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Abstract. In this paper, we propose a two-round dynamic multi-cast key distri-
bution (DMKD) protocol under the star topology with a central authentication
server. Users can share a common session key without revealing any information
of the session key to the server, and can join/leave to/from the group at any time
even after establishing the session key. Our protocol is scalable because commu-
nication and computation costs of each user are independent from the number
of users. Also, our protocol is still secure if either private key or session-specific
randomness of a user is exposed. Furthermore, time-based backward secrecy is
guaranteed by renewing the session key for every time period even if the ses-
sion key is exposed. We introduce the first formal security definition for DMKD
under the star topology in order to capture such strong exposure resilience and
time-based backward secrecy. We prove that our protocol is secure in our secu-
rity model in the standard model.

keywords: multi-cast key distribution, exposure resilience, star topology, back-
ward secrecy

1 Introduction

HTML 5 is an emerging technology for next generation web applications [BLN+12].
Actually, web browser vendors support this new technology. Google said its Chrome
browser would begin blocking Internet ads using Adobe’s Flash tech, likely prompting
advertisers to abandon the video format [Mar15]. Similarly, Mozilla, the Firefox vendor,
is encouraging developers to adopt HTML5 and not to use Flash [Che15].

In HTML5, we have a simple method using WebRTC [BBJ+15] for a full-mesh real
time communication topology [WW15]. WebRTC provides the confidentiality of real
time transport protocol (RTP) [SCFJ03] by using a key exchange and encrypted trans-
port protocol, DTLS-SRTP [FTR10], which has been suggested in IETF Draft [Res15].
In order to make the full-mesh encrypted communication topology, WebRTC needs full-
mesh DTLS key exchanges to establish all SRTP sessions. In brief, WebRTC clients
must exchange the keys with n − 1 users in the n clients case. This is very inefficient.

? An extended abstract of this paper appeared in ProvSec 2016 [YYK+16].



Such key exchange protocols under the mesh topology are generally called group key
exchange (GKE).

In this paper, we consider the star topology instead of the mesh topology for es-
tablishing the session key. In the star topology, each user communicates with a central
authentication server, and users do not directly communicate with. Thus, it is possi-
ble to reduce costs of clients without depending on n; and therefore, WebRTC clients
can do the key exchange part very efficiently. Key exchange protocols under the star
(or tree) topology are generally called multi-cast key distribution (MKD) or group key
management. Though the star topology can reduce the cost for clients, moving most
of the burden to the server makes the server a natural target for a concentrated attack.
Thus, the star topology is useful if the system is still secure when some part of secret
information of the server is exposed by some attack.

Our Contribution. In this paper, we propose a new provably secure two-round dy-
namic MKD (DMKD) protocol under the star topology with a central authentication
server. Because of the star topology, each user does not directly communicate with other
users. Instead, the central server communicates with users, and distributes information
for establishing the session key. If the server was malicious under the star topology, the
session key could be known for the server by impersonating a user. Thus, we suppose
that the server is honest-but-curious, and even the server must not know any information
of the session key.

Each user has public information, called a static public key (SPK), and the corre-
sponding secret information, called a static secret key (SSK). The SPK is also expected
to be certified with user’s ID through an infrastructure such as PKI. A user who wants
to share a session key with other users exchanges ephemeral public keys (EPKs) that is
generated from the corresponding session-specific randomness, called ephemeral secret
keys (ESKs), via the server.

The highlight of our protocol is as follows.

– Dynamic Group. Our protocol allows users to share the session key in the dynamic
group manner. It means that, after establishing the session key among a group of
users in a distribution phase, a set of users can join/leave the group without execut-
ing a new distribution phase among the new group. Users generate and keep state
information for the join and leave phases at the end of the distribution phase. The
join and leave phases of our protocol need smaller computation and communication
costs than the distribution phase thanks to state information. Also, since the session
key is refreshed after the join/leave phases, any information of the new session key
do not exposed to leaving users.

– Strong Exposure Resilience. In real-world applications, there are several situa-
tions that secret information is exposed. For example, if a pseudo-random number
generator implemented in a system is poor, ESKs may be guessed to the adversary.
Also, when some devices containing SSKs are lost, then a malicious person may
use SSKs to know the session key generated by the owner. Furthermore, the gov-
ernment may order the server to reveal the SSK. Thus, it is desirable that DMKD
protocols are resilient to secret key exposure attacks. Our protocol is secure even
if either of SSKs or ESKs used to generate the session key are exposed. We call



security when ESKs are exposed ephemeral key exposure resilience, and security
when SSKs (including the server’s) are exposed strong server key forward secrecy.
To achieve ephemeral key exposure resilience, we use the twisted pseudo-random
function (PRF) trick [FSXY15,KF14]. Strong server key forward secrecy guaran-
tees even if the adversary is allowed to modify messages in the target session while
most of AKE protocols prevent that (i.e., weak forward secrecy). Moreover, our
protocol guarantees a distinguished security property, called time-based backward
secrecy. It means that if the session key is exposed at a time frame, the exposed ses-
sion key is revoked when a new time frame begins. Time-based backward secrecy
is very useful to resist real-time session key exposure attacks like malwares. We
achieve time-based backward secrecy by formalizing the notion of the time frame
in the security model, and proposing a method to update the session key with a
minimum cost.

– Scalability. Most of previous GKE protocols are constructed under the mesh topol-
ogy. A user must combine information from users in order to establish the session
key with contributions of all users. Thus, the user needs to broadcast a message
to all users (i.e., computation and communication costs depend on the number
of users), or the round complexity depends on the number of users. Hence, if we
adopt the mesh topology, it is difficult to achieve scalability. On the other hand, our
DMKD protocol is constructed under the star topology. Though the server needs
computation and communication costs depending on the number of users, users
can share the session key with constant costs. The load of the server is actually
not a problem because the server can be very powerful in computational resource
and communication bandwidth. Conversely, users may have poor resources like a
mobile device; and thus, scalability is very important in reality.

Also, we propose a first formal security model for DMKD. Our security model cap-
tures the star topology and several exposure resilience. Especially, to grasp time-based
backward secrecy, the notion of time frames is formulated to define session freshness.

Related Work. We revisit several related work of this work.

Group Key Exchange. The first provably secure GKE protocol is proposed by Bresson
et al. [BCPQ01]. Their protocol is not dynamic (i.e., the group member is fixed before
starting sessions.). Then, several dynamic GKE (DGKE) protocols and security models
are proposed [BCP01,BCP02]. These protocols need a linear number of rounds. After
that, several constant round DGKE protocols are studied [KLL04,DB05,YT10]. Expo-
sure resilience of GKE protocols is firstly considered in the security model by Manulis
et al. [MSU09]. Their model guarantees ephemeral key exposure resilience and weak
forward secrecy. This security model is extended by Suzuki and Yoneyama [SY13] to
grasp session state exposure. However, their proposed GKE protocol is not for general
group setting but three-party setting. Since these GKE protocols are considered under
the mesh topology, costs of users depend on the number of users.

Multicast Key Distribution. Since the main application of MKD is Mobile Ad Hoc Net-
works (MANET), most of MKD protocols use tree topology. The advantage of the tree-



based MKD is that total communication complexity is reduced to O(log n). For exam-
ple, MKD protocols based on logical key hierarchies [CWSP98,CGI+99,WCS+99,SM03]
have been well studied. There are few papers studying MKD in the star topology
[LTW10,SP12,MK14,SHC+15]. The motivation of previous star topology-based MKD
protocols is to reduce the rekeying cost of tree topology-based MKD protocols. Most
of these protocols have no formal security proof. Sun et al. [SHC+15] propose a prov-
ably secure star topology-based MKD protocol. However, their security model does not
capture exposure resilience, and their protocol is not scalable because communication
complexity for uses depend on the number of users. A formal security model for MKD
protocols is introduced by Micciancio and Panjwani [MP04]. However, their model al-
lows the server to know the session key shared by users. Also, exposure resilience is
not considered.

2 Preliminaries

2.1 Notations

Throughout this paper we use the following notations. If Set is a set, then by m ∈R Set
we denote that m is sampled uniformly from Set. If ALG is an algorithm, then by
y ← ALG(x; r) we denote that y is output by ALG on input x and randomness r (if
ALG is deterministic, r is empty).

2.2 Pseudo-Random Function, and Twisted Pseudo-Random Function Trick

Let κ be a security parameter and F = {Fκ : Domκ × Kspaceκ → Rngκ}κ be a function
family with a family of domains {Domκ}κ, a family of key spaces {Kspaceκ}κ and a
family of ranges {Rngκ}κ.

Definition 1 (Pseudo-Random Function). We say that function family F = {Fκ}κ is the
PRF family, if for any PPT distinguisherD, |Pr[1← DFκ(·)] − Pr[1← DRFκ(·)]| ≤ negl,
where RFκ : Domκ → Rngκ is a truly random function.

Next, we show the notion of the twisted PRF [FSXY15]. The twisted PRF tPRF is
a function that tPRF : {0, 1}κ × Kspaceκ × {0, 1}κ × Kspaceκ → Rngκ. We construct
tPRF(a, a′, b, b′) := Fκ(a, b) ⊕ Fκ(b′, a′) with PRF Fκ, where a, b′ ∈ {0, 1}κ and a′, b ∈
Kspaceκ. The twisted PRF is used to guarantee that tPRF(a, a′, b, b′) looks random
even if either (a, a′) or (b, b′) is exposed.

Lemma 1 (Theorem 1 in [KF14]). If Fκ is PRF, then

– [(a, a′), tPRF(a, a′, b, b′)] is indistinguishable from [(a, a′),R] where R is randomly
chosen from Rngκ, and

– [(b, b′), tPRF(a, a′, b, b′)] is indistinguishable from [(b, b′),R] where R is randomly
chosen from Rngκ.



2.3 Target-Collision Resistant Hash Function

We say a function TCR : Dom→ Rng is a target-collision resistant (TCR) hash function
if the following condition holds for security parameter κ: For any PPT adversaryA, Pr[x
∈R Dom; x′ ←A(x) s.t. x , x′ ∧ TCR(x) = TCR(x′)] ≤ negl.

2.4 Public Key Encryption

Definition 2 (Syntax for Public Key Encryption Schemes). A PKE scheme consists
of the following 3-tuple (Gen, Enc, Dec):

Gen : a key generation algorithm which on input 1κ, where κ is the security parameter,
outputs a pair of public and secret keys (pk, sk).

Enc : an encryption algorithm which takes as input public key pk and plaintext m,
outputs ciphertext CT .

Dec : a decryption algorithm which takes as input secret key sk and ciphertext CT ,
outputs plaintext m or reject symbol ⊥.

Definition 3 (Chosen-Ciphertext Security for Public Key Encryption). A PKE scheme
is CCA-secure if the following property holds for security parameter κ; For any adver-
sary A = (A1, A2), |Pr[(pk, sk) ← Gen(1κ); (m0, m1, state) ← ADO(sk,·)

1 (pk); b ∈R

{0, 1}; CT ∗ ← Enc(pk,mb); b′ ← ADO(sk,·)
2 (pk, CT ∗, state); b′ = b] − 1/2| ≤ negl(κ),

whereDO is the decryption oracle which outputs m or ⊥ on receiving CT, state is state
information (possibly including pk, m0 and m1) which A wants to preserve. A cannot
submit the ciphertext CT = CT ∗ toDO.

2.5 Ciphertext-Policy Attribute-based Encryption

Definition 4 (Syntax for Ciphertext-Policy Attribute-based Encryption Schemes).
A CP-ABE scheme consists of the following 4-tuple (Setup,Der, AEnc, ADec):

(Params,msk)← Setup(1κ, att) : a setup algorithm which on inputs 1κ and att, where
κ is the security parameter and att is an attribute universe description, outputs a
public parameter Params and a master secret key msk.

uskA ← Der(Params,msk, A) : a key derivation algorithm which on input Params,
msk and attribute A, outputs a user secret key uskA.

CT ← AEnc(Params, P,m) : an encryption algorithm which on input Params, an
access structure P and a plaintext m, outputs a ciphertext CT .

m ← ADec(Params, uskA,CT ) : a decryption algorithm which on input uskA and
CT, outputs plaintext m if A satisfies P.

Definition 5 (Chosen-Ciphertext Security for Ciphertext-Policy Attribute-based
Encryption). A CP-ABE scheme is CCA-secure if the following property holds for
security parameter κ; For any PPT adversary A = (A1,A2), |Pr[(Params,msk) ←
Setup(1κ, att); (m0,m1, P∗, s) ← AEO(Params,msk,·),DO(Params,usk·,·)

1 (Params); b ∈R {0, 1};
CT ∗ ← AEnc(Params, P∗,mb); b′ ←AEO(Params,msk,·),DO(Params,usk·,·)

2 (Params, CT ∗, s);
b′ = b] − 1/2| ≤ negl, where EO is the key extraction oracle, DO is the decryption



oracle and s is state information that A wants to preserve from A1 to A2. A cannot
submit sets of attributes which satisfy P∗ to EO and the ciphertext CT ∗ toDO.

We say a CP-ABE scheme is CPA-secure if A does not access DO. Also, we say a
CP-ABE scheme is selectively secure if the adversary must commit P∗ before Setup.

2.6 Message Authentication Codes

Definition 6 (Syntax for Message Authentication Codes). A MAC scheme consists of
the following 3-tuple (MGen, Tag, Ver):

MGen : a key generation algorithm which on input 1κ, where κ is the security param-
eter, outputs a MAC key mk.

Tag : a tagging algorithm which on input mk and plaintext m, outputs an authentication-
tag σ.

Ver : a verification algorithm which on input mk, m and σ, outputs 1 if accepts, 0
otherwise.

Definition 7 (Unforgeability against Chosen-Message Attacks for Message Authen-
tication Codes). A MAC scheme is UF-CMA if the following property holds for secu-
rity parameter κ; For any PPT forger A, Pr[mk ← MGen(1κ); (m∗, σ∗) ← AMO(mk,·);
1 ← Ver(mk,m∗, σ∗)] ≤ negl, where MO is the MAC oracle. A cannot submit m∗ to
MO.

2.7 Decisional Diffie-Hellman Assumption

Definition 8 (Decisional Diffie-Hellman Assumption). Let p be a prime and let g be a
generator of a finite cyclic group G of order p. We define two experiments, Expddh-real

g,p (D)
and Expddh-rand

g,p (D). For a distinguisher D, inputs (g, A = ga, B = gb, C) are provided,
where (a, b) ∈R (Zp)2. C = gab in Expddh-real

g,p (D) and C = gc in Expddh-rand
g,p (D), where c

∈R Zp. Let (g, A = ga, B = gb, C = gab) be the tuple in Expddh-real
g,p (D) and (g, A = ga,

B = gb, C = gc) be the tuple in Expddh-rand
g,p (D). We say that the DDH assumption in G

holds for security parameter κ if for any PPT distinguisher D |Pr[Expddh-real
g,p (D) = 1]

− Pr[Expddh-rand
g,p (D) = 1]| ≤ negl.

3 Security Definition

In this section, we introduce a new security definition of DMKD under the star topology.
Our definition captures strong exposure-resilience and time-based forward secrecy. The
model is based on [YT10,SY13,SY14].

3.1 Protocol Participants and Initialization

LetU := {U1, . . . ,UN} be a set of potential protocol users. Each user Ui is modelled as
a PPT Turing machine w.r.t. security parameter κ. For user Ui, we denote static secret
(public) key by S S Ki (S PKi). Ui generates its own keys, S S Ki and S PKi, and the static



public key S PKi is linked with Ui’s identity in some systems like PKI. Each user Ui

and the authentication server S are connected by unauthenticated the star topology. That
is, they do communications through an unicast channel over an insecure network like
the Internet. Users do not directly communicate. S is also modelled as a PPT Turing
machine. S has the static secret key by S S KS and the static public key S PKS .

3.2 Session and State Information

There are three phases (Dist, Join, Leave) for DMKD. Dist means the session key distri-
bution phase that a new group is established and a session key is generated for users in
the group. Join means the user joining phase that a set of new users join an established
group and a session key is re-generated for users in the new group. Leave means the
user leaving phase that a set of users leave an established group and a session key is re-
generated for remaining users in the group. An invocation of a phase is called a session.
We suppose that a session contains n users {Ui1 , . . . ,Uin }, where 2 ≤ n ≤ N. Let Π be
a phase identifier such that Π ∈ {Dist, Join, Leave}. A session owned by user instance
U j`

i`
is managed by a tuple (Π,U j`

i`
, {U j1

i1
, . . . ,U jn

in
}). U j`

i`
means the j`-th instance of Ui` .

Sessions owned by user instances {U j1
i1
, . . . ,U j`−1

i`−1
,U j`+1

i`+1
, . . . ,U jn

in
} are called matching

sessions of the session of U j`
i`

. Hereafter, for simplicity, we can describe Ui` as Ui with-
out loss of generality. We suppose that the total number of sessions in the system is
`max. We consider the notion of time frames. Each user Ui and S communicate to up-
date some state information statei when the session is firstly executed in a time frame.
Hereafter, Ui uses statei in sessions within the time frame. Also, we consider the ses-
sion key update based on time frames. Update means the session key update phase that
the shared session key is updated when a new time frame begins. If a session key is
shared in the Dist/Join/Leave phase in the past time frame, the session key is updated
by Update. We note that the session is not changed after Update phase but only the ses-
sion key is changed. In Dist phase, U j

i generates ephemeral secret key ES K j
i and sends

ephemeral public key EPK j
i to S . When S receives all EPK j

i for i, j = 1, . . . , n, then
S returns messages to users. Users and S repeat some rounds, and then users finally
share session key S K and complete the session. After completing the session, each user
Ui updates statei to remain necessary information for Update, Join and Leave phases.
statei is passed to another inactivated instance U j′

i to participate in the next activation
of Update, Join or Leave phase. Similarly, in Update, Join and Leave phases, users
and S execute some interactions, and users update the session key. DMKD consists of
many concurrent executions of Dist, Update, Join and Leave phases.

3.3 Adversary

The adversary A, which is modelled as a PPT Turing machine, controls all communi-
cations between parties including session activation and registrations of users by per-
forming the following adversary queries.

– Establish(Ui, S PKi): This query allows A to introduce a new user. In response,
if Ui < U (due to the uniqueness of identities) then Ui with the static public key



S PKi is added to U. Note that A is not required to prove the possession of the
corresponding secret key S S Ki. If a party is registered by a Establish query issued
byA, then we call the party dishonest. If not, we call the party honest.

– Send(U j
i ,message): This query allowsA to send message to instance U j

i . message
includes Π ∈ {Dist, Join, Leave}.A obtains the response from U j

i . If U j
i is an inac-

tivated instance and Π = {Join, Leave}, statei is passed to U j
i .

To capture exposure of secret information, the adversary A is allowed to issue the
following queries.

– SessionReveal(U j
i ): The adversary A obtains the session key S K for the session

owned by U j
i if the session is completed.

– StateReveal(Ui): The adversary A obtains current state information statei of Ui.
State information do not include the static secret key.

– ServerReveal: This query allows the adversaryA to obtain static secret key S S KS

of the server S .
– StaticReveal(Ui): This query allows the adversary A to obtain static secret key

S S Ki of the user Ui.
– EphemeralReveal(U j

i ): This query allows the adversary A to obtain ephemeral
secret key ES K j

i of U j
i if the session is not completed (i.e., the session key is not

established yet).

3.4 Freshness

For the security definition, we need the notion of freshness.

Definition 9 (Freshness). Let sid∗ = (Π,U j
i , {U

j1
i1
, . . . ,U jn

in
}) be a completed session

between honest users {U1, . . . ,Un}, which is owned by U j
i . Let sid∗ be a matching ses-

sion of sid∗. We say session sid∗ is fresh if none of the following conditions hold:

1. The adversary A issues either of SessionReveal(U j
i ) or SessionReveal(U j′

i′ ) for
any sid∗ in the current time frame,

2. The adversary A issues either of SessionReveal(U j
i ) or SessionReveal(U j′

i′ ) for
any sid∗ in the past time frame ifA issues either of ServerReveal, StaticReveal(Ui)
or StaticReveal(Ui′ ),

3. The adversaryA issues ServerReveal before completing sid∗,
4. the adversary A makes either of StateReveal(Ui) or StateReveal(Ui′ ) in the cur-

rent time frame or any of its ancestors3,
5. the adversaryA makes either of StaticReveal(Ui) before completing sid∗ or

StaticReveal(Ui′ ) before completing sid∗ for any sid∗,
6. the adversaryA makes both of StaticReveal(Ui) and EphemeralReveal(U j

i ), and
7. the adversary A makes both of StaticReveal(Ui′ ) and EphemeralReveal(U j′

i′ ) for
any sid∗.

3 We say that statei is an ancestor of statei′ if there exists a path (statei, . . . , statei′ ) such that
each state in the path is updated to the next one.



We note that if both EphemeralReveal(U j
i ) and StaticReveal(Ui) are posed, then

we regard that StateReveal(Ui) in the time frame for instance U j
i is also posed because

statei in the time frame is trivially derived from ES K j
i and S S Ki.

3.5 Security Experiment

For the security definition, we consider the following security experiment. Initially,
the adversary A is given a set of honest users and makes any sequence of the queries
described above. During the experiment, the adversaryA makes the following query.

– Test(sid∗): Here, sid∗ must be a fresh session. Select random bit b ∈R {0, 1}, and
return the session key held by sid∗ if b = 0, and return a random key if b = 1.

The experiment continues until the adversaryAmakes a guess b′. The adversaryA
wins the game if the test session sid∗ is still fresh and if the guess of the adversary A
is correct, i.e., b′ = b. The advantage of the adversary A is defined as Advdmkd(A) =

Pr[A wins] − 1
2 . We define the security as follows.

Definition 10 (DMKD Security). We say that a DMKD protocol Π is secure in the
DMKD model if the following conditions hold:

1. If two honest parties complete matching sessions, then, except with negligible prob-
ability, they both compute the same session key.

2. For any PPT adversary A, Advdmkd(A) is negligible in security parameter κ for
the test session sid∗.

3.6 Summary of Our Security Definition

Here, we give an intuition of security properties captured by our security definition.

– Ephemeral Key Exposure Resilience. The adversary can obtain ESKs of users
by EphemeralReveal queries. From the freshness definition, when the adversary
does not pose StaticReveal(Ui) where Ui is the owner of the test session, then the
adversary can pose EphemeralReveal(U j

i ) where the j-th session of Ui is the test
session. Thus, it guarantees that the session key is still secure even if ES Ks used to
generate the session key are totally exposed.

– Time-based Backward Secrecy. The adversary can obtain the session key of the
test session by SessionReveal queries if the session key was generated at a past
time frame. Generally, if the session key of the test session is exposed, the adversary
easily distinguish the real session key from a random key. In our security model, we
introduce the notion of the time frame, and consider the Update phase. Thus, when
a new time frame begins, the session key may be updated. Hence, it guarantees that
the updated session key looks independent from past session keys even in the test
session.

– Strong Server Key Forward Secrecy. The adversary can obtain both SSKs of
users and the server by StaticReveal and ServerReveal queries. From the freshness
definition, when the adversary does not pose EphemeralReveal queries for the



test session, then the adversary can pose StaticReveal and ServerReveal for users
in the test session after completion of the session.4 Hence, it guarantees that past
session keys are still secure even if SSKs of users and the server are exposed. Also,
the adversary is allowed to modify messages in the test session (i.e., there is a
non-matching session. ) regardless of posing StaticReveal or ServerReveal. Thus,
while in most of AKE protocols only weak forward secrecy is guaranteed (i.e.,
the adversary is prohibited to pose StaticReveal for non-matching sessions.), our
security guarantees strong forward secrecy.

4 New Dynamic Multi-Cast Key Distribution Protocol under Star
Topology

In this section, we show a DMKD protocol under the star topology. In the Dist phase, a
group of users shares a session key with the help of the central server. In the Join phase,
new users can join the group that previously established the session key with lower costs
than executing a Dist phase by the new group members. In the Leave phase, a subset of
group users leaves from the group with lower costs than executing a Dist phase by the
remaining group members. After establishing the session key, users can update the key
at a new time frame. In the Update phase, the server sends information to refresh the
session key to users, and users can locally update the key.

For simplicity, we show a simple setting that only one user joins/leaves the group
simultaneously. We show the general setting that multiple users can join/leave the group
simultaneously in Appendix A.

4.1 Design Principle

The session key in our protocol is generated from two key materials K1 and K2. K1 guar-
antees ephemeral key exposure resilience and strong server key forward secrecy, and K2
guarantees time-based backward secrecy. Here, we give an intuition of the design of our
protocol.

The way to share K1 is based on the ring structure, and is similar to the previous
dynamic group key exchange protocol (the YT protocol) [YT10]. In the YT protocol,
each user broadcasts gri in Round 1, and computes gri−1ri and griri+1 . Then, the left key
K(l)

i based on gri−1ri and the right key K(r)
i based on griri+1 are generated, and each user

broadcasts K(l)
i ⊕ K(r)

i in Round 2. Also, a representative user generates k, and broad-
casts the masked k with his left key to all users. Then, each user can recover the left
and right keys for all group members with his/her K(l)

i and K(r)
i . Thus, they can share k,

and generate K1 based on k. However, we cannot simply apply the YT protocol to our
protocol. First, the YT protocol is insecure if ESKs of users are exposed; that means,
ephemeral key exposure resilience is not satisfied. The other problem is scalability. To
broadcast messages and to compute k, both communication and computational com-
plexity of each user depend on the number of users; and thus, if the YT protocol is

4 If the adversary poses StaticReveal or ServerReveal before completion of the test session,
then the session key is trivially distinguished from a random key. Also, it means that the server
is honest-but-curious.



used very large system, the load of users increases. Therefore, achieving both exposure
resilience and scalability is not easy task.

We can solve the first problem on ephemeral key exposure resilience by using the
twisted PRF trick. We use outputs of the twisted PRF based on the SSK and the ESK
instead of all randomness of users in our protocol. From Lemma 1, it is guaranteed that
an output of the twisted PRF is indistinguishable from the random value unless both
SSK and ESK are exposed. The freshness definition also guarantee that both SSK and
ESK are not exposed in the test session. Therefore, our protocol satisfies ephemeral key
exposure resilience. Also, we can solve the second problem on scalability thanks to the
difference of the network topology. In the YT protocol, each user must communicate
with other users directly because of the mesh topology, and all costs inevitably depend
on the number of users. On the other hand, in our protocol, each user only communi-
cates with the server because of the star topology. Thus, we can confine commutation
depending on the number of users to the server in our protocol. The server only sends
a constant number of messages to each user. Therefore, communication and compu-
tational complexity of each user do not depend on the number of users; and thus, our
protocol is scalable. We note that complexity of the server depends on the number of
users, however, it is inevitable and not serious because the server has sufficient compu-
tational power and communication bandwidth in reality.

The other key material, K2, is generated by the server. It is encrypted by a CP-ABE
scheme with the access structure that the ID is of the recipient and the time is within
the current time frame. Since for every time frame each user receives a new decryption
key with attribute of his/her ID and the current time, K2 can be decrypted if the ID of
the recipient is valid and the decryption key is sent at the same time frame. The new
decryption key is stored as state information. After generating the session key, when a
new time frame begins, the server sends the encrypted form of new K2 and each user
locally updates the session key. Though the adversary can pose StateReveal queries,
the freshness definition guarantee that state information of the test session in the current
time frame or any of its ancestors is not exposed. Thus, even if the adversary obtains
session keys at past time frames, the session key at the current time frame is still secure.
Therefore, our protocol satisfies time-based backward secrecy.

4.2 System Setup

S runs the setup algorithm Setup of CP-ABE, and generates a public parameter Params
and a master secret key msk. Let p be a κ-bit prime, and G be a finite cyclic group of
order p with generator g, h. Let TCR : {0, 1}∗ → {0, 1}κ be a TCR hash function. Let
tPRF : {0, 1}κ × Kspaceκ × {0, 1}κ × Kspaceκ → Zp and tPRF′ : {0, 1}κ × Kspaceκ ×
{0, 1}κ × Kspaceκ → Kspaceκ be twisted PRFs. Let F : {0, 1}κ ×G → Z2

p, F′ : {0, 1}κ ×
Zp → Kspaceκ and F′′ : {0, 1}κ × Kspaceκ → {0, 1}κ, F′′′ : {0, 1}κ × Kspaceκ → Zp be
PRFs. S stores msk as S S KS , and publishes (Params, p,G, g, h,TCR, tPRF, tPRF′, F,
F′, F′′, F′′′) as S PKS .

There are N users U1 . . . ,UN . Each user Ui runs the key generation algorithm of
PKE Gen, and generates a public key pki and a secret key ski. Also, Ui generates se-
cret strings for the twisted PRF (sti, st′i ) and (stS , st′S ), where sti, stS ∈R Kspaceκ and
st′i , st′S ∈R {0, 1}κ. Ui stores (ski, sti, st′i ) as S S Ki, and publishes pki as S PKi.



4.3 Dist Phase
A set of users Ui1 , . . . ,Uin (n ≤ N) starts a new session and share a session key. For
simplicity, w.l.o.g., we suppose that (Ui1 , . . . ,Uin ) = (U1, . . . ,Un).

(State Update at New Time Frame) If the session is the first session for Ui at the
time frame T F, then for the current time time S generates uski ← Der(Params,msk, Ai)
with attribute Ai = (Ui, time) and mki ←MGen, and computes CTi ← Encpki (uski,mki).
Then, S sends CTi to Ui, and Ui obtains (uski,mki) ← Decski (CTi) and updates
(uski,mki) in statei.

(Round 1 for Users) Ui generates r̃i ∈R {0, 1}κ, r̃′i ∈R Kspaceκ, k̃i ∈R {0, 1}κ, k̃′i ∈R

Kspaceκ, s̃i ∈R {0, 1}κ and s̃′i ∈R Kspaceκ as ES Ki, and computes ri = tPRF(r̃i, r̃′i ,
sti, st′i ), ki = tPRF(k̃i, k̃′i , sti, st′i ) and si = tPRF(s̃i, s̃′i , sti, st′i ). Then, Ui computes
Ri = gri and ci = gki hsi , and sends (Ri, ci) to S .

(Round 1 for Server) On receiving (Ri, ci) from all users, S computes sid = TCR(c1,
. . . , cn) and chooses a representative user from (U1, . . . ,Un). Here, w.l.o.g., we sup-
pose that U1 is the representative user. For i ∈ [1, n], S sends (sid,Ri−1,Ri+1) to Ui.
Also, S notices that U1 is the representative user.

(Round 2 for Users) For i ∈ [2, n], on receiving (sid,Ri−1,Ri+1), Ui computes K(l)
i =

F(sid,Rri
i−1), K(r)

i = F(sid,Rri
i+1) and Ti = K(l)

i ⊕ K(r)
i . Then, Ui computes σi ←

Tagmki
(Ri, ci,Ri−1,Ri+1, ki, si,Ti,Ui, sid) and sends (ki, si,Ti, σi) to S .

On receiving (sid,Rn,R2), U1 computes K(l)
1 = F(sid, Rr1

n ), K(r)
1 = F(sid,Rr1

2 ),
T1 = K(l)

1 ⊕K(r)
1 and T ′ = K(l)

1 ⊕(k1||s1). Then, U1 computes σ1 ← Tagmk1
(R1, c1,Rn,

R2,T1,T ′,U1, sid) and sends (T1,T ′, σ1) to S .
(Round 2 for Server) On receiving (T1,T ′, σ1) and (ki, si,Ti, σi), S verifies Vermk1 (R1,

c1,Rn,R2, T1,T ′, U1, sid, σ1) and Vermki (Ri, ci,Ri−1,Ri+1, ki, si,Ti,Ui, sid, σi), and
if the verification fails, then aborts. Also, for i ∈ [2, n], S checks if ci = gki hsi holds,
and if the verification fails, then aborts. S generates k̃S ∈R {0, 1}κ, k̃′S ∈R Kspaceκ,
K̃1 ∈R {0, 1}κ and K̃′1 ∈R Kspaceκ as ES KS , and computes kS = tPRF(k̃S , k̃′S , stS , st′S ),
K1 = tPRF′(K̃1, K̃′1, stS , st′S ) and k′ = (

⊕
2≤i≤n ki) ⊕ kS . For i ∈ [2, n], S computes

T ′i =
⊕

1≤ j≤i−1 T j. For i ∈ [1, n], S computes CT ′i ← AEnc(Params, Pi,K1) with
access structure Pi := (ID = Ui)∧(time ∈ T F). S computesσ′1 ← Tagmk1

(R1, c1,Rn,
R2,T1, T ′,U1, sid, k′,CT ′1), and sends (k′,CT ′1, σ

′
1) to U1. For i ∈ [2, n], S com-

putes σ′i ← Tagmki
(Ri, ci,Ri−1,Ri+1, ki, si,Ti,Ui, sid, c1, k′,T ′i ,T

′,CT ′i ), and sends
(c1, k′,T ′i ,T

′,CT ′i , σ
′
i) to Ui.

(Session Key Generation and Post Computation) For i ∈ [2, n], on receiving (c1, k′,
T ′i ,T

′,CT ′i , σ
′
i), Ui verifies Vermki (Ri, ci,Ri−1, Ri+1, ki, si,Ti,Ui, sid, c1, k′,T ′i ,T

′,

CT ′i , σ
′
i), and if the verification fails, then aborts. Ui computes K(l)

1 = T ′i ⊕ K(l)
i

and k1||s1 = T ′ ⊕ K(l)
1 , and checks if c1 = gk1 hs1 holds, and if the verification fails,

then aborts. Ui decrypts K1 ← ADecuski (CT ′i , Pi), computes K2 = F′(sid, k′ ⊕ k1),
and outputs the session key S K = F′′(sid,K1) ⊕ F′′(sid,K2). As state information,
Ui adds sid, H(l)

i = Rri
i−1, H(r)

i = Rri
i+1 and r = F′′′(sid,K1) ⊕ F′′′(sid,K2) to statei.

On receiving (k′,CT ′1, σ
′
1), U1 verifies Vermk1 (R1, c1,Rn,R2,T1,T ′,U1, sid, k′,CT ′1,

σ′1), and if the verification fails, then aborts. U1 decrypts K1 ← ADecusk1 (CT ′1, P1),
computes K2 = F′(sid, k′ ⊕ k1), and outputs the session key S K = F′′(sid,K1) ⊕
F′′(sid,K2). As state information, U1 adds sid, H(l)

1 = Rr1
n , H(r)

1 = Rr1
2 and r =

F′′′(sid,K1) ⊕ F′′′(sid,K2) to statei.



4.4 Join Phase

A user Uin+1 joins an established session by U1, . . . ,Un. W.l.o.g., we suppose that Uin+1 =

Un+1.
In the Join phase, users Ui for i ∈ [2, n − 1] can reduce computation than the Dist

phase. They do not need to compute gri . The ring structure to compute K1 still works
because r in statei is used to connect the ring instead of using ri.

(State Update at New Time Frame) If the session is the first session for Ui at the
time frame T F′, then for the current time time S generates uski ← Der(Params,msk, Ai)
with attribute Ai = (Ui, time) and mki ←MGen, and computes CTi ← Encpki (uski,mki).
Then, S sends CTi to Ui, and Ui obtains (uski,mki) ← Decski (CTi) and updates
(uski,mki) in statei.

(Round 1 for Users) For i ∈ {1, n, n + 1}, Ui generates r̃i ∈R {0, 1}κ, r̃′i ∈R Kspaceκ,
k̃i ∈R {0, 1}κ, k̃′i ∈R Kspaceκ, s̃i ∈R {0, 1}κ and s̃′i ∈R Kspaceκ as ES Ki, and com-
putes ri = tPRF(r̃i, r̃′i , sti, st′i ), ki = tPRF(k̃i, k̃′i , sti, st′i ) and si = tPRF(s̃i, s̃′i , sti, st′i ).
Ui computes Ri = gri and ci = gki hsi , and sends (Ri, ci) to S .
For i ∈ [2, n − 1], Ui generates k̃i ∈R {0, 1}κ, k̃′i ∈R Kspaceκ, s̃i ∈R {0, 1}κ and s̃′i ∈R

Kspaceκ as ES Ki, and computes ki = tPRF(k̃i, k̃′i , sti, st′i ) and si = tPRF(s̃i, s̃′i , sti, st′i ).
Ui computes ci = gki hsi , and sends ci to S .

(Round 1 for Server) On receiving (Ri, ci) for i ∈ {1, n, n + 1} and ci for i ∈ [2, n − 1],
S computes sid = TCR(c1, . . . , cn+k), and chooses a representative user from i ∈
{1, n, n + 1}. Here, w.l.o.g., we suppose that U1 is the representative user. S sends
(sid,Rn,R1) to Un+1. For i ∈ {1, 2}, S sends (sid,Ri−1) to Ui where R0 = Rn+1. For
i ∈ [3, n − 2], S sends sid to Ui. Also, S notices that U1 is the representative user.

(Round 2 for Users) On receiving (sid,Rn+1), U1 computes K(l)
1 = F(sid, Rr1

n+1), K(r)
1 =

F(sid,Rr
1), T1 = K(l)

1 ⊕K(r)
1 and T ′ = K(l)

1 ⊕(k1||s1). U1 computesσ1 ← Tagmk1
(R1, c1,Rn+1,

T1,T ′,U1, sid), and sends (T1,T ′, σ1) to S .
On receiving (sid,R1), U2 computes K(l)

2 = F(sid, Rr
1), K(r)

2 = F(sid, gr) and
T2 = K(l)

2 ⊕ K(r)
2 . U2 computes σ2 ← Tagmk2

(c2,R1, k2, s2,T2,U2, sid), and sends
(k2, s2,T2, σ2) to S .
For i ∈ [3, n − 2], on receiving sid, Ui computes σi ← Tagmki

(ci, ki, si,Ui, sid), and
sends (ki, si, σi) to S .
On receiving (sid,Rn), Un−1 computes K(l)

n−1 = F(sid, gr), K(r)
n−1 = F(sid, Rr

n) and
Tn−1 = K(l)

n−1⊕K(r)
n−1. Un−1 computesσn−1 ← Tagmkn−1

(cn−1,Rn, kn−1, sn−1,Tn−1,Un−1, sid),
and sends (kn−1, sn−1,Tn−1, σn−1) to S .
On receiving (sid,Rn+1), Un computes K(l)

n = F(sid,Rr
n), K(r)

n = F(sid, Rrn
n+1) and

Tn = K(l)
n ⊕ K(r)

n . Un computes σn ← Tagmkn
(Rn, cn,Rn+1, kn, sn,Tn,Un, sid), and

sends (kn, sn,Tn, σn) to S .
On receiving (sid,Rn,R1), Un+1 computes K(l)

n+1 = F(sid,Rrn+1
n ), K(r)

n+1 = F(sid,Rrn+1
1 )

and Tn+1 = K(l)
n+1 ⊕ K(r)

n+1. Un+1 computes σn+1 ← Tagmkn+1
(Rn+1, cn+1,Rn,R1, kn+1,

sn+1,Tn+1,Un+1, sid), and sends (kn+1, sn+1,Tn+1, σn+1) to S .
(Round 2 for Server) On receiving (T1,T ′, σ1) from U1, (ki, si,Ti, σi) for i ∈ {2}∪[n−

1, n+1] and (ki, si, σi) for i ∈ [3, n−2], S verifies authentication-tags, and if the ver-
ification fails, then aborts. Also, for i ∈ [2, n+1], S checks if ci = gki hsi holds, and if
the verification fails, then aborts. S generates k̃S ∈R {0, 1}κ, k̃′S ∈R Kspaceκ, K̃1 ∈R



{0, 1}κ and K̃′1 ∈R Kspaceκ as ES KS , and computes kS = tPRF(k̃S , k̃′S , stS , st′S ),
K1 = tPRF′(K̃1, K̃′1, stS , st′S ) and k′ = (

⊕
2≤i≤n+k ki) ⊕ kS . For i ∈ [2, n + 1], S

computes T ′i =
⊕

1≤ j≤i−1 T j, where for i ∈ [3, n − 1], Ti is treated as empty (i.e.,
T ′3 = · · · = T ′n−1). For i ∈ [1, n + 1], S computes CT ′i ← AEnc(Params, Pi,K1)
with access structure Pi := (ID = Ui) ∧ (time ∈ T F).
S computesσ′1 ← Tagmk1

(R1, c1,Rn+1,T1,T ′,U1, sid, k′,CT ′1), and sends (k′,CT ′1, σ
′
1)

to U1.
S computes σ′2 ← Tagmk2

(c2,R1, k2, s2,T2,U2, sid, c1, k′,T ′2,T
′,CT ′2), and sends

(c1, k′,T ′2,T
′,CT ′2, σ

′
2) to U2.

For i ∈ [3, n − 2], S computes σ′i ← Tagmki
(ci, ki, si,Ui, sid, c1, k′,T ′i ,T

′,CT ′i ), and
sends (c1, k′,T ′i ,T

′,CT ′i , σ
′
i) to Ui.

S computesσ′n−1 ← Tagmkn−1
(cn−1,Rn, kn−1, sn−1,Tn−1,Un−1, sid, c1, k′,T ′n−1, T

′,CT ′n−1),
and sends (c1, k′,T ′n−1,T

′,CT ′n−1, σ
′
n−1)to Un−1.

S computes σ′n ← Tagmkn
(Rn, cn,Rn+1, kn, sn,Tn,Un, sid, c1, k′,T ′n,T

′,CT ′n), and
sends (c1, k′,T ′n,T

′,CT ′n, σ
′
n) to Un.

S computes σ′n+1 ← Tagmkn+1
(Rn+1, cn+1,Rn,R1, kn+1, sn+1,Tn+1, Un+1, sid, c1, k′,

T ′n+1,T
′,CT ′n+1), and sends (c1, k′,T ′n+1,T

′,CT ′n+1, σ
′
n+1) to Un+1.

(Session Key Generation and Post Computation) For i ∈ [2, n + 1], on receiving
(c1, k′,T ′i ,T

′,CT ′i , σ
′
i), Ui verifies the authentication-tag, and if the verification

fails, then aborts. Ui computes K(l)
1 = T ′i ⊕K(l)

i where for i ∈ [3, n−1] K(l)
1 = T ′i ⊕gr

and k1||s1 = T ′ ⊕ K(l)
1 , and checks if c1 = gk1 hs1 holds, and if the verification fails,

then aborts. Ui decrypts K1 ← ADecuski (CT ′i , Pi), computes K2 = F′(sid, k′ ⊕ k1),
and outputs the session key S K = F′′(sid,K1) ⊕ F′′(sid,K2). As state information,
Ui updates r = F′′′(sid,K1) ⊕ F′′′(sid,K2) in statei. Also, Un updates H(r)

n = Rrn
n+1

in staten. Un+1 adds sid, H(l)
n+1 = Rrn+1

n and H(r)
n+1 = Rrn+1

1 to staten+1.
On receiving (k′,CT ′1, σ

′
1), U1 verifies the authentication-tag, and if the verifica-

tion fails, then aborts. U1 decrypts K1 ← ADecusk1 (CT ′1, P1), computes K2 =

F′(sid, k′ ⊕ k1), and outputs the session key S K = F′′(sid,K1) ⊕ F′′(sid,K2). As
state information, U1 updates sid, H(l)

1 = Rr1
n+k and r = F′′′(sid,K1) ⊕ F′′′(sid,K2)

in state1.

4.5 Leave Phase

A user U j leaves an established session by U1, . . . ,Un.
In the Leave phase, users Ui ∈ I \ {U j−1,U j,U j1+1} can reduce computation than

the Dist phase. They do not need to compute gri . The ring structure to compute K1 still
works because H(l)

i and H(r)
i in statei are used to connect the ring instead of using gri−1ri

and griri+1 .

(State Update at New Time Frame) If the session is the first session for Ui at the
time frame T F′, then for the current time time S generates uski ← Der(Params,msk, Ai)
with attribute Ai = (Ui, time) and mki ←MGen, and computes CTi ← Encpki (uski,mki).
Then, S sends CTi to Ui, and Ui obtains (uski,mki) ← Decski (CTi) and updates
(uski,mki) in statei.



(Round 1 for Users) Ui ∈ {U j−1,U j+1} generates r̃i ∈R {0, 1}κ, r̃′i ∈R Kspaceκ, k̃i ∈R

{0, 1}κ, k̃′i ∈R Kspaceκ, s̃i ∈R {0, 1}κ and s̃′i ∈R Kspaceκ as ES Ki, and computes
ri = tPRF(r̃i, r̃′i , sti, st′i ), ki = tPRF(k̃i, k̃′i , sti, st′i ) and si = tPRF(s̃i, s̃′i , sti, st′i ).
Then, Ui computes Ri = gri and ci = gki hsi , and sends (Ri, ci) to S .
Ui ∈ I \ {U j−1,U j,U j+1} generates k̃i ∈R {0, 1}κ, k̃′i ∈R Kspaceκ, s̃i ∈R {0, 1}κ

and s̃′i ∈R Kspaceκ as ES Ki, and computes ki = tPRF(k̃i, k̃′i , sti, st′i ) and si =

tPRF(s̃i, s̃′i , sti, st′i ). Then, Ui computes ci = gki hsi , and sends ci to S .
(Round 1 for Server) On receiving (Ri, ci) from Ui ∈ {U j−1,U j+1} and ci from Ui ∈

I\{U j−1,U j,U j+1}, for i such that Ui ∈ I\{U j}, S computes sid = TCR({ci}I\{U j}),
chooses a representative user from Ui ∈ {U j−1,U j+1}. Here, w.l.o.g., we suppose
that U j−1 is the representative user. S sends (sid,R j+1) to U j−1. S sends (sid,R j−1)
to U j+1. Then, S sends sid to Ui ∈ I \ {U j−1,U j,U j+1}. Also, S notices that U j−1 is
the representative user.

(Round 2 for Users) On receiving (sid,R j+1), U j−1 computes K(l)
j−1 = F(sid, H(l)

j−1),

K(r)
j−1 = F(sid,Rr j−1

j+1), T j−1 = K(l)
j−1⊕K(r)

j−1 and T ′ = K(l)
j−1⊕(k j−1||s j−1). U j−1 computes

σ j−1 ← Tagmk j−1
(R j−1, c j−1,R j+1, T j−1,T ′,U j−1, sid), and sends (T j−1,T ′, σ j−1) to

S .
On receiving (sid,R j−1), U j+1 computes K(l)

j+1 = F(sid, Rr j+1

j−1), K(r)
j+1 = F(sid,H(r)

j+1)

and T j+1 = K(l)
j+1⊕K(r)

j+1. U j+1 computes σ j+1 ← Tagmk j+1
(R j+1, c j+1, R j−1, k j+1, s j+1,

T j+1,U j+1, sid), and sends (k j+1, s j+1,T j+1, σ j+1) to S .
On receiving sid, Ui ∈ I \ {U j−1,U j,U j+1} computes K(l)

i = F(sid, H(l)
i ), K(r)

i =

F(sid,H(r)
i ) and Ti = K(l)

i ⊕K(r)
i . Ui computes σi ← Tagmki

(ci, ki, si,Ti,Ui, sid), and
sends (ki, si,Ti, σi) to S .

(Round 2 for Server) On receiving (T j−1,T ′, σ j−1) from U j−1 and (ki, si,Ti, σi) from
other users, S verifies the authentication-tag, and if the verification fails, then aborts.
Also, for Ui ∈ I \ {U j−1,U j}, S checks if ci = gki hsi holds, and if the verifica-
tion fails, then aborts. S generates k̃S ∈R {0, 1}κ, k̃′S ∈R Kspaceκ, K̃1 ∈R {0, 1}κ

and K̃′1 ∈R Kspaceκ as ES KS , and computes kS = tPRF(k̃S , k̃′S , stS , st′S ) and
K1 = tPRF′(K̃1, K̃′1, stS , st′S ). For i such that Ui ∈ I \ {U j−1,U j}, S computes
k′ = (

⊕
{ki}) ⊕ kS . For i such that Ui ∈ I \ {U j} and i < j − 1, S computes T ′i =⊕

1≤`≤i−1, j−1≤`≤n T`, where T j is empty. For i such that Ui ∈ I \ {U j} and j + 1 ≤ i,
S computes T ′i =

⊕
j−1≤`≤i−1 T`, where T j is empty. For Ui ∈ I\ {U j}, S computes

CT ′i ← AEnc(Params, Pi,K1) with access structure Pi := (ID = Ui)∧(time ∈ T F).
S computes σ′j−1 ← Tagmk j−1

(R j−1, c j−1,R j+1, T j−1,T ′,U j−1, sid, k′,CT ′j−1), and
sends (k′,CT ′j−1, σ

′
j−1) to U j−1.

S computesσ′j+1 ← Tagmk j+1
(R j+1, c j+1,R j−1, k j+1, s j+1,T j+1,U j+1, sid, c j−1, k′,T ′j+1,

T ′,CT ′j+1), and sends (c j−1, k′,T ′j+1,T
′,CT ′j+1, σ

′
j+1) to U j+1.

For Ui ∈ I \ {U j−1,U j,U j+1}, S computes σ′i ← Tagmki
(ci, ki, si,Ti,Ui, sid, c j−1, k′,

T ′i ,T
′, CT ′i ), and sends (c j−1, k′,T ′i ,T

′,CT ′i , σ
′
i) to Ui.

(Session Key Generation and Post Computation) On receiving (c j−1, k′,T ′i ,T
′,CT ′i , σ

′
i),

Ui ∈ I \ {U j−1,U j} verifies the authentication-tag, and if the verification fails, then
aborts. Ui computes K(l)

j−1 = T ′i ⊕ K(l)
i and k j−1||s j−1 = T ′ ⊕ K(l)

j−1, and checks if
c j−1 = gk j−1 hs j−1 hold, and if the verification fails, then aborts. Ui decrypts K1 ←

ADecuski (CT ′i , Pi), computes K2 = F′(sid, k′ ⊕ k j−1), and outputs the session key



S K = F′′(sid,K1)⊕F′′(sid,K2). As state information, Ui updates sid, r = F′′′(sid,K1)⊕
F′′′(sid,K2) in statei.
On receiving (k′,CT ′j−1, σ

′
j−1), U j−1 verifies the authentication-tag, and if the veri-

fication fails, then aborts. U j−1 decrypts K1 ← ADecusk j−1 (CT ′j−1, P j−1), computes
K2 = F′(sid, k′⊕k j−1), and outputs the session key S K = F′′(sid,K1)⊕F′′(sid,K2).
As state information, U1 updates sid, r = F′′′(sid,K1) ⊕ F′′′(sid,K2) in state j−1.
Additionally, U j−1 updates H(r)

j−1 = Rr j−1

j+1 in state j−1, and U j+1 updates H(l)
j+1 = Rr j+1

j−1
in state j+1.

4.6 Update Phase

When a new time frame begins, a set of users Ui1 , . . . ,Uin (n ≤ N) updates the session
key S K shared by them in the Dist/Join/Leave phase at the past time frame to a new
session key S K′. For simplicity, w.l.o.g., we suppose that (Ui1 , . . . ,Uin ) = (U1, . . . ,Un).

(State Update at New Time Frame) If the session is the first session for Ui at the
time frame T F, then for the current time time S generates uski ← Der(Params,msk, Ai)
with attribute Ai = (Ui, time) and mki ←MGen, computes CTi ← Encpki (uski,mki).
Then, S sends CTi to Ui, and Ui obtains (uski,mki) ← Decski (CTi) and updates
(uski,mki) in statei.

(Information for Update) S generates K̃1 ∈R {0, 1}κ and K̃′1 ∈R Kspaceκ, and com-
putes K1 = tPRF′(K̃1, K̃′1, stS , st′S ) and CT ′i ← AEnc(Params, Pi,K1) with access
structure Pi := (ID = Ui) ∧ (time ∈ T F). Then, S sends CT ′i to Ui.

(Session Key Update) On receiving CT ′i , Ui decrypts K1 ← ADecuski (CT ′i , Pi), and
outputs the updated session key S K′ = F′′(sid,K1) ⊕ S K.

5 Complexity for Users

5.1 Computational Complexity

We consider dominant operations like modular exponentiations and operations for pub-
lic key crypto, and ignore other light-weight operations like XORs and operations for
secret key crypto.

In the Dist phase, on-line computations (i.e., from Round 1 to post computations)
for a user are gri and gki hsi for Round 1, Rri

i−1 and Rri
i+1 for Round 2, and gk1 hs1 and the

decryption of CT ′i for the session key generation. In the Join phase, maximum on-line
computations for a user are gri and gki hsi for Round 1, Rri

i−1 and Rri
i+1 for Round 2, and

gk1 hs1 and the decryption of CT ′i for the session key generation. In the Leave phase,
maximum on-line computations for a user are gri and gki hsi for Round 1, Rri

i−1 for Round
2, and gk1 hs1 and the decryption of CT ′i for the session key generation. In the Update
phase, the on-line computation for a user is the decryption of CT ′i for the session key
update.

Therefore, for all phases, computational complexity of users is constant for the num-
ber of users.



5.2 Communication Complexity

In the Dist phase, sent and received information for a user in on-line (i.e., from Round 1
to post computations) are (Ri, ci) and (sid,Ri−1,Ri+1) for Round 1, and (ki, si,Ti, σi)
and (c1, k′,T ′i ,T

′,CT ′i , σ
′
i) for Round 2. In the Join phase, maximum sent and re-

ceived information for a user in on-line are (Ri, ci) and (sid,Ri−1,Ri+1) for Round 1, and
(ki, si,Ti, σi) and (c1, k′,T ′i ,T

′,CT ′i , σ
′
i) for Round 2. In the Leave phase, maximum

sent and received information for a user in on-line are (Ri, ci) and (sid,Ri−1) for Round
1, and (ki, si,Ti, σi) and (c j−1, k′,T ′j+1,T

′,CT ′j+1, σ
′
j+1) for Round 2. In the Leave phase,

received information for a user in on-line is CT ′i for the session key update.
Therefore, for all phases, communication complexity of users is constant for the

number of users.

6 Security

Theorem 1. We assume that TCR satisfies the TCR property, tPRF and tPRF′ are
twisted PRFs, F, F′, F′′ and F′′′ are PRFs, (Gen, Enc, Dec) is a CCA-secure PKE,
(Setup,Der, AEnc, ADec) is a selective CCA-secure CP-ABE, (MGen, Tag, Ver) is
an UF-CMA MAC scheme and the DDH assumption in G holds. Then, our scheme is
secure in the DMKD model.

Here, we show a proof sketch. The proof can be divided four cases: (1) the test
session is in the Dist phase, (2) the test session is in the Join phase, (3) the test session
is in the Leave phase, and (4) the test session is in the Update phase. For Case (1),
(2) and (3), secrecy of the session key is guaranteed by secrecy of K1. Thus, we use
the game hopping proof technique [Sho04], and, finally, K1 is replaced with a random
value. To prevent malicious behaviours of the adversary, we show that the probability
that messages in the test session are modified is negligible thanks to the security of
PKE and MAC, and the DDH assumption. For Case (4), secrecy of the session key is
guaranteed by secrecy of K2. Thus, K2 is replaced with a random value similar to other
cases. In this case, we rely on the security of CP-ABE to prevent malicious behaviours
of the adversary.

Proof. We prove Theorem 1 for all four cases as follows.

6.1 Case of Dist Phase

We change the interface of oracle queries and the computation of the session key. These
instances are gradually changed over hybrid experiments, depending on specific sub-
cases. In the last hybrid experiment, the session key in the test session does not contain
information of the bit b. Thus, the adversary clearly only output a random guess. We
denote these hybrid experiments by H0, . . . ,H7, and the advantage of the adversary A
when participating in experiment Hi by Adv(A,Hi).

Hybrid experiment H0: This experiment denotes the real experiment for DMKD se-
curity and in this experiment the environment forA is as defined in the protocol. Thus,



Adv(A,H0) is the same as the advantage of the real experiment.

Hybrid experiment H1: If sid in two sessions are identical, the experiment halts.
When randomness in generating ci are identical or the TCR property of H is bro-

ken, sid in two sessions may be identical. However, such an event occurs with negligible
probability. Thus, |Adv(A,H1) − Adv(A,H0)| is negligible.

Hybrid experiment H2: The experiment selects user instances {U j1
i1
, . . . ,U jn

in
}) and the

owner U j
i randomly in advance. IfA poses Test query to a session except {U j1

i1
, . . . ,U jn

in
})

owned by U j
i , the experiment halts.

Since guess of the test session matches with A’s choice with probability 1/`max

where `max is the total number of sessions in the system, Adv(A,H2) ≥ (1/`max) ·
Adv(A, H1).

Hybrid experiment H3: IfA modifies a message in the test session and the session is
complete, the experiment halts. We denote such an event Bad.

Bad may occur only if either of the following events occur:

Bad1 : A obtains information of mki from CTi.
Bad2 : A forges σi for a modified message.
Bad3 : A forges σ′i for a modified message.
Bad4 : A finds (k′i , s

′
i) such that ci = gki hsi = gk′i hs′i and (k′i , s

′
i) , (ki, si).

Since H2 does not differ from H3 if Bad does not occur, from the Difference Lemma [Sho04]
|Adv(A, H3) − Adv(A, H2)| ≤ Pr[Bad]. We show Pr[Bad] is negligible.

First, we show that if Bad1 occurs, we can construct an adversary B breaking the
CCA-security of (Gen, Enc, Dec). B receives the public key pk∗ and sets pk∗ to S PKi.
When A poses Send(U j′

i ,CTi) for sessions other than the test session, B poses CTi to
DO and continues to simulate the experiment with received (uski,mki). WhenA poses
Send(S , init) for the test session, B chooses mk0 and mk1 and obtains the challenge
ciphertext CT ∗ encrypting (usk,mk0) or (usk,mk1). Then, B sends CT ∗ as CTi to A.
After that, if A poses Send containing a MAC tag of a modified message with mkb′ ,
then B outputs b = b′. Therefore, ifA obtains information of mki from CTi, B can break
the CCA-security.

Next, we show that if Bad2 or Bad3 occurs, we can construct a forger B break-
ing unforgeability of (MGen, Tag, Ver). When A poses Send(U j

i , (sid,Ri−1,Ri+1)) or
Send(U j

i , (ki, si,Ti, σi)) for the test session, B poses messages to MO and continues
to simulate the experiment with the received MAC tag. It means that mki is set as the
challenge MAC key. When A poses Send containing a forged MAC tag σ∗ for mki,
then B outputs σ∗. Therefore, ifA forges σi or σ′i for a modified message, B can break
UF-CMA.

Finally, we show that if Bad4 occurs, we can construct a distinguisher B breaking the
DDH assumption. B receives the tuple (g, A, B,C) and sets g = g, h = A to S PKS . When
A poses Send(U j

i , init) for the test session, B chooses (ki, si), computes ci = gki hsi and
returns (Ri, ci) to A. After that, if A poses Send(S , (k′i , s

′
i ,Ti, σi)) such that ci = gk′i hs′i

and (k′i , s
′
i) , (ki, si), then B computes a =

k′i−ki

s′i−si
. B verifies if Ba = C, and if so, outputs



1, otherwise outputs 0. Therefore, if A finds (k′i , s
′
i) such that ci = gki hsi = gk′i hs′i and

(k′i , s
′
i) , (ki, si), B can break the DDH assumption.

Hence, Pr[Bad] is negligible, and |Adv(A,H3) − Adv(A,H2)| is negligible.

Hybrid experiment H4: The computation of (ri, ki, si, kS ) for all users in the test ses-
sion is changed. Instead of computing tPRF, it is changed as choosing (ri, ki, si, kS )
randomly.

From the freshness definition (Definition 9)A cannot pose both of StaticReveal(Ui)
and EphemeralReveal(U j

i ), and both of StaticReveal(Ui′ ) and EphemeralReveal(U j′

i′ )
for any sid∗. Hence, A cannot see either of (r̃i, r̃′i ) or (sti, st′i ). From Lemma 1 ri =

tPRF(r̃i, r̃′i , sti, st′i ) is indistinguishable from randomly chosen ri. Similarly, ki = tPRF(k̃i,
k̃′i , sti, st′i ), kS = tPRF(k̃S , k̃′S , stS , st′S ) and si = tPRF(s̃i, s̃′i , sti, st′i ) are indistinguishable
from randomly chosen ki, kS and si, respectively.

Therefore, |Adv(A,H4) − Adv(A,H3)| is negligible.

Hybrid experiment H5: The computation of Rri
i−1 and Rri

i+1 in the test session is changed.
Instead of computing exponentiations, it is changed as choosing R and R′ randomly.

In this experiment, ri−1, ri and ri+1 are randomly chosen, and A cannot see ri−1,
ri and ri+1. From the definition of DDH assumption (Definition 8) R = Rri

i−1 is indis-
tinguishable from randomly chosen R. Similarly, R′ = Rri

i+1 is indistinguishable from
randomly chosen R′.

Therefore, |Adv(A,H5) − Adv(A,H4)| is negligible.

Hybrid experiment H6: The computation of K(l)
i and K(r)

i in the test session is changed.
Instead of computing PRF, it is changed as choosing K(l)

i and K(r)
i randomly.

In this experiment, Rri
i−1 and Rri

i+1 are randomly chosen. From the definition of PRF
(Definition 1) K(l)

i = F(sid,Rri
i−1) is indistinguishable from randomly chosen K(l)

i . Simi-
larly, K(r)

i = F(sid,Rri
i+1) is indistinguishable from randomly chosen K(r)

i .
Therefore, |Adv(A,H6) − Adv(A,H5)| is negligible.

Hybrid experiment H7: The computation of K2 in the test session is changed. Instead
of computing PRF, it is changed as choosing K2 randomly.

In this experiment, k′ = (
⊕

2≤i≤n ki)⊕ kS is random because ki and kS are randomly
chosen. Also, k1 is randomly chosen, and thus; k′ ⊕ k1 is random. From the definition of
PRF 1 K2 = F′(sid, k′ ⊕ k1) is indistinguishable from randomly chosen K2.

Therefore, |Adv(A,H7) − Adv(A,H6)| is negligible.

Hybrid experiment H8: The computation of K′2 = F′′(sid,K2) in the test session
is changed. Instead of computing PRF, it is changed as choosing K′2 randomly.

In this experiment, K2 is random. From the definition of PRF 1 K′2 = F′′(sid,K2) is
indistinguishable from randomly chosen K′2.

Therefore, |Adv(A,H8) − Adv(A,H7)| is negligible.

Bounding the advantage in H8: In H8, F′′(sid,K2) is replaced with random K′2.



Hence, S K = F′′(sid,K1) ⊕ K′2 is also random. Then, regardless of the challenge bit b
for the test session, whenA poses Test query, a random session key is returned.

Therefore, Adv(A,H8) is negligible.

6.2 Case of Join Phase

The proof is almost the same as the case of the Dist phase. The difference is to add a
hybrid experiment between H4 and H5. In this experiment, the computation of r in the
test session is changed. Instead of computing PRF, it is changed as choosing r randomly.

From the freshness definition (Definition 9)A cannot pose either of StateReveal(Ui)
or StateReveal(Ui′ ) in the current time frame or any of its ancestors. Also, though A
can pose SessionReveal(U j′

i′ ) for sessions other than the test session, r = F′′′(sid,K1)⊕
F′′′(sid,K2) is independent to S K = F′′(sid,K1) ⊕ F′′(sid,K2) from the definition of
PRF. Hence,A cannot see r. Therefore, the difference between this experiment and the
previous experiment is negligible.

6.3 Case of Leave Phase

The proof is almost the same as the case of the Dist phase. The difference is to add a
hybrid experiment between H5 and H6. In this experiment, the computation of H(r)

i and
H(l)

i in the test session is changed. Instead of computing exponentiations, it is changed
as choosing H and H′ randomly.

From the freshness definition (Definition 9)A cannot pose either of StateReveal(Ui)
or StateReveal(Ui′ ) in the current time frame or any of its ancestors. Also, since if both
EphemeralReveal(U j

i ) and StaticReveal(Ui) are posed, then we regard that StateReveal(Ui)
in the time frame for instance U j

i is also posed, the adversary cannot see ri−1, ri and ri+1

corresponding to H(r)
i and H(l)

i from Lemma 1. From the definition of DDH assumption
(Definition 8) H(l)

i = Rri
i−1 is indistinguishable from randomly chosen H′. Similarly, H(r)

i
is indistinguishable from randomly chosen H. Therefore, the difference between this
experiment and the previous experiment is negligible.

6.4 Case of Update Phase

We denote these hybrid experiments by H0, . . . ,H4, and the advantage of the adversary
A when participating in experiment Hi by Adv(A,Hi).

Hybrid experiment H0: This experiment denotes the real experiment for DMKD se-
curity and in this experiment the environment forA is as defined in the protocol. Thus,
Adv(A,H0) is the same as the advantage of the real experiment.

Hybrid experiment H1: If sid in two sessions are identical, the experiment halts.
As the case of the Join phase, |Adv(A,H1) − Adv(A,H0)| is negligible.

Hybrid experiment H2: The experiment selects user instances {U j1
i1
, . . . ,U jn

in
}) and the



owner U j
i randomly in advance. IfA poses Test query to a session except {U j1

i1
, . . . ,U jn

in
})

owned by U j
i , the experiment halts.

As the case of the Join phase, Adv(A,H2) ≥ (1/`max) · Adv(A, H1).

Hybrid experiment H3: The computation of CT ′i in the test session is changed. Instead
of encrypting K1, it is changed as encrypting randomly chosen K′1.

From the freshness definition (Definition 9) A can pose SessionReveal(U j
i ) or

SessionReveal(U j′

i′ ) for any sid∗ in the past time frame, but cannot pose StaticReveal(Ui),
StaticReveal(Ui′ ) for any sid∗, ServerReveal, StateReveal(Ui) and StateReveal(Ui′ )
in the current time frame. Hence, A cannot see uski or uski′ . We show that if A dis-
tinguishes H3 from H2, we can construct an adversary B breaking the selective CCA-
security of (Setup,Der, AEnc, ADec). First, B outputs P∗ := (ID = Ui) ∧ (time ∈ T F)
for the test session. Then, B receives the public parameter Params and sets Params
to S PKS . When A poses Send(U j′

i′ ,CT ′i′ ) for Ui′ , Ui, B poses Ai′ to EO where
Ai′ := (Ui′ , time) and continues to simulate the experiment with received uski′ . WhenA
poses Send(U j′

i ,CT ′i ) for sessions other than the test session, B poses CT ′i to DO and
continues to simulate the experiment with received K1. WhenA poses Send(S , init) for
the test session, B computes K∗0 = tPRF′(K̃1, K̃′1, stS , st′S ) and randomly chosen K∗1 and
obtains the challenge ciphertext CT ∗ encrypting K∗0 or K∗1 . Then, B sends CT ∗ as CT ′i to
A. After that, ifA outputs b′, then B outputs b = b′. If b = 0 holds, the environment for
A is identical to H2, and otherwise, the environment forA is identical to H3. Therefore,
ifA distinguishes H3 from H2, B can break the selective CCA-security.

Hence, |Adv(A,H3) − Adv(A,H2)| is negligible.

Hybrid experiment H4: The computation of K′1 = F′′(sid,K1) in the test session
is changed. Instead of computing PRF, it is changed as choosing K′1 randomly.

In this experiment, K1 is random. From the definition of PRF (Definition 1) K′1 =

F′′(sid,K1) is indistinguishable from randomly chosen K′1.
Therefore, |Adv(A,H4) − Adv(A,H3)| is negligible.

Bounding the advantage in H4: In H4, F′′(sid,K1) is replaced with random K′1.
Though A can obtain S K in the past time frame, S K′ = K′1 ⊕ S K is random. Then,
regardless of the challenge bit b for the test session, when A poses Test query, a ran-
dom session key is returned.

Therefore, Adv(A,H4) is negligible.
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A General Setting of Our Protocol

A.1 System Setup

The system setup is the same as the simple case.

A.2 Dist Phase

A set of users Ui1 , . . . ,Uin (n ≤ N) starts a new session and share a session key. For
simplicity, w.l.o.g., we suppose that (Ui1 , . . . ,Uin ) = (U1, . . . ,Un).

(State Update at New Time Frame) If the session is the first session for Ui at the
time frame T F, then for the current time time S generates uski ← Der(Params,msk, Ai)
with attribute Ai = (Ui, time) and mki ←MGen, and computes CTi ← Encpki (uski,mki).
Then, S sends CTi to Ui, and Ui obtains (uski,mki) ← Decski (CTi) and updates
(uski,mki) in statei.

(Round 1 for Users) Ui generates r̃i ∈R {0, 1}κ, r̃′i ∈R Kspaceκ, k̃i ∈R {0, 1}κ, k̃′i ∈R

Kspaceκ, s̃i ∈R {0, 1}κ and s̃′i ∈R Kspaceκ as ES Ki, and computes ri = tPRF(r̃i, r̃′i ,
sti, st′i ), ki = tPRF(k̃i, k̃′i , sti, st′i ) and si = tPRF(s̃i, s̃′i , sti, st′i ). Then, Ui computes
Ri = gri and ci = gki hsi , and sends (Ri, ci) to S .

(Round 1 for Server) On receiving (Ri, ci) from all users, S computes sid = TCR(c1,
. . . , cn) and chooses a representative user from (U1, . . . ,Un). Here, w.l.o.g., we sup-
pose that U1 is the representative user. For i ∈ [1, n], S sends (sid,Ri−1,Ri+1) to Ui.
Also, S notices that U1 is the representative user.

(Round 2 for Users) For i ∈ [2, n], on receiving (sid,Ri−1,Ri+1), Ui computes K(l)
i =

F(sid,Rri
i−1), K(r)

i = F(sid,Rri
i+1) and Ti = K(l)

i ⊕ K(r)
i . Then, Ui computes σi ←

Tagmki
(Ri, ci,Ri−1,Ri+1, ki, si,Ti,Ui, sid) and sends (ki, si,Ti, σi) to S .

On receiving (sid,Rn,R2), U1 computes K(l)
1 = F(sid, Rr1

n ), K(r)
1 = F(sid,Rr1

2 ),
T1 = K(l)

1 ⊕K(r)
1 and T ′ = K(l)

1 ⊕(k1||s1). Then, U1 computes σ1 ← Tagmk1
(R1, c1,Rn,

R2,T1,T ′,U1, sid) and sends (T1,T ′, σ1) to S .
(Round 2 for Server) On receiving (T1,T ′, σ1) and (ki, si,Ti, σi), S verifies Vermk1 (R1,

c1,Rn,R2, T1,T ′, U1, sid, σ1) and Vermki (Ri, ci,Ri−1,Ri+1, ki, si,Ti,Ui, sid, σi), and
if the verification fails, then aborts. Also, for i ∈ [2, n], S checks if ci = gki hsi holds,
and if the verification fails, then aborts. S generates k̃S ∈R {0, 1}κ, k̃′S ∈R Kspaceκ,
K̃1 ∈R {0, 1}κ and K̃′1 ∈R Kspaceκ as ES KS , and computes kS = tPRF(k̃S , k̃′S , stS , st′S ),
K1 = tPRF′(K̃1, K̃′1, stS , st′S ) and k′ = (

⊕
2≤i≤n ki) ⊕ kS . For i ∈ [2, n], S computes

T ′i =
⊕

1≤ j≤i−1 T j. For i ∈ [1, n], S computes CT ′i ← AEnc(Params, Pi,K1) with
access structure Pi := (ID = Ui)∧(time ∈ T F). S computesσ′1 ← Tagmk1

(R1, c1,Rn,
R2,T1, T ′,U1, sid, k′,CT ′1), and sends (k′,CT ′1, σ

′
1) to U1. For i ∈ [2, n], S com-

putes σ′i ← Tagmki
(Ri, ci,Ri−1,Ri+1, ki, si,Ti,Ui, sid, c1, k′,T ′i ,T

′,CT ′i ), and sends
(c1, k′,T ′i ,T

′,CT ′i , σ
′
i) to Ui.

(Session Key Generation and Post Computation) For i ∈ [2, n], on receiving (c1, k′,
T ′i ,T

′,CT ′i , σ
′
i), Ui verifies Vermki (Ri, ci,Ri−1, Ri+1, ki, si,Ti,Ui, sid, c1, k′,T ′i ,T

′,

CT ′i , σ
′
i), and if the verification fails, then aborts. Ui computes K(l)

1 = T ′i ⊕ K(l)
i

and k1||s1 = T ′ ⊕ K(l)
1 , and checks if c1 = gk1 hs1 holds, and if the verification fails,

then aborts. Ui decrypts K1 ← ADecuski (CT ′i , Pi), computes K2 = F′(sid, k′ ⊕ k1),



and outputs the session key S K = F′′(sid,K1) ⊕ F′′(sid,K2). As state information,
Ui adds sid, H(l)

1 = Rr1
n , H(r)

1 = Rr1
2 and r = F′′′(sid,K1) ⊕ F′′′(sid,K2) to statei.

On receiving (k′,CT ′1, σ
′
1), U1 verifies Vermk1 (R1, c1,Rn,R2,T1,T ′,U1, sid, k′,CT ′1,

σ′1), and if the verification fails, then aborts. U1 decrypts K1 ← ADecusk1 (CT ′1, P1),
computes K2 = F′(sid, k′ ⊕ k1), and outputs the session key S K = F′′(sid,K1) ⊕
F′′(sid,K2). As state information, U1 adds sid, H(l)

i = Rri
i−1, H(r)

i = Rri
i+1 and r =

F′′′(sid,K1) ⊕ F′′′(sid,K2) to statei.

A.3 Join Phase

A new set of users Uin+1 , . . . ,Uin+k join an established session by U1, . . . ,Un. W.l.o.g.,
we suppose that (Uin+1 , . . . ,Uin+k ) = (Un+1, . . . ,Un+k).

In the Join phase, users Ui for i ∈ [2, n − 1] can reduce computation than the Dist
phase. They do not need to compute gri . The ring structure to compute K1 still works
because r in statei is used to connect the ring instead of using ri.

(State Update at New Time Frame) If the session is the first session for Ui at the
time frame T F′, then for the current time time S generates uski ← Der(Params,msk, Ai)
with attribute Ai = (Ui, time) and mki ←MGen, and computes CTi ← Encpki (uski,mki).
Then, S sends CTi to Ui, and Ui obtains (uski,mki) ← Decski (CTi) and updates
(uski,mki) in statei.

(Round 1 for Users) For i ∈ {1} ∪ [n, n + k], Ui generates r̃i ∈R {0, 1}κ, r̃′i ∈R Kspaceκ,
k̃i ∈R {0, 1}κ, k̃′i ∈R Kspaceκ, s̃i ∈R {0, 1}κ and s̃′i ∈R Kspaceκ as ES Ki, and com-
putes ri = tPRF(r̃i, r̃′i , sti, st′i ), ki = tPRF(k̃i, k̃′i , sti, st′i ) and si = tPRF(s̃i, s̃′i , sti, st′i ).
Ui computes Ri = gri and ci = gki hsi , and sends (Ri, ci) to S .
For i ∈ [2, n − 1], Ui generates k̃i ∈R {0, 1}κ, k̃′i ∈R Kspaceκ, s̃i ∈R {0, 1}κ and s̃′i ∈R

Kspaceκ as ES Ki, and computes ki = tPRF(k̃i, k̃′i , sti, st′i ) and si = tPRF(s̃i, s̃′i , sti, st′i ).
Ui computes ci = gki hsi , and sends ci to S .

(Round 1 for Server) On receiving (Ri, ci) for i ∈ {1}∪[n, n+k] and ci for i ∈ [2, n−1],
S computes sid = TCR(c1, . . . , cn+k), and chooses a representative user from i ∈
{1} ∪ [n, n + k]. Here, w.l.o.g., we suppose that U1 is the representative user. For
i ∈ [n + 1, n + k], S sends (sid,Ri−1,Ri+1) to Ui where Rn+k+1 = R1. For i ∈ {1, 2}, S
sends (sid,Ri−1) to Ui where R0 = Rn+k. For i ∈ [3, n − 2], S sends sid to Ui. Also,
S notices that U1 is the representative user.

(Round 2 for Users) On receiving (sid,Rn+k), U1 computes K(l)
1 = F(sid, Rr1

n+k), K(r)
1 =

F(sid, gr1r), T1 = K(l)
1 ⊕K(r)

1 and T ′ = K(l)
1 ⊕(k1||s1). U1 computesσ1 ← Tagmk1

(R1, c1,Rn+k,
T1,T ′,U1, sid), and sends (T1,T ′, σ1) to S .
On receiving (sid,R1), U2 computes K(l)

2 = F(sid, Rr
1), K(r)

2 = F(sid, gr) and
T2 = K(l)

2 ⊕ K(r)
2 . U2 computes σ2 ← Tagmk2

(c2,R1, k2, s2,T2,U2, sid), and sends
(k2, s2,T2, σ2)to S .
For i ∈ [3, n − 2], on receiving sid, Ui computes σi ← Tagmki

(ci, ki, si,Ui, sid), and
sends (ki, si, σi) to S .
On receiving (sid,Rn), Un−1 computes K(l)

n−1 = F(sid, gr), K(r)
n−1 = F(sid, Rr

n) and
Tn−1 = K(l)

n−1⊕K(r)
n−1. Un−1 computesσn−1 ← Tagmkn−1

(cn−1,Rn, kn−1, sn−1,Tn−1,Un−1, sid),
and sends (kn−1, sn−1,Tn−1, σn−1) to S .



On receiving (sid,Rn+1), Un computes K(l)
n = F(sid,Rr

n), K(r)
n = F(sid, Rrn

n+1) and
Tn = K(l)

n ⊕ K(r)
n . Un computes σn ← Tagmkn

(Rn, cn,Rn+1, kn, sn,Tn,Un, sid), and
sends (kn, sn,Tn, σn) to S .
For i ∈ [n + 1, n + k], on receiving (sid,Ri−1,Ri+1), Ui computes K(l)

i = F(sid,Rri
i−1),

K(r)
i = F(sid,Rri

i+1) and Ti = K(l)
i ⊕K(r)

i . Ui computesσi ← Tagmki
(Ri, ci,Ri−1,Ri+1, ki,

si,Ti,Ui, sid), and sends (ki, si,Ti, σi) to S .
(Round 2 for Server) On receiving (T1,T ′, σ1) from U1, (ki, si,Ti, σi) for i ∈ {2}∪[n−

1, n + k] and (ki, si, σi) for i ∈ [3, n − 2], S verifies authentication-tags, and if the
verification fails, then aborts. Also, for i ∈ [2, n+k], S checks if ci = gki hsi holds, and
if the verification fails, then aborts. S generates k̃S ∈R {0, 1}κ, k̃′S ∈R Kspaceκ, K̃1 ∈R

{0, 1}κ and K̃′1 ∈R Kspaceκ as ES KS , and computes kS = tPRF(k̃S , k̃′S , stS , st′S ),
K1 = tPRF′(K̃1, K̃′1, stS , st′S ) and k′ = (

⊕
2≤i≤n+k ki) ⊕ kS . For i ∈ [2, n + k], S

computes T ′i =
⊕

1≤ j≤i−1 T j, where for i ∈ [3, n − 1], Ti is treated as empty (i.e.,
T ′3 = · · · = T ′n−1). For i ∈ [1, n + k], S computes CT ′i ← AEnc(Params, Pi,K1)
with access structure Pi := (ID = Ui) ∧ (time ∈ T F).
S computesσ′1 ← Tagmk1

(R1, c1,Rn+k,T1,T ′,U1, sid, k′,CT ′1), and sends (k′,CT ′1, σ
′
1)

to U1.
S computes σ′2 ← Tagmk2

(c2,R1, k2, s2,T2,U2, sid, c1, k′,T ′2,T
′,CT ′2), and sends

(c1, k′,T ′2,T
′,CT ′2, σ

′
2) to U2.

For i ∈ [3, n − 2], S computes σ′i ← Tagmki
(ci, ki, si,Ui, sid, c1, k′,T ′i ,T

′,CT ′i ), and
sends (c1, k′,T ′i ,T

′,CT ′i , σ
′
i) to Ui.

S computesσ′n−1 ← Tagmkn−1
(cn−1,Rn, kn−1, sn−1,Tn−1,Un−1, sid, c1, k′,T ′n−1, T

′,CT ′n−1),
and sends (c1, k′,T ′n−1,T

′,CT ′n−1, σ
′
n−1)to Un−1.

S computes σ′n ← Tagmkn
(Rn, cn,Rn+1, kn, sn,Tn,Un, sid, c1, k′,T ′n,T

′,CT ′n), and
sends (c1, k′,T ′n,T

′,CT ′n, σ
′
n) to Un.

For i ∈ [n+1, n+k], S computesσ′i ← Tagmki
(Ri, ci,Ri−1,Ri+1, ki, si,Ti,Ui, sid, c1, k′,

T ′i ,T
′,CT ′i ), and sends (c1, k′,T ′i ,T

′,CT ′i , σ
′
i) to Ui.

(Session Key Generation and Post Computation) For i ∈ [2, n + k], on receiving
(c1, k′,T ′i ,T

′,CT ′i , σ
′
i), Ui verifies the authentication-tag, and if the verification

fails, then aborts. Ui computes K(l)
1 = T ′i ⊕K(l)

i where for i ∈ [3, n−1] K(l)
1 = T ′i ⊕gr

and k1||s1 = T ′ ⊕ K(l)
1 , and checks if c1 = gk1 hs1 holds, and if the verification fails,

then aborts. Ui decrypts K1 ← ADecuski (CT ′i , Pi), computes K2 = F′(sid, k′ ⊕ k1),
and outputs the session key S K = F′′(sid,K1) ⊕ F′′(sid,K2). As state information,
Ui updates r = F′′′(sid,K1) ⊕ F′′′(sid,K2) in statei. Also, Un updates H(r)

n = Rrn
n+1

in staten. For i ∈ [n + 1, n + k], Ui adds sid, H(l)
i = Rri

i−1 and H(r)
i = Rri

i+1 to statei.
On receiving (k′,CT ′1, σ

′
1), U1 verifies the authentication-tag, and if the verifica-

tion fails, then aborts. U1 decrypts K1 ← ADecusk1 (CT ′1, P1), computes K2 =

F′(sid, k′ ⊕ k1), and outputs the session key S K = F′′(sid,K1) ⊕ F′′(sid,K2). As
state information, U1 updates sid, H(l)

1 = Rr1
n+k and r = F′′′(sid,K1) ⊕ F′′′(sid,K2)

in state1.

A.4 Leave Phase

A set of users R = (U j1 , . . . ,U jm ) leave an established session by U1, . . . ,Un. Let
N = (U j1−1,U j1+1,U j2−1,U j2+1, . . . ,U jm−1,U jm+1) be a set of users neighbouring leaved
users. W.l.o.g., we suppose that U1 ∈ N .



In the Leave phase, users Ui ∈ I \ (R ∪ N) can reduce computation than the Dist
phase. They do not need to compute gri . The ring structure to compute K1 still works
because H(l)

i and H(r)
i in statei are used to connect the ring instead of using gri−1ri and

griri+1 .

(State Update at New Time Frame) If the session is the first session for Ui at the
time frame T F′, then for the current time time S generates uski ← Der(Params,msk, Ai)
with attribute Ai = (Ui, time) and mki ←MGen, and computes CTi ← Encpki (uski,mki).
Then, S sends CTi to Ui, and Ui obtains (uski,mki) ← Decski (CTi) and updates
(uski,mki) in statei.

(Round 1 for Users) Ui ∈ N generates r̃i ∈R {0, 1}κ, r̃′i ∈R Kspaceκ, k̃i ∈R {0, 1}κ,
k̃′i ∈R Kspaceκ, s̃i ∈R {0, 1}κ and s̃′i ∈R Kspaceκ as ES Ki, and computes ri =

tPRF(r̃i, r̃′i , sti, st′i ), ki = tPRF(k̃i, k̃′i , sti, st′i ) and si = tPRF(s̃i, s̃′i , sti, st′i ). Then, Ui

computes Ri = gri and ci = gki hsi , and sends (Ri, ci) to S .
Ui ∈ I \ (R ∪ N) generates k̃i ∈R {0, 1}κ, k̃′i ∈R Kspaceκ, s̃i ∈R {0, 1}κ and s̃′i ∈R

Kspaceκ as ES Ki, and computes ki = tPRF(k̃i, k̃′i , sti, st′i ) and si = tPRF(s̃i, s̃′i , sti, st′i ).
Then, Ui computes ci = gki hsi , and sends ci to S .

(Round 1 for Server) On receiving (Ri, ci) from Ui ∈ N and ci from Ui ∈ I\ (R∪N),
for i such that Ui ∈ I\R, S computes sid = TCR({ci}I\R), chooses a representative
user from Ui ∈ N . Here, w.l.o.g., we suppose that U1 is the representative user. For
i such that Ui ∈ N and Ui+1 ∈ R, S sends (sid,R j) to Ui where j is the minimum
index such that U j ∈ N and j > i. For i such that Ui ∈ N and Ui−1 ∈ R, S sends
(sid,R j′ ) to Ui where j is the maximum index such that U j′ ∈ N and j′ < i. Then,
S sends sid to Ui ∈ I \ (R ∪N). Also, S notices that U1 is the representative user.

(Round 2 for Users) For U1, if U j = U3 and U j′ = Un−1 hold, then on receiving
(sid,R3,Rn−1), U1 computes K(l)

1 = F(sid, Rr1
n−1), K(r)

1 = F(sid,Rr1
3 ), T1 = K(l)

1 ⊕K(r)
1

and T ′ = K(l)
1 ⊕ (k1||s1). For U1, if U j′ = Un−1 and U2 ∈ N hold, then on receiving

(sid,Rn−1), U1 computes K(l)
1 = F(sid, Rr1

n−1), K(r)
1 = F(sid,H(r)

1 ), T1 = K(l)
1 ⊕ K(r)

1

and T ′ = K(l)
1 ⊕ (k1||s1). For U1, if U j = U3 and Un ∈ N hold, then on receiving

(sid,R3), U1 computes K(l)
1 = F(sid, H(l)

1 ), K(r)
1 = F(sid,Rr1

3 ), T1 = K(l)
1 ⊕ K(r)

1 and
T ′ = K(l)

1 ⊕ (k1||s1). U1 computes σ1 ← Tagmk1
(R1, c1, (R3,Rn−1, ) T1,T ′,U1, sid),

and sends (T1,T ′, σ1) to S .
On receiving (sid,R j), Ui such that Ui ∈ N and Ui+1 ∈ R hold computes K(l)

i =

F(sid, H(l)
i ), K(r)

i = F(sid,Rri
j ) and Ti = K(l)

i ⊕K(r)
i . Ui computes σi ← Tagmki

(Ri, ci,
R j, ki, si,Ti,Ui, sid), and sends (ki, si,Ti, σi) to S .
On receiving (sid,R j′ ), Ui such that Ui ∈ N and Ui−1 ∈ R hold computes K(l)

i =

F(sid, Rri
j′ ), K(r)

i = F(sid,H(r)
i ) and Ti = K(l)

i ⊕K(r)
i . Ui computes σi ← Tagmki

(Ri, ci,
R j′ , ki, si,Ti,Ui, sid), and sends (ki, si,Ti, σi) to S .
On receiving sid, Ui ∈ I\ (R∪N) computes K(l)

i = F(sid, H(l)
i ), K(r)

i = F(sid,H(r)
i )

and Ti = K(l)
i ⊕ K(r)

i . Ui computes σi ← Tagmki
(ci, ki, si,Ti,Ui, sid), and sends

(ki, si,Ti, σi) to S .
(Round 2 for Server) On receiving (T1,T ′, σ1) from U1 and (ki, si,Ti, σi) from other

users, S verifies the authentication-tag, and if the verification fails, then aborts.
Also, for Ui ∈ I \ (U1 ∪ R), S checks if ci = gki hsi holds, and if the verification



fails, then aborts. S generates k̃S ∈R {0, 1}κ, k̃′S ∈R Kspaceκ, K̃1 ∈R {0, 1}κ and
K̃′1 ∈R Kspaceκ as ES KS , and computes kS = tPRF(k̃S , k̃′S , stS , st′S ) and K1 =

tPRF′(K̃1, K̃′1, stS , st′S ). For i such that Ui ∈ I\(U1∪R), S computes k′ = (
⊕
{ki})⊕

kS . For i such that Ui ∈ I \ R, S computes T ′i =
⊕

1≤ j≤i−1 T j, where for j such that
U j ∈ R, T j is empty. For Ui ∈ I \ R, S computes CT ′i ← AEnc(Params, Pi,K1)
with access structure Pi := (ID = Ui) ∧ (time ∈ T F).
S computes σ′1 ← Tagmk1

(R1, c1, (R3,Rn−1, ) T1,T ′,U1, sid, k′,CT ′1), and sends
(k′,CT ′1, σ

′
1) to U1.

For i such that Ui ∈ N and Ui+1 ∈ R, S computes σ′i ← Tagmki
(Ri, ci,R j, ki,

si,Ti,Ui, sid, c1, k′,T ′i ,T
′,CT ′i ), and sends (c1, k′,T ′i ,T

′,CT ′i , σ
′
i) to Ui.

For i such that Ui ∈ N and Ui−1 ∈ R, S computes σ′i ← Tagmki
(Ri, ci,R j′ , ki,

si,Ti,Ui, sid, c1, k′,T ′i ,T
′,CT ′i ), and sends (c1, k′,T ′i ,T

′,CT ′i , σ
′
i) to Ui.

For Ui ∈ I \ (R ∪ N), S computes σ′i ← Tagmki
(ci, ki, si,Ti,Ui, sid, c1, k′,T ′i ,T

′,
CT ′i ), and sends (c1, k′,T ′i ,T

′,CT ′i , σ
′
i) to Ui.

(Session Key Generation and Post Computation) On receiving (c1, k′,T ′i ,T
′,CT ′i , σ

′
i),

Ui ∈ I \ (U1 ∪ R) verifies the authentication-tag, and if the verification fails,
then aborts. Ui computes K(l)

1 = T ′i ⊕ K(l)
i and k1||s1 = T ′ ⊕ K(l)

1 , and checks
if c1 = gk1 hs1 hold, and if the verification fails, then aborts. Ui decrypts K1 ←

ADecuski (CT ′i , Pi), computes K2 = F′(sid, k′ ⊕ k1), and outputs the session key
S K = F′′(sid,K1)⊕F′′(sid,K2). As state information, Ui updates sid, r = F′′′(sid,K1)⊕
F′′′(sid,K2) in statei. For i such that Ui ∈ N and Ui+1 ∈ R, Ui updates H(r)

i = Rri
j

in statei. For i such that Ui ∈ N and Ui−1 ∈ R, Ui updates H(l)
i = Rri

j′ in statei.
On receiving (k′,CT ′1, σ

′
1), U1 verifies the authentication-tag, and if the verifica-

tion fails, then aborts. U1 decrypts K1 ← ADecusk1 (CT ′1, P1), computes K2 =

F′(sid, k′⊕k1), and outputs the session key S K = F′′(sid,K1)⊕F′′(sid,K2). As state
information, U1 updates sid, r = F′′′(sid,K1) ⊕ F′′′(sid,K2) in state1. If U2 ∈ R,
then U1 updates H(r)

1 = Rr1
j in state1. If Un ∈ R, then U1 updates H(l)

1 = Rr1
j′ in

state1.

A.5 Update Phase

The Update phase is the same as the simple case.


