
Multi-Key Homomorphic Signatures
Unforgeable under Insider Corruption

(Full Version)

Russell W. F. Lai1,2, Raymond K. H. Tai1, Harry W. H. Wong1, and
Sherman S. M. Chow1

1 Chinese University of Hong Kong, Hong Kong
2 Friedrich-Alexander-Uiversität Erlangen-Nürnberg, Germany

{russell,raymondtai,whwong,sherman}@ie.cuhk.edu.hk

Abstract. Homomorphic signatures (HS) allows the derivation of the signature of the message-function
pair (m, g), where m = g(m1, . . . ,mK), given the signatures of each of the input messages mk signed
under the same key. Multi-key HS (M-HS) introduced by Fiore et al. (ASIACRYPT’16) further en-
hances the utility by allowing evaluation of signatures under different keys. While the unforgeability
of existing M-HS notions unrealistically assumes that all signers are honest, we consider the setting
where an arbitrary number of signers can be corrupted, which is typical in natural applications (e.g.,
verifiable multi-party computation) of M-HS. Surprisingly, there is a huge gap between M-HS with
and without unforgeability under corruption: While the latter can be constructed from standard lat-
tice assumptions (ASIACRYPT’16), we show that the former must rely on non-falsifiable assumptions.
Specifically, we propose a generic construction of M-HS with unforgeability under corruption from adap-
tive zero-knowledge succinct non-interactive arguments of knowledge (ZK-SNARK) (and other standard
assumptions), and then show that such M-HS implies adaptive zero-knowledge succinct non-interactive
arguments (ZK-SNARG). Our results leave open the pressing question of what level of authenticity can
be guaranteed in the multi-key setting under standard assumptions.

1 Introduction

In a basic signature scheme, a signer can use a secret key to sign messages which are verifiable using the
corresponding public key. The signatures are required to be unforgeable, meaning that no efficient adversaries
can forge a valid signature on any message without the secret key. This requirement, however, limits the utility
of the signed message. For example, without the secret key, one cannot derive a signature of a computation
over the signed messages.

Homomorphic signature (HS) schemes [32] allow a third-party (public) evaluator to compute any functions
from a class of admissible functions over signed messages (from a single signer), and derive signatures of
the computation results. HS is a handy tool for applications which require computation on authenticated
data. For example, it is useful when computationally inferior data producers (e.g., sensors in Internet-of-
Things) need to outsource expensive computations to a third-party (e.g., the cloud), while assuring the
authenticity of the computation result. Since homomorphic evaluation of messages and signatures is allowed,
the standard unforgeability notion can no longer be satisfied. There are two common meaningful relaxations.
The first one is considered for linear homomorphic signatures [11], where only linear functions are admissible.
Unforgeability of linear HS requires that any adversary cannot derive a signature of a vector which is not
a linear combination of any honestly signed vectors. This relaxation is not suitable for fully homomorphic
signatures [15, 51] where all polynomials/circuits are admissible, as signatures for a wide range of messages
can often be derived from just a single signed message. Thus, the second approach is to have the signature
not only certify the message, but also the function that is used to compute the message. Unforgeability
here means that any adversary cannot derive a signature of a message-function pair (m, g), such that m is
not a function value of g evaluated over any honestly signed messages. This work considers HS for general
functionality, hence we adopt the second approach.

1.1 Multi-Key Homomorphic Signatures

To further extend the utility of HS, multi-key HS (M-HS) has recently received attention [47, 49]. This
extension of HS allows homomorphic evaluation of signatures signed under different keys. An evaluated
signature is verifiable using a combined public key, e.g., the ordered tuple consisting of all public keys of the
signatures being evaluated. The multi-key setting allows multiple data producers, who do not or should not
share the same key, to contribute signed data for verifiable computation. Unfortunately, existing work [47,49]
only considers weaker security models (see further discussion in Section 2.2), which do not capture insider
attacks from malicious contributors. In fact, a malicious signer in [49] is able to create a signature on any
message-function pairs (m, g) regardless of the honest signer inputs (see Appendix B). The problem is also
inherent in all existing lattice-based signatures with trapdoors.

For certain classes of computation such as the majority vote, if the M-HS scheme is not secure against
insider attacks, it might be possible that a compromised signer can manipulate the voting result. This limits
the usefulness of existing M-HS solutions since it is often unrealistic to assume that all contributors in a
multi-party computation are honest. In view of the limitation, there is a need for a stronger notion which
provides unforgeability even in the presence of corrupted signers.

1.2 Our Results

Multi-key homomorphic signatures unforgeable under insider corruption. In Section 4, we revisit the notion
of multi-key homomorphic signatures (M-HS). M-HS is a generalization of homomorphic signatures which
allows a public evaluator to apply a function g to transform signatures of different messages (m1, . . . ,mK)
signed under different public keys to a signature of (g(m1, . . . ,mK), g) signed under a combined public key.
Existing work [47,49] assumes all signers are honest. In contrast, we define a strong security notion of M-HS
called existential unforgeability under corruption and chosen message attack (cEUF-CMA). The adversary
can control a coalition of the evaluator and a set of malicious signers. A signature of (m, g) is a valid forgery
if the resulting message m is not in the range of g restricted by the input of the honest signer. Interestingly,
cEUF-CMA-security also makes sense in the single-key setting. The adversary can choose to corrupt the
only honest signer, where we require that even the signer itself cannot produce a signature on (m, g) where
m is not in the range of g.

Relations to existing notions. We study how cEUF-CMA-secure M-HS is related to other notions. First, we
show in Section 5 that such M-HS can be constructed from adaptive zero-knowledge succinct non-interactive
arguments of knowledge (ZK-SNARK). We note that there are some impossibility results regarding the
security of SNARKs in the presence of oracles (O-SNARK) [25]. In particular, there exists a secure signature
schemeΣ such that no candidate construction of O-SNARK satisfies adaptive proof of knowledge with respect
to the signing oracle of Σ. Fortunately, there are at least two ways to circumvent this impossibility result. The
first approach is to use a ZK-SNARK with a “strong” adaptive proof of knowledge property [16, 25], where
the extractor takes as input an additional trapdoor and ignores the random tape of the adversary. The second
approach is to use an underlying signature scheme for which there exists a secure O-SNARK [25, Section 5].
Either way, by a recursive witness extraction technique, we show that strong ZK-SNARKs implies a “poly-
depth” M-HS, while using O-SNARKs yields a “constant-depth” M-HS.

Then, in Section 6.1, we show that succinct functional signatures (FS) [16] can be constructed from a
cEUF-CMA-secure two-key M-HS (2-HS). Since the existence of succinct functional signatures implies the
existence of succinct non-interactive arguments (SNARG), we obtain as a corollary that the existence of
cEUF-CMA-secure 2-HS implies the existence of SNARG.

The above implication is somewhat unsatisfactory as it starts from ZK-SNARK and ends with SNARG
(without zero-knowledge). We thus further show in Section 6.2 that the existence of cEUF-CMA-secure
single-key HS implies the existence of ZK-SNARG. This makes cEUF-CMA-secure M-HS a notion sitting
nicely in between ZK-SNARK and ZK-SNARG, which differ only in the existence of the knowledge extractor.

Since it is known that SNARG cannot be based on falsifiable assumptions [30], it follows that cEUF-
CMA-secure M-HS must also be based on non-falsifiable assumptions. This impossibility result puts us into

2

an unfortunate situation where, either we rely on strong assumptions for verifiable multi-party computation,
or we settle for weaker authenticity guarantee. We leave open the problem of defining a security model for
M-HS, which tolerates a reasonable level of corruption while being realizable with standard assumptions.

Applications. Being such a powerful primitive, cEUF-CMA-secure M-HS implies several extensions of M-
HS, namely, (multi-key) delegatable homomorphic signatures (M-DHS) and (multi-key) attribute-message-
homomorphic signatures (M-AMHS). As the constructions of these extensions mostly introduce more com-
plicated syntax/functionalities without too much technicality, we only briefly describe them in Section 1.3
but omit the formal details. That said, as a case study, we use similar techniques to show how to construct
distributed attribute-based signatures (D-ABS) from cEUF-CMA-secure M-HS (see Appendix A).

1.3 Extensions

We introduce two extensions which are immediate applications of cEUF-CMA-secure M-HS, but seem not
to be realizable from non-corruption-resistant M-HS. Here we consider M-HS schemes which support homo-
morphic evaluation of labeled-data [29] (to be explained in Section 4.1). In a nutshell, such schemes ensure
that data with “incompatible” labels cannot be used for computation.

Delegation. The first extension is (multi-key) delegatable homomorphic signatures (M-DHS), which may also
be viewed as an extension to append-only signatures [8,33], M-DHS is motivated by the following application
scenario. Suppose that multiple data producers engage in a verifiable multi-party computation. Instead of
contributing the data individually, these data producers are organized to form groups called delegation
chains. Similar to append-only signatures, in each of these chains, the first data producer contributes a
template which is passed to each of the data producers along the chain, who fills out some of the entries
in the template. The last data producer in each chain then passes the completed template to a third party
evaluator, who performs expensive computation over the collection of completed templates.

M-DHS is easily realizable using cEUF-CMA-secure M-HS. To delegate, the delegator simply signs the
(partially-filled) template labeled by the public key of the delegatee. By the corruption resistance of the
M-HS, a delegatee cannot overwrite the template entries filled out by the delegators up the delegation chain.

Attribute-Homomorphism. Our next extension allows “attribute-homomorphism” on top of the message-
homomorphism of (M-)HS. We call it (multi-key) attribute-message-homomorphic signatures (M-AMHS).
Consider our running example of verifiable multi-party computation again. M-AMHS is useful when the
computation not only depends on the data contributed by the data producers, but also their attributes
such as trustworthiness, accuracy, and ranks. To support such a functionality, it is natural to have the
authorities issue certificates to the data producers. A certificate is simply a signature of the attribute of
the data producer labeled by its public key. The data producer signs its data as in M-HS, except that the
evaluator now evaluates functions over both signatures produced by the data producers and the certificates
issued by the authorities. By the corruption resistance of the M-HS, it is infeasible for a data producer to
fake its attributes.

2 Related Work

2.1 Existing Homomorphic Signatures

Homomorphic signatures (HS) has undergone great development, notably from supporting either only addi-
tion or multiplication [9,11,18,27,28,37], to bounded-degree polynomials [10,19], and even to (leveled) fully
homomorphic operations which allow evaluation of general circuits of apriori bounded depth [15,51]. Beyond
unforgeability, some works also consider privacy notions such as context-hiding [1, 3, 4].

3

2.2 Existing Multi-Key Homomorphic Signatures
The study of HS was restricted to the single-key setting until the recent works of Fiore et al. [49] and Derler
and Slamanig [47], who define multi-key homomorphic signatures with varying level of security. Independent
of their work, we initiate the study of multi-key HS in the insider corruption model.

Fiore et al. [49] propose the notion of multi-key homomorphic authenticators, which is a generalization
of M-HS and multi-key homomorphic MAC. They extend the HS by Gorbunov et al. [51] to an M-HS
based on standard lattice assumptions, and introduce multi-key-homomorphic MAC based on pseudorandom
functions.

While the model of Fiore et al. allows the adversary to corrupt signers, a forgery is valid only if it passes
verification under non-corrupted keys. In practice, it means that if any signer involved in the computation is
corrupted, the authenticity of the derived result is no longer guaranteed. Indeed, as acknowledged [49], their
construction is vulnerable to insider attacks. They claimed that preventing insider attacks is impossible, by
arguing that, for general functions, controlling a few inputs implies controlling the function output. We find
the claim inaccurate as there is a large class of functions which may not exhibit this property, e.g., functions
with AND gates, majority gates, and threshold gates. Our work, in contrast, constructs M-HS which prevent
insider attacks, at the cost of stronger assumptions, i.e., the existence of SNARKs.

Another independent work by Derler and Slamanig [47] also defines M-HS, with a stronger security model
than that of Fiore et al. [49] but weaker than ours. Specifically, it allows corruption of all but one signer, and
the forgery must pass verification under a set of public keys including the non-corrupted one. In contrast,
our model allows corruption of all signers, whose public keys are involved in the verification of the forgery.

Derler et al. [22] introduced homomorphic proxy re-authenticators (HPRA), in which data producers
authenticate data under their own keys, and a proxy can evaluate functions over these data and derive a
message authentication code (MAC) under a key of the receiver. On the other hand, in M-HS, homomorphic
evaluation and verification of signatures can be performed publicly without any secret (e.g., re-authentication
and MAC keys).

2.3 Key-Homomorphism
Key-homomorphism has been studied in some earlier work in the context of threshold fully homomorphic en-
cryption [2] and pseudorandom functions [13]. The main inspiration of considering attribute-homomorphism
in our work comes from the study of Boneh et al. [12] in the context of key-homomorphic encryption (KHE),
who formulated KHE and constructed it based on lattice assumptions. Furthermore, they used KHE to
construct attribute-based encryption for general circuits with short secret keys.

Whether the name “key-homomorphic” is appropriate for their primitive is debatable, as the “public keys”
in KHE are actually attributes possibly with semantic meaning. Unlike homomorphic encryption (HE) which
allows homomorphic operations on the ciphertexts with respect to the plaintexts, KHE allows homomorphic
operations on the ciphertexts with respect to the attributes. As the plaintexts are private while the attributes
are public, KHE and HE are inherently different. For our M-AMHS, however, both messages and attributes
are public. It is natural to treat attributes as messages and have the authorities sign them using M-HS.

Derler and Slamanig [47] investigate key-homomorphic signatures in the more literal setting, i.e., the
homomorphism is over the key space but not the attribute spaces. Their main goal is to generalize more
basic primitives such as ring signatures.

Key-homomorphism in signatures is also considered in different extents in delegatable functional signa-
tures (DFS) [6] and operational signature scheme (OSS) [5]. In the former, the evaluator must use its secret
key to derive signatures. The verification algorithm then takes as input both the public key of the original sig-
nature as well as the public key of the evaluator. In the latter, the evaluation algorithm takes as input tuples
consisting of an identity, a message, and a signature. It outputs another tuple to a targeted identity. DFS is
constructed generically from trapdoor permutations, while OSS is constructed from indistinguishability ob-
fuscation and one-way functions. They thus serve as proof-of-concept without giving much intuition of how to
achieve key-homomorphism in signatures. Other related notions include policy-based signatures [7], in which
a policy-dependent signing key can only sign messages satisfying the policy, and functional signatures [16],
in which a functional signing key can only sign messages in the range of the specified function.

4

3 Preliminaries

Let λ be the security parameter. and let negl(λ) denote functions which are negligible in λ. For an algorithm
A, x ← A(·) denotes assigning the output from the execution of A to the variable x. For a set S, x ← S
denotes the sampling of a uniformly random x ∈ S. The empty string and set are denoted by ε and φ
respectively.

3.1 Succinct Non-Interactive Argument

Definition 1 (SNARG). A tuple of PPT algorithms Π = (Gen,Prove,Vf) is a succinct non-interactive
argument (SNARG) for a language L ∈ NP with the witness relation R if it satisfies the following:

– Completeness: For all x,w such that R(x,w) = 1, and for all common reference strings crs ∈ Gen(1λ),
we have Vf(crs, x,Prove(crs, x, w)) = 1.

– Soundness: For all PPT adversaries A,

Pr[Vf(crs, x, π) = 1 ∧ x /∈ L : crs← Gen(1λ); (x, π)← A(crs)] ≤ negl(λ) .

– Succinctness: For all x,w such that R(x,w) = 1, crs ∈ Gen(1λ) and π ∈ Prove(crs, x, w), there exists
a universal polynomial p(·) that does not depend on the relation R, such that |π| ≤ p(λ+ log t), where t
denotes the runtime of evaluating the relation R.

Definition 2 (ZK-SNARG). A SNARG Π = (Gen,Prove,Vf) is zero-knowledge (ZK) if there exists a
PPT algorithm S = (Scrs,SProve) such that, for all PPT adversaries A,

|Pr[AProve(crs,·,·)(crs) = 1 : crs← Gen(1λ)]−

Pr[AS
′(crs,td,·,·)(crs) = 1 : (crs, td)← Scrs(1λ)]| ≤ negl(λ)

where S ′(crs, td, x, w) = SProve(crs, td, x).

Definition 3 ((Strong) SNARK [16, 25]). A SNARG Π = (Gen,Prove,Vf) is a (strong) succinct non-
interactive argument of knowledge (SNARK) if there exists a PPT algorithm E = (E1,E2) such that for all
PPT provers A, and for every distinguisher D,

|Pr[D(crs) = 1 : crs← Gen(1λ)]−
Pr[D(crs) = 1 : (crs, td)← E1(1λ)]| ≤ negl(λ) .

Furthermore,

|Pr[Vf(crs, x, π) = 1 ∧ (x,w∗) /∈ R : (crs, td)← E1(1λ),
(x, π)← A(crs), w∗ ← E2(crs, td, x, π)]| ≤ negl(λ)

where the probabilities are taken over the random coins of E. Note that the extractor is not required to take
the random tape of the adversary as part of its input.

Definition 4 (O-SNARK [25]). A SNARG Π = (Gen,Prove,Vf) is a succinct non-interactive arguments
of knowledge in the presence of oracles for O (O-SNARK) for the oracle family O if for all PPT provers A,
there exists a PPT algorithm EA such that

|Pr[Vf(crs, x, π) = 1 ∧ (x,w∗) /∈ R : crs← Gen(1λ),
O ← O; (x, π)← AO(crs), w∗ ← EA(crs, qt)]| ≤ negl(λ)

where qt = {qi,O(qi)} is the transcript of all oracle queries and answers made and received by A during its
execution.

5

3.2 Signatures

Definition 5 (Digital Signatures). A signature scheme is a tuple of PPT algorithms DS.(KGen,Sig,Vf)
defined as follows:

– (pk, sk)← KGen(1λ): The key generation algorithm takes as input the security parameter λ and generates
a key pair (pk, sk).

– σ ← Sig(sk,m): The signing algorithm takes as input a secret key sk and a message m ∈ {0, 1}∗. It
outputs a signature σ.

– b ← Vf(pk,m, σ): The verification algorithm takes as input a public key pk, a message m, and a signa-
ture σ. It outputs a bit b.

Correctness. The scheme is correct if, for all λ ∈ N, all key pairs (pk, sk) ∈ KGen(1λ), all messages m ∈
{0, 1}∗, and all signatures σ ∈ Sig(sk,m), it holds that Vf(pk,m, σ) = 1.

Definition 6 (Existential Unforgeability). A signature scheme DS is existentially unforgeable under
chosen message attacks (EUF-CMA-secure) if, for all PPT adversaries A,

Pr[EUF-CMADS,A(1λ) = 1] ≤ negl(λ)

where EUF-CMADS,A is an experiment defined as follows:

– The challenger C generates (pk, sk)← KGen(1λ) and gives pk to A.
– The adversary A is given access to a signing oracle OSig(sk, ·).
– Eventually, A outputs a forgery (m∗, σ∗).
– If m∗ is not queried to the signing oracle, outputs Vf(pk,m∗, σ∗).
– Otherwise, the experiment outputs 0.

3.3 Functional Signatures

Definition 7 (Functional Signatures [16]). A functional signature (FS) scheme for a message spaceM,
and a function family F = {f : Df →M} consists of algorithms FS.(Setup,KGen,Sig,Vf).

– (mpk,msk)← FS.Setup(1λ): inputs the security parameter λ; and outputs the master secret key msk and
master public key mpk.

– skf ← FS.KGen(msk, f): inputs the master secret key msk and a function f ∈ F ; and outputs a secret
key skf for f .

– (f(m), σ) ← FS.Sig(f, skf ,m): inputs a function f ∈ F , the secret key skf for the function f , and a
message m ∈ Df ; and outputs f(m) and a signature of f(m).

– b← FS.Vf(mpk,m, σ): inputs the master public key mpk, a message m, and a signature σ; and outputs
1 if the signature is valid.

Correctness. We require that a signature signed under an honestly generated secret key to be valid. Formally,
for any λ ∈ N, any (mpk,msk) ∈ FS.Setup(1λ), any f ∈ F , any skf ∈ FS.KGen(msk, f), any m ∈ Df , if
(m∗, σ)← FS.Sig(f, skf ,m), we require that FS.Vf(mpk,m∗, σ) = 1.

With a secret key of a function, one can only produce new signatures on the range of that function.

Definition 8 (Unforgeability). An FS scheme FS is unforgeable if the advantage of any PPT adversary
A in the following game is negligible:

– The challenger generates (mpk,msk)← FS.Setup(1λ), and gives mpk to A.
– A is allowed to query a key generation oracle Okey and a signing oracle Osign defined as follows. These

oracles share a dictionary indexed by tuples (f, i) ∈ F × N, whose entries are signing keys: skf ←
FS.KGen(msk, f). This dictionary keeps track of the keys that have been previously generated.

6

• Okey(f, i)
∗ If there exists an entry for the key (f, i) in the dictionary, output the corresponding value, skif .
∗ Otherwise, sample a fresh key skif ← FS.KGen(msk, f), then add an entry (f, i) → skif to the

dictionary and output skif .
• Osign(f, i,m)
∗ If there exists an entry for the key (f, i) in the dictionary, output σ ← FS.Sig(f, skif ,m).
∗ Otherwise, sample a fresh key skif ← FS.KGen(msk, f), then add it to the entry (f, i) of the

dictionary, and output σ ← FS.Sig(f, skif ,m).
– A wins if it can produce (m∗, σ) such that:
• FS.Vf(mpk,m∗, σ) = 1;
• There does not exist m such that m∗ = f(m) for any f which was sent as a query to the Okey oracle;
• There does not exist a query (f,m) to Osign where m∗ = f(m).

We require the signatures on a message generated by different secret key to be indistinguishable even if
master signing key and the secret keys are given.

Definition 9 (Function-Privacy). An FS scheme FS is function-private if the advantage of any PPT ad-
versary A in the following game is negligible:

– The challenger honestly generates (mpk,msk) ← FS.Setup(1λ), and gives mpk and msk (w.l.o.g. this
includes the randomness used in Setup) to A.

– A chooses a function f0 and receives an honestly generated secret key skf0 ← FS.KGen(msk, f0).
– A chooses a second function f1 for which |f0| = |f1| (where padding can be useful if there is a known

upper bound) and receives an honestly generated secret key skf1 ← FS.KGen(msk, f1).
– A chooses a pair of value m0, m1 s.t. |m0| = |m1| and f0(m0) = f1(m1).
– The challenger selects a random bit b ← {0, 1} and generates a signature on the image message m′ =
f0(m0) = f1(m1) using secret key skfb

, and gives the resulting signature σ ← FS.Sig(f, skfb
,mb) to A.

– A outputs a bit b′, and wins the game if b′ = b.

We require the signature size to be independent of the size |m| of the input to the function, and the size
|f | of the description of f .

Definition 10 (Succinctness). An FS scheme FS is succinct, if there exists a polynomial s(·) such
that for every λ ∈ N, f ∈ F , m ∈ Df , it holds with probability 1 over (mpk,msk) ← FS.Setup(1λ);
skf ← FS.KGen(msk, f); (f(m), σ) ← FS.Sig(f, skf ,m) that the resulting signature on f(m) has size
|σ| ≤ s(λ, |f(m)|).

4 Multi-key Homomorphic Signatures under Corruption

Our aim is to define and construct multi-key homomorphic signatures (M-HS) which is unforgeable under
insider corruption, and study its relation to existing notions. M-HS allows an arbitrary number of signers
to generate keys and sign messages independently. In a simplified setting where messages are not labeled,
suppose that each signer k signs a message mk using its secret key skk, resulting in a set of signatures {σk}.
An evaluator can then publicly evaluate a function g over the message-signature pairs (mk, σk) to derive
a signature of (m, g) where m = g(m1, . . . ,mK). Syntactically, M-HS generalizes the normal homomorphic
signatures (HS) since it reduces to HS when a single party owns all K secret keys.

In the multi-signer setting, we must carefully analyze unforgeability when the adversary can corrupt some
signers or even maliciously generate some key pairs. Such an insider attack is unnatural in HS since there is
only one signer and hence one signing key involved with a signature. We formulate the unforgeability against
insider corruption, which requires that such group of corrupt signers cannot produce signatures of (m, g),
where the message m is outside the range of the function g restricted by the inputs of the uncorrupted
signers. Security against insider attack is especially useful when the output of the function cannot be fully

7

controlled by a few inputs, e.g., functions with AND, majority, and threshold gates. To illustrate the meaning
of a forgery, consider the following configuration: Let g(m1, . . . ,mK) =

∏K
k=1 mk be the product function

and mk ∈ F for some field F. As long as mk = 0 for some uncorrupted signer k, the adversary is unable to
produce a signature of (m, g) where m 6= 0.

More interestingly, this requirement actually still makes sense even when there is only one signer who is
also the adversary. In this case, unforgeability against insider corruption implies that even the only signer
cannot produce a signature of (m, g) if there does not exist m′ such that m = g(m′). Furthermore, if the
signature scheme is context-hiding, the signature of (m, g) can be regarded as an adaptive zero-knowledge
succinct non-interactive argument (ZK-SNARG) of the NP language {(m, g) : ∃m′ s.t. m = g(m′)} as long
as g is efficiently computable.

4.1 Notation

Labeled Programs. Labeled programs are (implicitly) used in various homomorphic signature schemes.
Formally, a labeled program P = (f, `1, . . . , `n) consists of a function f : Mn → M and a set of input
labels `1, . . . , `n, where `i is a label for the i-th input of f . A composed program P∗ = g(P1, . . . ,Pt) can
be constructed by evaluating a function g :Mt →M on the outputs of some labeled programs P1, . . . ,Pt.
Inputs with the same label are grouped together and converted to a single input and the input labels of
P∗ are defined as all distinct labels of P1, . . . ,Pt. An identity program I` = (fid, `) is defined as a labeled
program with an identity function fid :M→M and a input label `. A labeled program P = (f, `1, . . . , `n)
can be expressed as the composition of n identity programs P = f(I`1 , . . . , I`n

).
Following previous work [49], we assume every user has an identity id, and their keys are associated

to id. To identify users in the multi-key setting using labeled programs, we associate a message to a label
` = (id, τ), where id is a user identity, and τ is a tag.

4.2 Definitions

Syntax. A multi-key homomorphic signature scheme (M-HS) with N -hop evaluation consists of the PPT al-
gorithms (Setup,KGen,Sig,Vf,Eval) defined as follows:

– pp← Setup(1λ) inputs the security parameter λ. It outputs a public parameter pp which is an input to
all algorithms implicitly. The public parameter defines the maximum hop of evaluation N , meaning it is
not possible to apply Eval on signatures that have been evaluated for N times. The public parameter also
defines the identity space ID, the tag space T , the message spaceM, the class G of admissible functions.
The label space L := ID × T is defined as the cartesian product of ID and T . For a labeled program
P = (f, `1, . . . , `n) with labels `i = (idi, τi), we use id ∈ P as compact notation for id ∈ {id1, . . . , idn}.

– (pk, sk)← KGen(pp) inputs the public parameter. It outputs the public key pk and secret key sk. When
an algorithm takes sk as input, we assume its corresponding pk is also taken as input implicitly.

– σ ← Sig(sk, `,m) inputs the secret key sk, a label ` = (id, τ) ∈ L, and a message m ∈ M. It outputs
a signature σ. Without loss of generality, we assume the signature is of the form σ = (0, σ′), where 0
indicates it is a fresh signature.

– σ ← Eval(g, (Pk, {pkid}id∈P ,mk, σk)k∈[K]) inputs a function g ∈ G and, from each contributor, a labeled
program Pk, the corresponding public keys {pkid}id∈Pk

, a message mk, and a signature σk, where k ∈ [K].
It outputs a signature σ, certifying that message m is the output of P = g(P1, . . . ,Pk) over some signed
labeled messages. Without loss of generality, we assume the signature takes the form σ = (n, σ′), where
n indicates that the signature has undergone n hops of evaluation.

– b ← Vf(P, {pkid}id∈P ,m, σ) inputs a labeled program P, the corresponding public keys {pkid}id∈P , a
message m ∈M, and a signature σ. It outputs a bit b ∈ {0, 1}, indicating if message m is the output of
evaluating P over some signed labeled messages.

8

Correctness. Roughly, we require a honestly generated signature σ ← Sig(sk, `,m) verifies for m as the
output of the identity program I`. In addition, we require that if for all i ∈ [K], σi verifies for mi as the
output of a labeled program Pi, then the signature σ ← Eval(g, (Pk, {pkid}id∈P ,mk, σk)k∈[K]) verifies for
g(m1, . . . ,mk) as the output of the composed program g(P1, ...,Pk). Formally, the correctness of an M-HS
scheme is defined as follows:

– Signing Correctness: For any pp ∈ Setup(1λ), (pk, sk) ∈ KGen(pp), ` = (id, τ) ∈ L, m ∈ M, and
σ ∈ Sig(sk, `,m), it holds that Vf(I`, pkid,m, σ) = 1.

– Evaluation Correctness: Furthermore, for any K ∈ poly (λ), any Pk, {pkid}id∈Pk
, mk, and

σk = (nk, σ′k) such that Vf(Pk, {pkid}id∈Pk
,mk, σk) = 1 where k ∈ [K], nk ≤ N − 1, g ∈ G,

and σ ∈ Eval(g, (Pk, {pkid}id∈P ,mk, σk)k∈[K]), it holds that Vf(P, {pkid}id∈P ,m, σ) = 1, where
P = g(P1, . . . ,Pk).

Unforgeability. For unforgeability against insider corruption, we require that if some signers are corrupted,
they cannot produce a signature (Type-I forgery) disrespecting the inputs of honest signers. For example,
for a product function g(m1, . . . ,mK) =

∏K
k=1 mk and mk ∈ Z, as long as mk = 0 for some honest signer

k, no adversary can forge a signature of (1, g)3. Even if all signers are corrupted, they cannot produce a
signature (Type-II forgery) on (m, g) such that m is outside the output range of the function g. For instance,
if g(m) = 0 for all message m, then no adversary can produce a signature of (1, g).

Formally, we consider the following security game cEUF-CMA (existential unforgeability under corruption
and chosen message attack) between an adversary A and a challenger C.

– The challenger C runs pp ∈ Setup(1λ) and gives pp to A. C initialize empty signing dictionary DSig = ∅
and empty corruption dictionary DCorr = ∅.

– The adversary A is given access to the following oracles, which can be queried adaptively:
• Signing oracle: A queries (`,m) where ` = (id, τ) ∈ L is a label and m ∈ M is a message. If (`,m)

is the first query with identity id, C generates keys (pkid, skid) ← KGen(pp) and gives pkid to A. If
(`,m) /∈ DSig, C computes σ` ← Sig(skid, `,m), returns σ` to A and updates DSig ← DSig ∪ (`,m),
else C just ignores the query.
• Corruption oracle: A queries id ∈ ID. If id is not queried to signing oracle and corruption oracle

before, C generates keys (pkid, skid)← KGen(pp), gives (pkid, skid) to A and updates DCorr ← DCorr∪id.
Else If id /∈ DCorr, C returns the secret key skid and updates DCorr ← DCorr ∪ id. If id ∈ DCorr, C just
ignores the query.

– The adversary A outputs a labeled program P∗ = (g∗, `∗1, . . . , `∗K), a message m∗, and a signature σ∗.
The experiment outputs 1 if and only if Vf(P∗, {pk∗id}id∈P∗ ,m

∗, σ∗) = 1,
and (P∗,m∗, σ∗) is a forgery of either of the following types:
• Type-I :
∗ Denote T = {(id∗i , i)}id∗

i
∈P∗\DCorr as the set of honest signers involved in P∗ and the index of

corresponding input. Note that (id∗i , i) ∈ T means that the i-th input of P ∗ is contributed by the
honest signer id∗i . We require T 6= ∅. Meaning at least one of the singer involved in P∗ is honest.

∗ Type-I-I :
· Denote S = {i}(id∗

i
,i)∈T as a set collecting the index of inputs contributed from honest signers.

Let Mi = {m}(`∗
i
,m)∈DSig , denote g∗({Mi}i∈S) as a set of possible outputs of g∗ when all the

inputs of g∗ with index i ∈ S are restricted to the set Mi. We require ∀ i ∈ S, Mi 6= ∅, but
m∗ /∈ g∗({Mi}i∈S). Meaning m∗ is not the correct output of P ∗ when executed over messages
previously authenticated by the honest signers.

∗ Type-I-II :
· There exists a label `′ = (id′, τ ′) ∈ P∗ such that (id′, ·) ∈ T and (`′, ·) /∈ DSig. Meaning A

never made a query with label `′.
• Type-II : m∗ /∈ g∗(·). Meaning that it is impossible to obtain m∗ from P∗.

3 Formally, a forgery would be certifying a tuple (P, 1), where P = (g, τ1, . . . , τK), instead of (1, g).

9

We say that a M-HS scheme is unforgeable under corruption (cEUF-CMA-secure) if, for all PPT adver-
saries A, we have Pr{cEUF-CMAHS,A = 1} ≤ negl(λ).

We say that the scheme is unforgeable (EUF-CMA-secure) if A is not allowed to issue any corruption
query.

Note that by not allowing the adversary to query two messages with same label to the signing oracle and
requiring ∀id ∈ P∗, id /∈ DCorr, meaning all signer involved in P∗ are honest, we can get back the definition
of previous work [49] in the single database setting 4.

Context Hiding. We require an M-HS scheme to be weakly context hiding, such that the signature on an
evaluated message does not reveal information about the function inputs. The property is “weak” since the
functionality is not hidden. This is inherent to our notion as the symbolic labeled program is required for
verification, as well as to existing homomorphic signatures supporting functionalities beyond linear functions.
In the context of verifiable multi-party computation, function inputs should be hidden while the function
itself should remain public. Therefore, in this context, weak context-hiding is a more suitable property when
compared to a variant which requires the fresh signature to be indistinguishable from the evaluated one,
although the latter provides stronger privacy.

Formally, an M-HS scheme HS is said to be weakly context hiding, if there exists a simulator S =
(SSetup,SSig) such that for any PPT adversaries A, we have∣∣Pr[ContextHiding0

HS,S,A(1λ) = 1]− Pr[ContextHiding1
HS,S,A(1λ) = 1]

∣∣ ≤ negl(λ)

where for b ∈ {0, 1} ContextHidingbHS,S,A are experiments defined in Figure 1.

ContextHiding0
HS,S,A(1λ)

pp← Setup(1λ)

(g, (Pk,mk, σk)Kk=1, st)← A(pp)
bk ← Vf(Pk, {pkid}id∈Pk ,mk, σk) ∀k ∈ [K]

σ ← Eval(g, (Pk, {pkid}id∈P ,mk, σk)Kk=1)
b′ ← A(st, σ)
return ∧k bk ∧ b′

ContextHiding1
HS,S,A(1λ)

(pp, td)← SSetup(1λ)

(g, (Pk,mk, σk)Kk=1, st)← A(pp)
bk ← Vf(Pk, {pkid}id∈Pk ,mk, σk) ∀k ∈ [K]
P ← g(P1, . . . ,PK), m← g(m1, . . . ,mK)

σ ← SSig(td,P, {pkid}id∈P ,m)
b′ ← A(st, σ)
return ∧k bk ∧ b′

Fig. 1. Context hiding experiments of M-HS

Succinctness. We require the signature size to be independent of the sizes of the inputs to, the descriptions
of, and the output of the labeled program.

Formally, an M-HS scheme is succinct if there exists a polynomial s(·), s.t. for any K ∈ N, {Pk,
mk, σk}k∈[K], g ∈ G, and σ ∈ Eval(g, (Pk, {pkid}id∈P ,mk, σk)Kk=1), |σ| ≤ s(λ) where λ is the security pa-
rameter.

5 Construction

We construct M-HS with unforgeability under corruption generically from ordinary signatures and ZK-
SNARKs, which can be seen as a multi-key generalization of the folklore construction of HS. We formalize
4 To recover their definition in multiple datasets setting, we need to add dataset identifier in our definition. Since

one can always include the dataset identifier in the label, and restrict a labeled program to be computed on inputs
with the same dataset identifier, we just omit the dataset identifier in this paper.

10

the following idea. Signatures are produced freshly using an ordinary signature scheme. To perform a homo-
morphic evaluation, the evaluator proves that it possesses a set of signatures on messages, and the evaluation
of a function on these messages produces the resulting message.

We use a family of proof systems recursively by using the proofs (the evaluated signatures) as witnesses
to compute other proofs for further homomorphic evaluation.5 The family of proof systems corresponds to a
family of languages, which in turn is parameterized by the number of hops n the signature has been evaluated.
A statement (P, {pkid}id∈P ,m) is contained in the n-th language denoted by Ln, if P is of hop n, and for some
K and for each k ∈ [K]: 1) there exists a valid signature (a proof) σk on some tuple (Pk, {pkid}id∈Pk

,mk)
(which is a statement in the language Ln−1, 2) P = g(P1, . . . ,PK) for some function g, 3) m is the output
of g with inputs m1, . . . ,mK . Despite recursion, if each proof is succinct, the recursively generated proofs,
and hence signatures, are also succinct.

Concretely, we define the family of proof systems and languages as follows. For each n ∈ [N], let Πn be
a proof system for the following NP language Ln:

L1 =

(φ,P, {pkid}id∈P ,m) :
∃ (g, (I`k

,mk, σk)k∈[K]) s.t.
P = g(I`1 , . . . , I`K

) ∧ m = g(m1, . . . ,mK) ∧
∀k ∈ [K], σk = (0, σ′k) ∧ DS.Vf(pkidk

, (`k,mk), σ′k) = 1

Ln =

({crsi}n−1

i=1 ,P, {pkid}id∈P ,m) :
∃ (g, (Pk,mk, σk)k∈[K]) s.t.
P = g(P1, . . . ,PK) ∧ m = g(m1, . . . ,mK) ∧
∀k ∈ [K], σk = (nk, σ′k) ∧ Πn−1.Vf(crsnk

, ({crsi}nk−1
i=1 ,Pk, {pkid}id∈Pk

,mk), σ′k)

Figure 2 formally shows our generic construction of multi-key homomorphic signature scheme HS from

a digital signature scheme DS and a proof system Π. Its correctness follows directly from the correctness of
DS and Π.

Next, we prove that HS is unforgeable against insider corruption. If the adversary outputs a signature (a
proof) of a tuple (P∗,m∗) such that m∗ is outside the range of the evaluation of P∗ restricted by the inputs
of the honest signer, either a proof can be extracted for a statement outside Ln, for some n, which breaks
the soundness of Πn, or a forgery of DS verifiable under the public of the honest signer can be extracted,
which breaks the unforgeability of DS.

Theorem 1. If one-way function exists, and Πn is a sound strong SNARK (Definition 3) for all n ∈ [N],
HS is unforgeable under corruption.

Proof. EUF-CMA-secure digital signatures can be constructed from one-way functions [36, 40]. Thus, we
suppose that DS is EUF-CMA-secure.

Suppose there exists an adversary AHS that produces a forgery in HS with non-negligible probability.
We show how to construct an adversary A that uses AHS to break the soundness of Πn or produce a forgery
of DS.
A first guesses whether the forgery given by AHS will be of type-I (which breaks the unforgeability of

DS) forge or type-II (which breaks the soundness of Πn).
Suppose A guesses it is a type-I forgery, we write A as ADS . ADS acts as a challenger in the cEUF-CMA

game of HS. ADS obtains from its challenger the public key pkDS . It generates for each n (crsn, tdn) ←
Πn.E1(1λ), a simulated crsn for Πn, together with a trapdoor tdn, and forwards the public parameters
pp = (1λ, crs0, . . . , crsN) to AHS , where crs0 := φ. Then ADS initialize empty signing dictionary DSig = ∅
and empty corruption dictionary DCorr = ∅.
AHS makes two types of queries:

5 Homomorphic encryption with targeted malleability [14] also used similar techniques.

11

pp← Setup(1λ)

crs0 := φ

crsn ← Πn.Gen(1λ) ∀n ∈ [N]

return pp = (1λ, {crsn}Nn=0)

(pk, sk)← KGen(pp)

(pkDS , skDS)← DS.KGen(1λ)
return (pk, sk) := (pkDS , skDS)

b← Vf(P, {pkid}id∈P ,m, σ)

parse σ = (n, σ′)
b← 0
if n = 0 ∧ P = I` then

parse ` = (id, τ)
b← DS.Vf(pkid, (`,m), σ′)

elseif n ∈ [N] then

x := ({crsi}n−1
i=1 ,P, {pkid}id∈P ,m)

b← Πn.Vf(crsn, x, σ′)
endif
return b

σ ← Sig(sk, `,m)

σ′ ← DS.Sig(skDS , (`,m))
return σ := (0, σ′)

σ ← Eval(g, (Pk, {pkid}id∈Pk ,mk, σk)k∈[K])

foreach k ∈ [K] do
parse σk = (nk, σ′k)

endfor
n := max

k
(nk)

P ← g(P1, . . . ,PK)
m = g(m1, . . . ,mK)
x := ({crsi}ni=1,P, {pkid}id∈P ,m)
w := (g, (Pk,mk, σk)k∈[K])
σ′ ← Πn+1.Prove(crsn+1, x, w)
return σ := (n+ 1, σ′)

Fig. 2. Construction of M-HS from ZK-SNARK

– Signing query: AHS queries (`,m) where ` = (id, τ) ∈ L and m ∈ M. ADS first randomly picks a value
q ∈ [Q] where Q is the maximum number of distinct identities AHS is allowed to query (to either oracle).
If (` = (id, τ),m) is the first query with identity id, and AHS has queried q − 1 distinct identities (to
either oracle) before, then ADS sets îd = id, pkîd = pkDS and gives it to AHS . Else if (` = (id, τ),m)
is the first query with identity id, ADS generates keys (pkid, skid) ← KGen(pp) and gives pkid to A. If
(`,m) /∈ DSig, and if ` = (îd, ·), ADS forwards (`,m) to its signing oracle to get σ′`, else ADS computes
σ′` ← Sig(skid, `,m). In either case, ADS returns σ` = (0, σ′`) to AHS and updates DSig ← DSig ∪ (`,m).
If (`,m) ∈ DSig, ADS just ignores the query.

– Corruption query: AHS queries id ∈ ID. If id is not queried to signing oracle and corruption oracle before,
ADS generates keys (pkid, skid) ← KGen(pp), gives (pkid, skid) to A and updates DCorr ← DCorr ∪ id. If
id = îd, ADS just aborts. Else if id /∈ DCorr, ADS returns the secret key skid and updates DCorr ← DCorr∪id.
If id ∈ DCorr, ADS just ignores the query.

Suppose A guesses correctly, AHS will output, as an alleged forgery of HS, a labeled program P∗ =
(g∗, `∗1, . . . , `∗K), a message m∗, and a signature σ∗ = (n∗, σ′) such that Vf(P∗, {pk∗id}id∈P∗ ,m

∗, σ∗) = 1,
and T = {id∗i , i}id∗

i
∈P∗\DCorr is not empty. For type-I forgery, AHS must query the identity of honest signers

to the signing oracle, therefore with non-negligible probability, (îd, ·) ∈ T . If for all i ∈ S, Mi 6= ∅, but
m∗ /∈ g∗({{m}m∈Mi

}i∈S) where S = {i}(id∗
i
,i)∈T and Mi = {m}(`∗

i
,m)∈DSig , meaning m∗ is not the correct

output of P ∗ when executed over messages previously authenticated by the honest signers, then it is a type-
I-I forgery. Else if there exists a label `′ = (id′, τ ′) ∈ P∗ such that (id′, ·) ∈ T and (`′, ·) /∈ DSig, meaning A
never made a query with label `′, then it is a type-I-II forgery. In either case, ADS runs Πn.E2, the extractor
of ZK-SNARK for Ln, recursively from n = n∗ to n = 1, so that it recovers a set of label-message-signature
tuples {((`∗k,m∗k), σ∗k)}, all pass the verification of DS. With non-negligible probability, there exists a tuple

12

((`′ = (îd, τ ′),m′), σ′) ∈ {((`∗k,m∗k), σ∗k)} such that (`′,m′) /∈ DSig. Suppose that is the case, ((`′,m′), σ′) is a
valid forgery to DS.

Note that by Definition 3 each extractor Πn.E2 works for all provers and does not take as input the
random tape of the prover, which is Πn+1.E2 in our case. Therefore the extraction of each layer contributes
an additive, instead of multiplicative, overhead to the runtime of the overall extraction. We can therefore
afford a polynomially large number of hops N .

We remark that each extraction succeeds with overwhelming probability 1−u, where u ∈ negl(λ). When
we have p ∈ poly(λ) number of recursive extractions, the success probability of the final extraction is:

(1− u)p ≥ 1−
p∑

i=2k+1

(
p

i

)
ui ≥ 1−

p∑
i=2k+1

(e
i
pu)i ∈ 1− negl(λ)

Note that we have used the inequality
(
p
i

)
≤ (epi)i where e is the base of natural logarithm.

Suppose A guesses type-II. A further guesses i ∈ [N] such that the given forgery can be used to break
the soundness of Πi. We write A as AΠi

, who acts as a challenger in the cEUF-CMA game of HS.
AΠi obtains from its challenger the common reference strings crs. It sets crsi = crs. It generates for each

n ∈ {[N]\i}, (crsn, tdn)← Πn.E1(1λ), a simulated crsn for Πn, together with a trapdoor tdn. It forwards the
public parameters pp = (1λ, crs0, . . . , crsN) to AHS , where crs0 := φ.
AHS makes two types of queries:

– Signing query: AHS queries (`,m) where ` = (id, τ) ∈ L and m ∈ M. If (`,m) is the first query with
identity id, AΠi

generates keys (pkid, skid) ← KGen(pp) and gives pkid to AHS . If (`,m) /∈ DSig, AΠi

computes σ` ← Sig(skid, `,m), returns σ` to AHS and updates DSig ← DSig∪ (`,m), else AΠi
just ignores

the query.
– Corruption query: AHS queries id ∈ ID. If id is not queried to signing oracle and corruption oracle before,
AΠi

generates keys (pkid, skid) ← KGen(pp), gives (pkid, skid) to AHS and updates DCorr ← DCorr ∪ id.
Else If id /∈ DCorr, AΠi

returns the secret key skid and updates DCorr ← DCorr ∪ id. If id ∈ DCorr, AΠi
just

ignores the query.

If A guesses correctly, AHS will output, as an alleged forgery of HS, a labeled program P∗ = (g∗, `∗1, . . . , `∗K),
a message m∗, and a signature σ∗ = (n∗, σ′) such that Vf(P∗, {pk∗id}id∈P∗ ,m

∗, σ∗) = 1, but m∗ /∈ g∗(·). AΠi

runs Πn.E2, the extractor of ZK-SNARK for Ln, recursively from n = n∗ to n = i + 1, so that it recovers
a set of a set of labeled program-message-signature tuples {(P∗k ,m∗k, σ∗k)}, all of which pass the verification
of Πi. With non-negligible probability, there exists a tuple (P ′ = (g′, `1, . . . , `t),m′, σ′) ∈ {(P∗k ,m∗k, σ∗k)}
such that m′ /∈ g′(·). Suppose that is the case, (P ′, {pkid}id∈P′ ,m

′, σ′) breaks the soundness of Πi. Note that
n ∈ [N] where N ∈ poly(λ), A has non-negligible probability of guessing it correctly.

Theorem 2. Assume one-way function exists. If Πn is a sound O-SNARK with respect to the signing oracle
of DS (Definition 4) for all n ∈ [N] where N is a constant, then HS is unforgeable under corruption. Note
that in this case HS only supports constant-hop (N) evaluation.

Proof. The proof of this theorem is exactly the same as the proof of unforgeability from strong SNARK
(Theorem 1), except that extractors that are dependent to the provers are used. Specifically, A := An∗ acts
as the prover for the extractor Πn∗ .E2

A, and an extractor Πn.E2
An

:= An−1 in the upper layer acts as the
prover for the extractor Πn−1.E2

An−1
in the lower layer. Note that for all n ∈ [N], the same signing oracle

for DS is required. Therefore, with the transcript of signing oracle queries, the set of extractors Πn.E2
An

for
the recursive language is able to extract the witnesses. Note that the runtime of Πn.E2

An
may depend on

the runtime of An. In general, Πn.E2
An

may run An as a black-box polynomially-many times. In the worst
case, suppose n∗ = N . In this case, even if N is as small as logarithmic, the total runtime of recursively
running the set of extractors Πn.E2

An
might become exponential, as the extractors needs to take the provers

(the extractor in the layer above) as input, each of which contributes a multiplicative polynomial overhead
to the extraction time. We thus restrict N to be a constant.

13

Candidate Constructions of Strong SNARKs and O-SNARKs. As shown by Fiore et al. [25], there are a few
candidates of O-SNARK. Computationally-Sound proofs of Micali [41] can be use as O-SNARK without
putting any restrictions on the underlying signature scheme in our construction. If we require the underlying
digital signatures to be hash and sign signatures and model the hash as random oracle, than all SNARKs
can be used as O-SNARKs. In the standard model, if we require the message space of the signature scheme
to be properly bounded and require the adversary to query almost the entire message space, or we require
the adversary to issue oracle queries before seeing the common reference string, then all SNARKs can be
used as O-SNARKs.

On the other hand, as far as we know, no strong SNARK candidate is known, although the notion has
been used in the literature [16]. For example, in recent SNARK constructions [42–45] based on knowledge
of exponents or certain extractability assumptions, the extractor needs to run the prover as a black-box.
This does not affect our overall results in the sense that, constant-hop M-HS constructed from O-SNARKs
is sufficient to imply functional signatures and ZK-SNARGs.

Theorem 3. If Πn is adaptive zero knowledge for all n ∈ [N], HS is weakly context hiding.

Proof. Πn is adaptive zero-knowledge, so there exists a simulator SΠn
= (Scrs

Πn
,SProve
Πn

) which simulates a
proof πn for any instance in Ln. To construct a simulator SHS for HS, we define SSetup

HS which simulates the
common reference strings crsn using Scrs

Πn
, and SSig

HS which simulates the signatures using SProve
Πn

. The proofs
simulated from SΠn

are indistinguishable from the real proofs, so the simulated signatures from SHS are
indistinguishable from the real signatures.

Theorem 4. If Πn is succinct for all n ∈ [N], then HS is succinct.

Proof. The size of a signature produced by Eval(g, (Pk, {pkid}id∈Pk
,mk, σk)k∈[K]) is the sum of the proof

length of Πn for some n and the length of the binary representation of n, which is logarithmic in the security
parameter. The succinctness of HS follows directly from the succinctness property of Π.

More formally, denote t1 as the runtime of the relation R1 associated with language L1. t1 is bounded by
the sum of the runtime of K ∈ poly(λ) verification of DS signatures, and, computation time of g(m1, . . . ,mK)
where g is an admissible function with evaluation time bounded by poly(λ). Since they are efficiently com-
putable, there exists a polynomial q1(·) such that t1 < q1(λ). Then by the succinctness of Π1, for all (1, σ′) ∈
Eval(g, (Pk, {pkid}id∈Pk

,mk, σk)k∈[K]), there exists a polynomial p1(·) such that |(1, σ′)| < p1(λ + log(t1))
and thus exists a polynomial s1(·) such that |(1, σ′)| < s1(λ).

For signatures (n, σ′) ∈ Eval(g, (Pk, {pkid}id∈Pk
,mk, σk)k∈[K]) with n > 1, the only difference is that the

verification of DS signatures is replaced by verification of Πn−1 proofs. As long as verification of Πn−1 proofs
are efficiently computable, there exists a polynomial sn(·) such that |(n, σ′)| < sn(λ) for n ∈ {[N]\1} and
N ∈ poly(λ).

6 Relation with Existing Notions

6.1 Functional Signatures from cEUF-CMA-secure M-HS

To understand the relation of M-HS with existing notions, we begin by constructing functional signatures [16]
(FS) using a 2-key HS. FS (defined in Section 6.1) allows an authority with a master secret key to derive
function-specific signing keys for delegation of signing or computation on signed data. Given a signing key
for function f , one can only sign messages in the range of f .

We construct FS using an M-HS which supports 1-hop evaluation of signatures signed under two different
keys. The FS signing key consists of a fresh M-HS secret key sk and a signature σf of the function f signed
under the master secret key. To sign a function output f(m), the signer simply signs the input message m
using sk, and evaluates the signatures σf and σm of the function and the message respectively using the
universal circuit U , which is defined as U(f,m) = f(m) for any function f and message m. The unforgeability
under corruption of the M-HS scheme is crucial, for otherwise, the signer might be able to produce a signature
on any message (possibly outside the range of f) using sk.

14

(mpk,msk)← FS.Setup(1λ)

pp← HS.Setup(1λ)
(mpk,msk)← HS.KGen(pp)
// Fix any distinct identities id0 and id1 in ID.

return (mpk,msk)

(f(m), σ)← FS.Sig(f, skf ,m)

parse skf as (sk, σf)
// Pad f and m to length n.

τ ← {0, 1}λ, σm ← HS.Sig(sk, (id1, τ),m)
pkid0 := mpk
pkid1 := pk
ηf := (Iid0,pk, pkid0 , f, σf)
ηm := (Iid1,τ , pkid1 ,m, σm)
P = (U, (id0, pk), (id1, τ))
σ′ ← HS.Eval(P, (ηf , ηm))
// Pad U(f,m) to length n.

return (U(f,m), σ := (pk, τ, σ′))

skf ← FS.KGen(msk, f)

(pk, sk)← HS.KGen(1λ)
σf ← HS.Sig(msk, pk, f)
return skf := (sk, σf)

b← FS.Vf(mpk,m, σ)

parse σ as (pk, τ, σ′)
pkid0 := mpk
pkid1 := pk
P := (U, (id0, pk), (id1, τ))
b← HS.Vf(P, {pkid}id∈P ,m, σ

′)
return b

Fig. 3. Construction of FS from M-HS

Formally, let U be the universal circuit which takes as input a circuit f and its input m, and computes
U(f,m) = f(m). We assume that the description size of f , the length of the input m, and the length of
the output f(m) are all bounded by some integer n. Let HS.(KGen,Sig,Vf,Eval) be a 1-hop 2-HS scheme,
with label space L = {0, 1} × {0, 1}∗ and message space M = {0, 1}n, for a labeled program family G
where U ∈ G. We construct a functional signature scheme FS.(Setup,KGen,Sig,Vf) for the function family
F = {f : {0, 1}` → {0, 1}k s.t. |f |, `, k ≤ n} as shown in Figure 3. The correctness follows straightforwardly
from that of HS.

Theorem 5. If HS is cEUF-CMA-secure, FS is unforgeable.

Proof. Suppose there exists an adversary AFS that produces a forgery in FS with non-negligible probability.
We show how to construct an adversary AHS that uses AFS to produce a forgery of HS. AHS acts as a
challenger in the unforgeability game of FS.
AHS receives public key pkHS from the challenger of the EUF-CMA game of HS. It sets the master public

key mpk = pkHS and forwards mpk to AFS . AFS makes two types of queries:
– Okey(f, i)
• If there exists an entry for (f, i) in the dictionary, output the corresponding value, skif .
• Otherwise, generate a public key honestly by (pk, sk) ← HS.KGen(1λ) and query the signing oracle

of HS to get σif ← HS.Sig(msk, pk, f). Then add skif = (sk, σif) to the dictionary entry (f, i) and
output skif .

– Osign(f, i,m)
• If there exists an entry for (f, i) in the dictionary, retrieve skif = (sk, σif).
• Otherwise, generate a public key honestly by (pk, sk) ← HS.KGen(1λ) and query the signing oracle

of HS to get σif ← HS.Sig(msk, pk, f). Then add skif = (sk, σif) to the dictionary entry (f, i).
• In either case, sample τ ← {0, 1}λ, and compute σm ← HS.Sig(sk, τ,m) and σ′ ← HS.Eval(P =

(U, (id0, pk), (id1, τ)), ((Iid0,pk, f, σ
i
f), (Iid1,τ ,m, σm))), where U is the universal circuit. Set

σ = (pk, τ, σ′) and output (U(f,m), σ).

15

After querying the oracles, AFS responds with forgery (m∗, σ∗), where σ∗ = (pk∗, τ∗, σ′∗). As the answer
to the EUF-CMA game, AHS returns (P = (U, (id0, pk∗), (id1, τ

∗)), {pkid}id∈P ,m
∗, σ′∗). It is a valid forgery

since, by the definition of the unforgeability game of functional signatures, m∗ is not in the range of any f
queried to the Okey oracle, and m∗ 6= f(m) for any (f,m) queried to the Osign oracle.

Theorem 6. If HS is weakly context-hiding, FS is function-private.

Proof. Let AFS be an adversary playing the function-privacy game. Since HS is weakly context-hiding, there
exists a simulator SHS which, on input (P = (U, (id0, pk), (id1, τ)), {pkid}id∈P , f(m)), outputs a signature of
f(m) which is indistinguishable from that produced by FS.Sig(f, skf ,m). We can thus replace the challenger
with the simulator SHS , which is indistinguishable in the view of AFS except with negligible probability.
The simulated signatures contain no information about the function f and input message m except for f(m).
The probability that the adversary AFS guesses correctly in the simulated game is negligible.

Theorem 7. If HS is succinct, FS is succinct.

Proof. The size of a signature produced by FS.Sig(f, skf ,m) is the signature length of HS. The succinctness
of FS follows directly from that of HS.

Since the existence of secure functional signatures implies that of SNARGs [16], which cannot be con-
structed from a black-box reduction to falsifiable assumptions [30], we have the following corollary.

Corollary 1. If cEUF-CMA-secure and weakly context-hiding M-HS (specifically 1-hop 2-HS) exists, then
SNARG for NP exists. Moreover, the succinctness of M-HS must rely on either non-falsifiable assumptions
or non-black-box techniques.

6.2 ZK-SNARG from cEUF-CMA-secure M-HS

We have shown that the existence of 2-HS implies that of FS, which in turn implies the existence of SNARGs.
This implication is somewhat unsatisfactory since we start from ZK-SNARKs but only end up with non-zero-
knowledge SNARGs, with M-HS sitting in between. Moreover, it uses an unnecessarily strong assumption
(as will be shown below) of the existence of 2-HS, which might be more difficult to construct that (1-)HS
(with unforgeability under corruption). Thus, in this section, we construct ZK-SNARGs directly from HS,
making M-HS a notion sitting tightly and nicely in between ZK-SNARKs and ZK-SNARGs.

The direct construction is as follows. Let the public parameters of M-HS be the common reference string.
The prover generates a fresh M-HS key and signs both the statement x and the witness w. It then evaluates
the signatures using a labeled program P = (g, `x, `w) which, on input (x,w), g outputs x if and only if w
is a valid witness of x. It finally outputs the evaluated signature as the proof. Note that behavior of the
program P with respect to the labels `x and `w is rather arbitrarily. We remark that Libert et al. [38] also
use homomorphic signatures to construct proof systems, while the construction is quite different.

Formally, let HS = (Setup,KGen,Sig,Vf,Eval) be a 1-depth (1-)HS scheme. Let g be a function such that
g(x,w) = x if R(x,w) = 1, ⊥ otherwise. Figure 4 shows our construction of a SNARG Π for NP language
L with relation R. The completeness follows straightforwardly from the correctness of HS.

Theorem 8. If HS is cEUF-CMA-secure, then Π is sound.

Proof. Suppose there exists an adversary AΠ that breaks the soundness of Π with non-negligible probability.
We show how to construct an adversary AHS that uses AΠ to produce a forgery of HS. AHS acts as a
challenger in the soundness game of Π.
AHS receives pp from the challenger of EUF-CMA game of HS, and forwards the common reference string

crs := pp to AΠ . Eventually, AΠ responds with (x∗, π∗) such that Vf(crs, x∗, π∗) = 1 but x∗ 6∈ L. AHS then
parses π∗ = (pk∗, σ∗), sets pkid := pk and answers (P∗ = (g, (id, τx), (id, τw)), x∗, σ∗) to its EUF-CMA game.
Since x∗ 6∈ L, we have x∗ 6= g(x,w) for all (x,w) ∈M2.

Theorem 9. If HS is weakly context-hiding, then Π is zero-knowledge.

16

crs← Gen(1λ)

pp← HS.Setup(1λ)
// Fix any identity id in ID.

return crs := pp

b← Vf(crs, x, π)

parse π as (pk, σ)
pkid := pk
P := (g, (id, τx), (id, τw))
return b← HS.Vf(P, pkid, x, π)

π ← Prove(crs, x, w)

(pk, sk)← HS.KGen(pp)
pkid := pk
σx ← HS.Sig(sk, (id, τx), x))
σw ← HS.Sig(sk, (id, τw), w))
ηx := (Iid,τx , pkid, x, σx)
ηw := (Iid,τw , pkid, w, σw)
P := (g, (id, τx), (id, τw))
σ ← HS.Eval(P, (ηx, ηw))
return π := (pk, σ)

Fig. 4. Construction of SNARG from M-HS

Proof. Since HS is weakly context-hiding, there exists a simulator SHS = (SSetup
HS ,SSig

HS) such that, SSetup
HS

simulates the public parameter, and SSig
HS simulates on input (P = (g, (id, τx), (id, τw)), {pkid}id∈P , x) a sig-

nature on x which is statistically close to the real signatures. We can thus construct Scrs
Π using SSetup

HS and
SProve
Π using SSig

HS , and conclude that Π is zero-knowledge.

Theorem 10. If HS is succinct then Π is succinct.

Proof. The proof produced by π ← Prove(crs, x, w) consists of a λ-bit string and a signature of HS. The
succinctness of Π follows directly from that of HS.

If the underlying M-HS scheme is secure in the standard model (without a common reference string),
i.e., pp = λ, the above construction would yield a ZK-SNARG in the standard model, which is impossible.
Therefore, we can also rule out the possibility of constructing standard model M-HS schemes which are
unforgeable under corruption. Interestingly, the only existing M-HS scheme [49] is unforgeable (without
corruption) in the standard model.

7 Concluding Remark

We study multi-key homomorphic signatures (M-HS) which are unforgeable under corruption and chosen
message attacks (cEUF-CMA). We have constructed cEUF-CMA-secure M-HS from zero-knowledge succinct
non-interactive argument of knowledge (ZK-SNARK), and shown that the existence of the former implies the
existence of zero-knowledge succinct non-interactive argument (ZK-SNARG). Due to the known impossibility
of SNARG from non-falsifiable assumptions, we pose it as an open problem to identify a weaker but still
reasonably security model of M-HS, with constructions from standard assumptions.

Acknowledgments

We thank some of the anonymous reviewers for their detailed and helpful comments. We also thank Yvo
Desmedt and Daniel Wichs for inspiring discussions.

References

1. Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, abhi shelat, and Brent Waters. Computing on
authenticated data. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 1–20, Taormina, Sicily,
Italy, March 19–21, 2012. Springer, Heidelberg, Germany.

17

2. Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and Daniel Wichs.
Multiparty computation with low communication, computation and interaction via threshold FHE. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 483–501, Cam-
bridge, UK, April 15–19, 2012. Springer, Heidelberg, Germany.

3. Nuttapong Attrapadung, Benôıt Libert, and Thomas Peters. Computing on authenticated data: New privacy
definitions and constructions. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of
LNCS, pages 367–385, Beijing, China, December 2–6, 2012. Springer, Heidelberg, Germany.

4. Nuttapong Attrapadung, Benôıt Libert, and Thomas Peters. Efficient completely context-hiding quotable and
linearly homomorphic signatures. In Kurosawa and Hanaoka [35], pages 386–404.

5. Michael Backes, Özgür Dagdelen, Marc Fischlin, Sebastian Gajek, Sebastian Meiser, and Dominique Schröder.
Operational signature schemes. Cryptology ePrint Archive, 2014/820, 2014.

6. Michael Backes, Sebastian Meiser, and Dominique Schröder. Delegatable functional signatures. In Cheng et al.
[20], pages 357–386.

7. Mihir Bellare and Georg Fuchsbauer. Policy-based signatures. In Krawczyk [34], pages 520–537.
8. John Bethencourt, Dan Boneh, and Brent Waters. Cryptographic methods for storing ballots on a voting machine.

In NDSS 2007, San Diego, CA, USA, February 28 – March 2, 2007. The Internet Society.
9. Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. Signing a linear subspace: Signature schemes for

network coding. In Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009, volume 5443 of LNCS, pages 68–87,
Irvine, CA, USA, March 18–20, 2009. Springer, Heidelberg, Germany.

10. Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial functions. In Kenneth G.
Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 149–168, Tallinn, Estonia, May 15–19, 2011.
Springer, Heidelberg, Germany.

11. Dan Boneh and David Mandell Freeman. Linearly homomorphic signatures over binary fields and new tools for
lattice-based signatures. In Catalano et al. [17], pages 1–16.

12. Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod Vaikuntanathan,
and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arithmetic circuit ABE and compact
garbled circuits. In Nguyen and Oswald [39], pages 533–556.

13. Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key homomorphic PRFs and
their applications. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS,
pages 410–428, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany.

14. Dan Boneh, Gil Segev, and Brent Waters. Targeted malleability: homomorphic encryption for restricted com-
putations. In Shafi Goldwasser, editor, ITCS 2012, pages 350–366, Cambridge, MA, USA, January 8–10, 2012.
ACM.

15. Xavier Boyen, Xiong Fan, and Elaine Shi. Adaptively secure fully homomorphic signatures based on lattices.
Cryptology ePrint Archive, Report 2014/916, 2014. http://eprint.iacr.org/2014/916.

16. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom functions. In Krawczyk
[34], pages 501–519.

17. Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors. PKC 2011, volume 6571 of LNCS,
Taormina, Italy, March 6–9, 2011. Springer, Heidelberg, Germany.

18. Dario Catalano, Dario Fiore, and Bogdan Warinschi. Efficient network coding signatures in the standard model.
In Fischlin et al. [26], pages 680–696.

19. Dario Catalano, Dario Fiore, and Bogdan Warinschi. Homomorphic signatures with efficient verification for
polynomial functions. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of
LNCS, pages 371–389, Santa Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

20. Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors. PKC 2016, Part I, volume
9614 of LNCS, Taipei, Taiwan, March 6–9, 2016. Springer, Heidelberg, Germany.

21. Jung Hee Cheon and Tsuyoshi Takagi, editors. ASIACRYPT 2016, Part II, volume 10032 of LNCS, Hanoi,
Vietnam, December 4–8, 2016. Springer, Heidelberg, Germany.

22. David Derler, Sebastian Ramacher, and Daniel Slamanig. Homomorphic proxy re-authenticators and applications
to verifiable multi-user data aggregation. Cryptology ePrint Archive, 2017/086, 2017. To appear in Financial
Cryptography 2017.

23. David Derler and Daniel Slamanig. Key-homomorphic signatures and applications to multiparty signatures.
Cryptology ePrint Archive, 2016/792, 2016.

24. Dario Fiore, Aikaterini Mitrokotsa, Luca Nizzardo, and Elena Pagnin. Multi-key homomorphic authenticators.
In Cheon and Takagi [46], pages 499–530.

25. Dario Fiore and Anca Nitulescu. On the (in)security of SNARKs in the presence of oracles. In Martin Hirt and
Adam D. Smith, editors, TCC 2016-B, Part I, volume 9985 of LNCS, pages 108–138, Beijing, China, October 31 –
November 3, 2016. Springer, Heidelberg, Germany.

18

http://eprint.iacr.org/2014/916

26. Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors. PKC 2012, volume 7293 of LNCS, Darmstadt,
Germany, May 21–23, 2012. Springer, Heidelberg, Germany.

27. David Mandell Freeman. Improved security for linearly homomorphic signatures: A generic framework. In Fischlin
et al. [26], pages 697–714.

28. Rosario Gennaro, Jonathan Katz, Hugo Krawczyk, and Tal Rabin. Secure network coding over the integers.
In Phong Q. Nguyen and David Pointcheval, editors, PKC 2010, volume 6056 of LNCS, pages 142–160, Paris,
France, May 26–28, 2010. Springer, Heidelberg, Germany.

29. Rosario Gennaro and Daniel Wichs. Fully homomorphic message authenticators. In Kazue Sako and Palash
Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 301–320, Bengalore, India, December 1–
5, 2013. Springer, Heidelberg, Germany.

30. Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable assumptions.
In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 99–108, San Jose, CA, USA, June 6–8,
2011. ACM Press.

31. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic signatures from stan-
dard lattices. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 469–477, Portland,
OR, USA, June 14–17, 2015. ACM Press.

32. Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner. Homomorphic signature schemes. In
Bart Preneel, editor, CT-RSA 2002, volume 2271 of LNCS, pages 244–262, San Jose, CA, USA, February 18–22,
2002. Springer, Heidelberg, Germany.

33. Eike Kiltz, Anton Mityagin, Saurabh Panjwani, and Barath Raghavan. Append-only signatures. In Lúıs Caires,
Giuseppe F. Italiano, Lúıs Monteiro, Catuscia Palamidessi, and Moti Yung, editors, ICALP 2005, volume 3580
of LNCS, pages 434–445, Lisbon, Portugal, July 11–15, 2005. Springer, Heidelberg, Germany.

34. Hugo Krawczyk, editor. PKC 2014, volume 8383 of LNCS, Buenos Aires, Argentina, March 26–28, 2014. Springer,
Heidelberg, Germany.

35. Kaoru Kurosawa and Goichiro Hanaoka, editors. PKC 2013, volume 7778 of LNCS, Nara, Japan, February 26 –
March 1, 2013. Springer, Heidelberg, Germany.

36. Leslie Lamport. Constructing digital signatures from a one-way function. Technical Report SRI-CSL-98, SRI
International Computer Science Laboratory, October 1979.

37. Benôıt Libert, Thomas Peters, Marc Joye, and Moti Yung. Linearly homomorphic structure-preserving signatures
and their applications. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 289–307, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany.

38. Benôıt Libert, Thomas Peters, Marc Joye, and Moti Yung. Non-malleability from malleability: Simulation-
sound quasi-adaptive NIZK proofs and CCA2-secure encryption from homomorphic signatures. In Nguyen and
Oswald [39], pages 514–532.

39. Phong Q. Nguyen and Elisabeth Oswald, editors. EUROCRYPT 2014, volume 8441 of LNCS, Copenhagen,
Denmark, May 11–15, 2014. Springer, Heidelberg, Germany.

40. John Rompel. One-way functions are necessary and sufficient for secure signatures. In 22nd ACM STOC, pages
387–394, Baltimore, MD, USA, May 14–16, 1990. ACM Press.

41. Silvio Micali. Computationally Sound Proofs. SIAM J. Comput, 30(4):1253–1298, 2000.
42. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct NIZKs without PCPs.

In EUROCRYPT 2013, Proceedings, pages 626–645, 2013.
43. H. Lipmaa. Succinct non-interactive zero knowledge arguments from span programs and linear error-correcting

codes. In ASIACRYPT 2013, Proceedings, Part I, pages 41–60, 2013.
44. G. Danezis, C. Fournet, J. Groth, and M. Kohlweiss. Square span programs with applications to succinct NIZK

arguments. In ASIACRYPT 2014, Proceedings, Part I, pages 532–550, 2014.
45. J. Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT 2016, Proceedings, Part II,

pages 305–326, 2016.
46. Jung Hee Cheon and Tsuyoshi Takagi, editors. ASIACRYPT 2016, Part II, volume 10032 of LNCS, Hanoi,

Vietnam, December 4–8, 2016. Springer, Heidelberg, Germany.
47. David Derler and Daniel Slamanig. Key-homomorphic signatures and applications to multiparty signatures.

Cryptology ePrint Archive, 2016/792, 2016.
48. Alex Escala, Javier Herranz, and Paz Morillo. Revocable attribute-based signatures with adaptive security in

the standard model. In Abderrahmane Nitaj and David Pointcheval, editors, AFRICACRYPT 11, volume 6737
of LNCS, pages 224–241, Dakar, Senegal, July 5–7, 2011. Springer, Heidelberg, Germany.

49. Dario Fiore, Aikaterini Mitrokotsa, Luca Nizzardo, and Elena Pagnin. Multi-key homomorphic authenticators.
In Cheon and Takagi [46], pages 499–530.

19

50. Essam Ghadafi. Stronger security notions for decentralized traceable attribute-based signatures and more efficient
constructions. In Kaisa Nyberg, editor, CT-RSA 2015, volume 9048 of LNCS, pages 391–409, San Francisco, CA,
USA, April 20–24, 2015. Springer, Heidelberg, Germany.

51. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic signatures from stan-
dard lattices. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 469–477, Portland,
OR, USA, June 14–17, 2015. ACM Press.

52. Ali El Kaafarani, Essam Ghadafi, and Dalia Khader. Decentralized traceable attribute-based signatures. In Josh
Benaloh, editor, CT-RSA 2014, volume 8366 of LNCS, pages 327–348, San Francisco, CA, USA, February 25–28,
2014. Springer, Heidelberg, Germany.

53. Benôıt Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huaxiong Wang. Signature schemes with
efficient protocols and dynamic group signatures from lattice assumptions. In Cheon and Takagi [46], pages
373–403.

54. Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based signatures. In Aggelos Kiayias,
editor, CT-RSA 2011, volume 6558 of LNCS, pages 376–392, San Francisco, CA, USA, February 14–18, 2011.
Springer, Heidelberg, Germany.

55. Tatsuaki Okamoto and Katsuyuki Takashima. Efficient attribute-based signatures for non-monotone predicates in
the standard model. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011,
volume 6571 of LNCS, pages 35–52, Taormina, Italy, March 6–9, 2011. Springer, Heidelberg, Germany.

56. Tatsuaki Okamoto and Katsuyuki Takashima. Decentralized attribute-based signatures. In Kaoru Kurosawa and
Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 125–142, Nara, Japan, February 26 – March 1,
2013. Springer, Heidelberg, Germany.

57. Yusuke Sakai, Nuttapong Attrapadung, and Goichiro Hanaoka. Attribute-based signatures for circuits from
bilinear map. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016,
Part I, volume 9614 of LNCS, pages 283–300, Taipei, Taiwan, March 6–9, 2016. Springer, Heidelberg, Germany.

58. Siamak Fayyaz Shahandashti and Reihaneh Safavi-Naini. Threshold attribute-based signatures and their appli-
cation to anonymous credential systems. In Bart Preneel, editor, AFRICACRYPT 09, volume 5580 of LNCS,
pages 198–216, Gammarth, Tunisia, June 21–25, 2009. Springer, Heidelberg, Germany.

A Application: Decentralized Attribute-based Signatures

Apart from the natural application of allowing delegation of computation on data authenticated by multiple
parties, M-HS readily implies other variants of signatures. As a case study, we study the implications of
M-HS to decentralized attribute-based signatures (D-ABS) [56].

Since the introduction [54], various extended features of ABS have been proposed, such as traceability [48],
and decentralized authorities [56]. A line of works focus on extending the expressiveness of the verification
policies supported, e.g., threshold policies [58], and expressed as non-monotone span programs [55, 56],
monotone span programs [54], and monotone circuits [57].

A D-ABS scheme allows multiple authorities to certify different attributes of a signer in a completely
distributed manner. After obtaining the certificates from the authorities, the signer can then issue signatures
on messages, while at the same time shows that its certified attributes satisfy a certain access policy. The first
D-ABS scheme is constructed based on dual pairing vector spaces [56]. Subsequent works proposed generic
constructions of D-ABS [50, 52] from standard building blocks, with traceability as an additional feature.
Unfortunately, these schemes only support access policies expressed as monotone span program.

We propose another generic construction of D-ABS from M-HS. Thanks to the corruption resistance of
M-HS, it provides unforgeability even in the presence of corrupted authorities, and supports access policies
expressed as admissible functions of the M-HS scheme, i.e., arbitrary labeled programs.

Due to the tag-based nature of M-HS, this scheme can only achieve linkable anonymity, a weaker notion
of anonymity such that signatures issued by the same signer are linkable. Modulo the linkability, it prevents
the verifier from learning any information about the attributes associated with the signatures except those
leaked from the access policies. On one hand, linkability is useful for ensuring strong accountability. For
example, consider a simple membership system where a user can register by issuing a linkable attribute-
based signature, so that the server can use the linkable part of the signature as the identity of the user.
Indeed, there is a branch of literature which incorporates various forms of linkability into signatures or

20

credentials. On the other hand, one can generically transform this linkable scheme to an unlinkable one:
Simply replace the signature by a non-interactive witness-indistinguishable (NIWI) proof of the knowledge
of the tag in the M-HS.

A.1 Definitions

Syntax. An attribute-based signature scheme consists of the PPT algorithms (Setup,KGenAuth,KGenSig,Auth,
Sig,Vf) defined as follows:

– pp ← Setup(1λ) runs by trusted third party, takes as input the security parameter λ and outputs
the public parameter pp, which defines the attribute space X , the message space M, and the class of
supported policies F .

– (apkaid, askaid) ← KGenAuth(pp) runs by authority aid, takes as input the public parameter and outputs
its public-secret key pair (apkaid, askaid).

– (pksid, sksid)← KGenSig(pp) runs by signer sid takes as input the public parameter and outputs its public-
secret key pair (pksid, sksid).

– γaid,sid,x ← Auth(askaid, pksid, x) runs by authority aid, takes as input its secret key askaid, a signer public
key pksid, and an attribute x ∈ X . It outputs a credential γaid,sid,x corresponding to the signer sid and
the attribute x.

– σ ← Sig((apkaid, x, γaid,sid,x)(aid,x)∈S , sksid,m, f) runs by signer sid, takes as input an ordered list of au-
thority public keys, credentials and attributes (apkaid, x, γaid,sid,x)(aid,x)∈S for an ordered list of attributes
S it owns, its secret key sksid, a message m, and an access policy f ∈ F that accepts S. It outputs a
signature σ signing m under attributes S and policy f .

– b ← Vf(f, {apkaid}aid∈f , pksid,m, σ) inputs an access policy f , an ordered list of authority public keys
{apkaid}aid∈f involved in f , a signer public key pksid, a message m, and a signature σ. It outputs 1 if the
signature is valid, 0 otherwise.

Correctness. We require a signature signed with attributes fulfilling the access policy to be valid.
Formally, for any pp ∈ Setup(1λ), any (apkaid, askaid) ∈ KGenAuth(pp), any (pksid, sksid) ∈ KGenSig(pp),
any x ∈ X , any γaid,sid,x ∈ Auth(askaid, pksid, x), any policy f ∈ F , any message m ∈ M, any or-
dered list of attributes S, it holds that if f accepts S, then Vf(f, {apkaid}aid∈f , pksid,m, σ) = 1 for all
σ ∈ Sig((apkaid, x, γaid,sid,x)(aid,x)∈S , sksid,m, f).

Unforgeability. We allow the adversary to submit a signature involving corrupted authorities or corrupted
signer. In the former case, even if all authorities are corrupted, we ensure that they cannot sign on behalf of
any uncorrupted signer (Type-I). In the latter case, even if a corrupted signer colludes with some corrupted
authorities, it is infeasible to sign with respect to non-trivial policy regarding uncorrupted authorities (Type-
II). Formally, consider the game below between an adversary and a challenger.

– Let L = poly(λ), K = poly(λ) be the maximum number of authorities and signer in the system respec-
tively.

– Initialize an empty dictionary DAuth to store direct credential queries and DSig to store credential queries
made by signing oracle.

– The challenger C runs pp ← Setup(1λ), {(apkaid, askaid) ← KGenAuth(pp)}aid∈[L], {(pksid, sksid) ←
KGenSig(pp)}sid∈[K], and gives {apkaid}aid∈[L], {pksid}sid∈[K] to A.

– The adversary A makes four types of queries:
• OACorr(aid): return the authority secret key askaid.
• OSCorr(sid): return the signer secret key sksid.
• OAuth(aid, sid, x): If there exists a key for the entry (aid, sid, x) in the dictionary DAuth, return the

corresponding value (γaid,sid,x). Otherwise, return γaid,sid,x ← Auth(askaid, pksid, x) and add γaid,sid,x to
the entry (aid, sid, x) in the dictionary DAuth.

21

• OSig(S, sid,m, f): return ⊥ if f does not accept attributes S. For any (aid, x) ∈ S such that
DAuth[(aid, sid, x)] = ⊥ and DSig[(aid, sid, x)] = ⊥, sample γaid,sid,x ← Auth(askaid, pksid, x) and
add γaid,sid,x to the entry (aid, sid, x) in the dictionary DSig. Then, for each (aid, x) ∈ S,
retrieve γaid,sid,x from the entry (aid, sid, x) in the dictionary DAuth and DSig, and return
σ ← Sig((apkaid, x, γaid,sid,x)(aid,x)∈S , sksid,m, f).

– Eventually, A outputs a policy f∗ ∈ F , an ordered list of authorities {apkaid∗}aid∗∈f∗ , a signer public key
pksid∗ , a message m∗, and a signature σ∗. It wins the game if the following holds:
• Vf(f∗, {apkaid∗}aid∗∈f∗ , pksid∗ ,m

∗, σ∗) = 1, and
• (S, pksid∗ , f

∗,m∗) was not queried to the signing oracle before, where S is any ordered list of attributes
that f∗ accepts

• either of the following holds:
∗ Type-I : signer sid is uncorrupted.
∗ Type-II : there exists an uncorrupted authority aid′ such that aid′ ∈ f∗, and f∗ does not accept

any ordered list T such that there exists x ∈ T and DAuth[(aid′, sid∗, x)] 6= ⊥.

We require that for all PPT adversaries A, Pr{A wins} ≤ negl(λ).

Linkable Anonymity. Anonymity guarantees that only f(S) is revealed but not the individual values while
signatures are linkable in the sense that the public key pk is revealed. Formally, we require that there exists
a simulator S = (SSetup,SSig) such that, for all L = poly(λ), aid ∈ [L], m, x, f and S, it holds that for any
PPT adversaries A, the following value is negligible in λ.

∣∣∣∣∣Pr

A(pk, sk, (apkaid, askaid)aid∈[L], (apkaid, x, γaid,x)(aid,x)∈S , σ, f,m)→ 1 :
pp← Setup(1λ)

(apkaid, askaid)← KGenAuth(pp)
(pk, sk)← KGenSig(pp)
γapkaid,x ← Auth(askaid, pk, x)

σ ← Sig((apkaid, x, γaid,x)(aid,x)∈S , sk,m, f)

−

Pr

A(pk, sk, (apkaid, askaid)aid∈[L], (apkaid, x, γaid,x)(aid,x)∈S , σ, f,m)→ 1 :
(pp, td)← SSetup(1λ)

(apkaid, askaid)← KGenAuth(pp)
(pk, sk)← KGenSig(pp)
γapkaid,x ← Auth(askaid, pk, x)

σ ← SSig(td, {apkaid}(aid,x)∈S , pk,m, f)

∣∣∣∣∣

A.2 Construction

From a 1-Hop M-HS scheme HS.(Setup,KGen,Sig,Vf,Eval), we get a generic construction of decentralized
attribute-based signatures (D-ABS) immediately. Let f = (f1, f2) ∈ F be an access policy and S = (aid, x)
be an ordered list of attributes. We say f accepts S if f1(S1) = 1 and f2(S2) = 1, where S1 = {aid}(aid,x)∈S
and S2 = {x}(aid,x)∈S . Figure 5 presents this construction.

The correctness of ABS follows from the correctness of HS directly. Suppose HS is unforgeable, then
ABS is weakly unforgeable. Finally, suppose HS is context-hiding, then ABS is linkably anonymous.

A.3 Instantiations

We can instantiate the above generic construction from the multi-key generalization of the fully homomorphic
signature scheme by Gorbunov et al. [51] (GVW). We can obtain a D-ABS scheme for general circuits based
on lattice assumptions in the standard model. In our terminology, the generalized GVW is an M-HS scheme

22

pp← Setup(1λ)

pp← HS.Setup(1λ)
return pp

γaid,sid,x ← Auth(askaid, pksid, x)

γaid,sid,x ← HS.Sig(askaid, pksid, x)
return γaid,sid,x

σ ← Sig((apkaid, x, γaid,sid,x)(aid,x)∈S , sksid,m, f)

σ′ ← HS.Sig(sksid, (sid, pksid),m)
ηx := (Iaid,sid, apkaid, x, γaid,sid,x)(aid,x)∈S

ηm := (Isid,sid, pksid,m, σ
′)

σ ← HS.Eval(f2, (ηx, ηm))
return σ

(apkaid, askaid)← KGenAuth(pp)

(apkaid, askaid)← HS.KGen(pp)
return (apkaid, askaid)

(pksid, sksid)← KGenSig(pp)

(pksid, sksid)← HS.KGen(pp)
return (pksid, sksid)

b← Vf(f, {apkaid}aid∈f , pksid,m, σ)

if f1({aid}aid∈f) 6= 1
return b = 0

else
P := (f2, (aid, sid)aid∈f , (sid, sid))
b← HS.Vf(P, ({apkaid}aid∈P , pksid),m, σ)
return b

Fig. 5. Construction of D-ABS from M-AHS

unforgeable for uncorrupted signers. This implies a weak unforgeability of the resulting D-ABS scheme in
the sense that the adversary is not allowed to corrupt either the signer or any subset of the authorities. In
(generalized) GVW, normal verification takes as long as computing the function g. To improve efficiency,
part of the verification can be pre-computed so that the amortized verification cost with the fixed function
g can be made constant (as explained in details [51]). This is suitable for our purpose as the access policies
of a verifier in D-ABS typically remain relatively stable. The transformation to a fully anonymous scheme
can be instantiated by the recent proof system for linear congruences proposed by Libert et al. [53].

B Insecurity of Existing Work against Insider Attack

We briefly explain why the existing construction of M-HS by Fiore et al. [49] suffers from insider attacks.
Since their construction is a multi-key generation of the (single-key) HS by Gorbunov et al. [51], we begin
by demonstrating how the attack works in the single-key setting, then generalize it to the multi-key setting.

The HS construction by Gorbunov et al. [51] is based on the notion of homomorphic trapdoor functions.
To recall, a homomorphic trapdoor function f maps a public key pk, an index x, and a pre-image u to an
image v. The function is homomorphic in the following sense: Given a function g and some pre-images vi for
i ∈ [N], one can efficiently compute an image vg. If ui where vi = f(pk, xi, ui) for i ∈ [N] are additionally
given, then one can compute a pre-image ug(x1,...,xN). The tuple (vg, ug(x1,...,xN)) “encodes” the computation
g(x1, . . . , xN) in the sense that vg = f(pk, g(x1, . . . , xN), ug(x1,...,xN)). Note that these computation can be
performed without the knowledge of the secret key. Furthermore, given the secret key sk corresponding to pk,
any image v, and any index x, one can “invert” the function by sampling u such that v = f(pk, x, u). Given
such homomorphic trapdoor functions, the construction of HS is almost apparent. Roughly speaking, the
secret key corresponds to the signing key of the HS scheme; the public key and a set of images corresponds
to the verification key; the indexes correspond to messages; and the pre-images correspond to the signatures.

Note that the inversion capability of the secret key holder (the signer) of the trapdoor function is more
than sufficient for signing. In particular, the signer can choose to invert the function on an image-index tuple
(v, x) which is otherwise impossible to obtain through homomorphic evaluation. While in a typical setting
the signer is assumed to be honest and not to generate pre-images for “invalid” image-index pairs, a malicious
signer can sample a pre-image / signature u∗ such that vg = f(pk, x, u∗) yet x is not in the range of g.

23

Generalizing to the multi-key setting, a multi-key homomorphic trapdoor function f (constructed im-
plicitly in [49]) maps a set of public keys pk1, . . . , pkM , an index x, and a pre-image u to an image v. The
knowledge of a secret key sk corresponding to any pk in the set of public keys suffices to invert f on the
tuple (v, x) with respect to pk1, . . . , pkM . As a consequence, if any of the M signers is corrupt, an adversary
can generate signatures that disrespect the messages signed by the other honest signers.

24

	Multi-Key Homomorphic Signatures Unforgeable under Insider Corruption

