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Abstract. Homomorphic signatures (HS) allow evaluation of signed messages by producing a signature
on a function of messages signed by the same key. Motivated by the vast potential of applications, we
initiate the study of multi-key HS (M-HS) which allows evaluation of signatures under different keys in
the insider corruption model, where some or even all the signers are corrupt. We also study other multi-
key extensions, namely, hierarchical HS (M-HiHS) for delegation of signing power over any supersets of
a specified set of messages, and key-message-HS (M-KMHS) for evaluation of signatures under different
keys with respect to both keys and messages. We thus also introduce the concept of key-homomorphism
in signatures, which leads to the notion of multi-key key-HS (M-KHS) for evaluation of signatures with
respect to keys only.
Notion-wise, our result shows that M-HS can act as a central notion since all its seemingly different
extensions are almost all equivalent (except one which assumes collision-resistant hash functions). In
particular, this suggests that key-homomorphism and message-homomorphism in signatures are iden-
tical in nature. As a sample application, we show that M-KHS implies decentralized attribute-based
signatures (D-ABS). Our work also provides the first (leveled) fully KHS and the first (D-)ABS for
circuits from standard assumptions.
Surprisingly, there is a huge gap between homomorphism in a single space and in two spaces. Indeed
all existing (leveled) fully homomorphic signature schemes support only a single signer. In the multi-
space setting, we construct M-HS from the adaptive zero-knowledge succinct non-interactive argument
of knowledge (ZK-SNARK) (and other standard assumptions). We also show that two-key HS implies
functional signatures. Our study equips the literature with a suite of signature schemes allowing different
kinds of flexible evaluations.

1 Introduction

Homomorphic signatures (HS) allow evaluation of signed messages by producing a signature on a function
of messages signed by the same key. HS has undergone great development, notably from supporting either
only addition or multiplication [BFKW09, GKKR10, BF11b, CFW12, Fre12, LPJY13], to bounded-degree
polynomials [BF11a,CFW14], and even to (leveled) fully homomorphic operations which allow evaluation of
general circuits of a-priori bounded depth [GVW15,BFS14]. Beyond unforgeability, some works also consider
privacy notions such as context-hiding [ABC+12,ALP12,ALP13]. HS is a handy tool for applications which
require computation on authenticated data, for example, verifiable computation. The state-of-the-art HS is
restricted to the single-key setting until the recent concurrent work of Fiore et al. [FMNP16] and David
and Daniel [DS16] who define multi-key homomorphic signatures with varying level of security. Independent
from their work, in this paper, we initiate the study of HS under multi-key in the insider corruption model,
as well as key-homomorphism in (message-)homomorphic signatures.

To illustrate the usefulness of multi-key HS that is homomorphic in both key space and message space,
which we call multi-key key-message-homomorphic signatures (M-KMHS), consider a scenario where two
managers Alice and Bob in a company are jointly making a decision. They sign their decisions m1 and m2
with their signing keys associated with attributes x1 and x2 respectively. Is it possible for a secretary Charlie
to derive a signature on their joint decision, and prove that it is from combining those of the two managers?



Technically, we ask whether a public evaluator can derive a signature of m under attribute x, where (x,m) =
g((x1,m1), (x2,m2)) for some functions g. In other words, such a signature scheme supports operations on
both the key space and message space. In particular, if x = x1 = x2, g((x1,m1), (x2,m2)) = (x, g2(m1,m2)),
the above syntax captures (regular) homomorphic signatures. On the other hand, if m = m1 = m2 and
g((x1,m1), (x2,m2)) = (g1(x1, x2),m), it becomes a signature scheme with homomorphism in the key space,
or what we call key-homomorphic signatures (KHS), which itself is a new notion never considered explicitly in
the literature. In the construction of a flexible credentials network, where nodes can, for example, combine and
jointly issue/delegate credentials, multi-key key-message-homomorphic signatures (M-KMHS) and multi-key
hierarchical homomorphic signatures (M-HiHS) are useful.

To formalize the above notion, we begin with the simpler case where homomorphism only occurs in
the message space, namely multi-key homomorphic signatures (M-HS). In M-HS, users with different secret
and public key pairs can sign on different messages, so that a public evaluator can perform homomorphic
evaluations of a function g on all message-signature pairs to produce a signature which verifies under the
union of all input public keys. A distinctive property of M-HS, which is absent in the single-key setting, is
that we require M-HS to be secure against insider attack. That is, suppose signer A signs a message mA

while the evaluator colludes with another signer B, we require this coalition can only produce signatures
on (g, g(mA, ·)). In other words, signer B cannot falsely claim that m is computed from some value m′A
not contributed by signer A. This property is essential for various applications of M-HS to be realistic. For
example, in signed majority vote, if the underlying M-HS is not secure against insider attack, any voter can
manipulate the voting result by producing a signature on it, while in the case that it is secure against insider
attack, a malicious signer can only control its own vote - no better than signing honestly.

As an immediate application, M-HS can be used along with multi-key homomorphic encryption [LTV12,
CM15, MW16, PS16] to achieve verifiable secure multi-party computation. Apart from being a powerful
primitive on its own, M-HS implies several of its seeming different extensions and variants, including multi-
key hierarchical homomorphic signatures (M-HiHS), multi-key key-message-homomorphic signatures (M-
KMHS), and multi-key key-homomorphic signatures (M-KHS), whose functionality will be explained below.

1.1 Our Results

Multi-key homomorphic signatures. We present multi-key homomorphic signatures (M-HS), a generaliza-
tion of homomorphic signatures which allows a public evaluator to transform signatures of different sets of
messages M signed under different public keys to a signature of (g, g(. . . ,M, . . .)) signed under a combined
public key. We define a strong security notion of M-HS called unforgeability under corruption, which requires
that a coalition of the evaluator and a set of malicious signers cannot forge a signature of (g,m), where the
resulting message m is not in the range of g restricted by the input of the honest signer. The coalition can
also choose to corrupt the only honest signer. In this case, we require that it is infeasible to forge a signature
of (g,m), where the resulting message m is not in the range of g. Interestingly, such a definition also makes
sense in the single-key setting, where we require that even the signer itself cannot produce a signature on
(g,m) where m is not in the range of g.

Implications to and from existing notions. Treated as a central hub of our work, we study how M-HS is related
to other notions. First, we show that M-HS can be constructed from the adaptive zero-knowledge succinct
non-interactive argument of knowledge (ZK-SNARK). There are some impossibility results regarding the
security of SNARK in the presence of oracles (O-SNARK) [FN16]. In particular, they showed that there
exists a secure signature scheme Σ such that every candidate construction of O-SNARK does not satisfy
adaptive proof of knowledge with respect to the signing oracle of Σ. Fortunately, there are at least two ways
to circumvent this impossibility result. The first approach is to use a ZK-SNARK with a “strong” adaptive
proof of knowledge property [BGI14,FN16], where the extractor takes as input an additional trapdoor and
ignores the random tape of the adversary. By a recursive witness extraction technique, we show that strong
ZK-SNARK implies poly-hop H-HS. The second approach is to use the weaker (O-)SNARK and make some
extra assumption about the SNARK or the underlying signature scheme [FN16, Section 5]. This approach
yields a constant-hop M-HS.

2



ZK-SNARK

M-HS M-HiHS M-KMHS M-KHS

D-ABS

HS KHS ABSFS

SNARG ZK-SNARG

§ 3

§ 4

§ 3 (2-HS)

[BGI14]

§ 5

§ 3

§ 4 § 5

Fig. 1. Relations between all notions considered in this work: Solid arrows represent implications shown in this
work. Dashed and dotted arrows represent existing and trivial implications respectively. Thin arrows represent the
additional use of CRHF.

Then, we show that functional signatures (FS) [BGI14] can be constructed from a two-key M-HS (2-
HS). Since the existence of succinct functional signatures implies the existence of succinct non-interactive
argument (SNARG), we obtain as a corollary that the existence of 2-HS implies the existence of SNARG.
Even stronger, we show that the existence of single-key HS which is unforgeable under corruption implies
the existence of ZK-SNARG.

Equivalence of seemingly different variants. We then proceed to the relations between M-HS and its exten-
sions and variants. Concretely, we propose several seemingly different notions listed as follows:

– Multi-Key Hierarchical Homomorphic Signatures (M-HiHS): extends M-HS such that a signer can dele-
gate its signing power over any supersets of a specified set M .

– Multi-Key Key-Message-Homomorphic Signatures (M-KMHS): extends M-HS such that a public evalu-
ator can evaluate signatures of a set of messages M signed by a key associated with a set of attributes
X to a signature of M ′ signed by a key associated with the attribute X ′, where (X ′,M ′) = g(X,M).

– Multi-Key Key-Homomorphic Signatures (M-KHS): allows a public evaluator to evaluate signatures of M
signed by a key associated with attributes X to one signed by a key associated with the attribute g(X).

Although these notions are seemingly stronger than or at least different from M-HS, we show that their
existence are all equivalent to that of M-HS, up to the existence of collision-resistant hash function (CRHF)
for M-HiHS. In particular, their corresponding special cases, HS and KHS, are also equivalent. Conceptu-
ally, this result bridges the gap between message- and key-homomorphism in the signatures setting. When
instantiated by state-of-the-art (leveled) fully homomorphic signatures [GVW15], we obtain (leveled) fully
key-homomorphic signatures (FKHS) which inherit all the nice properties, such as security based on (stan-
dard) lattices in the standard model.

Applications. Apart from grand applications such as multi-party verifiable computation, we are also interested
in the implications of M-HS to more basic primitives. As an example, we show that (linkable) decentralized
attribute-based signatures (D-ABS) can be constructed from M-KHS generically. When instantiated by the
FKHS above, we obtain ABS for general circuits. Our scheme satisfies linkable anonymity. That is, while a
signature does not leak any information about the attributes under which it is signed beyond whether they
satisfy the policy of the verifier, different signatures from the same signer are publicly linkable. By a generic
transformation using non-interactive witness-indistinguishable (NIWI) proofs, the resulting scheme achieves
full anonymity.

To summarize, Figure 1 illustrates the relations between all notions studied in this work.
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1.2 Related Work

Concurrent Work Fiore et al. [FMNP16] independently and concurrently propose the notion of multi-key
homomorphic authenticators, which is a generalization of M-HS and multi-key homomorphic MAC. They
extend HS by Gorbunov et al. [GVW15] to M-HS based on standard lattice assumptions, and introduce multi-
key-homomorphic MAC based on pseudorandom functions. Their work adopts a weaker security model, in
which the adversary must output a forgery that passes verification under non-corrupted keys. However,
the inability to protect against insider attacks limits its application. It is claimed [FMNP16] that preventing
insider attacks is impossible by the following argument: For general functions, controlling a few inputs implies
controlling the function output. We find the claim inaccurate as there is a large class of functions for which this
is not the case, e.g., functions with AND gates, majority gates, and threshold gates. Our work, in contrast,
constructs M-HS which prevent insider attacks, at the cost of heavier assumptions, i.e., the existence of
SNARKs. This property is essential for constructing various new notions related to multi-key-homomorphic
signatures which allow wider applications.

Another independent and concurrent work by David and Daniel [DS16] proposes Φ-KHS, and constructs
various simpler primitives based on different classes of key-homomorphisms Φ. The focus of our work is
different in the sense that, we first define M-HS and its relation to other complex primitives, then extends
it to M-KMHS and M-HiHS, and finally considers M-KHS as a special case. A major difference between
their definition of KHS and ours is that, they define key-homomorphism directly over the key space while we
consider the attribute space associated with the key. Their work also defines M-HS, with a security model
which is stronger than that of Fiore et al. [FMNP16] but weaker than ours: They allow corruption of all but
one signer, and the forgery must pass verification under a set of public keys including the non-corrupted one.

Key Homomorphism Key-homomorphism has been studied in some earlier works in the context of thresh-
old fully homomorphic encryption [AJL+12] and pseudorandom functions [BLMR13]. The main inspiration of
defining KHS in our work comes from the study of Boneh et al. [BGG+14] in the context of key-homomorphic
encryption (KHE), who formulated KHE and constructed it based on the learning with errors problem. Fur-
thermore, they used KHE to construct attribute-based encryption for general circuits with short secret keys.
Inspired by their work, we study the corresponding notions in the signatures setting, namely KHS, and
attribute-based signatures (ABS) for general circuits.

Unlike homomorphic encryption (HE) which allows homomorphic operations on the ciphertexts with
respect to the plaintexts, KHE allows homomorphic operations on the ciphertexts with respect to the public
keys. As the plaintexts are private while the public keys are public, KHE and HE are inherently different.
For signature schemes, however, have both the messages and the public keys being public. It is natural to ask
whether there is any connection between HS and KHS. Indeed, we show that the two notions are equivalent.

Following the formulation of KHE [BGG+14], we assume that public keys embed meaningful attributes,
since performing operations on random looking keys may not be that meaningful intuitively which limits the
application. A concurrent work by Derler and Slamanig [DS16] investigates KHS in the more literal setting,
and uses it to construct more basic primitives such as ring signatures. They also define M-HS with a weaker
unforgeability notion where no corruption is allowed.

Key-homomorphism in signatures is also considered in different extents in delegatable functional signa-
tures (DFS) [BMS16] and operational signature scheme (OSS) [BDF+14]. In the former, the evaluator must
use its secret key to derive signatures. The verification algorithm then takes as input both the public key
of the original signature as well as the public key of the evaluator. In the latter, the evaluation algorithm
takes as input tuples consisting of an identity, a message, and a signature. It outputs another tuple to a
targeted identity. DFS is constructed generically from trapdoor permutations, while OSS is constructed from
indistinguishability obfuscation and one-way functions. They thus serve as proof-of-concept without giving
much intuition of how to achieve key-homomorphism in signatures.

Other related notions include policy-based signatures [BF14], in which a policy-dependent signing key can
only sign messages satisfying the specified policy, and functional signatures [BGI14], in which a functional
signing key can only sign messages in the range of the specified function.
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Other Multi-Key Signatures The simplest variant of signatures which considers signatures in multi-users
scenarios is arguable multi-signature, which allows a group of user to sign on a single message (without the
powerful homomorphic property in M-HS). Aggregate signatures allow signatures from different users to
be combined into a single signature, and the validity of it implies the validity of all underlying signatures.
This property is similar to our proposed security under corruption of M-HS, which can be considered as
generalization of aggregate signature that allows the collector of signatures to define the aggregate function
from the set of admissible function.

2 Preliminaries

Let λ be the security parameter. We use negl(λ) to denote functions which are negligible in λ. Barred variables
are vectors, e.g., x̄. If A is a probabilistic algorithm, x← A(·) denotes assigning the output from the execution
of A to the variable x. For a set S, x ← S denotes the sampling of a uniformly random x ∈ S. The empty
string and set are denoted by ε and φ respectively. Let M1, . . . ,Mk be sets of possibly different sizes. We use
pk,j to denote the projection function such that for each mk,j ∈ Mk, we have mk,j ← pk,j(M1, . . . ,MK). id
and id2 denote one- and two-dimensional identity functions respectively.

2.1 Settings and Notations

Let N = poly(λ) be an a-priori bounded maximum number of hops of homomorphic evaluation. That is, a
freshly signed message m can at most pass through N functions. There is however no further restriction on
the number of inputs and circuit depth of each function as long as it is efficiently computable.

We assume that any function obtained by concatenation ◦ keeps the concatenated representation (without
simplification). Thus, given a function g, one can efficiently write down its evaluation process as a evaluation
tree.

As a consequence, there exists a polynomial time algorithm Hop which, on input a function g, outputs
the depth of the evaluation tree of g, which represents the number of hops Hop(g) passed through in the
evaluation process of g.

We denote the combination of public keys and tags by PK := Comb(pk1, . . . , pkk) and T :=
Comb(τ1, . . . , τk) respectively. In the rest of the paper, we define the combination function as union, that is,
Comb(pk1, . . . , pkk) := ∪Kk=1pkk and Comb(τ1, . . . , τk) := ∪Kk=1τk. Note that one can use other functions to
combine public keys and tags.

2.2 Succinct Zero-Knowledge Non-Interactive Argument

Definition 1 (ZK-SNARG). Π = (Gen,Prove,Vf) is an adaptive zero-knowledge succinct non-interactive
argument (ZK-SNARG) for a language L ∈ NP with the witness relation R if it satisfies the following
properties:

– Completeness: For all x,w such that R(x,w) = 1, and for all strings crs ← Gen(1λ), we have
Vf(crs, x,Prove(x,w, crs)) = 1.

– Adaptive Soundness: If crs← Gen(1λ) is sampled uniformly at random, then for all PPT adversaries
A, the probability that A(crs) will output a pair (x, π) such that x /∈ L but Vf(crs, x, π) = 1, is at most
negl(λ).

– Succinctness: For all x,w such that R(x,w) = 1, if crs← Gen(1λ) and π ← Prove(crs, x, w), then there
exists a universal polynomial p(·) that does not depend on the relation R, such that |π| ≤ p(k + log t),
where t denotes the runtime of the relation R associated with language L.

– Adaptive Zero-Knowledge: There exists a PPT algorithm S = (Scrs,SProve) such that, for all PPT
adversaries A,

|Pr[AProve(crs,·,·)(crs)→ 1 : crs← Gen(1λ)]−

Pr[AS
′(crs,td,·,·)(crs)→ 1 : (crs, td)← Scrs(1λ)]| = negl(λ)
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where S ′(crs, td, x, w) = SProve(crs, td, x).

Definition 2 ((Strong) ZK-SNARK [BGI14, FN16]). A ZK-SNARG Π = (Gen,Prove,Vf) is a
(strong) adaptive zero-knowledge succinct non-interactive argument of knowledge (ZK-SNARK) for a
language L in NP with witness relation R if there exists a negligible function negl(λ) such that, for all PPT
provers P ∗, there exists a PPT algorithm EP∗ = (E1

P∗ ,E2
P∗) such that for every adversaries A,

|Pr[A(crs)→ 1 : crs← Gen(1λ)]−
Pr[A(crs)→ 1 : (crs, td)← E1

P∗(1λ)]| = negl(λ)

and

|Pr[Vf(crs, x, π) = 1 ∧ (x,w∗) /∈ R : (crs, td)← E1
P∗(1λ),

(x, π)← P ∗(crs), w∗ ← E2
P∗(crs, td, x, π)]| = negl(λ)

where the probabilities are taken over (crs, td)← E1
P∗(1λ), and the random coin of the extractor E2

P∗ .

Definition 3 (O-SNARKs [FN16]). A ZK-SNARG Π = (Gen,Prove,Vf) is an adaptive zero-knowledge
succinct non-interactive arguments of knowledge in the presence of oracles for O (O-SNARKs) for the oracle
family O and a language L ∈ NP with the witness relation R if there exists a negligible function negl(λ) such
that, for all PPT provers P ∗, there exists a PPT algorithm EP∗ such that

|Pr[Vf(crs, x, π) = 1 ∧ (x,w∗) /∈ R :
crs← Gen(1λ),O ← O; (x, π)← AO(crs), w ← EP∗(crs, qt)]| = negl(λ)

where qt = {qi,O(qi)} is the transcript of all oracle queries and answers made and received by A during its
execution.

3 Multi-Key Homomorphic Signatures (M-HS)

We define a new primitive called multi-key homomorphic signatures (M-HS). M-HS allows an arbitrary
number of signers to generate keys and sign messages independently in a fully distributed manner. Suppose
that each signer k signs a set of messages Mk with its secret key skk to produce a set of signatures Σk.
An evaluator can then publicly evaluate a function g over the message-signature pairs (Mk, Σk) to derive
a signature of (m, g) where m = g(M1, . . . ,MK). Syntactically, M-HS generalizes the normal homomorphic
signatures (HS) since it reduces to HS when all K secret keys are owned by the same party.

In the multi-signer setting, we must carefully analyze unforgeability when the adversary can corrupt
some signers or even maliciously generate some key pairs. Such an insider attack is absent in HS since there
is only one signer and hence one signing key involved with a signature. We formulate the unforgeability
against insider corruption, which requires that such group of corrupt signers cannot produce signatures of
(m, g), where the message m is outside the range of the function g restricted by the inputs of the uncorrupted
signers. Security against insider attack is useful when the output of the function cannot be fully controlled by
a few inputs, e.g., functions with AND, majority, and threshold gates. Concretely, to illustrate the meaning
of a successful forgery, consider the following specific configuration: Let g be the product function and
Mk ∈ {0, 1}. As long as Mk = 0 for some uncorrupted signer k, the adversary is unable to produce a
signature of (1, g).

More interestingly, this requirement actually still makes sense even when there is only one signer who is
also the adversary. In this case, unforgeability against insider corruption implies that even the signer cannot
produce a signature of (m, g) if there does not exist M ′ such that m = g(M ′). Furthermore, if the signature
scheme is context-hiding, the signature of (m, g) can be regarded as an adaptive zero-knowledge succinct
non-interactive argument (SNARG) of the NP language {(m, g) : ∃M ′ s.t. m = g(M ′)} as long as g is
efficiently computable.
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3.1 Definitions

Syntax. A multi-key homomorphic signature scheme (M-HS) for a class G of admissible functions consists of
the PPT algorithms (Setup,KGen,Sig,Vf,Eval) defined as follows:

– pp ← Setup(1λ) inputs the security parameter λ. It outputs a public parameter pp which is an input
to all algorithms implicitly. The public parameter also defines the message space M and the function
family G which contains the identity function id :M→M.

– (pk, sk)← KGen(pp) inputs the public parameter. It outputs the public key pk and secret key sk. When
an algorithm takes as input a secret key sk, we assume sk contains its corresponding public pk implicitly.

– Σ ← Sig(sk, τ,M) inputs the secret key sk, a tag τ ∈ {0, 1}∗, and a set of messages M ∈M∗. It outputs
a set of signatures Σ.

– b ← Vf(g,PK, T ,m, σ) inputs a function g ∈ G, a (possibly combined) public key PK, a (possibly
combined) tag T , a message m ∈ M, and a signature σ. It outputs a bit b = 0 or b = 1, indicating
whether m is the output of the function g over some signed data under tag T .

– σ ← Eval(g, (PKk, Tk,Mk, Σk)Kk=1) inputs a function g ∈ G, and, from each contributor, a public key (pos-
sibly combined), a tag (possibly combined), a set of messages, and a set of signatures (PKk, Tk,Mk, Σk),
where k ∈ [K]. It outputs a signature σ signing the evaluated data m = g(M1, . . . ,Mk) under the com-
bined public key PK = ∪Kk=1PKk and combined tags T = ∪Kk=1Tk. We assume that the evaluator knows
the history of the evaluated functions which produce Mk.

Correctness. For any pp ∈ Setup(1λ), any K = poly (λ) and k ∈ [K], any (pkk, skk) ∈ KGen(pp), any
Mk ∈M∗, any τk ∈ {0, 1}∗, and any g, hk,j ∈ G with appropriate dimensions, it holds that

– (Signing.) if Σk ← Sig(skk, τk,Mk), then Vf(id, pkk, τk,mk,j , σk,j) = 1 for each σk,j ∈ Σk and mk,j ∈Mk;
furthermore,

– (Evaluation.) for any Σk, if Vf(hk,j ,PKk, Tk,mk,j , σk,j) = 1 for all σk,j ∈ Σk and mk,j ∈Mk, Hop(hk,j) ≤
N − 1, and σ ← Eval(g, (PKk, Tk,Mk, Σk)Kk=1), then Vf(g ◦ h̄,PK, T , g(M1, . . . ,Mk), σ) = 1, where PK =
∪Kk=1PKk and T = ∪Kk=1Tk.

Unforgeability. Consider the following security game cEUF-CMA (existential unforgeability under corruption
and chosen message attack) between an adversary A and a challenger C.

– The challenger C runs pp ∈ Setup(1λ) and (pk, sk)← KGen(pp), and gives pp, pk to the adversary A.
– The adversary A adaptively issues a polynomial number of signing queries. In each signing query q ∈ [Q]

where Q = poly(λ), A chooses a tag τq ∈ {0, 1}∗, and a set of data Mq ∈M∗. The challenger C responds
with Σq ← Sig(sk, τq,Mq). It also decides whether to issue a corruption query which the challenger C
responds with sk.

– The adversary A outputs a function g∗ ∈ G, a public key PK∗, a tag T ∗ ∈ {0, 1}∗, a message m∗ ∈
M, and a signature σ∗. The experiment outputs 1 if and only if Vf(g∗,PK∗, T ∗,m∗, σ∗) = 1, and
(g∗,PK∗, T ∗,m∗, σ∗) is either a forgery such that
• Type-I : the signer is not corrupted, pk ∈ PK∗ and ∀ τq ∈ T ∗, m∗ 6∈ g∗(· · · ,Mq, · · · )
• Type-II : m∗ 6∈ Rg∗ , where Rg∗ is the range of g∗.

We say that the scheme is unforgeable under corruption (cEUF-CMA-secure) if, for all PPT adversaries
A, we have Pr{cEUF-CMAHS,A = 1} ≤ negl(λ). We say that the scheme is unforgeable (EUF-CMA-secure)
if the adversary A is not allowed to issue the corruption query in the game.

We can define a game K-cEUF-CMA similar to above, except there are K = poly(λ) signers and A can cor-
rupt any of the K signers and query signatures from any signers. The valid forgery is revised correspondingly
as follows:

– Type-I : at least one signer k ∈ K where pkk ∈ PK∗ is not corrupted and ∀ Tq,k ∈ T ∗,
m∗ 6∈ g∗(· · · ,Mq,k, · · · )

– Type-II : m∗ 6∈ R(g∗), where R(g∗) is the range of g∗.
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A scheme is said to be unforgeable under K-bounded corruption (K-cEUF-CMA-secure) if, for all PPT
adversaries A, Pr{K-cEUF-CMAHS,A = 1} ≤ negl(λ). This is a generalization of the above, as the notions
where one or no corruption is allowed can be obtained by letting K = 1 and K = 0 respectively. We have
the following theorem showing cEUF-CMA-security and K-cEUF-CMA-security are equivalent. The proof
can be found in the supplementary material.

Theorem 1. cEUF-CMA-security and K-cEUF-CMA-security are equivalent.

Lastly, one can also further restrict the adversary in the K-cEUF-CMA game such that PK∗ in the forgery
must be the union of a set of the public keys of uncorrupted signers. Schemes satisfying this property is said
to be unforgeable for uncorrupted signers.

Context Hiding. There exist a simulator S = (SSetup,SSig) such that, for all K = poly(λ), k ∈ [K], τk, Mk,
and g, it holds that for any PPT adversaries A,

∣∣∣∣∣ Pr


A(g, (pkk, skk, τk,Mk, Σk)Kk=1, σ)→ 1 :

pp← Setup(1λ)
(pkk, skk)← KGen(pp)
Σk ← Sig(skk, τk,Mk)

σ ← Eval(g, (pkk, τk,Mk, Σk)Kk=1)

−

Pr


A(g, (pkk, skk, τk,Mk, Σk)Kk=1, σ)→ 1 :

(pp, td)← SSetup(1λ)
(pkk, skk)← KGen(pp)
Σk ← Sig(skk, τk,Mk);

σ ← SSig(td, g,PK, T , g(M1, . . . ,MK))


∣∣∣∣∣ = negl(λ) .

The scheme is weakly context hiding if the above holds. The strong notion requires the fresh signature
indistinguishable from the evaluated one.

Succinctness. There exist a polynomial s(·) such that for every λ ∈ N, K = poly(λ), k ∈ [K], g ∈ G,
τk ∈ {0, 1}∗, Mk ∈ M∗, it holds with probability 1 over pp ← Setup(1λ); (pkk, skk) ← KGen(pp); Σk ←
Sig(skk, τk,Mk); that the resulting signature σ ← Eval(g, (PKk, Tk,Mk, Σk)Kk=1) on m = g(M1, . . . ,Mk) has
size |σ| ≤ s(λ, |m|). In particular, the signature size is independent of the sizes |Mk| of the inputs to the
function, and the size |g| of a description of the function g.

3.2 Construction from ZK-SNARK

In the following, we provide a generic construction of M-HS from ordinary digital signatures and ZK-SNARKs,
which is essentially a formalization of the multi-key generalization of the folklore construction of homomorphic
signatures. The idea is straightforward. The signer signs fresh signatures using the ordinary signature scheme.
To perform a homomorphic evaluation, the evaluator proves that it possesses a set of signatures on messages,
and evaluation of a function on these messages produces the resulting message.

We use the proof system recursively by treating the proof as an evaluated signature, which can be further
used in other proofs for further homomorphic evaluation. Similar techniques are used in the construction of
homomorphic encryption with targeted malleability by Boneh et al. [BSW12].
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pp← Setup(1λ)

crs0 := φ

crsn ← Πn.Gen(1λ) ∀n ∈ [N ]

return pp = (1λ, {crsn}Nn=0)

(pk, sk)← KGen(pp)

(pkDS , skDS)← DS.KGen(1λ)
return (pk, sk) := (pkDS , skDS)

b← Vf(g,PK, T ,m, σ)

parse σ = (n, σ′)
if n = 0 ∧ g = id then
b← DS.Vf(PK, (T ,m), σ′)
return b

elseif n ∈ [N ] then
x := (crsn−1, g,PK, T ,m)
b← Πn.Vf(crsn, x, σ′)
return b

else
return 0

endif

Σ ← Sig(sk, τ,M)

σ′j ← DS.Sig(skDS , (τ,mj)) ∀mj ∈M
σj := (0, σ′j)
return Σ := {σj}j

σ ← Eval(g, (PKk, Tk,Mk, Σk)Kk=1)

foreach k ∈ [K], σk,j ∈ Σk do
parse σk,j = (nk,j , σ′k,j)

endfor
n := max

k,j
(nk,j)

m← g(M1, . . . ,MK)

PK← ∪Kk=1PKk, T ← ∪Kk=1Tk
x := ({crsi}ni=1, g ◦ h̄,PK, T ,m)

w := (PKk, Tk,Mk, Σk)Kk=1

σ′ ← Πn+1.Prove(crsn+1, x, w)
return σ := (n+ 1, σ′)

Fig. 2. Construction of M-HS from ZK-SNARK

Concretely, we define for each hop of evaluation the languages for the proof system as follows. For each
n ∈ [N ], let Πn.(Gen,Prove,Vf) be a ZK-SNARK for the following recursively defined NP language Ln:

Ln =



{(φ, g,PK, T ,m) : ∃(pkk, τk,Mk, Σk)Kk=1 s.t.
∀ mk,j ∈Mk ∀ σk,j = (0, σ′k,j) ∈ Σk,
DS.Vf(pkk, (τk,mk,j), σ′k,j) = 1 ∧

g(M1, . . . ,MK) = m ∧ ∪Kk=1 pkk = PK ∧ ∪Kk=1 τk = T }

n = 1

{({crsi}n−1
i=1 , g ◦ h̄,PK, T ,m) : ∃(PKk, Tk,Mk, Σk)Kk=1 s.t.
∀ mk,j ∈Mk ∀ σk,j = (nk,j , σ′k,j) ∈ Σk,

Πn−1.Vf(crsnk,j
, ({crsi}

nk,j−1
i=1 ,mk,j , hk,j ,PKk, Tk), σ′k,j) = 1 ∧

g(M1, . . . ,MK) = m ∧ ∪Kk=1 PKk = PK ∧ ∪Kk=1 Tk = T }

n > 1

where hk,j is a layer-2 (the layer just below the root) node of the trees g ◦ h̄ corresponding to the messages
mk,j .

Formally, we construct a multi-key homomorphic signature scheme HS as shown in Figure 2. Its cor-
rectness follows directly from the correctness of DS and Π. The context-hiding property follows from the
zero-knowledge property of Π.

Next, we argue that it is unforgeable against insider corruption. The intuition is that, if the adversary
outputs a signature (a proof) of a message outside the range of g restricted by the inputs of the honest signers,
then either the proof is valid for a statement outside L, which breaks the soundness of Π, or it breaks the
unforgeability of DS. Specifically, one extractor among Πn can extract signatures under some public key
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pkk of some message m not signed by the honest signer k. The proofs can be found in the supplementary
material.

Theorem 2. If one-way function exist and, for all n ∈ [N ] where N = poly(λ), Πn is a sound strong
ZK-SNARK (Definition 2), then HS is unforgeable under corruption.

Theorem 3. If one-way functions exist and, for all n ∈ [N ] where N is a constant, Πn is a sound O-
SNARK with respect to the signing oracle of DS (Definition 3), then HS is unforgeable under corruption.
(Here, HS only supports constant-hop evaluation.)

Theorem 4. Suppose Πn is adaptive zero knowledge for all n ∈ [N ], then HS is weakly context hiding.

Theorem 5. Suppose Πn is succinct for all n ∈ [N ], then HS is succinct.

3.3 Construction from Lattices

If we settle for unforgeability for uncorrupted signers only, a generalization of the (leveled) fully homomorphic
signatures by Gorbunov et al. [GVW15] (GVW) gives an M-HS scheme. We only explain the core idea of
this generalization. A concurrent work by Fiore et al. [FMNP16] has also formalized the idea.

The verification equation of the GVW scheme is of the form V = AU + xG, where x ∈ {0, 1} is the
message signed, A and V are random matrices given in the public key, U is a random matrix of small norm
acting as the signature of x, and G is a fixed, nicely-structured “gadget” matrix such that there exists an
efficient algorithm (with abused notion as a matrix) G−1 which samples matrices of a small norm from the
kernel of G. The secret key is a “trapdoor” for A which allows efficient sampling of matrices of a small norm
from the kernel of A.

Suppose U1 and U2 are the signatures given by two different signers on the messages x1 and x2 re-
spectively which satisfy the equations V1 = A1U1 + x1G and V2 = A2U2 + x2G. Given the signatures,
a public evaluator can compute the signatures U+ = (U1,U2)T and U× = (U1G−1V2, x1U2)T for the
addition and multiplication function respectively. We can verify that these signatures satisfy V1 + V2 =
(A1,A2)U+ +(x1 +x2)G and V1G−1(V2) = (A1,A2)U×+(x1x2)G. The treatments for adaptive security,
multi-data support, and context-hiding property follow directly from the work of Gorbunov et al. [GVW15].

Unfortunately, such simple generalization only achieves unforgeability for uncorrupted signers, which
means the forgery must only involve uncorrupted signers. This is because, if the adversary has knowledge
of the trapdoor of Ak for some signer k, then it can sample matrices of a small norm from the kernel of
(A1, . . . ,AK) using standard trapdoor delegation technique. More disappointingly, even the original (single-
key) scheme of GVW does not satisfy unforgeability under corruption. Crossing the gap from disallowing to
allowing corruption based on standard assumptions should require substantially different techniques.

3.4 Functional Signatures from M-HS

We begin to show the power of M-HS by constructing functional signatures [BGI14] using a 2-key HS. As
mentioned in the introduction, FS allows an authority with a master secret key to derive function-specific
signing keys. Given a signing key for a function f , one can only sign messages in the range of f .

Definition. We recall the formal definition of functional signatures [BGI14].

Syntax. A functional signature scheme for a message space M, and a function family F = {f : Df →M}
consists of algorithms FS.(Setup,KGen,Sig,Vf).

– (mpk,msk) ← FS.Setup(1λ): inputs the security parameter λ; and outputs the master secret key msk
and master public key mpk.

– skf ← FS.KGen(msk, f): inputs the master secret key msk and a function f ∈ F ; and outputs a secret
key skf for f .

10



– (f(m), σ) ← FS.Sig(f, skf ,m): inputs the secret key skf for a function f ∈ F , and message m ∈ Df ;
and outputs f(m) and a signature of f(m).

– b← FS.Vf(mpk,m, σ): inputs the master public key mpk, a message m, and a signature σ; and outputs
1 if the signature is valid.

Correctness. We require that for any λ ∈ N, any (mpk,msk) ∈ FS.Setup(1λ), any f ∈ F , any skf ∈
FS.KGen(msk, f), any m ∈ Df , if (m∗, σ)← FS.Sig(f, skf ,m), then FS.Vf(mpk,m∗, σ) = 1.

Unforgeability. The scheme is unforgeable if the advantage of any PPT adversary A in the following game
is negligible:

– The challenger generates (mpk,msk)← FS.Setup(1λ), and gives mpk to A.
– A is allowed to query a key generation oracle Okey and a signing oracle Osign. These oracles share a

dictionary indexed by tuples (f, i) ∈ F × N, whose entries are signing keys: skf ← FS.KGen(msk, f).
This dictionary keeps track of the keys that have been previously generated during the game. The oracles
are defined as follows:
• Okey(f, i)
∗ If there exists an entry for the key (f, i) in the dictionary, output the corresponding value, skif .
∗ Otherwise, sample a fresh key skif ← FS.KGen(msk, f), then add an entry (f, i) → skif to the

dictionary and output skif .
• Osign(f, i,m)
∗ If there exists an entry for the key (f, i) in the dictionary, output σ ← FS.Sig(f, skif ,m).
∗ Otherwise, sample a fresh key skif ← FS.KGen(msk, f), then add it to the entry (f, i) of the

dictionary, and output σ ← FS.Sig(f, skif ,m).
• A wins if it can produce (m∗, σ) such that:
∗ FS.Vf(mpk,m∗, σ) = 1;
∗ There does not exist m such that m∗ = f(m) for any f which was sent as a query to the Okey

oracle;
∗ There does not exist a query (f,m) to Osign where m∗ = f(m).

Function-Privacy. The scheme is function-private if the advantage of any PPT adversary A in the following
game is negligible:

– The challenger honestly generates (mpk,msk) ← FS.Setup(1λ), and gives mpk and msk (w.l.o.g. this
includes the randomness used in Setup) to A.

– A chooses a function f0 and receives an (honestly generated) secret key skf0 ← FS.KGen(msk, f0).
– A chooses a second function f1 for which |f0| = |f1| (where padding can be useful if there is a known

upper bound) and receives an (honestly generated) secret key skf1 ← FS.KGen(msk, f1).
– A chooses a pair of value m0, m1 s.t. |m0| = |m1| and f0(m0) = f1(m1).
– The challenger selects a random bit b ← {0, 1} and generates a signature on the image message m′ =
f0(m0) = f1(m1) using secret key skfb

, and gives the resulting signature σ ← FS.Sig(f, skfb
,mb) to A.

– A outputs a bit b′, and wins the game if b′ = b.

Succinctness. There exist a polynomial s(·) such that for every k ∈ N, f ∈ F , m ∈ Df , it holds with
probability 1 over (mpk,msk) ← FS.Setup(1λ); skf ← FS.KGen(msk, f); (f(m), σ) ← FS.Sig(f, skf ,m)
that the resulting signature on f(m) has size |σ| ≤ s(k, |f(m)|). In particular, its size is independent of the
size |m| of the input to the function, and the size |f | of the description of f .
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(mpk,msk)← FS.Setup(1λ)

(mpk,msk)← HS.KGen(1λ)
return (mpk,msk)

b← FS.Vf(mpk,m, σ)

parse σ as (pk, τ, σ′)
b← HS.Vf(U, {mpk, pk}, {pk, τ},m, σ′)
return b

skf ← FS.KGen(msk, f)

(pk, sk)← HS.KGen(1λ)
σf ← HS.Sig(msk, pk, f)
return skf := (sk, σf )

(f(m), σ)← FS.Sig(f, skf ,m)

parse skf as (sk, σf )

τ ← {0, 1}λ

σm ← HS.Sig(sk, τ,m)
σ′ ← HS.Eval(U, ((mpk, pk, f, σf ), (pk, τ,m, σm)))
σ := (pk, τ, σ′)
return (U(f,m), σ)

Fig. 3. Construction of FS from M-HS

Construction. We construct FS using an M-HS which supports 1-hop evaluation of signatures signed under
two different keys. The functional signing key consists of a fresh M-HS secret key sk, and a signature σf
of the function f signed under the master secret key. To sign a function output f(m), the signer simply
signs the input message m using sk, and evaluates the signatures σf and σm of the function and the message
respectively using the universal circuit U , which is defined as U(f,m) = f(m) for any function f and message
m. The unforgeability under corruption of the M-HS scheme is crucial, for otherwise the signer might be
able to produce a signature on any message (possibly outside the range of f) using sk.

Formally, let HS.(KGen,Sig,Vf,Eval) be a 1-hop 2-HS scheme for a function family G = {U : {0, 1}s ×
{0, 1}n → {0, 1}k}, where U is the universal circuit taking as input a circuit f with description size s and
its n-bit input m, and computes U(f,m) = f(m) of length k. Let M = {0, 1}. We construct a functional
signature scheme FS.(Setup,KGen,Sig,Vf) for the function family F = {f : {0, 1}n → {0, 1}k s.t. |f | = s}
as shown in Figure 3.

Theorem 6. Suppose HS is correct, then FS is correct.

Theorem 7. Suppose HS is cEUF-CMA-secure, then FS is unforgeable.

Theorem 8. Suppose HS is weakly context-hiding, then FS is function-private.

Theorem 9. Suppose HS is succinct then FS is succinct.

Since the existence of secure functional signatures implies that of SNARGs [BGI14], we have the following
corollary.

Corollary 1. Suppose cEUF-CMA-secure and weakly context-hiding 1-hop 2-HS exists, then SNARG for
NP exists.

3.5 ZK-SNARG from M-HS

In the previous subsection, we show that the existence of 2-HS implies that of FS, which in turn implies the
existence of SNARGs. However, there are two limitations. First, the existence of FS only implies the existence
of non-zero-knowledge SNARGs. Second, as constructing 2-HS might be significantly more difficult than
constructing (1-)HS (both with unforgeability under corruption), it is desirable to construct (ZK-)SNARG
directly from HS.
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crs← Gen(1λ)

return crs := pp← HS.Setup(1λ)

b← Vf(crs, x, π)

parse π as (pk, τ, σ)
return b← HS.Vf(g, pk, τ, x, σ)

π ← Prove(crs, x, w)

(pk, sk)← HS.KGen(pp)

τ ← {0, 1}λ

(σx, σw)← HS.Sig(sk, τ, (x,w))
σ ← HS.Eval(g, ((pk, τ, x, σx), (pk, τ, w, σw)))
return π := (pk, τ, σ)

Fig. 4. Construction of SNARG from M-HS

The direct construction is as follows. Let the public parameters of M-HS be the common reference string.
The prover generates a fresh M-HS key and signs both the statement x and the witness w. It then evaluates
the signatures using a function g which, on input (x,w), outputs x if and only if w is a valid witness of x, and
outputs the evaluated signature as the proof. We remark that, although the construction is quite different, the
idea of using homomorphic signatures to construct proof systems is also considered by Libert et al. [LPJY14].

Formally, let HS = (Setup,KGen,Sig,Vf,Eval) be a 1-hop (1-)HS scheme. Let g be a function such that
g(x,w) = x if R(x,w) = 1, ⊥ otherwise. Figure 4 shows our SNARG system Π = (Gen,Prove,Vf) for NP
language L with relation R.

Theorem 10. Suppose HS is correct, then Π is complete.

Theorem 11. Suppose HS is cEUF-CMA-secure, then Π is sound.

Theorem 12. Suppose HS is weakly context-hiding, then Π is zero-knowledge.

Theorem 13. Suppose HS is succinct then Π is succinct.

Note that if the underlying M-HS scheme is secure in the standard model (without a common refer-
ence string), i.e., pp = λ, then the above construction would yield a ZN-SNARG in the standard model,
which is impossible. Therefore, we can also rule out the possibility of constructing standard model M-HS
schemes which are unforgeable under corruption. Interestingly, the only existing M-HS scheme [FMNP16] is
unforgeable (without corruption) in the standard model.

4 Extensions and Special Cases of Multi-Key HS

4.1 Multi-Key Hierarchical Homomorphic Signatures (M-HiHS)

Imagine the following scenario: Alice fills in the first two entries of a form, and passes the form to Bob. The
latter fills the next two entries, and passes to Charlie, and so on. At the end, an evaluator collects a number
of forms filled by multiple groups of people and processes them in batch. To support such functionality using
some variant of M-HS, we require additionally that the scheme is delegatable. Roughly, a delegator is able to
derive a signing key which is able to sign any set of messages that contains a subset specified by the delegator.
test We define an extension of M-HS, namely, multi-key hierarchical homomorphic signatures (M-HiHS).

M-HiHS allows a signer to specify a set of messages M , and delegate the signing power of all supersets of
M to another signer1. More concretely, let pk and sk be the public and secret key of the delegator. To delegate
the signing power over a set M to another signer with public key pk′, the delegator derives a delegated key
dk′. A delegatee can use this delegated key to sign any set M ′ ⊇ M to create a complete signature, so
1 Similar ideas have been studied by Kiltz et al. [KMPR05] and Bethencourt et al. [BBW07] in the context of append

only signatures.
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that any public evaluator can derive a signature of g(M ′) signed under the delegation chain (pk, pk′). This
generalizes proxy signatures in the literature where M serves as a “smart warrant” with respect to function g.

More generally, a delegatee can further delegate its signing power to form a longer delegation chain.
Lastly, similar to M-HS, the public evaluator can combine signatures signed under different chains.

History of Messages We first introduce a concept of “history”. Consider a message which is obtained by
evaluating a function g over multiple sets of messages. Each messages set is signed by a different delegation
chain, within which messages are delegated and signed under different public keys and tags. The arrangement
of these public keys and tags forms the history of the message ∆m. More formally, we define ∆m as a tree
with the following properties:

1. Each node corresponds to either a delegator, a signer, or an evaluator.
2. Each node corresponding to a delegator contains the delegatee public key and the delegated tag. Its

parent node corresponds to the delegatee.
3. Similarly, each node corresponding to a signer contains an empty string ε, indicating that the delegation

chain is finalized, and the signed tag.
4. Each node corresponding to an evaluator is an empty parent node of the nodes corresponding to the

signers of the input signatures.

Each leaf node of the tree thus corresponds to the first delegator in a delegation chain. The nodes
corresponding to a delegation chain forms a linked list, and the linked lists are connected on top by a tree
formed from the nodes corresponding to the evaluator. The history of a set of messages, denoted by ∆M , is
defined as a set of histories ∆m for all m in M . When the context is clear, we drop the subscript and write
∆ for conciseness.

Given a hash function H : {0, 1}∗ → {0, 1}λ, one can compute the digest of the history, denoted by
H(∆), by evaluating the tree as follows: Consider an algorithm which rewrites each node in the history tree
by intermediate values, and outputs the value written in the root node. The algorithm starts from the leaf
nodes, which remain unchanged. For each parent node, if it is not a node corresponding to an evaluator, then
it stores a public key pk (or an empty string ε) and a tag τ , and has only one children node with intermediate
hash value h. In this case, the algorithm computes and stores H(h‖pk‖τ) in the node. Otherwise, the node
is corresponding to an evaluator, and has children nodes with intermediate hash values h1, . . . , hK . The
algorithm thus stores H(h1, . . . , hK) in the node. When the algorithm reaches the root node, it outputs the
hash value stored in it.

Definitions

Syntax. An M-HIHS scheme consists of the PPT algorithms (Setup,KGen,Del,Sig,Vf,Eval) defined as follows:

– pp← Setup(1λ) and (pk, sk)← KGen(pp) are the same as those of M-HS.
– dk′ ← Del(sk, dk, pk′, τ,M ′, ∆) is a new delegation algorithm which inputs the secret key sk of the

delegator, an optional delegated key dk for some delegation chain ending at pk for the messages M , the
public key pk′ of the new delegatee, a tag τ ∈ {0, 1}∗, a set of messages M ′ ∈ M∗ such that M ′ ⊇ M ,
and the history ∆ of the messages M . It outputs a new delegated key dk′.

– Σ ← Sig(sk, dk, τ,M ′, ∆) is the same as that of M-HS, except that it takes as input an optional delegated
key dk for some delegation chain ending at pk for the messages M , and the history ∆ of the messages
M . It outputs the finalized signatures Σ on M ′ ∈M∗ such that M ′ ⊇M .

– b ← Vf(g,PK, T ,m, σ,∆) is the same as that of M-HS except that it additionally takes as input the
history ∆ of the message m.

– σ ← Eval(g, (PKk, Tk,Mk, Σk, ∆k)Kk=1) is the same as that of M-HS except that it additionally takes as
input the history ∆k of each set of messages Mk.
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If the delegation chain length is limited to 1, all delegation chains become a singleton containing only
the public key of the root delegator. The M-HiHS scheme thus becomes an M-HS scheme. The correctness,
unforgeability, and context-hiding property are defined similarly to those of M-HS. A major difference is
that, in the unforgeability game, the adversary is in addition allowed to query a delegation oracle, and the
condition of valid forgery is adjusted accordingly to avoid trivial attacks.

Correctness. For any pp ∈ Setup(1λ), any K,Dk = poly(λ), k ∈ [K], and dk ∈ [Dk], any (pkk,dk
, skk,dk

) ∈
KGen(pp), any Mk,dk

∈M∗, any τk ∈ {0, 1}∗, and any g, hk,j ∈ G with appropriate dimensions, the following
is true:

– (Delegation and Signing.) For any K delegation chains of lengths Dk, i.e.,

dkk,dk
← Del(skk,dk

, dkk,dk−1 , pkk,dk+1
, τk,dk

,Mk,dk
, ∆k,dk−1),

and any K finalizing signatures, i.e.,

Σk ← Sig(skk,Dk
, dkk,Dk−1, τk,Dk

,Mk,Dk
, ∆k,Dk−1),

the verification of any individual signature passes, i.e.,

Vf(pk,j ,PKk, Tk,mk,j , σk,j , ∆k,j) = 1

for each σk,j ∈ Σk and mk,j ∈Mk

– (Evaluation.) For any Σk, if Vf(hk,j ,PKk, Tk,mk,j , σk,j , ∆k) = 1 for all σk,j ∈ Σk and mk,j ∈ Mk,
Hop(hk,j) ≤ N−1, and σ ← Eval(g, (PKk, Tk,Mk, Σk, ∆k)Kk=1), then Vf(g◦h̄,PK, T , g(M1, . . . ,MK), σ,∆)
= 1

Unforgeability. Consider the following security game cEUF-CMA between an adversary A and a challenger C.

– The challenger C runs pp ∈ Setup(1λ) and (pk, sk)← KGen(pp), and gives pp, pk to A.
– The adversary A adaptively issues a polynomial number of delegation queries and signing queries. It also

decides whether to issue a corruption query.
• Delegation queries: In each delegation query qd, A chooses an optional delegated key dkqd

, for some
delegation chain ending at pk for the messages Mqd

, the public key pk′qd
of the new delegatee, a fresh

tag τqd
∈ {0, 1}∗, a set of messages M ′qd

∈ M∗ such that M ′qd
⊇ Mqd

, and the history ∆qd
of the

messages Mqd
. It outputs a new delegated key dk′qd

← Del(sk, dkqd
, pk′qd

, τqd
,M ′qd

, ∆qd
).

• Signing queries: In each signing query qs, A chooses an optional delegated key dkqs , for some del-
egation chain ending at pk for the messages Mqs

, a fresh tag τqs
∈ {0, 1}∗, a set of messages

M ′qs
∈ M∗ such that M ′qs

⊇ Mqs
, and the history ∆qs

of the messages Mqs
. It outputs a signa-

ture Σqs
← Sig(sk, dkqs

, τqs
,M ′qs

, ∆qs
).

• Corruption query: The challenger C responds with sk.
– The adversary A outputs a public key PK∗, a tag T ∗ ∈ {0, 1}∗, a signature σ∗, a message m∗ ∈
M, a function g∗ ∈ G, and a history ∆∗. It wins the game if Vf(g∗,PK∗, T ∗,m∗, σ∗, ∆∗) = 1, and
(g∗,PK∗, T ∗,m∗, σ∗, ∆∗) is either a forgery such that
• Type-I : the signer is not corrupted, the signer is a delegator and ∀ (τqd

, pk∗) ∈ ∆∗, pk∗ 6= pkqd

• Type-II : the signer is not corrupted, pk ∈ PK∗ and
∗ ∀ τqd

∈ T ∗, m∗ 6∈ g∗(· · · ,Mqd
, · · · )

∗ ∀ τqs ∈ T ∗, m∗ 6∈ g∗(· · · ,Mqs , · · · )
• Type-III : m∗ 6∈ Rg∗ .

We say that the scheme is unforgeable under corruption (cEUF-CMA-secure) if, for all PPT adversaries
A, we have Pr{cEUF-CMAHS,A = 1} ≤ negl(λ). We say that the scheme is unforgeable (EUF-CMA-secure)
if the adversary A is not allowed to issue corrupt query in the game. We also define the K-cEUF-CMA in a
similar way as in M-HS.

Theorem 14. cEUF-CMA-security and K-cEUF-CMA-security are equivalent.
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Context-Hiding. There exist a simulator S = (SSetup,SSig) such that, for all K,Dk = poly(λ), k ∈ [K],
dk ∈ [Dk], τk,dk

, Mk,dk
, and g ∈ G, it holds that for any PPT adversaries A,

∣∣∣∣∣Pr


A(g, (pkk,dk

, skk,dk
, τk,dk

,Mk,dk
, Σk,dk

)K,Dk

k=1,dk=1, σ,∆k,dk
)→ 1 :

pp← Setup(1λ)
(pkk,dk

, skk,dk
)← KGen(pp)

dkk,dk
← Del(skk,dk

, dkk,dk−1 , pkk,dk+1
, τk,dk

,Mk,dk
, ∆k,dk−1)

Σk ← Sig(skk,Dk
, dkk,Dk−1, τk,Dk

,Mk,Dk
, ∆k,Dk−1)

σ ← Eval(g, (PKk, Tk,Mk, Σk, ∆k)Kk=1)

 −

Pr


A(g, (pkk,dk

, skk,dk
, τk,dk

,Mk,dk
, Σk,dk

)K,Dk

k=1,dk=1, σ,∆k,dk
)→ 1 :

pp← Setup(1λ)
(pkk,dk

, skk,dk
)← KGen(pp)

dkk,dk
← Del(skk,dk

, dkk,dk−1 , pkk,dk+1
, τk,dk

,Mk,dk
, ∆k,dk−1)

Σk ← Sig(skk,Dk
, dkk,Dk−1, τk,Dk

,Mk,Dk
, ∆k,Dk−1)

σ ← SSig(td, g,PK, T , g(M1, . . . ,MK), ∆)


∣∣∣∣∣ = negl(λ) .

The scheme is weakly context hiding if the above holds.

Succinctness. There exist polynomial s(·) such that for every λ ∈ N, K,Dk = poly (λ), k ∈ [K],
dk ∈ [Dk], g ∈ G, τk,dk

∈ {0, 1}∗, Mk,dk
∈ M∗, it holds with probability 1 over pp ← Setup(1λ);

(pkk,dk
, skk,dk

) ← KGen(pp); dkk,dk
← Del(skk,dk

, dkk,dk−1 , pkk,dk+1
, τk,dk

,Mk,dk
, ∆k,dk−1); Σk ←

Sig(skk,Dk
, dkk,Dk−1, τk,Dk

,Mk,Dk
, ∆k,Dk−1); that the resulting signature σ ← Eval(g, (PKk, Tk,Mk, Σk, ∆k)Kk=1)

on m = g(M1, . . . ,MK) has size |σ| ≤ s(λ, |m|). In particular, the signature size is independent of the sizes
|Mk| of the inputs to the function, and the size |g| of a description of the function g. We also require that
the signature size is independent of the delegation chain length.

Construction We next show that M-HiHS can be constructed from M-HS and collision-resistant hash
functions (CRHF), which implies the equivalence of M-HS and M-HiHS up to the existence of CRHF. The
idea is to use the delegation chain as part of the tag of a signature. To extend the delegation chain PK to
pk′ with the set of messages M ′ ⊇ M , the delegator simply signs M under a random tag using M-HS, and
signs the hash value of all previous tags together with pk′ by ordinary signatures. Likewise, to finalize the
delegation chain PK with a set of messages M and tag τ , the delegatee signs M under the tag τ using M-HS,
and signs all previous tags with ordinary signatures.

Formally, letH : {0, 1}∗ → {0, 1}λ be a collision-resistant hash function, andHS.(Setup,KGen,Sig,Vf,Eval)
be an (N + 1)-hop M-HS scheme. We construct an N -hop M-HiHS scheme HS ′ as shown in Figure 5.

The correctness and context-hiding property follow straightforwardly from those of HS. The proofs of
the two theorems below can be found in the supplementary material.
Theorem 15. Suppose HS is unforgeable under corruption and H is collision-resistant, then HS ′ is un-
forgeable under corruption.
Theorem 16. Suppose HS is succinct, then HS ′ is succinct.

4.2 Multi-Key Key-Message Homomorphic Signatures (M-KMHS)
Another extension of M-HS is the multi-key key-message homomorphic signatures (M-KMHS). In M-KMHS,
homomorphic operations are not only with respect to the message space, but also the key space. Computation
over randomly generated public keys is however not always meaningful. To make computation over keys more
meaningful, we adopt the terminology of Boneh et al. [BGG+14] where the public keys are actually attributes,
whose corresponding secret keys are generated from their respective authorities. More concretely, suppose an
authority authorizes the set of attributes X and X ′ of two signers respectively. The signer with attributes X
then issues a signature on a set of messages M , and the signer attributed X ′ also signs M ′. Given the
signatures, a public evaluator can then derive a signature on the message g2((X,M), (X ′,M ′)) attributed
to g1(X,X ′) for any functions g1 and g2.
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pp← Setup(1λ)

return pp← HS.Setup(1λ)

b← Vf(g,PK, T ,m, σ,∆)

parse σ = (γ, σ′)
b0 ← HS.Vf(H,PK, 0, H(∆), γ)
b1 ← HS.Vf(g,PK, T ,m, σ′)
return b0 ∩ b1

dk′ ← Del(sk, dk, pk′, τ,M ′,∆)

if dk = φ then
// fresh delegation chain

γ ← HS.Sig(sk, 0, (pk′, τ))
Σ′ ← HS.Sig(sk, τ,M ′)
return (pk, γ, Σ′)

else

parse dk = (PK, γ, (Σ′d)D−1
d=1 )

γ′ ← HS.Sig(sk, 0, (pk′, τ))
s1 := (PK, 0, H(∆), γ)
s2 := (pk, 0, (pk′, τ), γ′)
γ ← HS.Eval(H, (s1, s2))
PK← PK ∪ {pk}
Σ′D ← HS.Sig(sk, τ,M ′ \M)

return (PK, γ, (Σ′d)Dd=1)
endif

(pk, sk)← KGen(pp)

return (pk, sk)← HS.KGen(pp)

Σ ← Sig(sk, dk, τ,M ′,∆)

dk′ ← Del(sk, dk, ε, τ,M ′,∆)
parse dk′ = ((pkd)

D
d=1, γ, (Σ′d)Dd=1)

foreach md,j ∈Md, d ∈ [D] do
σ′d,j ← HS.Eval(pd,j , (pkd, τd,Md, Σ

′
d)Dd=1)

endfor
Σ′d := (σ′d,j)j ∀d ∈ [D]
return (γ, (Σ′d)Dd=1)
// Partitioned as σd,j := (γ, σ′d,j).

σ ← Eval(g, (PKk, Tk,Mk, Σk,∆k)Kk=1)

parse Σk = (γk, Σ′k)

γ ← HS.Eval(H, (PKk, 0, H(∆k), γk)Kk=1)

σ′ ← HS.Eval(g, (PKk, Tk,,Mk, Σ
′
k)Kk=1)

return (γ, σ′)

Fig. 5. Construction of M-HiHS from M-HS

Definitions

Syntax. A key-message homomorphic signature scheme consists of the following six PPT algorithms (Setup,
KGenAuth,KGenSig,Auth,Sig,Vf,Eval) defined as follows:

– pp← Setup(1λ), (pk, sk)← KGenSig(pp) are the same as those of M-HS. The public parameter addition-
ally defines the attribute space X , and class of admissible functions G ⊆ {g|g : (X ,M)∗ → (X ,M)}.

– (apk, ask)← KGenAuth(pp) is a new key generation algorithm for generating an authority public key apk
and an authority secret key ask.

– Γ ← Auth(ask, pk, X) is a new authentication algorithm which inputs an authority secret key ask, the
public key of the signer pk, and a set of attributes X. It outputs a set of credentials Γ .

– Σ ← Sig(sk, (Γk, Xk)Kk=1, τ,M) additionally takes attributes Xk and the corresponding credentials Γk
signed by the K authorities.

– b ← Vf(g,APK,PK, T , x,m, σ) takes as input an additional authority public key APK and an at-
tribute x ∈ X .

– σ ← Eval(g, (apkk, pkk, τk, Xk,Mk, Σk)Kk=1) additionally evaluates the attributes. Concretely, for each
input tuple corresponding to the K signers, it inputs an additional set of authority public keys APKk
and a set of attributes Xk. It outputs a new signature σ.
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If the attribute space is defined as X = {0,⊥}, and the admissible functions are of the form
g((x1,m1), . . . , (xK ,mK)) = (x, g2(m1, . . . ,mK)) if x = x1 = . . . = xK , and (⊥,⊥) otherwise, then the
M-KMHS scheme essentially becomes an M-HS scheme. The correctness, unforgeability, and context-hiding
property are defined similarly to those of M-HS. A major difference is that, in the unforgeability game, the
adversary can also corrupt the authorities and query an authentication oracle, and the condition of valid
forgery is adjusted accordingly to avoid trivial attacks. Furthermore, the context-hiding property now also
hides the attributes input of the evaluation algorithm.

Correctness. A simple way to define the correctness of M-KMHS is to view KGenAuth and Auth as the key
generation and signing algorithms of a separate M-HS scheme respectively. The evaluation correctness of M-
KMHS requires that the evaluation correctness of the two separate M-HS holds simultaneously. Concretely,
for any pp ← Setup(1λ), any K,L = poly (λ), k ∈ [K], ` ∈ [L], any (apk`, ask`) ∈ KGenAuth(pp) any
(pkk, skk) ∈ KGenSig(pp), any Xk,` ∈ X ∗, any Mk ∈M∗, any τk ∈ {0, 1}∗, any hk,i,j , g ∈ G with appropriate
dimensions, the following correctness requirements hold.

– (Authentication and Signing.) If Γk,` ← Auth(ask`, pkk, Xk,`) and Σk ← Sig(skk, (Xk,`, Γk,`)L`=1, τk,Mk),
then for all (xk,`,i,mk,j) ∈ Xk,` ×Mk and σk,`,i,j ∈ Σk,

Vf(id2,APKk ∪ pkk, pkk ∪ τk, xk,`,i,mk,j , σk,`,i,j) = 1,

where APKk = ∪L`=1apk`
– (Evaluation.) For any Σk, if for all (xk,i,mk,j) ∈ Xk ×Mk, σk,i,j ∈ Σk and Hop(hk,i,j) ≤ N − 1,

Vf(hk,i,j ,APKk,PKk, Tk, xk,i,mk,j , σk,i,j) = 1;

and σ ← Eval(g, (APKk,PKk, Tk, Xk,Mk, Σk)Kk=1), it holds that

Vf(g ◦ h̄,APK,PK, T , g1(X1, . . . , XK), g2((X1,M1), . . . , (XK ,Mk)), σ) = 1.

Unforgeability. Consider the cEUF-CMA game played by an adversary below.

– The challenger C runs pp ← Setup(1λ), (apk, ask) ← KGenAuth(pp), (pk, sk) ← KGenSig(pp), and gives
apk and pk to A.

– The adversary A makes four types of queries:
• OCorrAuth() The challenger responds with the authority secret key ask.
• OCorrSig() The challenger responds with the signer secret key sk.
• OAuth(pkqa

, Xqa) The challenger returns Γqa ← Auth(ask, pkqa
, Xqa).

• OSig((Γqs,k, Xqs,k)Kk=1, τqs
,Mqs

) The challenger returns Σqs
← Sig(sk, (Γqs,k, Xqs,k)Kk=1, τqs

,Mqs
).

– Eventually the adversary A outputs a functions g∗ ∈ G, an authority public key APK∗, a signer
public key PK∗, a tag T ∗, an attribute x∗, a message m∗, and a signature σ∗. It wins the game if
Vf(g∗,APK∗,PK∗, T ∗, x∗,m∗, σ∗) = 1 and the forgery is either of:
• Type-I : the authority is not corrupted, apk ∈ APK∗ and ∀ pkqa

∈ PK∗, x∗ 6∈ g∗1(· · · , Xqa
, · · · )

• Type-II : the signer is not corrupted, pk ∈ PK∗ and ∀ τqs ∈ T ∗, m∗ 6∈ g∗2(· · · ,Mqs , · · · )
• Type-III : (x∗,m∗) 6∈ Rg∗

We require that for all PPT adversaries A, we have Pr{A wins} ≤ negl(λ) in the above game.
We say that the scheme is unforgeable under corruption (cEUF-CMA-secure) if, for all PPT adversaries

A, we have Pr{cEUF-CMAHS,A = 1} ≤ negl(λ). We say that the scheme is unforgeable (EUF-CMA-secure)
if the adversary A is not allowed to issue corrupt queries in the game. We also define the L-K-cEUF-CMA
in a similar way as in M-HS where there are L authorities and K signers.

Theorem 17. cEUF-CMA-security is equivalent to L-K-cEUF-CMA-security.
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Context-Hiding. There exist a simulator S = (SSetup,SSig) such that, for all L,K = poly(λ), k ∈ [K], ` ∈ [L],
τk, Mk, and g ∈ G, it holds that for any PPT adversaries A,

∣∣∣∣∣Pr



A(g, (apkk, pkk, τk, Xk,Mk, Σk)Kk=1, σ)→ 1 :
pp← Setup(1λ)

(apk`, ask`)← KGenAuth(pp)
(pkk, skk)← KGenSig(pp)
Γ`,k ← Auth(ask`, pkk, X`,k)

Σk ← Sig(sk, (Γ`,k, X`,k)L`=1, τk,Mk)
σ ← Eval(g, (apkk, pkk, τk, Xk,Mk, Σk)Kk=1)


−

Pr



A(g, (apkk, pkk, τk, Xk,Mk, Σk)Kk=1, σ)→ 1 :
pp← Setup(1λ)

(apk`, ask`)← KGenAuth(pp)
(pkk, skk)← KGenSig(pp)
Γ`,k ← Auth(ask`, pkk, X`,k)

Σk ← Sig(sk, (Γ`,k, X`,k)L`=1, τk,Mk)
σ ← SSig(td, g,APK,PK, T , g1(X1, . . . , XK),

g2((X1,M1), . . . , (XK ,MK)))


∣∣∣∣∣ = negl(λ) .

The scheme is weakly context hiding if the above holds.

Construction In the previous part, we show that M-HiHS can be constructed from M-HS, hence showing the
equivalence of their existences. We now construct M-KMHS using M-HS, which in turn shows the equivalence
of all three notions. The idea is to issue M-HS signatures on attributes as M-KMHS credentials.

Let HS.(Setup,KGen,Sig,Vf,Eval) be an M-HS scheme. We construct an M-KMHS scheme HS ′ as shown
in Figure 6. In this construction, we uses projection functions p1 and p2 where p1(X1, · · · , Xk) = (X1, · · · , Xk)
and p2((X1,M1), · · · , (Xk,Mk)) for k ∈ poly(λ). The correctness, unforgeability, and context-hiding property
follow straightforwardly from those of HS.

4.3 Multi-Key Key-Homomorphic Signatures (M-KHS)

Recall from the definition of M-KMHS in Section 4.2, consider a class of functions g : (X ,M)∗ →
(X ,M) such that g((x1,m1), . . . , (xK ,mK)) = (g1(x1, . . . , xK),m) if m = m1 = . . . = mK , and
g((x1,m1), . . . , (xK ,mK)) = (⊥,⊥) otherwise. We thus obtain a multi-key signature scheme which is only
homomorphic in the attribute space, which we refer to as multi-key key-homomorphic signature scheme
(M-KHS). In such configuration, the construction in Section 4.2 is actually a transformation from M-HS to
M-KHS.

Formally, we define an M-KHS scheme as a tuple of PPT algorithms (Setup,KGenAuth,KGenSig,Auth,Sig,
Vf,Eval) which are almost identical to those of M-KMHS, except that the class of admissible functions is
restricted to G ⊆ {g|g : X ∗ → X}. The correctness requires that fresh signatures must pass verification with
respect to the one-dimensional identity function id : X → X .

From the syntax, it is apparent that we can interpret the attribute space of M-KHS as the message space
of M-HS, and obtain a construction of M-HS. In particular, we conclude that the existence of ordinary HS
and single-authority KHS are equivalent.

4.4 Other Extensions of M-HS

In the previous subsections, we study two extensions of M-HS, namely M-HiHS and M-KMHS, and show
that they can both be constructed from M-HS, hence proving the equivalence of their existences. Recall
that M-HiHS extends M-HS vertically in the sense that it allows the delegation of signing power down the
delegation chains. M-KMHS extends M-HS in another dimension as it introduces additional homomorphism
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pp← Setup(1λ)

pp← HS.Setup(1λ)
return pp

(apk, ask)← KGenAuth(pp)

(apk, ask)← HS.KGen(pp)
return (apk, ask)

(pk, sk)← KGenSig(pp)

(pk, sk)← HS.KGen(pp)
return (pk, sk)

Γ ← Auth(ask, pk, X)

Γ ′ ← HS.Sig(ask, pk, X)
return Γ := (apk, Γ ′)

Σ ← Sig(sk, (Γk, Xk)Kk=1, τ,M)

Σ′ ← HS.Sig(sk, τ,M)
ck,i := (apkk, pk, xk,i, γk,i) ∀xk,i ∈ Xk, k ∈ [K]
sj := (pk, τ,mj , σ

′
j) ∀mj ∈M

foreach xk,i ∈ Xk, k ∈ [K],mj ∈M do
γk,i,j ← HS.Eval(p1, (ck,i, sj))
σk,i,j ← HS.Eval(p2, (ck,i, sj))

endfor

return Σ := (γk,i,j , σk,i,j)Kk=1,i,j

b← Vf(g,APK,PK, T , x,m, σ)

parse g = (g1, g2), σ = (γ, σ′)
b0 ← HS.Vf(g1,APK ∪ PK,PK ∪ T , x, γ)
b1 ← HS.Vf(g2,APK ∪ PK,PK ∪ T ,m, σ)
return b = b0 ∩ b1

σ ← Eval(g, (APKk,PKk, Tk, Xk,Mk, Σk)Kk=1)

parse g = (g1, g2), Σk = (γk,i,j , σk,i,j)Kk=1,i,j

foreach xk,i ∈ Xk,mk,j ∈Mk do
xk,i,j := xk,i,mk,i,j := mk,j

endfor
Xk := (xk,i,j)i,j ,Mk := (mk,i,j)i,j , Γk := (γk,i,j)i,j , Σ′k := (σk,i,j)i,j
ck := (APKk ∪ PKk,PKk ∪ Tk, Xk, Γk)
sk := (APKk ∪ PKk,PKk ∪ Tk,Mk, Σ

′
k)

γ ← HS.Eval(g1, (ck, sk)Kk=1), σ′ ← HS.Eval(g2, (ck, sk)Kk=1)
return (γ, σ′)

Fig. 6. Construction of M-KMHS from M-HS
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to the key space. We note that other extensions, including but not limited to combing the hierarchy of M-
HiHS and the key-homomorphism in M-KMHS, can likely be also constructed from M-HS. This illustrates
the power of supporting homomorphism in more than one spaces, and the power of corruption-resistance in
homomorphic signatures.

5 Decentralized Attribute-based Signatures

Apart from the natural application of allowing delegation of computation on data authenticated by multiple
parties, we study the implications of M-HS to other primitives, specifically, decentralized attribute-based
signatures (D-ABS) [OT13].

A D-ABS scheme allows multiple authorities to certify different sets of attributes of a signer in a com-
pletely distributed manner. After obtaining the certificates from the authorities, the signer can then issue
signatures on messages, while at the same time show that its certified attributes satisfy certain access pol-
icy. We show how to construct from KHS a D-ABS scheme which supports access policies in the class of
admissible functions F of the KHS scheme.

Due to the tag-based nature of KHS, this scheme can only achieve a weaker notion of anonymity, which
we call linkable anonymity. It prevents the adversary from learning any information about the attributes
associated with the signatures except those leaked from the access policies. On one hand, linkability is a useful
feature to achieve strong accountability. For example, consider a simple membership system where a user can
register by issuing a linkable attribute-based signature, so that the server can use the linkable part of the
signature as the identity of the user. Indeed there is a branch of literature which incorporates various forms
of linkability into signatures or credentials. On the other hand, one can generically transform this linkable
scheme to an unlinkable one: Simply replace the signature by a non-interactive witness-indistinguishable
(NIWI) proof of the knowledge of the tag in the KHS.

5.1 Definitions

Syntax. An attribute-based signature scheme consists of the PPT algorithms (Setup,KGenAuth,KGenSig,
Auth,Sig,Vf) defined as follows:

– pp← Setup(1λ) inputs the security parameter λ and outputs the public parameter pp, which defines the
attribute space X and the message space M.

– (apk, ask)← KGenAuth(pp) inputs the public parameter and outputs an authority public key apk and an
authority secret key ask.

– (pk, sk) ← KGenSig(pp) inputs the public parameter and outputs a signer public key pk and a signer
secret key sk.

– Γ ← Auth(ask, pk, X) inputs an authority secret key ask, a signer public key pk, and a set of attributes
X ∈ X ∗. It outputs a set of credentials Γ corresponding to the attributes X.

– σ ← Sig(f, sk, (Γk, Xk)Kk=1,m) inputs an access policy f ∈ F , the signer secret key sk, a set of credentials
Γk for the attributes Xk issued by authority k, and a message m. It outputs a signature σ signing m
under the attributes (X1, . . . , XK) and policy f .

– b← Vf(f,APK,m, σ) inputs an access policy f , the authority public key apkk of each of the authorities,
a message m, and a signature σ. It outputs 1 if the signature is valid, 0 otherwise.

Correctness. For any pp ∈ Setup(1λ), any K = poly(λ) and k ∈ [K], any (apkk, askk) ∈ KGenAuth(pp), any
(pk, sk) ∈ KGenSig(pp), any Xk ∈ X ∗, any Γk ∈ Auth(askk, pk, Xk), any policy f ∈ F , and any message
m ∈M, it holds that if σ ∈ Sig(f, sk, (Γk, Xk)Kk=1,m), then Vf(f,APK,m, σ) = f(X1, . . . , Xk).

Unforgeability. Consider the game below between an adversary and a challenger.

– Let K = poly(λ) be the maximum number of authorities in the system.
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– Initialize an empty dictionary D.
– The challenger C runs pp← Setup(1λ), {(apkk, askk)← KGenAuth(pp)}Kk=1, (pk, sk)← KGenSig(pp), and

gives (apkk)Kk=1 and pk to A.
– The adversary A makes four types of queries:
• OCorr(k): The challenger responds with the authority secret key askk. Without loss of generality,

suppose authority 1, . . . ,K are corrupt.
• OSig(): The challenger responds with the signer secret key sk.
• OAuth(k,Xk): If there exists a key for the entry k in the dictionary D, returns ⊥. Otherwise, the

challenger returns Γk ← Auth(askk, pk, Xk) and adds (Γk, Xk) to the entry k in the dictionary D.
• OSig(S, f,m): S is a set of authorities chosen by A. If there exists k ∈ S such that D[k] = ⊥, the

challenger returns ⊥. Otherwise, for each k ∈ S, the challenger retrieves (Γk, Xk) from the entry k
in the dictionary D. It returns σ ∈ Sig(f, sk, (Γk, Xk)k∈S ,m).

– Eventually A outputs a policy f∗ ∈ F , a set of authorities S∗, a message m∗, and a signature σ∗. Let
APK∗ = ∪k∈S∗apkk. It wins the game if the following holds:
• Vf(f∗,APK∗,m∗, σ∗) = 1, and
• APK∗ ⊂ ∪Kk=1apkk, and
• (S∗, f∗,m∗) was not queried to the sign oracle before, and
• 1 6∈ f∗(·, . . . , ·, XK+1, . . . , XK) for all Xk queried to the OAuth oracle, where k = K + 1, . . . ,K, or the

signer is not corrupted.

We require that for all PPT adversaries A, Pr{A wins} ≤ negl(λ).

Linkable Anonymity. We require that there exist a simulator S = (SSetup,SSig) such that, for all K = poly(λ),
k ∈ [K], m, Xk, and g, it holds that for any PPT adversaries A,

∣∣∣∣∣Pr


A(pk, sk, (apkk, askk, skXk

, Xk)Kk=1, σ, f,m)→ 1 :
pp← Setup(1λ)

(apkk, askk)← KGenAuth(pp)
(pk, sk)← KGenSig(pp)
Γk ← Auth(askk, pk, Xk)

σ ← Sig(sk, (Γk, Xk)Kk=1, f,m)

 −

Pr


A(pk, sk, (apkk, askk, skXk

, Xk)Kk=1, σ, f,m)→ 1 :
(pp, td)← SSetup(1λ)

(apkk, askk)← KGenAuth(pp)
(pk, sk)← KGenSig(pp)
Γk ← Auth(askk, pk, Xk)

σ ← SSig(td, f, pk,APK, f(X1, . . . , XK),m)


∣∣∣∣∣ = negl(λ) .

In particular, anonymity guarantees that only f(X1, . . . , XK) is revealed but not the individual values.
Signates from thkable in the sense that the public key pk is revealed.

5.2 Construction

From an M-KHS scheme HS.(Setup,KGenAuth,KGenSig,Auth,Sig,Vf,Eval), we get a generic construction of
decentralized attribute-based signatures (D-ABS) immediately. Figure 7 presents this construction.

The correctness of ABS follows from the correctness of HS directly. Suppose HS is unforgeable, then
ABS is unforgeable. Finally, suppose HS is context-hiding, then ABS is linkably anonymous.

Drawing the connections from Section 4, it is easy to see that the above D-ABS scheme can be extended
to support homomorphism in the message space (by M-KMHS). It can also be extended (similar to M-HiHS)
so that there is a hierarchy of authorities certifying multiple layers of attributes.
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pp← Setup(1λ)

pp← HS.Setup(1λ)
return pp

Γ ← Auth(ask, pk, X)

Γ ′ ← HS.Auth(ask, pk, X)
return Γ

b← Vf(f,APK,m, σ)

parse σ = (pk, σ′)
b← HS.Vf(f,APK, pk, 0, 1,m, σ)
return b

(apk, ask)← KGenAuth(pp)

(apk, ask)← HS.KGenAuth(pp)
return (apk, ask)

(pk, sk)← KGenSig(pp)

(pk, sk)← HS.KGenSig(pp)
return (pk, sk)

Σ ← Sig(f, sk, (Γk, Xk)Kk=1,m)

Σ′ ← HS.Sig(sk, (Γk, Xk)Kk=1, 0,m)

parse Σ′ = (Σ′k)Kk=1

σ′ ← HS.Eval(g, (apkk, pk, 0, Xk,m,Σ′k)Kk=1)
return σ := (pk, σ′)

Fig. 7. Construction of D-ABS from M-KHS

5.3 Instantiations

We can instantiate the above generic construction from the multi-key generalization of the fully homomorphic
signature scheme by Gorbunov et al. [GVW15] (GVW). The following discussions are in order.

– We obtain a D-ABS scheme for general circuits based on lattice assumptions in the standard model.
– In our terminology, the generalized GVW is an M-HS scheme unforgeable for uncorrupted signers. This

implies a weak unforgeability of the resulting D-ABS scheme in the sense that the adversary is not
allowed to corrupt either the signer or any subset of the authorities.

– In (generalized) GVW, normal verification takes as long as computing the function g. To improve effi-
ciency, part of the verification can be pre-computed so that the amortized verification cost with the fixed
function g can be made constant (as explained in details [GVW15]). This is suitable for our purpose as
the access policies of a verifier in D-ABS typically remain relatively stable.

– The transformation to a fully anonymous scheme can be instantiated by the recent proof system for
linear congruences proposed by Libert et al. [LLM+16].

6 Concluding Remark

The study of homomorphic signatures (HS) is in a single-key setting concentrating on the homomorphism in
the message space. In this work, we have introduced the notion of multi-key homomorphic signatures with
a strong security property known as unforgeability under corruption.

Despite of having a relatively simple syntax, multi-key HS turns out to be a central-hub of various
seemingly more powerful or at least different variants of homomorphic signatures. Specifically, it implies
multi-key hierarchical HS, multi-key key-message-HS, and multi-key key-HS. The equivalence of multi-key
HS and multi-key key-HS suggests that message-homomorphism and key-homomorphism in signatures are
identical in nature. Thus, existing fully homomorphic signature schemes readily give fully key-homomorphic
signature schemes. We also show that it further implies attribute-based signatures for general circuits from
standard assumptions. It is unknown that whether there exist some flavors of HS which are not covered by
multi-key HS.

We have constructed a multi-key HS scheme from ZK-SNARK, and shown that the existence of
corruption-resistant HS implies the existence of ZK-SNARG. It will be interesting to design a corruption-
resistant HS scheme from different primitives or assumptions.
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A Supplementary Material

A.1 Digital Signatures

Definition 4 (Signatures). A signature scheme is a tuple of PPT algorithms DS.(KGen,Sig,Vf) defined
as follows:
– (pk, sk)← KGen(1λ): The key generation algorithm takes as input the security parameter λ and generates

a key pair (pk, sk).
– σ ← Sig(sk,m): The signing algorithm takes as input a secret key sk and a message m ∈ {0, 1}∗. It

outputs a signature σ.
– b ← Vf(pk,m, σ): The verification algorithm takes as input a public key pk, a message m, and a signa-

ture σ. It outputs a bit b.

Correctness. The scheme is correct if, for all λ ∈ N, all key pairs (pk, sk) ← KGen(1λ), all messages
m ∈ {0, 1}∗, and all signatures σ ← Sig(sk,m), it holds that Vf(pk,m, σ) = 1.

Definition 5 (Existential Unforgeability). A signature scheme DS is existentially unforgeable under
chosen message attacks (EUF-CMA-secure) if, for all PPT adversaries A, there exists a negligible function
negl(λ) such that Pr[EUF-CMADS,A(1λ) = 1] ≤ negl(λ) where EUF-CMADS,A is an experiment defined as
follows:
– The challenger C generates (pk, sk)← KGen(1λ) and gives pk to A.
– The adversary A is given access to a signing oracle OSig(sk, ·).
– Eventually, A outputs a forgery (m∗, σ∗).
– If m∗ is not queried to the signing oracle, outputs Vf(pk,m∗, σ∗).
– Otherwise, the experiment outputs 0.

A.2 Proofs in the Main Text

Proof (Theorem 1). It is easy to see that K-cEUF-CMA-security implies cEUF-CMA-security. It remains to
show that cEUF-CMA-security implies K-cEUF-CMA-security. Suppose there exists an adversary AK that
wins the K-cEUF-CMA game with non-negligible probability. We show how to construct an adversary A1
that uses AK to win the cEUF-CMA game with non-negligible probability.
A1 receives from its challenger (pp, pk). It sets pkK = pk and generates other public keys honestly by

{(pkk, skk)← KGen(pp)}K−1
k=1 . Then A1 forwards pp and (in a random order) (pk1, . . . , pkK) to AK .

AK makes two types of queries:
– Signing queries q with signer k, tag τq,k ∈ {0, 1}∗ and a set of messages Mq,k ∈M∗: If k 6= K, A1 signs

the messages honestly by Σq,k ← Sig(skk, τq,k,Mq,k). Else if k = K, A1 forwards (τq,K ,Mq,K) to its
signing oracle, and receives Σq,K . In either case, it outputs Σq,k.

– Corruption queries with index k: If k 6= K, A1 outputs skk. Otherwise, A1 queries its corruption oracle
to get sk and outputs skK = sk.

Eventually, AK outputs a forgery (g∗,PK∗, T ∗,m∗, σ∗) and A1 just outputs whatever AK outputs.
If AK corrupts all signers, the forgery must be a Type-II forgery. Then A1 wins if AK wins. Otherwise,

with at least 1
K probability, signer K is not corrupted, pkK ∈ PK∗ and ∀ Tq,K ∈ T ∗, m∗ 6∈ g∗(· · · ,Mq,K , · · · ).

In such case, A1 also wins if AK wins. ut

Proof (Theorem 2). It is well known that EUF-CMA-secure digital signatures can be constructed from
one-way functions [Lam79,Rom90]. Thus, suppose that DS is EUF-CMA-secure.

Suppose there exists an adversary AHS that produces a forgery in HS with non-negligible probability.
Suppose Πn is sound for all n ∈ [N ], we show how to construct an adversary ADS that uses AHS to produce
a forgery of DS. ADS acts as a challenger in the cEUF-CMA game of HS.
ADS obtains from its challenger the public key pkDS . It generates for each n (crsn, tdn) ← Πn.E1(1λ),

a simulated crsn for Πn, together with a trapdoor tdn, and forwards the public parameters pp =
(1λ, crs0, . . . , crsN ) and the public key pk = pkDS to AHS , where crs0 := φ. AHS makes two types of queries:
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– Signing queries of tag τq ∈ {0, 1}∗ and a messages set Mq ∈M∗: ADS forwards {(τq,mq,j)} to its signing
oracle to receive σq,j , and outputs Σq = {σq,j}j .

– Corruption query: ADS just aborts. This happens with negligible probability, the reason is as follows. If
AHS issues corruption query, then the only valid forgery it can produce is a type-II forgery. It is easy to
see that a type-II forgery breaks the soundness of Πn for some n ∈ [N ]. By the soundness of Πn, AHS
can produce such forgery with at most negligible probability.

After querying the oracles,AHS will output an alleged forgery ofHS, a public key PK∗, a tag T ∗ ∈ {0, 1}∗,
a function g∗ ∈ G, some data m∗ ∈M, and a signature σ∗ = (n∗, σ′) such that Vf(PK∗, T ∗, σ∗,m∗, g∗) = 1,
pk ∈ PK∗ and ∀ Tq ∈ T ∗, m∗ 6∈ g∗(· · · ,Mq, · · · ). ADS runs Πn.E2, the extractor of ZK-SNARK for Ln, re-
cursively from n = n∗ to n = 1, so that it recovers a set of key-message-signature tuples {(pk∗k, (τ∗k ,m∗k), σ∗k)},
all pass the verification of DS. Since Πn is sound for all n ∈ [N ], than with non-negligible probability, there
exist a tuple (pk, (τ ′,m′), σ′) ∈ {(pk∗k, (τ∗k ,m∗k), σ∗k)} such that (τ ′,m′) is not queried before. Suppose that is
the case, then (pk, (τ ′,m′), σ′) is a valid forgery to DS. We remark that if we have p ∈ poly(λ) number of
recursive extractions and each extraction success with overwhelming probability 1 − u, where u ∈ negl(λ),
the success probability of the final extraction is:

(1− u)p ≥ 1−
p∑

i=2k+1

(
p

i

)
ui ≥ 1−

p∑
i=2k+1

(e
i
pu)i ∈ 1− negl(λ)

Note that we have used the inequality
(
p
i

)
≤ ( epi )i where e is the base of natural logarithm.

Proof (Theorem 3). The proof of the above theorem is exactly the same as the proof of Theorem 2. Note
that for all n ∈ [N ], the same signing oracle for DS is required. Therefore, with the transcript of signing
oracle queries, the set of extractors Πn.E2 for the recursive language is able to extract the witnesses. We
remark that if N is super-logarithmic, then the total runtime of recursively running the set of extractors
Πn.E2 might become exponential. We thus restrict N to be a constant.

Proof (Theorem 4). Πn is adaptive zero-knowledge, so there exists a simulator SΠn = (Scrs
Πn
,SProve
Πn

) which
simulates a proof πn for any instance in Ln. To construct a simulator SHS for HS, we define SSetup

HS which
simulates the common reference strings crsn using Scrs

Πn
, and SSig

HS which simulates the signatures using SProve
Πn

.
The proofs simulated from SΠn are indistinguishable from the real proofs, so the simulated signatures from
SHS are indistinguishable from the real signatures.

Proof (Theorem 5). The size of a signature produced by Eval(g, (PKk, Tk,Mk, Σk)Kk=1) is the sum of proof
length of Πn for some n and the length of the binary representation of N , which is logarithmic in the security
parameter. The succinctness of HS follows directly from the succinctness property of Π.

Proof (Theorem 7). Suppose there exists an adversaryAFS that produces a forgery in FS with non-negligible
probability. We show how to construct an adversary AHS that uses AFS to produce a forgery of HS. AHS
acts as a challenger in the unforgeability game of FS.
AHS receives mpk from the challenger of the EUF-CMA game of HS. It forwards public key mpk to AFS .

AFS makes two types of queries:

– Okey(f, i)
• If there exists an entry for (f, i) in the dictionary, output the corresponding value, skif .
• Otherwise, generate a public key honestly by (pk, sk) ← HS.KGen(1λ) and query the signing oracle

of HS to get σif ← HS.Sig(msk, pk, f). Then add skif = (sk, σif ) to the dictionary entry (f, i) and
output skif .

– Osign(f, i,m)
• If there exists an entry for (f, i) in the dictionary, retrieve skif = (sk, σif ).
• Otherwise, generate a public key honestly by (pk, sk) ← HS.KGen(1λ) and query the signing oracle

of HS to get σif ← HS.Sig(msk, pk, f). Then add an entry (f, i)→ skif = (sk, σif ).
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• In either case, sample τ ← {0, 1}λ, and compute σm ← HS.Sig(sk, τ,m) and σ′ ← HS.Eval(U,
((mpk, pk, f, σif ), (pk, τ,m, σm))), where U is the universal circuit. Set σ = (pk, τ, σ′) and output
(U(f,m), σ).

After querying the oracles, AFS responds with forgery (m∗, σ∗), where σ∗ = (pk∗, τ∗, σ′∗). AHS then
answer (U, {mpk, pk∗}, {pk∗, τ∗},m∗, σ′∗) to its EUF-CMA game. The answer of AHS is a valid forgery since,
by the definition of the unforgeability game of functional signatures, m∗ is not in the range of any f queried
to the Okey oracle, and m∗ 6= f(m) for any (f,m) queried to the Osign oracle.

Proof (Theorem 8). Let AFS be an adversary playing the function-privacy game with a challenger. Since HS
is weakly context-hiding, there exists a simulator SHS which, on input (U, {mpk, pk}, {pk, τ}, f(m)), outputs
a signature of f(m) which is indistinguishable from that produced by FS.Sig(f, skf ,m). We can thus replace
the challenger with the simulator SHS , which is indistinguishable in the view of AFS except with negligible
probability. The simulated signatures contain no information about the function f and input message m
except for f(m). The probability that the adversary AFS guesses correctly in the simulated game is 0.

Proof (Theorem 9). The size of a signature produced by FS.Sig(f, skf ,m) is the signature length of HS.
The succinctness of FS follows directly from that of HS.

Proof (Theorem 11). Suppose there exists an adversary AΠ that breaks the soundness of Π with non-
negligible probability. We show how to construct an adversary AHS that uses AΠ to produce a forgery of
HS. AHS acts as a challenger in the soundness game of Π.
AHS receives pp from the challenger of EUF-CMA game of HS, and forwards the common reference

string crs := pp to AΠ . Eventually, AΠ responds with (x∗, π∗) such that Vf(crs, x∗, π∗) = 1 but x∗ 6∈ L. AHS
then parses π∗ = (pk∗, τ∗, σ∗) and answers (g, pk∗, τ∗, x∗, σ∗) to its EUF-CMA game. Since x∗ 6∈ L, we have
x∗ 6= g(x,w) for all (x,w) ∈M2.

Proof (Theorem 12). Since HS is weakly context-hiding, there exists a simulator SHS = (SSetup
HS ,SSig

HS) such
that, SSetup

HS simulates the public parameter, and SSig
HS simulates on input (R, pk, τ, x) a signature on x which

is statistically close to the real signatures. We can thus construct Scrs
Π using SSetup

HS and SProve
Π using SSig

HS , and
conclude that Π is zero-knowledge.

Proof (Theorem 13). The proof produced by π ← Prove(crs, x, w) consists of a λ-bit string and a signature
of HS. The succinctness of Π follows directly from that of HS.

Proof (Theorem 15). Suppose there exists an adversary AHS′ that produces a forgery in HS ′ with non-
negligible probability. Suppose H is collision-resistant, we show how to construct an adversary AHS that
uses AHS′ to produce a forgery of HS. AHS acts as a challenger in the EUF-CMA game of HS ′.
AHS received pp and pkHS from its challenger. It forwards pp and the public key pk = pkHS to AHS′ .
AHS′ makes three types of queries. For delegation and signing queries, AHS queries the challenger of

HS for the signatures γ and σ′. For corruption query, it queries the challenger of HS for the secret key
sk = skHS . After querying the oracles, AHS′ responds with forgery, a function g∗ ∈ G, a public key PK∗, a
tag T ∗ ∈ {0, 1}∗, a message m∗ ∈ M, a signature σ∗ = (γ∗, σ′∗), and a history ∆∗. The only ways for the
forgery to be valid is to either forge the underlying HS signature or find a collision in H. Since the latter
is infeasible, for otherwise we can construct adversaries for breaking H. AHS guess whether σ′∗ or γ∗ is a
forgery and sends the corresponding signature to its cEUF-CMA game.

Proof (Theorem 16). The succinctness of the σ′ part of a signature is trivial. For the γ part, succinctness
follows since there is one DS signature on a λ-bit message for each member of each delegation chain.

The size of signatures produced by Del, Sig, and Eval, namely, (σ1, . . . , σN)← Del(sk,PK, pk′, (m1, . . . ,mN)),
(σ1, . . . , σN) ← Sig(sk,PK, τ, (m1, . . . ,mN)) and σ ← Eval(g, (pkk,d,PKk,d, τk,d, (mk,d,j , σk,d,j)

Nk,d

j=1 )K,Dk

k=1,d=1)
are the same as those in HS. The succinctness of HS ′ follows directly from the succinctness of HS.
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