
∈ F, 1 ≤ i ≤ n, be of rank t,

where t is a small positive integer, such as t ∈ {1, 2}, as described in the first
example in section 2.1.2 and let V = {x ∈ F : T (x) = 0}. Then, there exist k = pt

representative elements b
i
∈ F, 1 ≤ i ≤ k, such that {T (b

i
) : 1 ≤ i ≤ k} = T (F),

and S
i
= V + b

i
= {x+ b

i
: x ∈ V }, 1 ≤ i ≤ k. Let f

i
(x) = c

i, 0
+
∑n

i=1 ci, jx
p
j−1

,
where c

i, j
, x ∈ F, 0 ≤ j ≤ n, be such that V ⊆ f

i
(V ), for 1 ≤ i ≤ k. Thus, in

the notation of the above discussion, the permutation polynomial f
i
(x)− b

i
+ b

σ(i)

can be chosen to be gi(x), for x ∈ F and 1 ≤ i ≤ k. (B) Let f(z) = zt, where
t is a large positive integer dividing pn − 1, as described in the second example

of section 2.1.2. Let a
1
= 0 and a

i
∈ F

∗, for 2 ≤ i ≤ k, where k = 1 + (pn−1)
t ,

be such that {f(a
i
) : 1 ≤ i ≤ k} is the codomain of f . Let σ be a permuta-

tion on {1, . . . , k}, such that σ(1) = 1, and let H
t
= {y ∈ F : yt = 1}. Then,

Si = aiHt = {aiv : v ∈ Ht}, for 1 ≤ i ≤ k. Let hi(x), x ∈ Ht , be a bijective map-
ping discussed in the previous section, for 2 ≤ i ≤ k. Thus, representing elements
c
i
∈ F

∗ can be found easily, such that the mapping g
i
(x) = c

i
h

i
(a−1

i
x) satisfies

gi

(
Si

)
= S

σ(i)
, for x ∈ Si and 2 ≤ i ≤ k.

Method 2 Let G be F
∗ or F. Let f and h be mappings from G into itself,

such that f is bijective and h(f(x)) = h(x), for x ∈ G. For instance, if (A)
f is such that the cyclic group generated by it, as a subgroup of bijective
mappings from G into G, with composition as the group operation, is of
small order ρ ≥ 2, (B) g : Gρ → F is a symmetric function, which can
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be an expression in EXP(F ; [z1 , . . . , zρ ]), symmetric in all the ρ variables,
(C) f0(x) = x and f

i
(x) = f(f

i−1(x)), for 1 ≤ i ≤ ρ, and (D) h(x) =
g(x, f1(x), . . . , fρ−1(x)), for x ∈ G, then fρ(x) = x and h(f(x)) = h(x),
for x ∈ G. Let σ be a permutation on {1, . . . , ρ}, and {S

i
: 1 ≤ i ≤ k},

where 2 ≤ k ≤ ρ, be a partition of F, and let ℓ
i
(x), x ∈ F, be the indicator

function of S
i
, for 1 ≤ i ≤ k. Let η be a bijective mapping from G into

G, and ζ(x) =
∑k

i=1 ℓi(h(x))η(fσ(i)
(x)), for x ∈ G. Let x, y ∈ G be such

that ζ(x) = ζ(y), and let i, j ∈ {1, . . . , k} be such that ℓ
i
(h(x)) = 1 and

ℓ
j
(h(y)) = 1. Then, η(f

σ(i)
(x)) = η(f

σ(j)
(y)), and since η is bijective, it

follows that f
σ(i)

(x) = f
σ(j)

(y). If σ(i) ≤ σ(j), then x = f
σ(j)−σ(i)

(y), and
since h(f(y)) = h(y), it follows that h(x) = h(y), σ(i) = σ(j) and i = j,
and therefore, x = y. Thus, ζ−1(y) =

∑k
i=1 ℓi(h(η

−1(y)))f−1
σ(i)

(η−1(y)), for
y ∈ G.

2.3 Multivariate Injective Mappings without Parameters

2.3.1 Multivariate Injective Mappings from Gm into Em

In this subsection, an iterative algorithm to construct a multivariate bijective
mapping from Gm into Em, for m ∈ N, is described. The algorithm utilizes
parametric univariate bijective mappings discussed in the previous sections.
In later subsections, some variations involving hashing are described.

1. Let f
i
: G → G and g

i
: E → E, for 1 ≤ i ≤ m, be bijective mappings.

2. Let h
i
(z1 , . . . , zm−1 ; x) be parametric injective mappings from G into

E, for 1 ≤ i ≤ m, x ∈ G and z1 , . . . , zm−1 ∈ E being parameters,
constructed, for example, as described in section 2.1.1.

3. Let ζ
i
(x) = h

i
(ζ

i+1(x), . . . , ζm(x), x1 , . . . , xi−1 ; f
i
(x

i
)) and η

i
(x) =

g
i
(ζ

i
(x)), for x = (x1 , . . . , xm) ∈ Gm and 1 ≤ i ≤ m. Let η(x) =

(η1(x), . . . , ηm(x)).

For finding x = (x1 , . . . , xm) ∈ Gm, such that η(x) = y, for any fixed y =
(y1 , . . . , ym) ∈ Em, let ǫ

i
= g−1

i
(y

i
) and δ

i
= h−1

i
(ǫ

i+1 , . . . , ǫm , x1 , . . . , xi−1 ; ǫi),
for 1 ≤ i ≤ m. Then, x

i
= f−1

i
(δ

i
), for 1 ≤ i ≤ m. Now, for E = F and

G = F
∗, if g

i
and h

i
, for 1 ≤ i ≤ m, are bijective mappings and parametric

bijective mappings, respectively, from F
∗ into F

∗, then the above procedure
can be applied to obtain multivariate bijective mappings from Gm into Gm.
These mappings are required in appealing for a security that is immune to
threats resulting from Gröbner basis analysis. It can be observed that one
level of exponentiation suffices for the purpose.

2.3.2 Hybrid Multivariate Injective Mappings with Hashing

For Method 1 of the previous subsection, in the first example, in place of
T (x), x ∈ F, T (α(x)), x ∈ F

m, and in the second example, in place of
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f(z), z ∈ F, f(β(x)), x ∈ F
m, are chosen, where α : F

m → F is a non
constant affine mapping in the first example, and β(x) = c

∏m
i=1 x

s
i

i , for
some nonnegative integers s

i
, which, when positive, are relatively prime

to pn − 1, and, when zero, for the corresponding subscript index i, the
variable x

i
does not occur in the product, for 1 ≤ i ≤ m, such that

β(x) is nonconstant, in the second example. Similarly, Method 2 hash-
ing of the previous subsection can also be extended to multivariate map-
pings, replacing x with x. For instance, if G = F

∗, a is a primitive ele-
ment in F

∗ and n is the set cardinality of F∗, then f(x) can be chosen to
be (aφ1 (loga x), . . . , aφm (log

a
x)), where log

a
x = (log

a
x1 , . . . , loga

xm) and
Φ(y) = (φ1(y), . . . , φm(y)) is a bijective mapping from Z

m
n

into itself, such
that the cyclic subgroup generated by Φ, with respect to function composi-
tion operation, has a group order ρ, while g can be chosen to be an expres-
sion from EXP(F ; [z1, 1 , . . . , zm, 1 , . . . , z1, ρ , . . . , zm, ρ ]), which is symmetric
in the ρ vectors (z1, i , . . . , zm, i

), for 1 ≤ i ≤ ρ. If g = πt, for a symmetric
mapping π obtained by taking product of terms as appropriate and a large
positive integer divisor t of n, then since tΦ(y) is a bijective mapping from
tZm

n
into itself, the order of the cyclic subgroup generated by tΦ(y), as a

subgroup of the group of bijective mappings from tZm
n

into itself, can be
ensured to be only a small divisor of ρ, resulting in a more efficient method
of hashing, even for a very large and perhaps unknown ρ. It can be observed
that g can be chosen to depend only on a few scalar components from each
vector, while maintaining symmetry in all its vector parameters, with each
vector consisting of m scalars components, and that the main objective in
Method 2 hashing is to produce a hashing function h that evaluates to the
same same value, even if f is applied on its arguments.

3 Public Key Cryptography and Digital Signature

Let the number of elements in the plain message (or plain signature message)
be µ, and the number of elements in the encrypted message (or encrypted
signature message) be ν, where µ, ν ∈ N and µ ≤ ν. Let E be F or Z

n
,

and G ⊆ E be the set from which plain message elements are sampled. If
the number of plain and encrypted (or plain and signed) messages are the
same, then a multivariate bijective mapping P : Gµ → Gµ is chosen and
advertised in the public key lookup table T, while P−1 is saved in the back
substitution table B. Let (ξ1 , . . . , ξµ) ∈ Gµ be plain message. For public key
cryptography, the encrypted message is (ǫ1 , . . . , ǫµ) = P (ξ1 , . . . , ξµ), and
the decryption is P−1(ǫ1 , . . . , ǫµ). For digital signature, the signed message
is (ǫ1 , . . . , ǫµ) = P−1(ξ1 , . . . , ξµ), and recovered message is P (ǫ1 , . . . , ǫµ).
In the remaining part of the section, it is assumed that 1 ≤ µ ≤ ν−1. Let ν =
µ+ λ, for some positive integer λ. Let κ be the number of padding message
elements in the hashing keys. Let x = (x1 , . . . , xµ) ∈ Gµ be the plain
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message, y = (y1 , . . . , yν ) ∈ Eν be the encrypted or signed message, and
ω = (ω1 , . . . , ωκ) ∈ Gκ be a padding message. The multivariate mappings in
the rest of this section are expressions from either E[t1 , . . . , tm , σ1 , . . . , σn

]
or EXP(E ; [t1 , . . . , tm , σ1 , . . . , σn

]), for some appropriate variable names
t and σ, and subscript numbers m and n, depending on the context of
occurrence and arity of the mappings.

3.1 Hashing Keys

The following subroutine generates the hashing keys required by the algo-
rithms of sections 3.2 and 3.3.

Subroutine for Generation of Hashing Keys The table generated is
the private key hash table H, containing the hashing keys.

1. The following inputs to the subroutine are taken: positive integers µ, κ, L, λ,
and a binary flag SIGN, where L is the number of hashing keys, L ≤ λ, and
SIGN is set to the binary value true, if this subroutine is called for digital
signature, and set to false for public key cryptography.

2. The private key hash table H is initialized to empty set. The input parameters
are saved in the private key hash table H. Let ν = µ+ λ.

3. Let f
l
(x, ω), for 1 ≤ l ≤ L, be selected and saved in the private key hash

table H. If L < λ, let Qi(x, ω), for 1 ≤ i ≤ λ−L, be selected and saved in the
private key hash table H. The chosen functions are required to evaluate to el-
ements in G, for (x, ω) ∈ Gµ+κ. Let F (x, ω) =

(
f

1
(x, ω), . . . , f

L
(x, ω)

)
.

4. Now, a parametric multivariate injective mapping η(y1 , . . . , yλ−L
; z), z =

(z
1
, . . . , z

L
), is selected such that η−1(y

1
, . . . , y

λ−L
; z) can be computed eas-

ily (discussed in section 2.1). The multivariate mappings required to com-
pute both η(y

1
, . . . , y

λ−L
; z) and η−1(y

1
, . . . , y

λ−L
; z) are saved in the private

key hash table H. If SIGN is set to true, then this procedure is called for
generating digital signature hashing keys, and hence, let g

l
(y1 , . . . , yλ

) =
η−1
l

(y
1
, . . . , y

λ−L
; (y

λ−L+1
, . . . , y

λ
)), 1 ≤ l ≤ L, which are also saved in the

private key hash table H.

5. Let Q
λ−L+i

(x, ω) = η
i

(
Q1(x, ω), . . . , Q

λ−L
(x, ω); F (x, ω)

)
, 1 ≤ i ≤ L,

which are saved in the private key hash table H. Thus, for (x, ω) ∈ Gµ+κ,
F (x, ω) = η−1

(
Q

1
(x, ω), . . . , Q

λ−L
(x, ω); (Q

λ−L+1
(x, ω), . . . , Q

λ
(x, ω))

)
.

The parametric multivariate injective mapping η(y1 , . . . , yλ−L
; z) are required

to be so chosen that (i) it is easily expressible as a multivariate mapping,
for public key cryptography, and (ii) η−1(y

1
, . . . , y

λ−L
; z) and g

l
(y

1
, . . . , y

λ
),

1 ≤ l ≤ L, are easily expressible as multivariate mappings, for digital signa-
ture, and for signature authentication, the multivariate mappings Q

i
(x, ω),

1 ≤ i ≤ λ, must occur as public key mappings, which need to be easily
expressible, as well.

3.2 Public Key Cryptography (PKC)

The input is the private key hash table H, containing the hashing keys.
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Public Key Cryptography Key Generation Algorithm The tables gen-
erated are as follows: (1) the private key back substitution table B, contain-
ing information for decryption of public key encrypted message, and (2)
the public key lookup table T, containing the multivariate mappings for
encrypting plain message.

1. The subroutine for generation of hashing keys (described in section 3.1) is
called, which takes input parameters, viz., positive integers µ, κ, L, λ, and
a binary flag SIGN, which is set to false by the calling function, generates
the multivariate mappings f

l
(x, ω), 1 ≤ l ≤ L, and Q

i
(x, ω), 1 ≤ i ≤ λ, sets

ν = µ+ λ, and saves them in the private key hash table H. The private key
back substitution table B is initialized to empty set.

2. A parametric multivariate injective mapping ζ(z
1
, . . . , z

L
; x) is selected such

that the parametric inverse multivariate mapping ζ−1(z
1
, . . . , z

L
; y) can be

computed easily (discussed in section 2.1). The information required to
compute ζ(z

1
, . . . , z

L
; x) and ζ−1(z

1
, . . . , z

L
; y) is saved in the private key

back substitution table B. Let Q
λ+i

(x, ω) = ζi(f1(x, ω), . . . , fL(x, ω); x),
1 ≤ i ≤ µ.

3. An invertible affine linear transformation T : Eν → Eν is selected, and its
inverse transformation T−1 is saved in the back substitution table B.

4. Let
(
P

1
(x, ω), . . . , P

ν
(x, ω)

)
= T

(
Q

1
(x, ω), . . . , Q

ν
(x, ω)

)
be the en-

cryption multivariate mappings, which are advertised in the public key lookup
table T, along with µ, ν, κ, E and G.

Encryption Let (ξ1 , . . . , ξµ) be the plain message. The encryptor chooses
padding message ω1 , . . . , ωκ ∈ F, computes ǫ

i
= P

i
(ξ1 , . . . , ξµ , ω1 , . . . , ωκ),

1 ≤ i ≤ ν, and transmits (ǫ1 , . . . , ǫν ) to the receiver.

Decryption The input items required for decryption are read from the
private key hash table H and the private key back substitution table B. The
decryption algorithm is as follows:

1. Let
(
ǫ
1
, . . . , ǫ

ν

)
∈ Eν be the received encrypted message.

2. Let
(
v
1
, . . . , v

ν

)
= T−1

(
ǫ
1
, . . . , ǫ

ν

)
. Thus, v

i
= Q

i
(ξ

1
, . . . , ξ

µ
, ω

1
, . . . , ω

κ
),

1 ≤ i ≤ ν, where (ξ1 , . . . , ξµ) is the plain message (to be decrypted in the
subsequent steps), and (ω

1
, . . . , ω

κ
) is the padding message, which will not

be decrypted. Let y
l
= v

l
, 1 ≤ l ≤ λ.

3. Let (z
1
, . . . , z

L
) = η−1

(
y
1
, . . . , y

λ−L
; (y

λ−L+1
, . . . , y

λ
)
)
. It is clear that z

l
=

f
l
(ξ

1
, . . . , ξ

µ
, ω

1
, . . . , ω

κ
), 1 ≤ l ≤ L.

4. The plain message is (ξ
1
, . . . , ξ

µ
) = ζ−1

(
z
1
, . . . , z

L
; (v

λ+1
, . . . , v

ν
)
)
.

3.3 Digital Signature (DS)

The input is the private key hash table H, containing the hashing keys.
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Digital Signature Key Generation Algorithm The tables generated
are as follows: (1) the private key digital signature table S, containing in-
formation for signing the plain message, (2) the public key signature veri-
fication table V, containing the multivariate mappings for recovery of plain
message, and (3) the public key signature authentication table A, contain-
ing the multivariate mappings for verifying the authentication of the plain
message.

1. The subroutine for generation of hashing keys (described in section 3.1) is
called, which takes input parameters, viz., positive integers µ, κ, L, λ, and a
binary flag SIGN, which is set to true by the calling function now, generates
the multivariate mappings f

l
(x, ω), g

l

(
z
1
, . . . , z

λ

)
, 1 ≤ l ≤ L, and Q

i
(x, ω),

1 ≤ i ≤ λ, such that f
l
(x, ω) = g

l

(
Q

1
(x, ω), . . . , Q

λ
(x, ω)

)
, for (x, ω) ∈

F
µ+κ, 1 ≤ l ≤ L, sets ν = µ + λ, and saves them in the private key hash

table H. The private key signature table S is initialized to empty set.

2. A parametric multivariate bijective mapping ζ(z
1
, . . . , z

L
; x) from Gµ into

Gµ is selected such that the parametric inverse ζ−1(z1 , . . . , zL
; x) can be

computed easily (discussed in section 2.1). The information required to com-
pute ζ(z

1
, . . . , z

L
; x) and ζ−1(z

1
, . . . , z

L
; x) is saved in the private key sig-

nature table S.

3. Let P
i
(y

1
, . . . , y

ν
) = ζ

i

(
g
1
(y

1
, . . . , y

λ
), . . . , g

L
(y

1
, . . . , y

λ
) ; (y

λ+1
, . . . , y

ν
)
)
,

1 ≤ i ≤ µ, be the signature verification multivariate mappings which are ad-
vertised in the public key signature verification table V, along with µ, ν, κ,
E and G, and let the plain message authentication multivariate mappings
be S

i
(x, ω) = Q

i
(x, ω), 1 ≤ i ≤ λ, which are advertised in the public key

signature authentication table A, along with µ, ν, κ, E and G. The signa-
ture verification table V is advertised as a public key, with read permissions
for the intended receiver to access. There are two possibilities for signature
authentication verification: (i) a public authority, that is responsible for pro-
viding signature authentication ascertainment and for possible issuance of
a certification to that effect, is identified, which is referred to herein as a
trusted authentication verifier (TAV), in which case, the padding message is
transmitted to the intended receiver, possibly encrypting it by a public or
shared key encryption algorithm, whereas the decryption key for the padding
message and the signature authentication table A are shared by the signer
with only the TAV, or (ii) there is no TAV, in which case, the signature au-
thentication table A and the signature verification table V are made available,
with read access permissions, to the intended receiver as a public key.

Digital Signing Algorithm Let (ξ1 , . . . , ξµ) be the plain message. The
parameters required for digital signing are read from the private key hash
table H and the private key signature table S. The digital signing algorithm
is as follows:

1. The signer chooses padding message (ω
1
, . . . , ω

κ
) ∈ Gκ, either generating

them randomly, or based on previous correspondences.

2. The signer computes the hash values z
l
= f

l
(ξ

1
, . . . , ξ

µ
, ω

1
, . . . , ω

κ
), 1 ≤ l ≤

L, the authentication header entries ǫ
i
= Q

i
(ξ

1
, . . . , ξ

µ
, ω

1
, . . . , ω

κ
), 1 ≤ i ≤

λ, and the signed message entries (ǫ
λ+1

, . . . , ǫ
ν
) = ζ−1(z

1
, . . . , z

L
; (ξ

1
, . . . , ξ

µ
)).
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3. The signature message is
(
ǫ
1
, . . . , ǫ

ν

)
, which is transmitted to the intended

receiver, while the padding message
(
ω

1
, . . . , ω

κ

)
is either transmitted to the

intended receiver together with the signature, either on demand or for free,
or communicated to a trusted authentication verifier (TAV), with which the
signer registers the signature authentication table A.

Digital Signature Verification Algorithm The input items required
for signature verification are public key signature verification table V, and
the signature authentication table A or a method for ascertaining by a
trusted authentication verifier (TAV). The signature verification algorithm
is as follows:

1. Let
(
ǫ1 , . . . , ǫν

)
be the received signature message. The padding

(
ω1 , . . . , ωκ

)

may have also been optionally received.

2. Let ξi = Pi(ǫ1 , . . . , ǫν ), 1 ≤ i ≤ µ. The plain signature message is (ξ1 , . . . , ξµ).
The public key signature verification table V contains the information re-
quired in this step.

3. If the signature authentication table A is available, then the authentication of
the plain message can be verified by testing whether S

i

(
ξ
1
, . . . , ξ

µ
, ω

1
, . . . , ω

κ

)
=

ǫi , 1 ≤ i ≤ λ; otherwise, a public authority TAV, that is responsible for sig-
nature authentication ascertainment, may be approached.

4 Complexity Analysis of Computing Left Inverse
Mappings of Multivariate Injective Mappings and
of Computing Right Inverse Mappings of Mul-

tivariate Surjective Mappings

Model theory of fields and polynomial algebras is extensively studied in
mathematical logic [12, 14, 20, 35, 36]. Let F be a field, and let ARITH-EXP(F)
be the set of arithmetic expressions without quantifiers, obtained by collect-
ing the expressions involving any number of finitely many variables, con-
structed using parentheses and the binary or unary arithmetic operators of
addition +, subtraction −, multiplication ·, possibly division /, exponenti-
ation k, where k is a positive integer, and binary valued relational operator
= (and possibly other relational operators such as <, >, ≤ and ≥). The
relational operators allow construction of assertions that evaluate to any-
one of the special symbolic constants false and true, represented by 0
and 1, respectively. In the sequel, the variables assume values from F, the
arithmetic expressions evaluate to values in F, as defined by the arithmetic
operations in F, and the assertions evaluate to values in {0, 1}. A variable
taking values in {0, 1} is a boolean variable. The arithmetic expressions in
ARITH-EXP(Z2) are boolean expressions. For any field F, a boolean variable
x can be obtained from the equation x2−x = 0. For boolean variables x and
y, ¬x can be represented by 1−x, x∧y by x ·y, x∨y by 1−(1−x) ·(1−y),
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x⊕y by (x−y)2, x → y by 1−x ·(1−y), and x ↔ y by 1−(x−y)2, where ¬
denotes the logical “negation”, ∧ the logical “and”, ∨ the logical “or”, ⊕ the
logical “exclusive or”, → the logical “implies”, and ↔ the logical “implies
and is implied by”. The inequality operator, denoted by 6=, is a secondary
binary operator defined as the logical negation of the equality operator. Let
ARITH-EXP

Q
(F) be the set of arithmetic expressions in which some (none,

some or all) variables are constrained by “existential” ∃ or “universal” ∀
quantifiers. A variable constrained by a quantifier is called a bound variable.
A variable that is not bound is called a free variable. An arithmetic expres-
sion in which all the variables are free is a quantifier free arithmetic expres-
sion, i.e., an expression in ARITH-EXP(F). A quantified arithmetic expres-
sion is in prenex normal form, if all the quantifiers occur before the otherwise
quantifier free arithmetic expression, i.e, a quantified arithmetic expression
of the form ∀y

1
. . . ∀y

k
1
∃x

1
. . . ∀y

k
i−1

+1
. . . ∀y

k
i
∃x

i
. . . ∀y

k
m−1

+1
. . . ∀y

km
∃x

m

∀y
km+1

. . . ∀y
n

f(x
1
, . . . , x

m
, y

1
, . . . , y

n
), where m and n are positive inte-

gers, and k
i
, for 1 ≤ i ≤ m, are nonnegative integers such that k

i
≤ k

i+1 ,
for 1 ≤ i ≤ m − 1, and km ≤ n. The variables y

j
, 1 ≤ j ≤ n, are

independent variables, as they are bound to universal quantifiers. The
variable x

i
depends on the variables y

j
, 1 ≤ j ≤ k

i
, 1 ≤ i ≤ m, and

is a dependent bound variable. A tuple (a1 , . . . , ai
, b1 , . . . , bk

i
) ∈ F

i+k
i ,

1 ≤ i ≤ m, is feasible to a quantified arithmetic expression in prenex nor-
mal form with no free variables as described before, if either i = m and
f(a1 , . . . , am , b1 , . . . , bkm , y

km+1
, . . . , yn) evaluates to 1, for y

km+1
, . . . , yn

∈ F, or 1 ≤ i ≤ m−1 and each tuple (a
1
, . . . , a

i
, x

i+1
, b

1
, . . . , b

k
i
, y

k
i
+1
, . . . , y

k
i+1

),

for y
k
i
+1
, . . . , y

k
i+1

∈ F, and for some x
i+1 ∈ F, that may depend on

a1 , . . . , ai
, b1 , . . . , bk

i
, y

k
i
+1
, . . . , y

k
i+1

∈ F is feasible. If for every b1 , . . . , bk1
∈

F, there exists a1 ∈ F, such that the tuple (a1 , b1 , . . . , bk1
) is feasible,

then the given instance of binary valued quantified arithmetic expression
is satisfiable. The evaluation problem for quantified boolean expressions
in prenex normal form with no free variables in ARITH-EXP

Q
(F) is to find

whether the given input instance is satisfiable. Let ARITH-EXP
Q−SAT

(F) ⊆
ARITH-EXP

Q
(F) be the set of satisfiable binary valued quantified arith-

metic expressions (i.e., quantified arithmetic assertions) in prenex normal
form with no free variables that evaluate to true. Let B

Q
and B

Q−SAT
be

ARITH-EXP
Q
(Z2) and ARITH-EXP

Q−SAT
(Z2), respectively. By the previous

discussion, every boolean expression in B
Q
, analogously in B

Q−SAT
, can be

represented by some arithmetic expression in ARITH-EXPQ(F), analogously
in ARITH-EXPQ−SAT(F), with equality binary relation, for any field F. The
evaluation problem for quantified boolean expressions in prenex normal form
with no free variables in B

Q
is PSPACE-complete, where PSPACE is the set

of formal languages acceptable in polynomial space [25].
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4.1 Constraint Satisfaction Problem

Let ∀y1 . . . ∀y
k
1
∃x1 . . . ∀y

k
i−1

+1
. . . ∀y

k
i
∃xi . . . ∀y

k
m−1

+1
. . . ∀y

km
∃xm

∀y
km+1

. . . ∀y
n
f(x

1
, . . . , x

m
, y

1
, . . . , y

n
) be an instance in ARITH-EXP

Q−SAT
(F),

where m and n are positive integers, and k
i
, for 1 ≤ i ≤ m, are nonneg-

ative integers such that k
i
≤ k

i+1 , for 1 ≤ i ≤ m − 1, and km ≤ n. A
tuple (a1 , . . . , ar , b1 , . . . , bkr ) ∈ F

r+kr , 1 ≤ r ≤ m, is functionally feasible
by quantifier free arithmetic expressions to the given constraint satisfaction
problem, if there exist quantifier free arithmetic expressions g1(y1 , . . . , yk1

)

and g
i
(x1 , . . . , xi−1 , y1 , . . . , yk

i
), 2 ≤ i ≤ m, in ARITH-EXP(F), such that

the following holds: ∀y1 . . . ∀yn f(x1 , . . . , xm, y1 , . . . , yn) = true, where
x

1
= g

1
(y

1
, . . . , y

k
1
), x

i
= g

i
(x

1
, . . . , x

i−1
, y

1
, . . . , y

k
i
), 2 ≤ i ≤ m, g

1
(b

1
, . . . , b

k
1
) =

a1 and gi(a1 , . . . , ai−1 , b1 , . . . , bk
i
) = ai , 2 ≤ i ≤ r. It can be observed that for

a finite field F, a feasible tuple is also functionally feasible by quantifier
free arithmetic expressions. A solution to the constraint satisfaction prob-
lem is to find quantifier free arithmetic expressions, if and when they exist,
g1(y1 , . . . , yk1

) for x1 and g
i
(x1 , . . . , xi−1 , y1 , . . . , yk

i
) for x

i
, 2 ≤ i ≤ m,

such that for all y1 . . . yn ∈ F, f(x1 , . . . , xm , y1 , . . . , yn) = 1, where
x

1
= g

1
(y

1
, . . . , y

k1
) and x

i
= g

i
(x

1
, . . . , x

i−1
, y

1
, . . . , y

k
i
), for 2 ≤ i ≤ m. The

constraint satisfaction problem is feasible, if it has a solution in quantifier
free arithmetic expressions.

Theorem 1 The constraint satisfaction problem for binary valued instances
in prenex normal form with no free variables in ARITH-EXP

Q−SAT
(F) is

PSPACE-hard.

Proof. Let

∀y
1
. . . ∀y

k
1
∃x

1
. . . ∀y

k
m−1

+1
. . . ∀y

km
∃x

m
∀y

km+1
. . . ∀y

n
f(x

1
, . . . , x

m
, y

1
, . . . , y

n
)

where m and n are positive integers and k
i
, 1 ≤ i ≤ m, are integers such

that 0 ≤ k
i
≤ k

i+1 ≤ n, 1 ≤ i ≤ m− 1, be a given instance of binary valued
quantified boolean expression with no free variables in BQ for the evaluation
problem. Let

∃w
1

∀y
1
. . . ∀y

k
1
∃x

1
. . . ∀y

k
m−1

+1
. . . ∀y

km
∃x

m
∀y

km+1
. . . ∀y

n

∃t1 . . . ∃t
k
1
∀v1 . . . ∃t

k
m−1

+1
. . . ∃t

km
∀vm ∃t

km+1
. . . ∃tn

[ w
1
∧ f(x

1
, . . . , x

m
, y

1
, . . . , y

n
) ] ∨ [ (¬w

1
) ∧ (¬f(v

1
, . . . , v

m
, t

1
, . . . , t

n
)) ]

be an instance to the constraint satisfaction problem with no free variables,
which can be easily shown to be in BQ−SAT , since feasibility coincides with
functional feasibility by arithmetic expressions for Z2 . The input binary val-
ued quantified boolean expression evaluates to 1 if and only if w1 is 1 in any
solution to the constructed instance of the constraint satisfaction problem.
Now, as discussed at the beginning of the section, the field Z2 , together with
all its arithmetic and logical operations, can be emulated by the arithmetic
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operations and equality operator with any field F. Thus, the constraint sat-
isfaction problem for ARITH-EXP

Q−SAT
(F), which includes equivalent binary

valued quantified arithmetic expressions for those in B
Q−SAT

, is PSPACE-
hard. �

4.2 Quantifier Elimination Problem

Let P(F) be a set of parametric subsets of F, parametrized by variables as-
suming values in F, such that the binary valued characteristic functions of
the sets are assertions in ARITH-EXP(F). For an instance in ARITH-EXPQ(F),
the quantifier elimination problem for a given instance is to compute, for
x

1
, . . . , x

i−1
, y

1
, . . . , y

k
i
∈ F, sets G

i
(x

1
, . . . , x

i−1
, y

1
, . . . , y

k
i
) in P(F), 1 ≤ i ≤

m, such that
{
x

i
∈ F : (x

1
, . . . , x

i
, y

1
, . . . , y

k
i
) is feasible to the given instance

}

= G
i
(x

1
, . . . , x

i−1
, y

1
, . . . , y

k
i
) , 1 ≤ i ≤ m. If F is the field of real numbers,

with the set of binary relations {=, <, ≤, >, ≥} and the set of constants
{0, 1}, then the emptiness testing of parametric subsets of Fn, for an arbi-
trary positive integer n, where the characteristic functions of the parametric
subsets are binary valued quantified arithmetic expressions, is decidable (or
computable), and quantifier elimination is possible, i.e., equivalent quan-
tifier free arithmetic assertions can be computed for the quantified arith-
metic assertions as characteristic functions for the parametric subsets of Fn

[12, 14, 35, 47]. Thus, ARITH-EXP
Q
(F) admits quantifier elimination, and

the sets of feasibility tuples for instances in ARITH-EXP
Q
(F) have charac-

teristic functions in ARITH-EXP(F), that can be computed by an algorithm.
Set solutions can be enumerated by backtracking method [26]. By the same
proof of Theorem 1, the quantifier elimination problem can be shown to be
PSPACE-hard.

Theorem 2 The constraint satisfaction problem for binary valued instances
in prenex normal form with no free variables in ARITH-EXP

Q−SAT
(F), that

have unique solutions, is PSPACE-hard.

Proof. Let

∀y
1
. . . ∀y

k
1
∃x

1
. . . ∀y

k
m−1

+1
. . . ∀y

km
∃x

m
∀y

km+1
. . . ∀y

n
f(x

1
, . . . , x

m
, y

1
, . . . , y

n
)

be an instance in B
Q
for the quantifier elimination problem in prenex normal

form with no free variables. Let X
i
(x

1
, . . . , x

i
, y

1
, . . . , y

k
i
) be the characteris-

tic function of the set G
i
(x

1
, . . . , x

i−1
, y

1
, . . . , y

k
i
), for x

1
, . . . , x

i
, y

1
, . . . , y

k
i
∈

Z
2
, 1 ≤ i ≤ m. LetX

i, b
(x

1
, . . . , x

i−1
, y

1
, . . . , y

k
i
) =X

i
(x

1
, . . . , x

i−1
, b, y

1
, . . . , y

k
i
),

for x
1
, . . . , x

i−1
, y

1
, . . . , y

k
i
∈ Z

2
, b ∈ Z

2
, 1 ≤ i ≤ m. In the remaining part of

the proof, the sets Gi(x1 , . . . , xi−1 , y1 , . . . , yk
i
) are represented by the pair of

boolean functions X
i, b

(x
1
, . . . , x

i−1
, y

1
, . . . , y

k
i
), for x

1
, . . . , x

i−1
, y

1
, . . . , y

k
i
∈

Z
2
, b ∈ Z

2
, 1 ≤ i ≤ m. Let the following instance to the constraint satisfaction
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problem be considered:

∀y1 . . . ∀y
k
1

∃v1, 0 ∃v1, 1 ∀x1 . . . ∀y
k
i−1

+1
. . . ∀y

k
i

∃vi, 0 ∃vi, 1 ∀xi ∀yk
i
+1

. . . ∀y
k
i+1

. . . ∀y
k
m−1

+1
. . . ∀y

km
∃v

m, 0
∃v

m, 1
∀x

m
∀y

km+1
. . . ∀y

n

m−1∧

i=1

{ [
(x

i
= 0) →

[
v
i, 0

↔ (v
i+1, 0

∨ v
i+1, 1

)
] ]

∧

[
(xi = 1) →

[
vi, 1 ↔ (vi+1, 0 ∨ vi+1, 1)

] ] } ∧

{ [
(x

m
= 0) →

[
v
m, 0

↔ f(x
1
, . . . , x

m
, y

1
, . . . , y

n
)

] ]
∧

[
(x

m
= 1) →

[
v
m, 1

↔ f(x
1
, . . . , x

m
, y

1
, . . . , y

n
)

] ] }
(1)

The boolean functions X
m, b

(x
1
, . . . , x

m−1
, y

1
, . . . , y

km
), that encode the in-

dicator function of the set G
m
(x

1
, . . . , x

m−1
, y

1
, . . . , y

km
), are the solutions to

the boolean variables v
m, b

, b ∈ Z2 , respectively, for x1
, . . . , x

m−1
, y

1
, . . . , y

km
∈

Z
2
, for the following instance of constraint satisfaction problem:

∀y
1
. . . ∀y

k
1
∀x

1
. . . ∀y

k
m−1

+1
. . . ∀y

km
∃v

m, 0
∃v

m, 1
∀x

m
∀y

km+1
. . . ∀y

n

{ [
(xm = 0) →

[
vm, 0 ↔ f(x1 , . . . , xm , y1 , . . . , yn)

] ]
∧

[
(xm = 1) →

[
vm, 1 ↔ f(x1 , . . . , xm , y1 , . . . , yn)

] ] }

After obtaining the boolean functions X
i+1, b

(x
1
, . . . , x

i
, y

1
, . . . , y

k
i+1

), b ∈ Z
2
,

of G
i+1

(x
1
, . . . , x

i
, y

1
, . . . , y

k
i+1

), the boolean functionsX
i, b

(x
1
, . . . , x

i−1
, y

1
, . . . , y

k
i
),

b ∈ Z2 , of Gi(x1 , . . . , xi−1 , y1 , . . . , yk
i
), for x1 , . . . , xi , y1 , . . . , yk

i+1
∈ F, are the

solutions to the boolean variables v
i, b
, 1 ≤ i ≤ m − 1, b ∈ Z2 , respectively,

for the following instance of constraint satisfaction problem:

∀y
1
. . . ∀y

k1
∀x

1
. . . ∀y

k
i−1

+1
. . . ∀y

k
i

∃v
i, 0

∃v
i, 1

∀x
i
∀y

k
i
+1

. . . ∀y
k
i+1

{ [
(x

i
= 0) →

[
v
i, 0

↔
(
X

i+1, 0
(x

1
, . . . , x

i
, y

1
, . . . , y

k
i+1

) ∨ X
i+1, 1

(x
1
, . . . , x

i
, y

1
, . . . , y

k
i+1

)
) ] ]

∧
[

(x
i
= 1) →

[
v
i, 1

↔
(
X

i+1, 0
(x

1
, . . . , x

i
, y

1
, . . . , y

k
i+1

) ∨ X
i+1, 1

(x
1
, . . . , x

i
, y

1
, . . . , y

k
i+1

)
) ] ] }

In summary, the boolean functionsX
i, b

(x1 , . . . , xi−1 , y1 , . . . , yk
i
), that encode

the indicator function of the set G
i
(x

1
, . . . , x

i−1
, y

1
, . . . , y

k
i
), are the solutions

to the boolean variables v
i, b
, b ∈ Z2 , respectively, for x1

, . . . , x
i−1

, y
1
, . . . , y

k
i
∈

Z
2
and 1 ≤ i ≤ m, in the proposed instance of constraint satisfaction prob-

lem. The actual solutions for v
i, b

can also depend on v
j, c

, for b, c ∈ Z2 , 1 ≤
j ≤ i− 1 and 2 ≤ i ≤ m, in the proposed instance of the constraint satisfac-
tion problem. Nonetheless, the boolean formulasX

i, b
(x

1
, . . . , x

i−1
, y

1
, . . . , y

k
i
)

are assumed to be the main solutions for v
i,,b

, for b ∈ Z2 and 1 ≤ i ≤ m, as
these are the solutions of the instance for the quantifier elimination problem,
which is reduced to the instance of the constraint satisfaction problem. �
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In the proof of Theorem 2, for avoiding the possibility of dependence
of a solution for v

i, 1 on v
i, 0 , the formulas in the above are encoded treat-

ing the variables in pairs, representing v
i, b
, b ∈ Z2 , by a single variable

v
i
= (v

i, 0 , vi, 1), performing the required computations in Z
2
2
, for 1 ≤ i ≤ m.

Thus, the encoding contains only a single dependent variable v
i
, 1 ≤ i ≤ m,

and either component of it depends only on the variables constrained by
quantifiers occurring before the lone existential quantifier. The components
v
i, x

i
are replaced by a projection T (x

i
, v

i
), which can further be chosen to

be linear in v
i
for each fixed x

i
, for 1 ≤ i ≤ m, to avoid duplication. There is

a unique solution separately for each component T (x
i
, v

i
) of the dependent

variable v
i
, for 1 ≤ i ≤ m. Now, as discussed in the beginning of the sec-

tion, the field Z2 , together with all its arithmetic and logical operations, can
be emulated by the arithmetic operations and equality operator with any
field F. The characteristic functions of set solutions to the quantifier elimi-
nation problem for binary valued instances in prenex normal form with no
free variables in ARITH-EXPQ(F), which includes BQ , are unique. Thus, the
constraint satisfaction problem for instances in ARITH-EXPQ−SAT(F), that
admit unique solutions, is PSPACE-hard, since the stated set of instances
also contains those instances encoding the characteristic functions for quan-
tifier elimination problem for instances in B

Q
.

4.3 Simultaneous Multivariate Polynomial Equations over F

Let l, m, m ∈ N andf
i
(x1 , . . . , xm , y1 , . . . , yn) ∈ ARITH-EXP(F), for 1 ≤

i ≤ l, be arithmetic expressions. A system of (multivariate) polynomial
equations is the following:

f
i
(x1 , . . . , xm , y1 , . . . , yn) = 0 , 1 ≤ i ≤ l , (2)

where y
j
, 1 ≤ j ≤ n, are independent variables and x

i
, 1 ≤ i ≤ m, are

dependent variables, assuming values from F, both specified as part of an
instance. A tuple (a1 , . . . , ai

, b1 , . . . , bn) is feasible to (2), if either (1)
i = m and (2) holds with xr = ar , for 1 ≤ r ≤ m, and y

j
= b

j
, for

1 ≤ j ≤ n, or (2) 1 ≤ i ≤ m − 1, and (a1 , . . . , ai
, a

i+1 , b1 , . . . , bn) is
feasible for some a

i+1 depending on (a1 , . . . , ai
, . . . , b1 , . . . , bn). Let P(F)

be the collection of admissible subsets of F, whose indicator functions are
in ARITH-EXP(F). A complete solution to (2) are parametric maximal sets
G

i

(
a

1
, . . . , a

i−1
, y

1
, . . . , y

n

)
∈ P

(
F
)
, such that G

i

(
a

1
, . . . , a

i−1
, y

1
, . . . , y

n

)
=

{
a

i
∈ F :

(
a

1
, . . . , a

i−1
, a

i
, y

1
, . . . , y

n

)
is feasible

}
, for 1 ≤ i ≤ m.

In the above system, the ordering of the variables x1 , . . . , xm appears
specified. However, this ordering can be made innocuous by additional con-
straints as follows:

w2
i, j

= w
i, j

, 1 ≤ i, j ≤ m
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m∑

j=1

wi, j = 1 and

m∑

j=1

m∏

k = 1
k 6= j

(1 − w
i, k

) = 1 , 1 ≤ i ≤ m

m∑

i=1

wi, j = 1 and

m∑

i=1

m∏

k = 1
k 6= i

(1 − w
k, j

) = 1 , 1 ≤ j ≤ m








w
1, 1

w
1, 2

. . . w
1, m

w
2, 1

w
2, 2

. . . w
2, m

...
...

...
...

w
m, 1

w
m, 2

. . . w
m, m















x
1

x
2

...
x

m







−








x
m+1

x
m+2

...
x

2m








=








0
0
...
0








, and

f
i

(
x

m+1
, . . . , x

2m
, y

1
, . . . , y

n

)
= 0 , 1 ≤ i ≤ l

where y
j
, 1 ≤ j ≤ n, are independent variables, and all the remaining

variables are dependent variables. The ordering is concealed by allowing the
system to choose an appropriate ordering of the variables x

m+1 , . . . , x2m ,
while allowing x1 , . . . , xm to appear in the specified order. In the above set
of constraints, for each row of the matrix

[
w

i, j

]

1≤i, j≤m
, for the constraints

on i, 1 ≤ i ≤ m, and for each column of the matrix
[
w

i, j

]

1≤i, j≤m
, for the

constraints on j, 1 ≤ j ≤ m, the first constraint requires at least one entry
of 1, and the second constraint requires (m−1) entries of 0, in the respective
row or column, and the matrix

[
w

i, j

]

1≤i, j≤m
is a permutation matrix.

Theorem 3 The quantifier elimination problem for instances in ARITH-EXP
Q
(Z2)

is polynomial time subroutine equivalent to the problem of solving systems
of multivariate polynomial equations, for the field Z2 .

Proof. Let

∀y1 . . . ∀y
k
1
∃x1 . . . ∀y

k
m−1

+1
. . . ∀y

km
∃xm ∀y

km+1
. . . ∀yn f(x1 , . . . , xm , y1 , . . . , yn)

be an instance in B
Q
in prenex normal form with no free variables, for some

positive integers m and n, and nonnegative integers k
i
, such that k

i−1 ≤ k
i
≤

n, for 1 ≤ i ≤ n, where k0 = 0. Let χ
m−i+1, a(x1 , . . . , xm−i

, y1 , . . . , yk
m−i+1

) ∈

ARITH-EXP(Z2) be the solution for v
m−i+1, a , for a ∈ Z2 and 1 ≤ i ≤ m, such

that the following holds:

v
m,a

↔ ∀y
km+1

. . . ∀y
n

f(x
1
, . . . , x

m−1
, a, y

1
, . . . , y

n
) , and

v
m−i+1, a

↔ ∀y
k
m−i+1

+1
. . . ∀y

k
m−i+2

[

χ
m−i+2, 0

(x
1
, . . . , x

m−i
, a, y

1
, . . . , y

k
m−i+2

) ∨

χ
m−i+2, 1

(x
1
, . . . , x

m−i
, a, y

1
, . . . , y

k
m−i+2

)
]

for a ∈ Z
2

and 2 ≤ i ≤ m







(3)
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The above equations can also be expressed as follows:

¬v
m, a

↔ ∃u
km+1

. . . ∃u
n

¬f(x
1
, . . . , x

m−1
, a, y

1
, . . . , y

km
, u

km+1
, . . . , u

n
) , and

¬v
m−i+1, a

↔ ∃u
k
m−i+1

+1
. . . ∃u

k
m−i+2

[

¬χ
m−i+2, 0

(x
1
, . . . , x

m−i
, a, y

1
, . . . , y

k
m−i+1

, u
k
m−i+1

+1
, . . . , u

k
m−i+2

) ∧

¬χ
m−i+2, 1

(x
1
, . . . , x

m−i
, a, y

1
, . . . , y

k
m−i+1

, u
k
m−i+1

+1
, . . . , u

k
m−i+2

)
]

for a ∈ Z
2

and 2 ≤ i ≤ m

Let G
m, a, j, b

(x1 , . . . , xm−1 , y1 , . . . , ykm
, u

km+1
, . . . , u

j−1), for the ground

case xm = a and u
j
= b, for a, b ∈ Z2 and km + 1 ≤ j ≤ n, be indica-

tor functions of complete solutions in the following system of simultaneous
multivariate equations:

f(x
1
, . . . , x

m−1
, a, y

1
, . . . , y

km
, u

km+1
, . . . , u

n
) = 0

Then, the indicator function, χm, a(x1 , . . . , xm−1 , y1 , . . . , ykm
), which is the

solution for vm, a , for a ∈ Z2 , is given by

¬
[
G

m,a, km+1, 0
(x

1
, . . . , x

m−1
, y

1
, . . . , y

km
) ∨ G

m, a, km+1, 1
(x

1
, . . . , x

m−1
, y

1
, . . . , y

km
)
]

Now, for 1 ≤ i ≤ m−1, after obtaining χ
m−i+1, a(x1 , . . . , xm−i

, y1 , . . . , yk
m−i+1

),

letG
m−i, a, j, b

(x1 , . . . , xm−i−1 , y1 , . . . , yk
m−i

, u
k
m−i

+1
, . . . , u

j−1), for the ground

case x
m−i

= a and u
j
= b, for a, b ∈ Z2 and k

m−i
+ 1 ≤ j ≤ k

m−i+1 , be indi-
cator functions of complete solutions in the following system of simultaneous
multivariate equations:

χ
m−i+1, 0

(x
1
, . . . , x

m−i
, y

1
, . . . , y

k
m−i

, u
k
m−i

+1
, . . . , u

k
m−i+1

) = 0 , and

χm−i+1, 1(x1 , . . . , xm−i , y1 , . . . , yk
m−i

, u
k
m−i

+1
, . . . , u

k
m−i+1

) = 0

where x
m−i

is set to the ground value a .

Then, the indicator function, χ
m−i, a

(x1 , . . . , xm−i−1 , y1 , . . . , yk
m−i

), which

is the solution for v
m−i, a

, for the ground instance x
m−i

= a and a ∈ Z2 , is
given by

[
¬G

m−i, a, k
m−i

+1, 0
(x

1
, . . . , x

m−i−1
, y

1
, . . . , y

k
m−i

)
]

∧
[
¬G

m−i, a, k
m−i

+1, 1
(x

1
, . . . , x

m−i−1
, y

1
, . . . , y

k
m−i

)
]

for 1 ≤ i ≤ m − 1. Thus, finding complete solutions for systems of simul-
taneous multivariate equations over Z2 is PSPACE-hard, as it is logically
equivalent to the quantifier elimination problem. �

For a positive integer k and bit sequences (u1 , . . . , uk
), (t1 , . . . , tk) ∈ Z

k
2

let “�” be the “successor or equal to” relation with respect to the dictionary
ordering of finite binary sequences, such that the comparison of correspond-
ing bits is performed starting from least subscript index and up towards
higher subscript indexes, as follows:

(u
1
, . . . , u

k
) � (t

1
, . . . , t

k
) exactly when the following holds :

(
(u

1
= 1) ∧ (t

1
= 0)

)
∨

k∨

i=2

(
i−1∧

j=1

(u
j
= t

j
) ∧ (u

i
= 1) ∧ (t

i
= 0)

)
∨

k∧

j=1

(u
j
= t

j
)
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Now, the prenex normal form equivalent formula for (3) is the following:

∀y1 . . . ∀y
km

∃vm,a∃ukm+1, a
. . . ∃un, a ∀z

km+1
. . . ∀zn

[

︸︷︷︸

0

(

︸︷︷︸

1

[ v
m,a

∧
n∧

j=km+1

(u
j, a

= 0) ] ∧

[ Gm(x1 , . . . , xm−1 , a, y1 , . . . , ykm
, z

km+1
, . . . , zn) ]

)

︸︷︷︸

1
∨ (

︸︷︷︸

2

[ ¬v
m, a

] ∧ [ ¬G
m
(x

1
, . . . , x

m−1
, a, y

1
, . . . , y

km
, u

km+1, a
, . . . , u

n, a
) ] ∧

[
(n = km) ∨ [ (z

km+1
, . . . , zn) � (u

km+1, a
, . . . , un, a) ] ∨

[ G
m
(x

1
, . . . , x

m−1
, a, y

1
, . . . , y

km
, z

km+1
, . . . , z

n
) ]

] )

︸︷︷︸

2

]

︸︷︷︸

0

(4)

where

G
m
(x

1
, . . . , x

m−1
, x

m
, y

1
, . . . , y

km
, y

km+1
, . . . , y

n
) =

f(x
1
, . . . , x

m−1
, x

m
, y

1
, . . . , y

km
, y

km+1
, . . . , y

n
)

The solutions for the dependent variables bound by the existential quantifiers
are unique. Let χ

m−i+2, a(x1 , . . . , xm−i+1 , y1 , . . . , yk
m−i+1

, y
k
m−i+1+1

, . . . , y
k
m−i+2

)

be the solution for the variable v
m−i+2, a , for 2 ≤ i ≤ m and a ∈ Z2 , and let

G
m−i+1

(x
1
, . . . , x

m−i
, x

m−i+1
, y

1
, . . . , y

k
m−i+1

, y
k
m−i+1

+1
, . . . , y

k
m−i+2

) =
(

χ
m−i+2, 0

(x
1
, . . . , x

m−i+1
, y

1
, . . . , y

k
m−i+1

, y
k
m−i+1

+1
, . . . , y

k
m−i+2

) ∨

χm−i+2, 1(x1 , . . . , xm−i+1 , y1 , . . . , yk
m−i+1

, y
k
m−i+1

+1
, . . . , y

k
m−i+2

)
)

and

∀y
1
. . . ∀y

k
m−i+1

∃v
m−i+1, a

∃u
k
m−i+1

+1, a
. . . ∃u

k
m−i+2

, a
∀z

k
m−i+1

+1
. . . ∀z

k
m−i+2

[

︸︷︷︸

0

(

︸︷︷︸

1

[ v
m−i+1, a

∧

k
m−i+2∧

j=k
m−i+1

+1

(u
j, a

= 0) ] ∧

[ Gm−i+1(x1 , . . . , xm−i , a, y1 , . . . , yk
m−i+1

, z
k
m−i+1

+1
, . . . , z

k
m−i+2

) ]
)

︸︷︷︸

1
∨ (

︸︷︷︸

2

[ ¬v
m−i+1, a

] ∧

[ ¬G
m−i+1

(x
1
, . . . , x

m−i
, a, y

1
, . . . , y

k
m−i+1

, u
k
m−i+1

+1, a
, . . . , u

k
m−i+2

, a
) ] ∧

[
(k

m−i+2
= k

m−i+1
) ∨ [ (z

k
m−i+1

+1
, . . . , z

k
m−i+2

) � (u
k
m−i+1

+1, a
, . . . , u

k
m−i+2

, a
) ]

∨ [ Gm−i+1(x1 , . . . , xm−i , a, y1 , . . . , yk
m−i+1

, z
k
m−i+1

+1
, . . . , z

k
m−i+2

) ]
]

)

︸︷︷︸

2

]

︸︷︷︸

0

(5)
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for 2 ≤ i ≤ m and a ∈ Z2 . Again, the solutions for the dependent vari-
ables bound by the existential quantifiers are unique. This discussion is
summarized in the following:

Corollary 3.1 The constraint satisfaction problem for instances of the form

∀y
1
. . . ∀y

k
∃x

1
. . . ∃x

m
∀y

k+1
. . . ∀y

n
f(x

1
, . . . , x

m
, y

1
, . . . , y

n
)

that are in ARITH-EXP
Q−SAT

(Z2), where k, m and n are positive integers,
such that 1 ≤ k ≤ n and x

i
, for 1 ≤ i ≤ m, admit unique solutions, is

PSPACE-hard.

Proof. Follows from the discussion preceding the statement. �

4.4 Parametric Multivariate Polynomial Mappings and their
Nonparametric Inverses

In this subsection, let F be a finite field. For integers l ≥ 0, m ≥ 1 and
n ≥ 1, a parametric multivariate polynomial mapping, with z1 , . . . , zl as
parameters, is η(z; x) = (η1(z; x), . . . , ηn(z; x)), where z = (z1 , . . . , zl),
x = (x1 , . . . , xm), and η

i
(z; x) ∈ F[z1 , . . . , zl , x1 , . . . , xm

], for 1 ≤ i ≤ n.
A parametric left inverse η(-L)(z; y), y = (y1 , . . . , yn), of a parametric mul-
tivariate polynomial mapping η(z; x) on X ⊆ F

l × F
m is as follows: for

every z ∈ F
l, x ∈ F

m and y ∈ F
n, such that (z1 , . . . , zl , x1 , . . . , xm)

∈ X, if η(z; x) = y, then η(-L)(z; y) = x. A parametric right inverse
η(-R)(z; y) on Y ⊆ F

l × F
n of a parametric multivariate polynomial map-

ping η(z; x) is as follows: for every z ∈ F
l, x ∈ F

m and y ∈ F
n, such

that (z1 , . . . , zl , y1 , . . . , yn) ∈ Y , if η(-R)(z; y) = x, then η(z; x) = y.
For z ∈ F

l, let S(-L)

η
(z; x), x ∈ F

m, and S(-R)

η
(z; y), y ∈ F

n, be as fol-

lows: S(-L)

η
(z; x) = {(z1 , . . . , zl , y1 , . . . , yn) ∈ F

l × F
n : η(z; x) = y}, and

S(-R)

η
(z; y) = {(z1 , . . . , zl , x1 , . . . , xm) ∈ F

l × F
m : η(z; x) = y}. Now,

the following statements hold: (1) for z ∈ F
l and x ∈ F

m, the set
S(-L)

η
(z; x) contains exactly one element; (2) for z ∈ F

l and y ∈ F
n, the

set S(-R)

η
(z; y) may be empty or nonempty; (3) a parametric left inverse

η(-L)(z; y) can be defined on the set
⋃

(z1 , ..., zl , x1 , ..., xm )∈X S(-L)

η
(z; x) if and

only if S(-L)

η
(z; x) ∩ S(-L)

η
(z; x′) = ∅, for (z

1
, . . . , z

l
, x

1
, . . . , x

m
) ∈ X and

(z
1
, . . . , z

l
, x′

1
, . . . , x′

m
) ∈ X, whenever x 6= x′; and (4) a parametric right

inverse η(-R)(z; y) can be defined on the set Y if and only if S(-R)

η
(z; y) 6= ∅,

for every (z1 , . . . , zl , y1 , . . . , yn) ∈ Y . If a parametric left inverse (similarly,
a parametric right inverse) of a parametric multivariate polynomial mapping
does not depend on the parameters, then it is nonparametric. Let

T (-L)

η
(x) =

⋃

(z1 , ..., zl , x1 , ..., xm)∈X

{
y ∈ F

n : η(z; x) = y
}

for fixed x = (x
1
, . . . , x

m
) ∈ F

m , and
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T (-R)
η

(y) =
⋂

(z
1
, ..., z

l
, y

1
, ..., yn )∈Y

{
x ∈ F

m : η(z; x) = y
}

for fixed y = (y1 , . . . , yn) ∈ F
n

Then, on the set
⋃

(z1 , ..., zl , x1 , ..., xm )∈X S(-L)

η
(z; x), a nonparametric left in-

verse η(-L)(y) can be defined if and only if T (-L)

η
(x) ∩ T (-L)

η
(x′) = ∅, for

x, x′ ∈ F
m, x 6= x′, and on the set Y , a nonparametric right inverse η(-R)(y)

can be defined if and only if T (-R)

η
(y) 6= ∅, for (z1 , . . . , zl , y1 , . . . , yn) ∈ Y

and y ∈ F
n. A parametric inverse is simultaneously a parametric left inverse

and a parametric right inverse. If a parametric inverse does not depend on
the parameters, then it is nonparametric.

Theorem 4 The computational problems of (1) finding nonparametric left
inverses as quantifier free arithmetic expressions of parametric multivariate
polynomial mappings, and (2) nonparametric right inverses as quantifier free
arithmetic expressions of parametric multivariate polynomial mappings, with
specified conditions on the domains of validity, for the instances for which
the stated inverses exist, are both PSPACE-hard.

Proof. Let ∀y
1
. . . ∀y

k
∃w

1
. . . ∃w

m
∀y

k+1
. . . ∀y

n
f(w

1
, . . . , w

m
, y

1
, . . . , y

n
)

∈ B
Q−SAT

, for some positive integers k, m and n, such that k ≤ n, be an
instance for the constraint satisfaction problem, admitting unique solutions
for each of the dependent variables w

i
separately as quantifier free boolean

expressions g
i
(y1 , . . . , yk

) ∈ ARITH-EXP(Z2), for 1 ≤ i ≤ m.

Part (1) The proof is given by subroutine reduction taking one variable
at a time, starting from m down to 1. For w

i
, y

j
∈ Z2 , 1 ≤ i ≤ m and

1 ≤ j ≤ n, let

φ
m
(w

1
, . . . , w

m
, y

1
, . . . , y

n
) = f(w

1
, . . . w

m
, y

1
, . . . , y

n
)

h
m
(w

1
, . . . , w

m
, y

1
, . . . , y

n
) = f(w

1
, . . . w

m−1
, 0, y

1
, . . . , y

n
) ⊕

f(w
1
, . . . w

m−1
, 1, y

1
, . . . , y

n
)

Let ζ(z; x), z = (z1 , . . . , zn−k
) and x = (x1 , . . . , xm+k

), be a parametric

multivariate polynomial mapping from Z
m+k
2

into Z
m+k+1
2

, with parameters
z1 , . . . , zl , where l = n− k, as follows:

ζ
i
(z; x) =







xi , for 1 ≤ i ≤ m− 1 ,
x

i+1
, for m ≤ i ≤ m+ k − 1 ,

h
m
(x

1
, . . . , x

m+k−1
, z

1
, . . . , z

l
) , for i = m+ k ,

(
ζ
m+k

(z; x) ∧ φ
m
(x

1
, . . . , x

m+k
, z

1
, . . . , z

l
)
)

∨
( (

¬ ζ
m+k

(z; x)
)

∧ x
i−k−1

)
,

for i = m+ k + 1 ,

The variables occurring in the above, in comparison with the given instance
of constraint satisfaction problem, are as follows: x

i
= w

i
, for 1 ≤ i ≤ m,

y
j
= x

m+j
, for 1 ≤ j ≤ k, and y

j
= z

j−k
, for k+1 ≤ j ≤ n. Let x, x′ ∈ Z

m+k
2
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and z ∈ Z
n−k
2

be such that ζ(z; x) = ζ(z; x′). If x 6= x′, then it can only
be the case that xm 6= x′

m
. Since ζ

m+k
(z; x) = ζ

m+k
(z; x′), it follows that

hm(x1 , . . . , xm+k−1
, z1 , . . . , zl) = hm(x

′
1
, . . . , x′

m+k−1
, z1 , . . . , zl), and since

ζ
m+k+1

(z; x) = ζ
m+k+1

(z; x′), it follows that xm = x′
m
. Now, a nonparamet-

ric left inverse of ζ is sought, which is valid on a maximal domainX ⊆ Z
m+n
2

,
subject to the following conditions

1. if (x1 , . . . , xm+k
, z1 , . . . , zl) ∈ X, then (x1 , . . . , xm+k

, z′
1
, . . . , z′

l
) ∈

X, for every (z′
1
, . . . , z′

l
) ∈ Z

l
2
;

2. for every (x
m+1 , . . . , xm+k

) ∈ Z
k
2
, there exists (x1 , . . . , xm) ∈ Z

m
2
, such

that (x1 , . . . , xm+k
, z1 , . . . , zl) ∈X, for every (z1 , . . . , zl) ∈ Z

l
2
, where

l = n− k; and

3. a nonparametric left inverse of ζ can be defined on ζ(X).

The left inverse formula is as follows: let ζ(z; x) = y, where y = (y
1
, . . . , y

3m+k
) ∈

Z
m+k+1
2

; then x
i
= y

i
, for 1 ≤ i ≤ m+ k− 1, x

m+k
= (y

m+k
∧ρ

m
(y))∨ ((¬y

m+k
)∧

y
m+k+1

), for some function ρ
m

from Z
m+k+1
2

into Z
2
. The domain X of validity of

the left inverse satisfies the following inclusion:

X ⊇ { (x
1
, . . . , x

m+k
, z

1
, . . . , z

n−k
) ∈ Z

m+n
2

:

x
i
= g

i
(x

m+1
, . . . , x

m+k
) , for 1 ≤ i ≤ m }

and the function ρm satisfies the following:

ρ
m

(
g
1
(y

m+1
, . . . , y

m+k
), . . . , g

m−1
(y

m+1
, . . . , y

m+k
), y

m+1
, . . . , y

m+k
, 1, 0

)
=

¬gm(ym+1 , . . . , ym+k
) , and

ρ
m

(
g
1
(y

m+1
, . . . , y

m+k
), . . . , g

m−1
(y

m+1
, . . . , y

m+k
), y

m+1
, . . . , y

m+k
, 1, 1

)
=

g
m
(y

m+1
, . . . , y

m+k
)

Specification of the conditions on the domain of validity is part of the left inverse
function computational problem, as required by the proof.

Now after obtaining left inverse functions ρi+1 , . . . , ρm , for some index i, where
1 ≤ i ≤ m− 1, the above procedure is repeated with the following

φ
i
(w

1
, . . . , w

i
, y

1
, . . . , y

n
) = f(w

1
, . . . w

m
, y

1
, . . . , y

n
) , where

wj = appropriate solutions from the previous

iterations, for i+ 1 ≤ j ≤ m

hi(w1 , . . . , wm , y1 , . . . , yn) = f(w1 , . . . wi−1 , 0, wi+1 , . . . , wm , y1 , . . . , yn) ⊕

f(w
1
, . . . w

i−1
, 1, w

i+1
, . . . , w

m
, y

1
, . . . , y

n
) ,

where wj = appropriate solutions from

the previous iterations, for i+ 1 ≤ j ≤ m

Let ζ(z; x), z = (z
1
, . . . , z

n−k
) and x = (x

1
, . . . , x

i+k
), be a parametric multivari-

ate polynomial mapping from Z
i+k
2

into Z
i+k+1
2

, with parameters z
1
, . . . , z

l
, where
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l = n− k, as follows:

ζ
j
(z; x) =







x
j
, for 1 ≤ j ≤ i− 1 ,

x
j+1

, for i ≤ j ≤ i + k − 1 ,
hi(x1 , . . . , xi+k−1

, z1 , . . . , zl
) , for j = i+ k ,

(
ζ
i+k

(z; x) ∧ φ
i
(x

1
, . . . , x

i+k
, z

1
, . . . , z

l
)
)

∨
( (

¬ ζ
i+k

(z; x)
)

∧ x
j−k−1

)
,

for j = i+ k + 1 ,

Thus, computing nonparametric left inverses of parametric multivariate poly-
nomial mappings is PSPACE-hard.

Part (2) Let η(z; x), z = (z1 , . . . , zn−k
) and x = (x1 , . . . , xm+k

), be a para-
metric multivariate polynomial mapping from Z

m+k
2

into Z
k+1
2

, with parameters
z
1
, . . . , z

n−k
as follows: η

i
(z; x) = x

m+i
, for 1 ≤ i ≤ k, and η

k+1
(z; x) =

f(x
1
, . . . , x

m+k
, z

1
, . . . , z

n−k
). Now, if η(z; x) = y, where y = (y

1
, . . . , y

k
, 1)

∈ Z
k
2
× {1}, with y

k+1
= 1, then x

i
= y

i
, for 1 ≤ i ≤ k, x

k+i
= g

i
(y

1
, . . . , y

k
), for

1 ≤ i ≤ m, by the uniqueness of the solution for the given instance of constraint
satisfaction problem, and hence, computing nonparametric right inverses of para-
metric multivariate polynomial mappings is PSPACE-hard. �

The construction of parametric injective mappings described in Theorem 4
shows how a general one-to-one mapping from Gm into Gn, where m and n are
positive integers, with m ≤ n, and G is a nonempty subset of a finite field F, can
be obtained: for a carefully chosen bijective mapping P (y) from Gn into itself and
hashing keys fi(x), for x = (x1 , . . . , xm) ∈ Gm and 1 ≤ i ≤ n−m, the argument
vector (f

1
(x), . . . , f

n−m
(x), x

1
, . . . , x

m
) is substituted for y ∈ Gn in P (y). Thus,

Q(x) = P (f
1
(x), . . . , f

n−m
(x), x

1
, . . . , x

m
) is a generic multivariate one-to-one

mapping from Gm into Gn.

5 Conclusions

5.1 Security Analysis

The classical analysis of multivariate simultaneous equations can be applied only
to polynomial equations [12, 14, 34, 35, 36, 47], and the Gröbner basis analysis
[8, 16, 17] cannot be extended to mappings involving functions as exponents. For a
security that is immune to threats from Gröbner basis analysis, parametric injective
mappings from Gµ into Eν , with κ parameters, for G = F

∗, E = F and µ, ν, κ ∈
N, where 1 ≤ µ ≤ ν and F is a finite field, with component mappings taken as
expressions from EXP

(
F ; [x

1
, . . . , x

µ
, ω

1
, . . . , ω

κ
]
)
, restricting values of x

i
and

ω
j
to F

∗, for 1 ≤ i ≤ µ and 1 ≤ j ≤ κ, with one level of exponentiation as described
in section 1.5, are adequate.

The relevance of the complexity analysis described in section 4.4 is as follows:
let x = (x

1
, . . . , x

µ
), ω = (ω

1
, . . . , ω

κ
) and y = (y

1
, . . . , y

ν
). For public key

cryptography, the problem of computing x from the equations Pi(x, ω) = yi , 1 ≤
i ≤ ν, with parameters ω

1
, . . . , ω

κ
, requires computation of nonparametric left

inverse for (x
1
, . . . , x

µ
, ω

1
, . . . , ω

κ
) ∈ F

µ+κ. For digital signature, the problem
of computing y from the equations P

i
(y) = x

i
, 1 ≤ i ≤ µ, y

i
= x

µ+i
, where

S
i
(x, ω) = x

µ+i
, 1 ≤ i ≤ λ, with parameters ω

1
, . . . , ω

κ
, requires computation
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of nonparametric right inverse for (x
1
, . . . , x

µ
, x

µ+1
, . . . , x

ν
, ω

1
, . . . , ω

κ
) ∈ F

ν+κ,
constrained by Si(x, ω) = xµ+i , 1 ≤ i ≤ λ. It can be observed that, for digital
signature, ω could be under control of a trusted authentication verifier (TAV),
which ensures existential unforgeability.

5.2 Summary

In this paper, a new public key data encryption method is proposed, where the
plain and encrypted messages are arrays. The method can also be used for digital
certificate or digital signature applications. The key generation algorithm is partic-
ularly simple, easy and fast, facilitating changes of keys as frequently as required,
and fast algorithms for polynomial multiplication and modular arithmetic [7, 40],
whenever appropriate, can be adapted in the encryption and decryption algorithms.
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