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Abstract. Homomorphic signatures (HS) allow evaluation of signed messages by producing a signature
on a function of messages signed by the same key. Motivated by the vast potential of applications, we
initiate the study of multi-key HS (M-HS) which allows evaluation of signatures under different keys.
We also study other multi-key extensions, namely, hierarchical HS (M-HiHS) for delegation of signing
power over message sub-spaces, and key-message-HS (M-KMHS) for evaluation of signatures under
different keys with respect to both keys and messages. We thus also introduce the concept of key-
homomorphism in signatures, which leads to the notion of multi-key key-HS (M-KHS) for evaluation
of signatures with respect to keys only.
Notion-wise, our result shows that M-HS can act as a central notion since all its seemingly differ-
ent extensions are all equivalent. In particular, this suggests that key-homomorphism and message-
homomorphism in signatures are identical in nature. As a sample application, we show that M-KHS
implies decentralized attribute-based signatures (D-ABS). Our work also provides the first (leveled)
fully KHS and the first (D-)ABS for circuits from standard assumptions.
Surprisingly, there is a huge gap between homomorphism in a single space and in two spaces. Indeed
all existing (leveled) fully homomorphic signature schemes support only a single signer. In the multi-
space setting, we construct M-HS from any adaptive zero-knowledge succinct non-interactive argument
of knowledge (ZK-SNARK) (and other standard assumptions). We also show that two-key HS implies
functional signatures. Our study equips the literature with a suite of signature schemes allowing different
kinds of flexible evaluations.

1 Introduction

Homomorphic signatures (HS) allow evaluation of signed messages by producing a signature on a function
of messages signed by the same key. HS has undergone great development, notably from supporting either
only addition or multiplication [BFKW09, GKKR10, BF11b, CFW12, Fre12, LPJY13], to bounded-degree
polynomials [BF11a, CFW14], and even to (leveled) fully homomorphic operations which allow evaluation
of general circuits of a-priori bounded depth [GVW15,BFS14]. Beyond unforgeability, some works consider
stronger privacy notions such as context-hiding [ABC+12,ALP12,ALP13]. This supports applications which
require computation on authenticated data, for example, verifiable computation. Yet, the state-of-the-art HS
is still restricted to the single-key setting. Also, as an indirect consequence, the homomorphism is restricted
to only the message space. In this paper, we initiate the study of HS in the multi-key setting, as well as
key-homomorphism in (message-)homomorphic signatures in HS.

To illustrate the usefulness of multi-key HS which is homomorphic in both key space and message space,
consider a scenario where two managers Alice and Bob in a company are jointly making a decision. They
sign their decisions m1 and m2 with their signing keys associated with attributes x1 and x2 respectively.
Is it possible for a secretary Charlie to derive a signature on their joint decision, and prove that it is from
combining those of the two managers? Technically, we ask whether a public evaluator can derive a signature
of g((x1,m1), (x2,m2)) under the attribute f(x1, x2), for some functions f and g. In other words, such a
signature scheme supports operations on both the key space and message space. In particular, if x1 = x2,
f(x1, x2) = x1 and g((x1,m1), (x2,m2)) = g′(m1,m2), the above syntax captures (regular) homomorphic



signatures. On the other hand, if m1 = m2 and g((x1,m1), (x2,m2)) = m1, it becomes a signature scheme
with homomorphism in the key space, or what we call key-homomorphic signatures (KHS), which itself is a
new notion never considered explicitly in the literature.

To unlock the full potential of key-homomorphism, it will be useful to first consider multi-key homomor-
phic signatures (M-HS), where the operation on the public keys is fixed to the union function. The difference
between M-HS and HS is similar to that between multi-signatures and vanilla signatures. In M-HS, users
with different secret and public key pairs can sign on different messages, so that a public evaluator can per-
form homomorphic evaluations of a function g on all message-signature pairs to produce a signature which
verifies under the union of all input public keys. A distinctive property of M-HS, which is absent in the
single-key setting, is that we require M-HS to be secure against insider attack. That is, suppose signer A
signs a message mA while the evaluator colludes with another signer B, we require this coalition can only
produce signatures on (g, g(mA, ·)). In other words, signer B cannot falsely claim that m is computed from
some value m′A not contributed by signer A.

As an immediate application, M-HS can be used along with multi-key homomorphic encryption [LTV12,
CM15, MW16, PS16] to achieve verifiable secure multi-party computation. Apart from being a powerful
primitive on its own, M-HS implies several of its seeming different extensions and variants, including multi-
key hierarchical homomorphic signatures (M-HiHS), multi-key key-message-homomorphic signatures (M-
KMHS), and multi-key key-homomorphic signatures (M-KHS), whose functionality will be explained below.

1.1 Our Results

Multi-key homomorphic signatures. We present multi-key homomorphic signatures (M-HS), a generaliza-
tion of homomorphic signatures which allows a public evaluator to transform signatures of different set of
messages M signed under different public keys to a signature of (g, g(. . . ,M, . . .)) signed under a combined
public key. We define a strong security notion of M-HS called unforgeability under K-bounded corruption,
which requires that a coalition of the evaluator and any K signers cannot forge a signature of (g,m), where
the resulting message m is not in the range of g restricted by the inputs of the honest signers. Interestingly,
such a definition also makes sense in the single-key setting, where we require that even the signer cannot
produce a signature on (g,m) where m is not in the range of g.

Implications to and from existing notions. Treated as a central hub of our work, we study how M-HS is related
to other notions. First, we show that M-HS can be constructed from any adaptive zero-knowledge succinct
non-interactive argument of knowledge (ZK-SNARK). Then, we show that functional signatures (FS) [BGI14]
can be constructed from a two-key M-HS (2-HS). Since the existence of succinct functional signatures implies
the existence of succinct non-interactive argument (SNARG), we obtain as a corollary that the existence
of 2-HS implies the existence of SNARG. Even stronger, we show that the existence of single-key HS which
is unforgeable under corruption implies the existence of ZK-SNARG.

Equivalence of seemingly different variants. We then proceed to the relations between M-HS and its exten-
sions and variants. Concretely, we propose several seemingly different notions listed as follows:

– Multi-Key Hierarchical Homomorphic Signatures (M-HiHS): extends M-HS such that a signer can dele-
gate its signing power over any supersets of a specified set M .

– Multi-Key Key-Message-Homomorphic Signatures (M-KMHS): extends M-HS such a public evaluator
can evaluate signatures of a set of messages M signed by a key associated to a set of attributes X to a
signature of g(X,M) signed by a key associated to the attribute f(X).

– Multi-Key Key-Homomorphic Signatures (M-KHS): allows a public evaluator to evaluate signatures of M
signed by a key associated to attributes X to one signed by a key associated to the attribute f(X).

Although these notions are seemingly stronger than or at least different from M-HS, we show that their
existence are all equivalent to that of M-HS (up to the existence of collision resistant hash for M-HiHS).
In particular, their corresponding special cases, HS and KHS, are also equivalent. Conceptually, this result
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Fig. 1. Relations between all notions considered in this work: Solid arrows represent implications shown in this work.
Dashed and dotted arrows represent existing and trivial implications respectively.

bridges the gap between message- and key-homomorphism in the signatures setting. When instantiated by
state-of-the-art (leveled) fully homomorphic signatures [GVW15], we obtain (leveled) fully key-homomorphic
signatures (FKHS) which inherit all the nice properties, such as security based on (standard) lattices in the
standard model.

Applications. Apart from grand applications such as multi-party verifiable computation, we are also interested
in the implications of M-HS to more basic primitives. As an example, we show that (linkable) decentralized
attribute-based signatures (D-ABS) can be constructed from M-KHS generically. When instantiated by the
FKHS above, we obtain ABS for general circuits, for which the only known efficient constructions are based
on multilinear maps. Our scheme satisfies linkable anonymity. That is, while a signature does not leak any
information about the attributes under which it is signed beyond whether they satisfy the policy of the
verifier, different signatures from the same signer are publicly linkable. By a generic transformation using
non-interactive witness-indistinguishable (NIWI) proofs, the resulting scheme achieves full anonymity.

To summarize, Figure 1 illustrates the relations between all notions studied in this work.

1.2 Related Work on Key-Homomorphism

Key-homomorphism has been studied in the context of key-homomorphic encryption (KHE) by
Boneh et al. [BGG+14], who formulated KHE and constructed it based on the learning with errors
problem. Furthermore, they used KHE to construct attribute-based encryption for general circuits with
short secret keys. Inspired by their work, we study the corresponding notions in the signatures setting,
namely KHS, and attribute-based signatures (ABS) for general circuits.

Unlike homomorphic encryption (HE) which allows homomorphic operations on the ciphertexts with
respect to the plaintexts, KHE allows homomorphic operations on the ciphertexts with respect to the public
keys. As the plaintexts are private while the public keys are public, KHE and HE are inherently different.
However, for signature schemes, both the messages and the public keys are public. It is natural to ask whether
there is any connection between HS and KHS. Indeed, we show that the two notions are equivalent.

Key-homomorphism in signatures is considered in different extents in delegatable functional signa-
tures (DFS) [BMS16] and operational signature scheme (OSS) [BDF+14]. In the former, the evaluator must
use its secret key to derive signatures. The verification algorithm then takes as input both the public key
of the original signature as well as the public key of the evaluator. In the latter, the evaluation algorithm
takes as input tuples consisting of an identity, a message, and a signature. It outputs another tuple to a
targeted identity. DFS is constructed generically from trapdoor permutations, while OSS is constructed from
indistinguishability obfuscation and one-way functions. They thus serve as proof-of-concept without giving
much intuition of how to achieve key-homomorphism in signatures.
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Other related notions include policy-based signatures [BF14], in which a policy-dependent signing key can
only sign messages satisfying the specified policy, and functional signatures [BGI14], in which a functional
signing key can only sign messages in the range of the specified function.

2 Preliminaries

Let λ be the security parameter. We use negl(λ) to denote functions which are negligible in λ. Barred
variables are vectors, e.g., x̄. If A is a probabilistic algorithm, x ← A(·) denotes assigning the output from
the execution of A to the variable x. For a set S, x← S denotes the sampling of a uniformly random x ∈ S.

2.1 Digital Signatures

Definition 1 (Signatures). A signature scheme is a tuple of PPT algorithms DS.(KGen,Sig,Vf) defined
as follows:

– (pk, sk)← KGen(1λ): The key generation algorithm takes as input the security parameter λ and generates
a key pair (pk, sk).

– σ ← Sig(sk,m): The signing algorithm takes as input a secret key sk and a message m ∈ {0, 1}∗. It
outputs a signature σ.

– b ← Vf(pk,m, σ): The verification algorithm takes as input a public key pk, a message m, and a signa-
ture σ. It outputs a bit b.

Correctness. The scheme is correct if, for all λ ∈ N, all key pairs (pk, sk) ← KGen(1λ), all messages
m ∈ {0, 1}∗, and all signatures σ ← Sig(sk,m), it holds that Vf(pk,m, σ) = 1.

Definition 2 (Existential Unforgeability). A signature scheme DS.(KGen,Sig,Vf) is existentially un-
forgeable under chosen message attacks (EUF-CMA-secure) if, for all PPT adversaries A, there exists a
negligible function negl(λ) such that Pr[expEUFADS(1λ) = 1] ≤ negl(λ) where expEUFADS is an experi-
ment defined as follows:

– The challenger C generates (pk, sk)← KGen(1λ) and gives pk to A.
– The adversary A is given access to a signing oracle OSig(sk, ·).
– Eventually, A outputs a forgery (m∗, σ∗).
– The experiment outputs 1 if Vf(pk,m∗, σ∗) = 1 and m∗ is not queried to the signing oracle.
– Otherwise, the experiment outputs 0.

2.2 Adaptive Zero-Knowledge Non-Interactive Argument (of Knowledge)

Definition 3 (ZK-SNARG). Π = (Gen,Prove,Vf) is an adaptive zero-knowledge succinct non-interactive
argument (ZK-SNARG) for a language L ∈ NP with the witness relation R if it satisfies the following
properties:

– Completeness: For all x,w such that R(x,w) = 1, and for all strings crs ← Gen(1λ), we have
Vf(crs, x,Prove(x,w, crs)) = 1.

– Adaptive Soundness: If crs← Gen(1λ) is sampled uniformly at random, then for all PPT adversaries
A, the probability that A(crs) will output a pair (x, π) such that x /∈ L but Vf(crs, x, π) = 1, is at most
negl(λ).

– Succinctness: For all x,w such that R(x,w) = 1, if crs← Gen(1λ) and π ← Prove(crs, x, w), then there
exists an universal polynomial p(·) that does not depend on the relation R, such that |π| ≤ p(k + log t),
where t denotes the runtime of the relation R associated with language L.
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– Adaptive Zero-Knowledge: There exists a PPT algorithm S = (Scrs,SProve) such that, for all PPT
adversaries A,

|Pr[AProve(crs,·,·)(crs)→ 1 : crs← Gen(1λ)]− Pr[AS
′(crs,td,·,·)(crs)→ 1 : (crs, td)← Scrs(1λ)]| = negl(λ) ,

where S ′(crs, td, x, w) = SProve(crs, td, x).

Definition 4 ((Strong) ZK-SNARK [BGI14, FN16]). A ZK-SNARK Π = (Gen,Prove,Vf) is a
(strong) adaptive zero-knowledge succinct non-interactive argument of knowledge (ZK-SNARK) for a
language L in NP with witness relation R if there exists a negligible function negl(λ) such that, for all PPT
provers P ∗, there exists a PPT algorithm EP∗ = (E1

P∗ ,E2
P∗) such that for every adversaries A,

|Pr[A(crs)→ 1 : crs← Gen(1λ)]− Pr[A(crs)→ 1 : (crs, td)← E1
P∗(1λ)]| = negl(λ) , and

|Pr[(x, π)← P ∗(crs) ∧ w∗ ← E2
P∗(crs, xk, x, π) s.t. Vf(crs, x, π) = 1 ∧ (x,w∗) /∈ R]| = negl(λ) ,

where the probabilities are taken over (crs, xk)← E1
P∗(1λ), and the random coin of the extractor E2

P∗ .

3 Multi-Key Homomorphic Signatures (M-HS)

We define a new primitive called multi-key homomorphic signatures (M-HS). M-HS allows an arbitrary
number of signers to generate keys and sign messages independently in a fully distributed manner. Suppose
that each signer k signs a set of messages Mk with its secret key skk to produce a set of signatures Σk.
An evaluator can then publicly evaluate a function g over the message-signature pairs (Mk, Σk) to derive
a signature of (m, g) where m = g(M1, . . . ,MK). Syntactically, M-HS generalizes the normal homomorphic
signatures (HS) since it reduces to HS when all K secret keys are owned by the same party.

In the multi-signer setting, we must carefully analyze unforgeability when the adversary can corrupt
some signers. Such an insider attack is absent in HS since there is only one signer and hence one signing key
involved with a signature. We formulate the unforgeability against insider corruption, which requires that
such group of corrupt signers cannot produce signatures of (m, g), where the message m is outside the range
of the function g restricted by the inputs of the uncorrupted signers.

To illustrate the meaning of a successful forgery, consider the following specific configuration: Let g be
the product function and Mk ∈ {0, 1}. As long as Mk = 0 for some uncorrupted signer k, the adversary is
unable to produce a signature of (1, g).

More interestingly, this requirement actually still makes sense even when there is only one signer and this
signer is the adversary. In this case, unforgeability against insider corruption implies that even the signer
cannot produce a signature of (m, g) if there does not exists M ′ such that m = g(M ′). Furthermore, if the
signature scheme is context-hiding, the signature of (m, g) can be regarded as an adaptive zero-knowledge
succinct non-interactive argument (SNARG) of the NP language {(m, g) : ∃M ′ s.t. m = g(M ′)} as long as g
is efficiently computable.

3.1 Settings and Notations

Before formally defining the notion, we first establish the settings and notations to be used throughout the
paper. Let N = poly(λ) be an a-priori bounded maximum number of hops of homomorphic evaluation. That
is, a freshly signed message m can at most pass through N functions. There is however no further restriction
on the number of inputs and circuit depth of each function as long as it is efficiently computable. We assume
that functions obtained by concatenation, such as g ◦ h̄, keep the concatenated representation (without
simplification). Thus, given a function g, one can efficiently write down the evaluation process of a function g
as a tree, called the evaluation tree of g. As a consequence, there exists a polynomial time algorithm Hop
which, on input a function g, outputs the depth of the evaluation tree of g, which represents the number
of hops Hop(g) passed through in the evaluation process of g. We abuse the notation pk = g(pk1, . . . , pkK)
to represent a tree similar to the evaluation tree of g, except that the tree nodes are replaced by the public
keys pkk of the corresponding inputs. We also abuse the notion τ = g(τ1, . . . , τK) in a similar way.
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3.2 Definitions

Syntax. A multi-key homomorphic signature scheme (M-HS) for a class G of admissible functions consists of
the PPT algorithms (Setup,KGen,Sig,Vf,Eval) defined as follows:

– pp← Setup(1λ) inputs the security parameter λ. It outputs a public parameter pp which is input to all
algorithms implicitly. The public parameter also defines the message spaceM and the function family G
which contains the identity function id :M→M.

– (pk, sk)← KGen(pp) inputs the public parameter. It outputs the public key pk and secret key sk. When
an algorithm takes as input a secret key sk, we assume sk contains its corresponding public pk implicitly.

– Σ ← Sig(sk, τ,M) inputs the secret key sk, a tag τ ∈ {0, 1}∗, and a set of messages M ∈M∗. It outputs
a set of signatures Σ.

– b ← Vf(pk, τ, σ,m, g) inputs a (possibly combined) public key pk, a (possibly combined) tag τ , a signa-
ture σ, a message m ∈ M, and a function g ∈ G. It outputs a bit b = 0 or b = 1, indicating whether m
is the output of the function g over some signed data under tag τ .

– σ ← Eval(g, (pkk, τk,Mk, Σk)Kk=1) inputs a function g ∈ G, and, from each contributor, a public key, a
tag, a set of messages, and a set of signatures (pkk, τk,Mk, Σk), where k ∈ [K]. It outputs a signature σ
signing the evaluated data m = g(M1, . . . ,MK) under the combined public key pk = g(pk1, . . . , pkK)
and combined tags τ = g(τ1, . . . , τK). We assume that the evaluator has knowledge of the history of the
evaluated functions which produce Mk.

Correctness. For any pp ∈ Setup(1λ), any K, j = poly(λ) and k ∈ [K], any (pkk, skk) ∈ KGen(pp), any
Mk ∈M∗, any τk ∈ {0, 1}∗, and any g, hk,j ∈ G with appropriate dimensions, it holds that

– (Signing Correctness.) if Σk ← Sig(skk, τk,Mk), then Vf(pkk, τk, σk,j ,mk,j , id) = 1 for each σk,j ∈ Σk
and mk,j ∈Mk; furthermore,

– (Evaluation Correctness.) for any Σk, if Vf(pkk, τk, σk,j ,mk,j , hk,j) = 1 for all σk,j ∈ Σk and mk,j ∈Mk,
Hop(hk,j) ≤ N − 1, and σ ← Eval(g, (pkk, τk,Mk, Σk)Kk=1), then Vf(pk, τ, σ, g(M1, . . . ,Mk), g ◦ h̄) = 1,
where pk = g(pk1, . . . , pkK) and τ = g(τ1, . . . , τK).

Unforgeability. Consider the following security game between an adversary A and a challenger C.

– Let K = poly(λ) be the number of signers in the system.
– The challenger C runs pp ∈ Setup(1λ) and {(pkk, skk)← KGen(pp)}Kk=1, and gives pp, pk1, . . . , pkK to A.
– The adversary A adaptively issues a polynomial number of signing queries and corruption queries. In

each signing query q ∈ [Q] where Q = poly(λ), A chooses a signer k, a tag τq,k ∈ {0, 1}∗, and a set of
data Mq,k ∈ M∗. The challenger C responds with Σq,k ← Sig(skk, τq,k,Mq,k). In each corruption query,
A chooses a signer k. The challenger C responds with skk.

– Without loss of generality, we assume that the adversary A corrupts signers 1, . . . ,K.
– The adversary A outputs a public key pk∗, a tag τ∗ ∈ {0, 1}∗, a function g∗ ∈ G, a message m∗ ∈ M,

and a signature σ∗. It wins the game if Vf(pk∗, τ∗, σ∗,m∗, g∗) = 1, pk∗ is produced by evaluating g on
some subset of {pkk}, and (pk∗, τ∗, σ∗,m∗, g∗) is either a forgery such that
• Type-I : τ∗ is not a root produced by evaluating g on any subset of {τq,k} and at least one signer k

is not corrupted, or
• Type-II : τ∗ is a root produced by evaluating g on some subset of {τq,k}, but the message m∗ 6∈
g∗(· · · ,Mq,k, · · · ) for the corresponding subset of messages.

We say that the scheme is unforgeable under K-bounded corruption if, for all PPT adversaries A, we
have Pr{A wins} ≤ negl(λ) in the above game. We simply say that the scheme is unforgeable if the adversary
A can corrupt all K signers in the game.

6



Context Hiding. There exist a simulator S = (SSetup,SSig) such that, for all K = poly(λ), k ∈ [K], τk, Mk,
and g, it holds that for any PPT adversaries A,

| Pr


A((pkk, skk, τk, Σk,Mk)Kk=1, σ, g)→ 1 :

pp← Setup(1λ)
(pkk, skk)← KGen(pp)
Σk ← Sig(skk, τk,Mk)

σ ← Eval(g, (pkk, τk,Mk, Σk)Kk=1)

−

Pr


A((pkk, skk, τk, Σk,Mk)Kk=1, σ, g)→ 1 :

(pp, td)← SSetup(1λ)
(pkk, skk)← KGen(pp)
Σk ← Sig(skk, τk,Mk);

σ ← SSig(td, g, (pkk, τk)Kk=1, g(M1, . . . ,MK))

 | = negl(λ) .

The scheme is weakly context hiding if the above holds.

Succinctness. There exist a polynomial s(·) such that for every λ ∈ N, K = poly(λ), k ∈ [K], g ∈ G,
τk ∈ {0, 1}∗, Mk ∈ M∗, it holds with probability 1 over pp ← Setup(1λ); (pkk, skk) ← KGen(pp); Σk ←
Sig(skk, τk,Mk); that the resulting signature σ ← Eval(g, (pkk, τk,Mk, Σk)Kk=1) on m = g(M1, . . . ,Mk) has
size |σ| ≤ s(λ, |m|). In particular, the signature size is independent of the sizes |Mk| of the inputs to the
function, and of the size |g| of a description of the function g.

3.3 Construction from ZK-SNARK

It is well known that digital signatures, denoted by DS.(KGen,Sig,Vf), can be constructed from one-way
functions [Lam79, Rom90]. For each n ∈ [N ], let Πn.(Gen,Prove,Vf) be a ZK-SNARK for the following
recursively defined NP language Ln:

Ln =


{(φ,m, g, pk, τ) : m = g(M1, . . . ,MK) ∧ ∃(Mk, Σk)Kk=1 s.t.

∀ mk,j ∈Mk ∀ σk,j = (n, σ′k,j) ∈ Σk,DS.Vf(pkk, (τk,mk,j), σ′k,j) = 1}
n = 1

{(crsn−1,m, g ◦ h̄, pk, τ) : m = g(M1, . . . ,MK) ∧ ∃(Mk, Σk)Kk=1 s.t. ∀ mk,j ∈Mk

∀ σk,j = (n, σ′k,j) ∈ Σk, Πn−1.Vf(crsn−1, (crsn−2,mk,j , hk,j , pkk,j , τk,j), σ′k,j) = 1}
n > 1

where hk,j , pkk,j (resp. pkk) and τk,j (resp. τk) are layer-2 (the layer just below the root) nodes of the trees
g◦ h̄, pk and τ respectively, corresponding to the messages mk,j . Assuming the existence of one-way functions
and adaptive zero-knowledge succinct non-interactive argument of knowledge (ZK-SNARK), we construct a
multi-key homomorphic signature scheme HS as follows.

– pp← Setup(1λ)
• Compute crsn ← Πn.Gen(1λ) for n ∈ [N ].
• Define crs0 := φ.
• Output pp = (1λ, crs0, . . . , crsN ).

– (pk, sk)← KGen(pp)
• Compute (pkDS , skDS)← DS.KGen(1λ).
• Output pk = pkDS , sk = skDS .

– Σ ← Sig(sk, τ,M)
• Set n = 0.
• Compute σ′j ← DS.Sig(skDS , (τ,mj)) for each mj ∈M .
• Set σj := (n, σ′j).
• Output Σ := {σj}j .

– b← Vf(pk, τ, σ,m, g)
• If n > N , output 0.
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• If n = 0, output DS.Vf(pk, (τ,m), σ′).
• Otherwise output Πn.Vf(crsn, (crsn−1,m, g, pk, τ), σ′).

– σ ← Eval(g, (pkk, τk,Mk, Σk)Kk=1)
• For each k and σk,j ∈ Σk, parse σk,j = (nk,j , σ′k,j).
• Let n = maxk,j(nk,j).
• Run σk,j ← Eval(id, (pkk, τk,mk,j , σk,j)) until nk,j reaches n.
• Compute m← g(M1, . . . ,MK), pk← g(pk1, . . . , pkK), and τ ← g(τ1, . . . , τK).
• Compute σ′ ← Πn+1.Prove(crsn+1, (crsn,m, g ◦ h̄, pk, τ), (Mk, Σk)Kk=1).
• Output σ = (n+ 1, σ′).

The correctness of the above construction follows straightforwardly from the correctness of DS and Π,
and the context-hiding property follows from the zero-knowledge property of Π.

Next, we argue that the above construction is unforgeable against insider corruption. The intuition is
that, if the adversary outputs a signature (a proof) of a message outside the range of g restricted by the
inputs of the honest signers, then either the proof is valid for a statement outside L, which breaks the
soundness of Π, or it breaks the unforgeability of DS. Specifically, the extractor of one of the Πn can extract
signatures under some public key pkk of some message m not signed by the honest signer k.

Theorem 1. Suppose DS is EUF-CMA-secure and Πn is sound for all n ∈ [N ], then HS is unforgeable.

Proof. Suppose there exists an adversary AHS that produces a forgery in HS with non-negligible probability.
We show how to construct an adversary ADS that uses AHS to produce a forgery in the underlying digital
signature scheme DS, or an adversary AΠ that uses AHS to break the soundness of Π.

Consider a PPT simulator S who plays the role of the challenger. At the start of the game, S makes a
random guess of whether AHS will output a type-I or type-II forgery.

Case 1: Type-I Forgery. S acts as an adversary ADS in the unforgeability game of DS, obtains from its
challenger the public key pkDS,K, and generates other DS public keys honestly by {(pkDS,k, skDS,k) ←
DS.KGen(1λ)}K−1

k=1 . It generates for each n (crsn, xkn) ← Πn.E1(1λ), a simulated crsn for Πn, together with
an extraction key xkn, and forwards the public parameters pp = (1λ, crs0, . . . , crsN ) and the public keys
{pkk}Kk=1 = {pkDS,k}Kk=1 (in random order) to AHS , where crs0 := φ.
AHS makes two types of queries:

– Signing queries q with signer k, tag τq,k ∈ {0, 1}∗ and a set of messages Mq,k ∈ M∗: If k 6= K, S signs
the messages honestly by σq,k,j ← DS.Sig(skDS,k, (τq,k,mq,k,j)) for each mq,k,j ∈Mq,k. Else, if k = K, S
forwards all (τq,K,mq,K,j) to its signing oracle, and receives σq,K,j . In either case, it outputs {σq,k,j}.

– Corruption queries with index k: If S guesses type-I forgery correctly, by assumption, at least one signer
is not corrupted and A corrupts signer 1, . . . ,K for some K < K, which means that signer K is not
corrupted. Thus, S returns skDS,k. Otherwise, if S guesses wrongly and A corrupts signer K, then S
aborts. This happens with probability at most 1

2 .

After querying the oracles, AHS will output an alleged forgery of HS, a public key pk∗, a tag τ∗ ∈
({0, 1}∗)K, a function g∗ ∈ G, some data m∗ ∈ M, and a signature σ∗ = (n∗, σ′) such that τ∗ is not a
root produced by evaluating g on any subset of {τq,k} and signer K is not corrupted. S runs the extrac-
tors Πn.E2 recursively from n = n∗ to n = 1, so that it recovers a set of key-message-signature tuples
{(pk∗q,k, (τ∗q,k,m∗q,k), σ∗q,k)}, all of which passes the verification of DS. Since pk∗ is produced by evaluating g
on some subset of {pkk}, and τ∗ is not a root produced by evaluating g on any subset of {τq,k}, there is at
least 1

K probability that τ∗ contains some τ∗q,K 6∈ {τq,k} corresponding to pkK and some m∗q,K. Suppose that
is the case, then ((τ∗q,K,m∗q,K), σ∗q,K) is a valid forgery to DS.
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Case 2: Type-II Forgery. S makes a guess n̂ of whether A will produce a forgery on DS (n̂ = 0) or a
false proof in Πn for some n̂ (n̂ ∈ [N ]). For n̂ = 0, S acts as an adversary ADS in the unforgeability
game of DS, from which it receives a public key pkDS,K. Otherwise, it acts as an adversary in the sound-
ness game of Πn̂, from which it receives the common reference string crsn̂. It generates all other public
keys of DS honestly by (pkDS,k, skDS,k) ← DS.KGen(1λ). For n > n̂, it simulates the common refer-
ence string by (crsn, xkn) ← Πn.E1(1λ). For n < n̂, it generates the common reference string honestly
by crsn ← Πn.Gen(1λ). It then forwards the public parameters pp = (1λ, crs0, . . . , crsN ) and the public
keys {pkk}Kk=1 = {pkDS,k}Kk=1 (in random order) to AHS .
AHS makes two types of queries:

– Signing queries: If S guessed n̂ = 0, it answers exactly as in the type-I forgery case. Otherwise, it signs
all messages (including those for signer K) honestly.

– Corruption queries with index k: If the guess n̂ = 0 of S is correct, which happens with probability at
least 1

N+1 , then A will never corrupt all signers. With probability at least 1
K , signer K is never corrupted.

Otherwise, assume the guess n̂ > 0 is correct. In both cases, S is always able to answer with skDS,k.

Suppose AHS corrupts signer 1, . . . ,K where K ≤ K. After querying the oracles, AHS will output an
alleged forgery of HS, a public key pk∗ a tag τ∗, a function g∗ ∈ G, a message m∗ ∈M, and a signature σ∗
such that τ∗ is produced by evaluating g∗ on some subset of {τq,k} but m∗ 6∈ g∗(. . . ,Mq,k, . . .) for the
corresponding subset of messages.

As discussed above, if the guess n̂ = 0 of S is correct, which happens with probability at least 1
N+1 ,

then there is at least one uncorrupted signer. Using the same recursive extraction procedure as in the type-I
forgery case, S recovers a set of key-message-signature tuples {(pk∗q,k, (τ∗q,k,m∗q,k), σ∗q,k)}, all of which passes
the verification of DS. However, since m∗ 6∈ g∗(. . . ,Mq,k, . . .), there must exists at least one tuple (τ∗q,k,m∗q,k)
which is not queried by A. With probability at least 1

K , such tuple corresponds to signer K. In such case,
((τ∗q,K,m∗q,K), σ∗q,K) is a valid forgery to DS.

Theorem 2. Suppose Πn is adaptive zero knowledge for all n ∈ [N ], then HS is weakly context hiding.

Proof. Since Πn is adaptive zero-knowledge, there exists a simulator SΠn = (Scrs
Πn
,SProve
Πn

) which simulates
a proof πn for any instance in Ln. To construct a simulator SHS for HS, we define SSetup

HS which simulates
the common reference strings crsn using Scrs

Πn
, and SSig

HS which simulates the signatures using SProve
Πn

. Since
the proofs simulated from SΠn are indistinguishable from the real proofs, we also have that the simulated
signatures from SHS are indistinguishable from the real signatures.

Theorem 3. Suppose Πn is succinct for all n ∈ [N ], then HS is succinct.

Proof. The size of a signature produced by Eval(g, (pkk, τk,Mk, Σk)Kk=1) is the sum of proof length of Πn for
some n and the length of the binary representation of N , which is logarithmic in the security parameter.
The succinctness of HS follows directly from the succinctness property of Π.

3.4 Construction from Lattices

If we settle for unforgeability under 0-bounded corruption, then a generalization of the (leveled) fully ho-
momorphic signatures by Gorbunov et al. [GVW15] (GVW) gives an M-HS scheme. The generalization is
straightforward, thus we only explain the core idea. 1

The verification equation of the GVW scheme is of the form V = AU + xG, where x ∈ {0, 1} is the
message signed, A and V are random matrices given in the public key, U is a random matrix of small norm
acting as the signature of x, and G is a fixed, nicely-structured “gadget” matrix such that there exists an
efficient algorithm (with abused notion as a matrix) G−1 which samples matrices of small norm from the
kernel of G. The secret key of the scheme is a “trapdoor” for the matrix A which allows efficient sampling
of matrices of small norm from the kernel of A.
1 A concurrent work by Fiore et al. [FMNP16] has formalized the idea.
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Suppose U1 and U2 are the signatures given by two different signers on the messages x1 and x2 re-
spectively which satisfy the equations V1 = A1U1 + x1G and V2 = A2U2 + x2G. Given the signatures,
a public evaluator can compute the signatures U+ = (U1,U2)T and U× = (U1G−1V2, x1U2)T for the
addition and multiplication function respectively. We can verify that these signatures satisfy V1 + V2 =
(A1,A2)U+ +(x1 +x2)G and V1G−1(V2) = (A1,A2)U×+(x1x2)G. The treatments for adaptive security,
multi-data support, and context-hiding property follow directly from the work of Gorbunov et al. [GVW15].

Unfortunately, such simple generalization only achieves unforgeability under 0-bounded corruption, which
means the adversary is not allowed to corrupt any of the signers. This is because, if the adversary has
knowledge of the trapdoor of Ak for some signer k, then it can sample matrices of small norm from the
kernel of (A1, . . . ,AK) using standard trapdoor delegation technique. More disappointingly, even the original
(single-key) scheme of GVW does not satisfy unforgeability under 1-bounded corruption. We believe that
crossing the 0- to 1-bounded corruption gap based on standard assumption requires substantially different
techniques.

3.5 Functional Signatures from M-HS

We begin to show the power of M-HS by constructing functional signatures [BGI14] using a 2-key HS. As
mentioned in the introduction, FS allows an authority with a master secret key to derive function-specific
signing keys. Given a signing key for a function f , one can only sign messages in the range of f .

Definition. We recall the formal definition of functional signatures [BGI14].

Syntax. A functional signature scheme for a message space M, and a function family F = {f : Df →M}
consists of algorithms FS.(Setup,KGen,Sig,Vf).

– (mpk,msk) ← FS.Setup(1λ): inputs the security parameter λ; and outputs the master secret key msk
and master public key mpk.

– skf ← FS.KGen(msk, f): inputs the master secret key msk and a function f ∈ F ; and outputs a secret
key skf for f .

– (f(m), σ) ← FS.Sig(f, skf ,m): inputs the secret key skf for a function f ∈ F , and message m ∈ Df ;
and outputs f(m) and a signature of f(m).

– b← FS.Vf(mpk,m, σ): inputs the master public key mpk, a message m, and a signature σ; and outputs
1 if the signature is valid.

Correctness. We require that for any λ ∈ N, any (mpk,msk) ∈ FS.Setup(1λ), any f ∈ F , any skf ∈
FS.KGen(msk, f), any m ∈ Df , if (m∗, σ)← FS.Sig(f, skf ,m), then FS.Vf(mpk,m∗, σ) = 1.

Unforgeability. The scheme is unforgeable if the advantage of any PPT adversary A in the following game
is negligible:

– The challenger generates (mpk,msk)← FS.Setup(1λ), and gives mpk to A.
– A is allowed to query a key generation oracle Okey and a signing oracle Osign. These oracles share a

dictionary indexed by tuples (f, i) ∈ F × N, whose entries are signing keys: skf ← FS.KGen(msk, f).
This dictionary keeps track of the keys that have been previously generated during the unforgeability
game. The oracles are defined as follows:
• Okey(f, i)
∗ If there exists an entry for the key (f, i) in the dictionary, then output the corresponding value,

skif .
∗ Otherwise, sample a fresh key skif ← FS.KGen(msk, f), then add an entry (f, i) → skif to the

dictionary and output skif .
• Osign(f, i,m)
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∗ If there exists an entry for the key (f, i) in the dictionary, output σ ← FS.Sig(f, skif ,m)
∗ Otherwise, sample a fresh key skif ← FS.KGen(msk, f), then add an entry (f, i) → skif to the

dictionary and output σ ← FS.Sig(f, skif ,m)
• A wins if it can produce (m∗, σ) such that:
∗ FS.Vf(mpk,m∗, σ) = 1;
∗ There does not exist m such that m∗ = f(m) for any f which was sent as a query to the Okey

oracle;
∗ There does not exist a (f,m) pair such that (f,m) was a query to the Osign oracle and m∗ = f(m).

Function Privacy. The scheme is function private if the advantage of any PPT adversary A in the following
game is negligible:

– The challenger honestly generates a key pair (mpk,msk) ← FS.Setup(1λ) and gives both values to A.
(Note that w.l.o.g. this includes the randomness used in generation).

– A chooses a function f0 and receives an (honestly generated) secret key skf0 ← FS.KGen(msk, f0).
– A chooses a second function f1 for which |f0| = |f1| (where padding can be useful if there is a known

upper bound) and receives an (honestly generated) secret key skf1 ← FS.KGen(msk, f1).
– A chooses a pair of value m0, m1 for which |m0| = |m1| and f0(m0) = f1(m1).
– The challenger select a random bit b ← {0, 1} and generates a signature on the image message m′ =
f0(m0) = f1(m1) using secret key skfb

, and gives the resulting signature σ ← FS.Sig(f, skfb
,mb) to A.

– A outputs a bit b′, and wins the game if b′ = b.

Succinctness. There exist a polynomial s(·) such that for every k ∈ N, f ∈ F , m ∈ Df , it holds with
probability 1 over (mpk,msk)← FS.Setup(1λ); skf ← FS.KGen(msk, f); (f(m), σ)← FS.Sig(f, skf ,m) that
the resulting signature on f(m) has size |σ| ≤ s(k, |f(m)|). In particular, the signature size is independent
of the size |m| of the input to the function, and of the size |f | of a description of the function f .

Construction. Let HS.(KGen,Sig,Vf,Eval) be a 1-hop 2-HS scheme for a function family G = {U : {0, 1}s×
{0, 1}n → {0, 1}k}, where U is the universal circuit taking as input a circuit f with description size s and
its n-bit input m, and computes U(f,m) = f(m) of length k. Let M = {0, 1}. We construct a functional
signature scheme FS.(Setup,KGen,Sig,Vf) for the function family F = {f : {0, 1}n → {0, 1}k s.t. |f | = s}
as follows:

– (mpk,msk)← FS.Setup(1λ)
• Compute (pkk, skk)← HS.KGen(1λ) for k = 1, 2.
• Output mpk = (pk1, pk2) and msk = (sk1, sk2).

– skf ← FS.KGen(msk, f)
• Compute σf ← HS.Sig(sk1, pk2, f).
• Output skf = (sk2, σf ).

– (f(m), σ)← FS.Sig(f, skf ,m)
• Parse skf = (sk2, σf ).
• Compute σm ← HS.Sig(sk2, 0,m).
• Compute σ ← HS.Eval(U, ((pk1, pk2, f, σf ), (pk2, 0,m, σm))), where U is the universal circuit.
• Output (U(f,m), σ).

– b← FS.Vf(mpk,m, σ)
• Output b← HS.Vf((pk1, pk2), (pk2, 0), σ,m,U).

Theorem 4. Suppose HS is unforgeable under 1-bounded corruption, then FS is unforgeable.

Proof. Suppose there exists an adversary AFS that produces a forgery in FS with non-negligible probability.
We show how to construct an adversary AHS that uses AFS to produce a forgery of HS. AHS acts as a
challenger in the unforgeability game of FS.
AHS received (pk1, pk2) from the challenger of the unforgeability game of HS. AHS also queries the

corruption oracle of HS game to get sk2. It forwards public key mpk = (pk1, pk2) to AFS .
AFS makes two types of queries:
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– Okey(f, i)
• If there exists an entry for the key (f, i) in the dictionary, than output the corresponding value, skif .
• Otherwise, query the signing oracle of HS game to get σif ← HS.Sig(sk1, pk2, f). Then add an entry

(f, i)→ skif = (sk2, σ
i
f ) to the dictionary and output skif .

– Osign(f, i,m)
• If there exists an entry for the key (f, i) in the dictionary, retrieve skif = (sk2, σ

i
f ).

• Otherwise, query the signing oracle of HS game to get σif ← HS.Sig(sk1, pk2, f). Then add an entry
(f, i)→ skif = (sk2, σ

i
f ).

• Compute σm ← HS.Sig(sk2, 0,m) and σ ← HS.Eval(U, ((pk1, pk2, f, σ
i
f ), (pk2, 0,m, σm))) in either

case, where U is the universal circuit. Output (U(f,m), σ).

After querying the oracles, AFS responds with forgery (m∗, σ∗). AHS then answer ((pk2, 0), σ∗,m∗, U)
to its unforgeability game. Notice that AHS only queries the corruption oracle once. Moreover, the answer of
AHS is a valid forgery since, by the definition of the unforgeability game of functional signatures, m∗ is not
in the range of any f queried to the Okey oracle, and m∗ 6= f(m) for any (f,m) queried to the Osign oracle.

Theorem 5. Suppose HS is weakly context-hiding, then FS is function private.

Proof. Let AFS be an adversary playing the function privacy with a challenger. Since HS is weakly context-
hiding, there exists a simulator SHS which, on input (U, ((pk1, pk2), (pk2, 0)), f(m)), outputs a signature of
f(m) which is indistinguishable from that produced by FS.Sig(f, skf ,m). We can thus replace the challenger
with the simulator SHS , which is indistinguishable in the view of AFS except with negligible probability.
Notice that the simulated signatures contain no information about the function f and input message m
except for f(m). Thus, the probability that the adversary AFS guesses correctly in the simulated game is 0.

Theorem 6. Suppose HS is succinct then FS is succinct.

Proof. The size of a functional signature produced by FS.Sig(f, skf ,m) is the signature length of HS. The
succinctness of FS follows directly from the succinctness property of HS.

Since the existence of secure functional signatures implies that of SNARG, we have the following corollary.

Corollary 1. Suppose an unforgeable (under 1-bounded corruption) and context-hiding 1-hop 2-HS exists,
then SNARG for NP exists.

3.6 SNARG from M-HS

In the previous subsection, we show that the existence of 2-HS implies that of FS, which in turn implies
the existence of SNARG. However, there are two limitations. First, the existence of FS only implies the
existence of non-zero-knowledge SNARG. Second, as constructing 2-HS might be significantly more difficult
than constructing (1-)HS (both with unforgeability under 1-bounded corruption), it is desirable to construct
(ZK-)SNARG directly from HS.

Let HS = (Setup,KGen,Sig,Vf,Eval) be a 1-hop (1-)HS scheme. We construct a SNARG system Π =
(Gen,Prove,Vf) for NP language L with relation R as follows:

– crs← Gen(1λ)
• Compute pp← HS.Setup(1λ).
• Compute (pk, sk)← HS.KGen(pp).
• Output crs = (pk, sk).

– π ← Prove(crs, x, w)
• Compute (σx, σw)← HS.Sig(sk, 0, (x,w)).
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• Compute σ ← HS.Eval(g, ((pk, 0, x, σx), (pk, 0, w, σw))), where g is the following function:

g(x,w) =
{
x if R(x,w) = 1
⊥ otherwise

• Output π = σ.
– b← Vf(crs, x, π)
• Output b← HS.Vf(pk, 0, π, x, g).

Theorem 7. Suppose HS is correct, then Π is complete.

Theorem 8. Suppose HS is unforgeable under 1-bounded corruption, then Π is sound.

Proof. Suppose there exists an adversary AΠ that breaks the soundness of Π with non-negligible probability.
We show how to construct an adversary AHS that uses AΠ to produce a forgery of HS. AHS acts as a
challenger in the unforgeability game of FS.
AHS received pk from the challenger of the unforgeability game of HS. AHS also queries the corruption

oracle of the unforgeability game to get sk. It forwards the common reference string crs = (pk, sk) to AΠ .
Eventually, AΠ responds with (x∗, π∗) such that Vf(crs, x∗, π∗) = 1 but x∗ 6∈ L. AHS then answer

(pk, 0, π∗, x∗, g) to its unforgeability game. Since x∗ 6∈ L, we have x∗ 6= g(x,w) for all (x,w) ∈M2.

Theorem 9. Suppose HS is weakly context-hiding, then Π is zero-knowledge.

Proof. Since HS is weakly context-hiding, there exists a simulator SHS = (SSetup
HS ,SSig

HS) such that, SSetup
HS

simulates the public parameter, and SSig
HS simulates on input (R, pk, 0, x) a signature on x which is statistically

close to the real signatures. We can thus construct Scrs
Π using SSetup

HS and SProve
Π using SSig

HS , and conclude that
Π is zero-knowledge.

Theorem 10. Suppose HS is succinct then Π is succinct.

Proof. The size of a proof produced by π ← Prove(crs, x, w) is the signature length of HS. The succinctness
of Π follows directly from the succinctness of HS.

4 Extensions and Special Cases of Multi-Key HS

4.1 Multi-Key Hierarchical Homomorphic Signatures (M-HiHS)

Imagine the following scenario: Alice fills in the first two entries of a form, and passes the form to Bob. The
latter fills the next two entries, and passes to Charlie, and so on. At the end, an evaluator collects a number
of forms filled by multiple groups of people and processes them in batch. To support such functionality using
some variant of M-HS, we require additionally that the scheme is delegatable. Roughly, a delegator is able
to derive a signing key which is able to sign any set of messages that contains a subset specified by the
delegator.

Formally, we define an extension of M-HS, namely, multi-key hierarchical homomorphic signatures (M-
HiHS). M-HiHS allows a signer to specify a set of messages M , and delegate the signing power of all supersets
of M to another signer. More concretely, let pk and sk be the public and secret key of the delegator. To
delegate the signing power over a set Y to another signer with public key pk′, the delegator derives a secret
key sk(pk,pk′),M A delegatee can use this secret key to sign any set M ′ ⊇ M to create a complete signature,
so that any public evaluator can derive a signature of g(M ′) signed under the delegation chain (pk, pk′).
This generalizes proxy signatures in the literature where M serves as a “smart warrant” with respect to
function g.

More generally, a delegatee can further delegate its signing power to form a longer delegation chain.
Lastly, similar to M-HS, the public evaluator can combine signatures signed under different chains.
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Definitions

Syntax. An M-HIHS scheme consists of the PPT algorithms (Setup,KGen,Del,Sig,Vf,Eval) defined as follows:

– pp← Setup(1λ) is the same as that of M-HS.
– (pk, sk)← KGen(pp) is the same as that of M-HS.
– sk(p̄k,pk′),M ′ ← Del(sk, skp̄k,M , pk′, τ,M ′) is a new delegation algorithm which inputs the secret key sk of

the delegator, an optional delegated key skp̄k,M for the delegation chain p̄k = (. . . , pk) and messages M ,
the public key pk′ of the delegatee, a tag τ ∈ {0, 1}∗, and a set of messages M ′ ∈M∗ such that M ′ ⊇M .
It outputs a new delegated key sk(p̄k,pk′),M ′ .

– Σ ← Sig(sk, skp̄k,M , τ,M
′) is the same as that of M-HS, except that it takes as input an optional delegated

key skp̄k,M for the delegation chain p̄k = (. . . , pk) and messages M . It outputs the finalized signatures Σ
on M ′ ∈M∗ such that M ′ ⊇M .

– b← Vf(pk, τ, σ,m, g) is the same as that of M-HS.
– σ ← Eval(g, (pkk, τk,Mk, Σk)Kk=1) is the same as that of M-HS.

If the delegation chain length is limited to 1, all delegation chains p̄k becomes a singleton containing
only the public key pk of the root delegator. The M-HiHS scheme thus becomes an M-HS scheme. The
correctness, unforgeability, and context-hiding property are defined similarly to those of M-HS. A major
difference is that, in the unforgeability game, the adversary is in addition allowed to query a delegation
oracle, and the condition of valid forgery is adjusted accordingly to avoid trivial attacks.

Correctness. For any pp ∈ Setup(1λ), any K,Dk = poly(λ), k ∈ [K], and dk ∈ [Dk], any (pkk,dk
, skk,dk

) ∈
KGen(pp), any Mk,dk

∈M∗, any τk ∈ {0, 1}∗, and any g, hk,j ∈ G with appropriate dimensions, the following
is true:

– (Delegation and Signing Correctness.) For any K delegation chains of lengths Dk, i.e.,

skp̄kk,dk+1,Mk,dk
← Del(skk,dk

, skp̄kk,dk
,Mk,dk−1

, pkk,dk+1,Mk,dk
),

and any K finalizing signatures, i.e.,

Σk ← Sig(skk,Dk
, skp̄kk,Dk

,Mk,Dk−1
, τk,Dk

,Mk,Dk
),

the verification of any individual signature passes, i.e.,

Vf(pj(p̄kk,Dk
), pj(τ̄k,Dk

), σk,dk
,mk,dk

, pj) = 1

for each σk,j ∈ Σk and mk,j ∈Mk, where pj is the j-th projection function;
– (Evaluation Correctness.) For any Σk,dk

, if Vf(pkk,dk
, τk,dk

, σk,dk,j ,mk,dk,j , hk,dk,j) = 1 for all σk,dk,j ∈
Σk,dk

and mk,dk,j ∈ Mk,dk
, Hop(hk,j,dk

) ≤ N − 1, and σ ← Eval(g, (pkk,dk
, τk,dk

,Mk,dk
, Σk,dk

)K,Dk

k=1,dk=1),
then Vf(pk, τ, σ, g(M1,1, . . . ,MK,Dk

), g ◦ h̄) = 1, where pk = g(. . . , pkk,dk
, . . .) and τ = g(. . . , τk,dk

, . . .).

Unforgeability. Consider the following security game between an adversary A and a challenger C.

– Let K = poly(λ) be the number of signers in the system.
– The challenger C initializes a dictionary storing all existing delegation chains with the delegated messaged

in the system.
– The challenger C runs pp ∈ Setup(1λ) and {(pkk, skk)← KGen(pp)}Kk=1, and gives pp, pk1, . . . , pkK to A.

It also adds each (pkk,M = φ) to the dictionary.
– The adversary A adaptively issues a polynomial number of delegation queries, signing queries, and

corruption queries.
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• Delegation queries: A chooses an existing delegation chain p̄k (we assume each individual public key
forms a chain of length 1 without specified messages), a public key pk′ to extend the chain with,
and a set of messages M ′. The challenger C checks if (p̄k,M) exists on the dictionary for some
M ⊆ M ′. If that is not the case, it responds with ⊥. Otherwise, it responds with sk(p̄k,pk′),M ′ ←
Del(sk, skp̄k,M , pk′,M ′).

• Signing queries: In each signing query, A chooses a delegation chain p̄k, a tag τ ∈ {0, 1}∗, and a set
of data M ′ ∈ M∗. The challenger C checks if (p̄k,M) exists on the dictionary for some M ⊆ M ′. If
that is not the case, it responds with ⊥. Otherwise, it responds with Σ ← Sig(sk, skp̄k,M , τ,M).

• Corruption queries: A chooses a signer k. The challenger C responds with skk.
– Without loss of generality, we assume that the adversary A corrupts signers 1, . . . ,K.
– The adversary A outputs a public key pk∗, a tag τ∗ ∈ {0, 1}∗, a function g∗ ∈ G, a message m∗ ∈ M,

and a signature σ∗. It wins the game if Vf(pk∗, τ∗, σ∗,m∗, g∗) = 1, pk∗ is produced by evaluating g on
some subset of {pkk}, and (pk∗, τ∗, σ∗,m∗, g∗) is either a forgery such that
• Type-I : τ∗ is not a root produced by evaluating g on any subset of tags submitted in the delegation

and signing queries, and at least one signer k is not corrupted, or
• Type-II : τ∗ is a root produced by evaluating g on some subset of tags submitted in the delegation

and signing queries, but the message m∗ is not in the range of g∗ restricted to the corresponding
subset of messages submitted in the queries.

We say that the scheme is unforgeable under K-bounded corruption if, for all PPT adversaries A, we
have Pr{A wins} ≤ negl(λ) in the above game. We simply say that the scheme is unforgeable if the adversary
A can corrupt all K signers in the game.

Context-Hiding. There exist a simulator S = (SSetup,SSig) such that, for all K,Dk = poly(λ), k ∈ [K],
dk ∈ [Dk], τk,dk

, Mk,dk
, and g ∈ G, it holds that for any PPT adversaries A,

|Pr



A((pkk,dk
, skk,dk

, τk,dk
, Σk,dk

,Mk,dk
)K,Dk

k=1,dk=1, σ, g)→ 1 :
pp← Setup(1λ)

(pkk,dk
, skk,dk

)← KGen(pp)
skp̄kk,dk+1,M

′ ← Del(skk,dk
, skp̄kk,dk

,Mk,dk−1
, pkk,dk+1, τ,Mk,dk

)
Σk ← Sig(skk,Dk

, skp̄kk,Dk
,Mk,Dk−1

, τk,Mk,Dk
)

σ ← Eval(g, (p̄kk,Dk
, τk,Dk

,Mk,Dk
, Σk)Kk=1)


−

Pr



A((pkk,dk
, skk,dk

, τk,dk
, Σk,dk

,Mk,dk
)K,Dk

k=1,dk=1, σ, g)→ 1 :
(pp, td)← SSetup(1λ)

(pkk,dk
, skk,dk

)← KGen(pp)
skp̄kk,dk+1,M

′ ← Del(skk,dk
, skp̄kk,dk

,Mk,dk−1
, pkk,dk+1, τ,Mk,dk

)
Σk ← Sig(skk,Dk

, skp̄kk,Dk
,Mk,Dk−1

, τk,Mk,Dk
)

σ ← SSig(td, g, (p̄kk,Dk
, τk,Dk

)Kk=1, g(M1,D1 , . . . ,MK,DK
))


| = negl(λ) .

The scheme is weakly context hiding if the above holds.

Succinctness. There exist polynomials s1(·) and s2(·) such that for every λ ∈ N, K,Dk = poly(λ), k ∈ [K],
dk ∈ [Dk], g ∈ G, τk,dk

∈ {0, 1}∗, Mk,dk
∈ M∗, it holds with probability 1 over pp ← Setup(1λ);

(pkk,dk
, skk,dk

) ← KGen(pp); skp̄kk,dk+1,M
′ ← Del(skk,dk

, skp̄kk,dk
,Mk,dk−1

, pkk,dk+1, τ,Mk,dk
); Σk ←

Sig(skk,Dk
, skp̄kk,Dk

,Mk,Dk−1
, τk,Mk,Dk

); that the resulting signature σ ← Eval(g, (p̄kk,Dk
, τk,Dk

,Mk,Dk
, Σk)Kk=1)

on m = g(M1,1, . . . ,MK,Dk
) has size |σ| ≤ s1(λ, |m|) + s2(λ,

∑K
k=1Dk). In particular, the signature size is

independent of the sizes |Mk,dk
| of the inputs to the function, and of the size |g| of a description of the

function g. We note that one could also require that the signature size to be independent of the number of
delegation chains and their lengths.
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Construction We next show that M-HiHS can be constructed from M-HS, digital signatures, and collision-
resistant hash functions, which implies the equivalence of their existence up to the existence of the latter
building blocks. The idea is to use the delegation chain as part of the tag of a signature. To extend the
delegation chain p̄k to pk′ with the set of messages M ′ ⊇M , the delegator simply signs M under a random
tag using M-HS, and signs the hash value of all previous tags together with pk′ by ordinary signatures.
Likewise, to finalize the delegation chain p̄k with a set of messages M and tag τ , the delegatee signs M
under the tag τ using M-HS, and signs all previous tags with ordinary signatures.

Formally, let H : {0, 1}∗ → {0, 1}λ be a collision-resistant hash function, HS.(Setup,KGen,Sig,Vf,Eval)
be an N -hop M-HS scheme, and DS.(KGen,Sig,Vf) be a digital signature scheme. We construct an N -hop
M-HiHS scheme HS ′ as follows:

– pp← Setup(1λ)
• Output pp← HS.Setup(1λ).

– (pk, sk)← KGen(1λ)
• Compute (pkHS , skHS)← HS.KGen(pp).
• Compute (pkDS , skDS)← DS.KGen(1λ).
• Output pk := (pkHS , pkDS) and sk := (skHS , skDS).

– sk(p̄k,pk′),M ′ ← Del(sk, skp̄k,M , pk′, τ,M ′)
• If skp̄k,M = φ (fresh delegation chain)
∗ Compute γ ← DS.Sig(skDS , (pk′, H(τ))).
∗ Compute Σ′ ← HS.Sig(skHS , τ,M ′).
∗ Output (τ, γ,Σ′).

• Else, parse skp̄k,M as (τd, γd, Σ′d)Dd=1.
• Define τD+1 := τ .
• Compute γD+1 ← DS.Sig(skDS , (pk′, H(τ1, . . . , τD+1))).
• Compute Σ′D+1 ← HS.Sig(skHS , τD+1,M

′ \M).
• Output (τd, γd, Σ′d)

D+1
d=1 .

– Σ ← Sig(sk, skp̄k,M , τ,M
′)

• If skp̄k,M = φ, output Σ ← HS.Sig(skHS , τ,M ′).
• Else, parse skp̄k,M as (τd, γd, Σ′d)Dd=1.
• Partition M ′ as (M1, . . . ,MD+1) where MD+1 = M ′ \M .
• Define pkD+1 := pk and τD+1 := τ .
• Compute γD+1 ← DS.Sig(skDS , H(τ1, . . . , τD+1)).
• Compute Σ′D+1 ← HS.Sig(skHS , τD+1,M

′ \M).
• Output (γd, Σ′d)

D+1
d=1 . (Partitioned as σj := ((γd)D+1

d=1 , σ
′
j).)

– b← Vf(pk, τ, σ,m, g)
• Extract from pk the delegation chains (pkk,dk

)K,Dk

k=1,dk=1 and parse pkk,dk
as (pkHS,k,dk

, pkDS,k,dk
).

• If K = 1 and DK = 1, output b← HS.Vf(pk1,1, τ, σ,m, g).
• Else, parse σ as ((γk,dk

)K,Dk

k=1,dk=1, σ
′).

• Compute b0 ← HS.Vf(pkHS , τ, σ′,m, g).
• Compute bk,dk

← DS.Vf(pkDS,k,dk
, (pkdk+1, H(τk,1, . . . , τk,dk

)), γk,dk
) for k ∈ [K] and dk ∈ [Dk − 1].

• Compute bk,Dk
← DS.Vf(pkDS,k,Dk

, H(τk,1, . . . , τk,Dk
), γk,Dk

) for k ∈ [K].
• Output ∩K,Dk

k=1,dk=1bk,dk
∩ b0.

– σ ← Eval(g, (pkk, τk,Mk, Σk)Kk=1)
• Extract from pkk the delegation chains (pkk,dk

)Dk

dk=1 and parse pkk,dk
as (pkHS,k,dk

, pkDS,k,dk
).

• Partition Mk as (Mk,1, . . . ,Mk,Dk
).

• Parse Σk as (γk,dk
, Σ′k,dk

)Dk

dk=1.
• Compute σ′ ← HS.Eval(g, (pkHS,k,dk

, τk,dk
,Mk,dk

, Σ′k,dk
)K,Dk

k=1,dk=1).
• Output ((γk,dk

)K,Dk

k=1,dk=1, σ
′). (Partitioned as σj := ((γk,dk

)K,Dk

k=1,dk=1, σ
′
j).)
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The correctness and context-hiding property follow straightforwardly from those of HS. In the following,
we give the proof sketches for unforgeability and succinctness.

Theorem 11. Suppose HS is unforgeable under K-bounded corruption, DS is EUF-CMA-secure, and H is
collision-resistant, then HS ′ is unforgeable under K-bounded corruption.

Proof. Suppose there exists an adversary AHS′ that produces a forgery in HS ′ with non-negligible proba-
bility. We show how to construct an adversary AHS that uses AHS′ to produce a forgery of HS. AHS acts
as a challenger in the unforgeability game of HS ′.
AHS received pp and {pkHS,k}Kk=1 from the challenger of the unforgeability game of HS. It generates the

keys for DS honestly and forwards pp and the public keys {pkk}Kk=1 to AHS′ .
AHS′ makes three types of queries. For delegation and signing queries, AHS signs the γ parts honestly

using DS and queries the challenger of HS for the signatures σ′. For corruption queries on k, it forwards the
query to corruption oracle of HS. It then forwards the response from the challenger of HS, as well as the
DS secret key skDS,k to AHS′ . After querying the oracles, AHS′ responds with forgery, a public key pk∗, a
tag τ∗ ∈ {0, 1}∗, a function g∗ ∈ G, some data m∗ ∈ M, and a signature σ∗. The only ways for the forgery
to be valid is to either forge the underlying HS signature, the DS signature, or find a collision in H. Since
the latter two are infeasible, for otherwise we can construct adversaries for breaking DS or H, AHS simply
answers the σ′ part of σ∗ to its unforgeability game.

Theorem 12. Suppose HS is succinct, then HS ′ is succinct.

Proof. The succinctness of the σ′ part of a signature is trivial. For the γ part, succinctness follows since
there is one DS signature on a λ-bit message for each member of each delegation chain.

4.2 Multi-Key Key-Message Homomorphic Signatures (M-KMHS)

Another extension of M-HS is the multi-key key-message homomorphic signatures (M-KMHS). In M-KMHS,
homomorphic operations are not only with respect to the message space, but also the key space. Computation
over randomly generated public keys is however not always meaningful. To make computation over keys more
meaningful, we adopt the terminology of Boneh et al. [BGG+14] where the public keys are actually attributes,
whose corresponding secret keys are generated from their respective authorities. More concretely, suppose an
authority authorizes the set of attributes X and X ′ of two signers respectively. The signer with attributes X
then issues a signature on a set of messages M , and the signer attributed X ′ also signs M ′. Given the
signatures, a public evaluator can then derive a signature on the message g((X,M), (X ′,M ′)) attributed
to f(X,X ′) for any functions f and g.

Definitions

Syntax. A key-message homomorphic signature scheme consists of the following six PPT algorithms (Setup,
KGenAuth,KGenSig,Auth,Sig,Vf,Eval) defined as follows:

– pp ← Setup(1λ) is the same as that of M-HS. The public parameter additionally defines the attribute
space X and the function family F .

– (apk, ask)← KGenAuth(pp) is a new key generation algorithm for generating an authority public key apk
and an authority secret key ask.

– (pk, sk)← KGenSig(pp) is the same as that of M-HS.
– Γ ← Auth(ask, pk, X) is a new authentication algorithm which inputs an authority secret key ask, the

public key of the signer pk, and a set of attributes X. It outputs a set of credentials Γ .
– Σ ← Sig(sk, τ,M) is the same as that of M-HS.
– b ← Vf(apk, pk, τ, γ, σ, x,m, f, g) is the same as that of M-HS, except that it also verifies the certificate

of the attribute. Concretely, it takes as input an additional authority public key apk, credential γ,
attribute x ∈ X , and a function f ∈ F .
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– (γ, σ) ← Eval(f, g, (apkk, pkk, τk, Xk, Γk,Mk, Σk)Kk=1) is the same as that of M-HS, except that it also
evaluates the attributes. Concretely, for each input tuple corresponding to the K signers, it inputs an
additional authority public key apkk, a set of attributes Xk and credentials Γk. It also takes an additional
function f ∈ F . It outputs a new credential γ along with the new signature σ.

If the evaluation and verification of the attribute part are replaced by dummy operations, then M-KMHS
scheme essentially becomes an M-HS scheme. The correctness, unforgeability, and context-hiding property
are defined similarly to those of M-HS. A major difference is that, in the unforgeability game, the adversary
is in addition allowed to corrupt the authorities and query an authentication oracle, and the condition of
valid forgery is adjusted accordingly to avoid trivial attacks. Furthermore, the context-hiding property now
also hides the attributes input to the evaluation algorithm.

Correctness. A simple way to define the correctness of M-KMHS is to view KGenAuth and Auth as the key
generation and signing algorithms of a separate M-HS scheme respectively. The evaluation correctness of M-
KMHS requires that the evaluation correctness of the two separate M-HS holds simultaneously. Concretely,
for any pp ← Setup(1λ), any K,L = poly (λ), k ∈ [K], ` ∈ [L], any (apk`, ask`) ∈ KGenAuth(pp) any
(pkk, skk) ∈ KGenSig(pp), any Xk,` ∈ X ∗, any Mk ∈ M∗, any τk ∈ {0, 1}∗, any rk,i, f ∈ F and sk,j , g ∈ G
with appropriate dimensions, the following correctness requirements hold.
– (Authentication and Signing Correctness.) If Γk,` ∈ Auth(ask`, pkk, Xk,`) and Σk → Sig(skk, τk,Mk),

then for all (xk,`,i,mk,j) ∈ Xk,` ×Mk and (γk,`,i, σk,j) ∈ Γk,` ×Σk,

Vf(apk`, pkk, τk, (γk,`,i, σk,j), (xk,`,i,mk,j), id, id) = 1.

– (Evaluation Correctness.) For any Γk and Σk, if for all (xk,i,mk,j) ∈ Xk ×Mk and (γk,i, σk,j) ∈ Γk ×Σk
Vf(apkk, pkk, τk, (γk,i, σk,j), (xk,i,mk,j), rk,i, sk,j) = 1;

and (γ, σ)← Eval(f, g, (apkk, pkk, τk, Xk, Γk,Mk, Σk)Kk=1) it holds that

Vf(apk, pk, τ, γ, σ, f(X1, . . . , XK), g((X1,M1), . . . , (XK ,Mk), f ◦ r̄, g ◦ s̄) = 1,

where apk = f(apk1, . . . , apkK), pk = g(pk1, . . . , pkK), and τ = g(τ1, . . . , τK).

Unforgeability. Consider the following security game between an adversary A and a challenger C.
– Let L,K = poly(λ) be the number of authorities and the number of signers in the system respectively.
– Initialize an empty dictionary D.
– The challenger C runs pp ← Setup(1λ), {(apk`, ask`) ← KGenAuth(pp)}L`=1, {(pkk, skk) ←

KGenSig(pp)}Kk=1, and gives (apk1, . . . , apkL) and (pk1, . . . , pkK) to A.
– The adversary A makes four types of queries:
• OCorrAuth(`) The challenger responds with the authority secret key ask`. Without loss of generality,

suppose authority 1, . . . , L are corrupt.
• OCorrSig(k) The challenger responds with the signer secret key skk. Without loss of generality, suppose

signer 1, . . . ,K are corrupt.
• OAuth(`, k,Xk,`) If there exists a key for the entry (k, `) in the dictionary D, return ⊥. Otherwise, the

challenger returns Γk,` ← Auth(ask`, pkk, Xk,`) and add Γk,` to the entry (k, `) in the dictionary D.
• OSig(q, k, τq,k,Mq,k) It returns Σq,k ← Sig(sk, τq,k,Mq,k).

– Eventually the adversary A outputs an authority public key apk∗, a signer public key pk∗, a tag τ∗, a
signature σ∗, two functions f∗ ∈ F , g∗ ∈ G, an attribute x∗, and a message m∗. It wins the game if
Vf(apk∗, pk∗, τ∗, γ∗, σ∗, x∗,m∗, f∗, g∗) = 1 and the forgery is either of:
• Type-I : τ∗ is not composed of the previously queried τq,k, and at least one authority ` or one signer k

is not corrupted, or
• Type-II : τ∗ is composed of the previously queried τq,k, but either x∗ is not in the range of f∗ restricted

by the inputs of the corresponding uncorrupted authorities, or m∗ is not in the range of g∗ restricted
by the inputs of the corresponding uncorrupted authorities and signers..

We require that for all PPT adversaries A, we have Pr{A wins} ≤ negl(λ) in the above game.
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Construction In the previous subsection, we show that M-HiHS can be constructed from M-HS, hence
showing the equivalence of their existences. We now construct M-KMHS using M-HS, which in turn shows
the equivalence of all three notions.

LetHS.(Setup,KGen,Sig,Vf,Eval) be an M-HS scheme. We construct an M-KMHS schemeHS ′ as follows:

– pp← Setup(1λ)
• Output pp← HS.Setup(1λ).

– (apk, ask)← KGenAuth(pp)
• Output (apk, ask)← HS.KGen(pp).

– (pk, sk)← KGenSig(pp)
• Output (pk, sk)← HS.KGen(pp).

– Γ ← Auth(ask, pk, X)
• Output Γ ← HS.Sig(ask, pk, X).

– Σ ← Sig(sk, τ,M)
• Output Σ ← HS.Sig(sk, τ,M).

– b← Vf(apk, pk, τ, γ, σ, x,m, f, g)
• Compute b0 ← HS.Vf(apk, pk, γ, x, f).
• Compute b1 ← HS.Vf(pk, τ, σ,m, g).
• Output b = b0 ∩ b1.

– (γ, σ)← Eval(f, g, (apkk, pkk, τk, Xk, Γk,Mk, Σk)Kk=1)
• Compute γ ← HS.Eval(f, (apkk, pkk, Xk, Γk)Kk=1).
• Compute σ ← HS.Eval(g, (pkk, τk, (Xk,Mk), (Γk, Σk))Kk=1).
• Output (γ, σ).

The correctness, unforgeability, and context-hiding property follow straightforwardly from those of HS.

4.3 Multi-Key Key-Homomorphic Signatures (M-KHS)

Recall from the definition of M-KMHS in Section 4.2, if the verification algorithm always take the identity
function g = id as input, we obtain a multi-key signature scheme which is only homomorphic in the attribute
space, which we refer to as multi-key key-homomorphic signature scheme (M-KHS). In such configuration,
the construction in Section 4.2 is actually a transformation from M-HS to M-KHS. Furthermore, the message
can actually be signed by an ordinary signature scheme instead of a M-HS scheme.

In this section, we show that homomorphisms in the attribute space and the message space are indeed
equivalent. To facilitate our discussion, we formalize the syntax of M-KHS.

Syntax. An M-KHS scheme consists of the PPT algorithms (Setup,KGenAuth,KGenSig,Auth,Sig,Vf,Eval)
defined as follows:

– pp← Setup(1λ) is the same as that of M-KMHS.
– (apk, ask)← KGenAuth(pp) is the same as that of M-KMHS.
– (pk, sk)← KGenSig(pp) is the same as that of M-KMHS.
– Γ ← Auth(ask, pk, X) is the same as that of M-KMHS.
– Σ ← Sig(sk, τ,M) is the same as that of M-KMHS.
– b← Vf(apk, pk, τ, γ, σ, x,m, f) is the same as that of M-KMHS, except that the function g is fixed to the

identity function id.
– γ ← Eval(f, (apkk, pkk, Xk, Γk)Kk=1) is the same as that of M-KMHS, except that it only evaluates the

attributes.

From the syntax, it is apparent that we can interpret the attribute space of M-KHS as the message space
of M-HS, and obtain a construction of M-HS. In particular, we conclude that the existence of ordinary HS
and single-authority KHS are equivalent.
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4.4 Other Extensions of M-HS

In the previous subsections, we study two extensions of M-HS, namely M-HiHS and M-KMHS, and show
that they can both be constructed from M-HS, hence proving the equivalence of their existences. Recall
that M-HiHS extends M-HS vertically in the sense that it allows the delegation of signing power down the
delegation chains. M-KMHS extends M-HS in another dimension as it introduces additional homomorphism
to the key space. We note that other extensions, including but not limited to combing the hierarchy of M-
HiHS and the key-homomorphism in M-KMHS, can likely be also constructed from M-HS. This illustrates
the power of supporting homomorphism in more than one spaces, and the power of corruption resistance in
homomorphic signatures.

5 Decentralized Attribute-based Signatures

Apart from the natural application of allowing delegation of computation on data authenticated by multiple
parties, we study the implications of M-HS to other primitives. Specifically, we propose a new construction
of decentralized attribute-based signatures (D-ABS). A D-ABS scheme allows multiple authorities to certify
different sets of attributes of a signer in a completely distributed manner. After obtaining the certificates
from the authorities, the signer can then issue signatures on messages, while at the same time show that
its certified attributes satisfy certain access policy. We show how to construct from KHS a D-ABS scheme
which supports access policies in the class of admissible functions F of the KHS scheme.

Yet, this scheme can only achieve a weaker notion of anonymity due to the tag-based nature of KHS. This
weaker property, which we call linkable anonymity, states that it is infeasible to learn any information about
the attributes behind the signatures except those leaked from the access policies. On one hand, linkability is
a useful feature to achieve strong accountability. For example, consider a simple membership system where a
user can register by issuing a linkable attribute-based signature, so that the server can use the linkable part of
the signature as the identity of the user. Indeed there is a branch of literature which incorporates various forms
of linkability into signatures or credentials. On the other hand, one can generically transform this linkable
scheme to an unlinkable one: Simply replace the signature by a non-interactive witness-indistinguishable
(NIWI) proof of the knowledge of the tag in the KHS.

5.1 Definitions

Syntax. An attribute-based signature scheme consists of the PPT algorithms (Setup,KGenAuth,KGenSig,
Auth,Sig,Vf) defined as follows:

– pp← Setup(1λ) inputs the security parameter λ and outputs the public parameter pp, which defines the
attribute space X and the message space M.

– (apk, ask)← KGenAuth(pp) inputs the public parameter and outputs an authority public key apk and an
authority secret key ask.

– (pk, sk) ← KGenSig(pp) inputs the public parameter and outputs a signer public key pk and a signer
secret key sk.

– skX ← Auth(ask, pk, X) inputs an authority secret key ask, a signer public key pk, and a set of attributes
X ∈ X ∗. It outputs a secret key skX corresponding to the attributes X.

– σ ← Sig(sk, (skXk
)Kk=1, f,m) inputs the signer secret key sk, a set of secret keys skXk

for the attributes Xk

issued by authority k, an access policy f ∈ F , and a message m. It outputs a signature σ signing m
under the attributes (X1, . . . , Xk) and policy f .

– b← Vf((apkk)Kk=1, σ, f,m) inputs the authority public key apkk of each of the authorities, a signature σ,
an access policy f , and a message m. It outputs 1 if the signature is valid, 0 otherwise.

Correctness. For any pp ∈ Setup(1λ), any K, j = poly(λ) and k ∈ [K], any (apkk, askk) ∈ KGenAuth(pp), any
(pk, sk) ∈ KGenSig(pp), any Xk ∈ X ∗, any skXk

∈ Auth(askk, pk, Xk), any policy f ∈ F , and any message
m ∈M, it holds that if σ ∈ Sig(sk, (skXk

)Kk=1, f,m), then Vf((apkk)Kk=1, σ, f,m) = f(X1, . . . , Xk).
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Unforgeability. Consider the following security game between an adversary A and a challenger C.

– Let K = poly(λ) be the maximum number of authorities in the system.
– Initialize an empty dictionary D.
– The challenger C runs pp← Setup(1λ), {(apkk, askk)← KGenAuth(pp)}Kk=1, (pk, sk)← KGenSig(pp), and

gives (apkk)Kk=1 and pk to A.
– The adversary A makes four types of queries:
• OAuth(k) The challenger responds with the authority secret key askk. Without loss of generality,

suppose authority 1, . . . ,K are corrupt.
• OSig() The challenger responds with the signer secret key sk.
• OAuth(k,Xk) If there exists a key for the entry k in the dictionary D, return ⊥. Otherwise, the

challenger returns skXk
← Auth(askhk, pk, Xk) and add skXk

to the entry k in the dictionary D.
• OSig(S, f,m) S is a set of authorities chosen by A. If S 6⊆ D, the challenger returns ⊥. Otherwise,

for each k ∈ S, the challenger retrieves skXk
from the entry k in the dictionary D. It returns

σ ∈ Sig(skk, (skXk
)k∈D, f,m).

– Eventually the adversary A outputs a set of authority public keys (apk∗k)k∈S∗ , a signature σ∗, a policy
f∗ ∈ F , and a message m∗. It wins the game if the following holds:
• Vf((apk∗k)k∈S∗ , σ∗, f∗,m∗) = 1, and
• (S∗, f∗,m∗) was not queried to the sign oracle before, and
• 1 6∈ f∗(·, . . . , ·, XK+1, . . . , XK) for all (k,Xk) queried to the OAuth oracle, or the signer is not cor-

rupted.

We require that for all PPT adversaries A, we have Pr{A wins} ≤ negl(λ) in the above game.

Linkable Anonymity. We require that there exist a simulator S = (SSetup,SSig) such that, for all K = poly(λ),
k ∈ [K], m, Xk, and f , it holds that for any PPT adversaries A,

|Pr


A(pk, sk, (apkk, askk, skXk

, Xk)Kk=1, σ, f,m)→ 1 :
pp← Setup(1λ)

(apkk, askk)← KGenAuth(pp)
(pk, sk)← KGenSig(pp)

skXk
← Auth(askk, pk, Xk)

σ ← Sig(sk, (skXk
)Kk=1, f,m)

 −

Pr


A(pk, sk, (apkk, askk, skXk

, Xk)Kk=1, σ, f,m)→ 1 :
(pp, td)← SSetup(1λ)

(apkk, askk)← KGenAuth(pp)
(pk, sk)← KGenSig(pp)

skXk
← Auth(askk, pk, Xk)

σ ← SSig(td, f, pk, (apkk)Kk=1, f(X1, . . . , XK),m)

 | = negl(λ) .

The signatures are linkable in the sense that they leak the signer public key pk.

5.2 Construction

Using M-KHS, we immediately get a generic construction of decentralized attribute-based signatures (D-
ABS). Let HS.(Setup,KGenAuth,KGenSig,Auth,Sig,Vf,Eval) be an M-KHS scheme. We present the construc-
tion of D-ABS HS ′ as follows:

– pp← Setup(1λ)
• Output pp← HS.Setup(1λ).

– (apk, ask)← KGenAuth(pp)
• Output (apk, ask)← HS.KGenAuth(pp).

– (pk, sk)← KGenSig(pp)
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• Output (pk, sk)← HS.KGenSig(pp).
– skX ← Auth(ask, pk, X)
• Run Γ ← HS.Auth(ask, pk, X).
• Output skX = (X,Γ ).

– σ ← Sig(sk, (skXk
)Kk=1, f,m)

• Parse skXk
= (Xk, Γk)

• Compute σ′ ← HS.Sig(sk, 0,m).
• Compute γ ← HS.Eval(f, (apkk, pk, Xk, Γk)Kk=1).
• Output σ = (pk, γ, σ′).

– b← Vf(mpk, σ, f,m)
• Parse σ = (pk, γ, σ′).
• Output b← HS.Vf(f(apk1, . . . , apkK), pk, 0, γ, σ′, 1,m, f).

The correctness of HS ′ follows from the correctness of HS directly. Suppose HS is unforgeable, then HS ′
is unforgeable. Finally, suppose HS is context-hiding, then HS ′ is linkably anonymous.

Drawing the connections from Section 4, it is easy to see that the above D-ABS scheme can be extended
to support homomorphism in the message space (by M-KMHS). It can also be extended (by M-HiHS) so
that there is a hierarchy of authorities certifying multiple layers of attributes.

5.3 Instantiations

We can instantiate the above generic construction from the multi-key generalization of the fully homomorphic
signature scheme by Gorbunov et al. [GVW15] (GVW). The following discussions are in order.

– We obtain a D-ABS scheme for general circuits based on lattice assumptions in the standard model.
– In our terminology, the generalized GVW is an M-HS scheme unforgeable under 0-bounded corruption.

This implies a weak unforgeability of the resulting D-ABS scheme in the sense that the adversary is only
allowed to corrupt either the signer or any subset of the authorities.

– In (generalized) GVW, normal verification takes as long as computing the function f . However, as
explained in details [GVW15], part of the verification can be pre-computed so that the amortized verifi-
cation cost with the fixed function f can be made constant. This is suitable for our purpose as the access
policies of a verifier in D-ABS typically remain relatively stable.

– The transformation to a fully anonymous scheme can be instantiated by the recent proof system for
linear congruences proposed by Libert et al. [LLM+16].

6 Concluding Remark

The study of homomorphic signatures (HS) is in a single-key setting concentrating on the homomorphism in
the message space. In this work, we have introduced the notion of multi-key homomorphic signatures with
a strong security property known as unforgeability under corruption.

Despite of having a relatively simple syntax, multi-key HS turns out to be a central-hub of various
seemingly more powerful or at least different variants of homomorphic signatures. Specifically, it implies
multi-key hierarchical HS, multi-key key-message-HS, and multi-key key-HS. The equivalence of multi-key
HS and multi-key key-HS suggests that message-homomorphism and key-homomorphism in signatures are
identical in nature. Thus, existing fully homomorphic signature schemes readily give fully key-homomorphic
signature schemes. We also show that it further implies attribute-based signatures for general circuits from
standard assumptions. It is unknown that whether there exist some flavors of HS which are not covered by
multi-key HS.

We have constructed a multi-key HS scheme from ZK-SNARK, and shown that the existence of corruption
resistant HS implies the existence of ZK-SNARG. It will be interesting to design a corruption-resistant HS
scheme from different primitives or assumptions.
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