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Abstract. Glitches represent a great danger for hardware implemen-
tations of cryptographic schemes. Their intrinsic random nature makes
them di�cult to tackle and their occurrence threatens side-channel pro-
tections. Although countermeasures aiming at structurally solving the
problem already exist, they usually require some e�ort to be applied
or introduce non-negligible overhead in the design. Our work addresses
the gap between such countermeasures and the naïve implementation of
schemes being vulnerable in the presence of glitches. Our contribution
is twofold: (1) we expand the mathematical framework proposed by Br-
zozowski and Ésik [5] by meaningfully adding the notion of information
leakage, (2) thanks to which we de�ne a formal methodology for the anal-
ysis of vulnerabilities in combinatorial circuits when glitches are taken
into account.
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1 Introduction

Side-channel attacks were �rst introduced by Kocher et al. [6] as a way to attack
implementations of cryptosystems. They exploit the relation between data being
processed and several physical emanations, for instance time taken or power con-
sumed to perform computations [7]. Since its �rst appearance, side-channel anal-
ysis has grown quickly with newly developed attacks as well as countermeasures,
which try to prevent any sensitive information from being leaked. For instance,
sharing schemes randomise intermediate values in such a way that the leaked
information no longer depends on any sensitive data [8]. However the e�ciency
of countermeasures is deeply linked to physical characteristics of the device on
which they are implemented: in 2005 Mangard et al. [9] predicted the criticality
of glitches for hardware implementations, which was then demonstrated in the
same year [10]. They showed how the propagation of signals in combinatorial
logic implementing an apparently secured SBox might result in critical leakages,
leading to an ine�ective protection. To solve the problem, Nikova et al. [13,14]



suggested the use of threshold implementations, which allow to tackle glitches
at root by developing maps that do not handle all the shares in the same combi-
natorial circuit. Such maps obviously come at the cost of a signi�cant overhead
compared to the unprotected version. Implementations and practical discussions
can be found in the work of Moradi et al. [12] and of Bilgin et al. [4]. As for
higher-order security, the issue of glitches has been faced with a generalisation of
threshold implementations [3,17], and independently by Prou� and Roche [15].
Speci�cally on the e�ects of glitches on the AES SBox Mangard and Schramm
[11] have reported a deep and complete analysis.

Overall there is a gap in the capabilities of quantifying the criticality of
glitches in a hardware implementation. This gap is not trivial to close, as glitches
in combinatorial logic are functions of the �nal layout of the circuit and the
environmental conditions, and might change during the life of the device. In
practice two equal devices might exhibit a di�erent behaviour in terms of glitches.

Our aim is to provide a framework for evaluating the presence of glitches
under worst-case conditions without the need of detailed characterisation of the
combinatorial logic, i.e. remaining at gate level description. In order to achieve
this result, we start from the mathematical structure created by Brzozowski and
Ésik [5], which simulates the propagation of electric signals inside a circuit, and
we build a method to relate a modelled power consumption with the sensitive
variables that have caused it. Our analysis is done in a worst-case scenario where
all possible glitches are taken into account as to achieve the maximum possible
generality. Our main result is an assessing tool which is able to formally describe
what kind of information could be leaked, and to give an heuristic estimate about
the security of sharing schemes implemented in hardware.

Organisation of the paper. Section 2 provides the abstract framework under-
lying our tool, with a particular emphasis on how circuits and signals propagating
inside them are modelled. Section 3 describes parts of the work of Brzozowski
and Ésik [5] which are also used by our construction. In Sec. 4 we present our
main contribution: we expand the functionalities of the previously discussed
mathematical model with the notion of leakage and we show how such an im-
proved framework can be used to analyse cryptographic circuits. In Sec. 5 some
examples of usage of our model are reported, with particular reference to the
sponge function Keccak. We discuss the soundness of our approach and several
practical aspects in Sec. 6, and we conclude our work in Sec. 7.

2 Preliminaries

Our work targets hardware implementations of cryptographic schemes. Since the
meaning of such can be quite broad, the present section aims at specifying our
environment, as well as at setting the notation we adopt. In fact, our mathemat-
ical model applies only to an abstraction of real-world circuits: we just refer to
logic netlists, hence circuits formed only of logic gates and connections among
them. Our tool therefore achieves a good level of generality, since it does not
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require any knowledge of implementation details apart from the circuit scheme
itself, which means that it is general enough to include all the above mentioned
source of glitches (�nal layout, environmental conditions...). In particular we fo-
cus on asynchronous feedback-free circuits. We claim this is not too restrictive,
because of the following argument. Circuits can be divided into two parts: the
combinatorial logic and the state storing part. The combinatorial logic is indeed
asynchronous, it is the part in charge of implementing the logic functionality and
where glitches might propagate. The state storing part, implemented via registers
or memory cells, is clocked and provides the synchronization between di�erent
sections of the circuits. Since we apply our model to logic circuits performing
sensitive computations, the most natural choice is to focus on the asynchronous
part only. We do not consider the presence of feedbacks in the combinatorial
part for the sake of simplicity and because they are not a common construction
in this �eld anyway.

We adopt a high-level abstraction of signals too. Since we are only interested
in the Boolean value they represent, it is convenient to think of them as square
waveforms which can assume the values 0 or 1. To push the abstraction further
we assume the existence of a sampling frequency being �ne enough to detect all
the changes occurring in a signal, in such a way that a signal is represented as
a �nite-length bit-string. We denote by

Z∗2 =

∞⋃
r=1

Zr
2

the set of �nite-length bit-strings. We denote bit-strings by concatenation of
bits, i.e. a bit-string s ∈ Z∗2 is of the form s = a1 . . . ar for some bits ai ∈ Z2

and for a certain r ≥ 1. Grouping bits of a bit-string is also a useful notation
and is denoted by s = bp1

1 . . . b
pr′
r′ , where this time we assume bj 6= bj+1 and

pi > 0 for every 1 ≤ i ≤ r′, 1 ≤ j ≤ r′ − 1. Essentially, the latter notation
highlights the number of times pi the corresponding bit bi is repeated in a bit-
string. Finally, we denote by `(s) = r its length, by α(s) = a1 = b1 its �rst bit
and by ω(s) = ar = br′ its last one.

Further notation. We denote the power set (i.e. the set of all subsets) of a set
S by P(S). Vectors are denoted by underlined letters while boldface is reserved
for signals seen as transients (cf. De�nition 1 and Example 1).

2.1 Power consumption model

The power consumed by a circuit is a crucial information as it is one of a number
of side-channels through which a loss of sensitive information can occur [7] and
is the only one we focus on throughout this work. If we consider global syn-
chronous circuits, the power consumption can be divided in three components:
the static leakage, the switching of registers and the switching of combinatorial
logic. The static leakage is the amount of power needed by the circuit to main-
tain the current state when no switch is present. The switching of registers is the

3



consumption taken by the circuit for updating the state and is easily approx-
imated by the Hamming distance of the state in two consecutive clock cycles.
The value of the registers can be easily protected by masking schemes. The last
contribution is the most interesting for us and is related to the consumption of
the combinatorial logic. From a temporal point of view, the switching of regis-
ters usually happens at the rising edge of the clock cycle while the static leakage
happens in its last part. By contrast, the consumption of combinatorial logic
spans, in most cases, the entire duration of the clock cycle [16]. Consistently
with the choice of addressing only the asynchronous part of a circuit, our power
consumption model includes only the contribution of the combinatorial logic.

Since we deal only with circuits formed by logic gates, we assume that the
power consumed by the whole circuit is the sum of the power consumed by each
gate, which reduces the problem to modelling the power consumed by a gate. The
simplest way is to consider the signal a gate outputs or, equivalently, the corre-
sponding bit-string. If the output signal changes, equivalently the corresponding
output bit-string switches, the gate consumes. The power consumption model we
assume in the present work is then described by the following three assumptions:

1. a gate consumes power if and only if its output bit-string switches;
2. a zero-to-one switch consumes the same amount of power as a one-to-zero

switch;
3. every time some power is consumed, an attacker can measure and exploit it.

Hence we assume that a potential leakage exists as far as a switch occurs.

As already stated, we neglect static leakage by means of the �rst assumption.
The second assumption is made for the sake of simplicity and it can be dropped
in favour of a more realistic model built on top of a speci�c technology library.
The third assumption assures the best possible generality: we consider as leaked
every variable that has a chance to be leaked.

3 Simulation of signal propagation

Brzozowski and Ésik [5] have developed a mathematical structure which aims
at simulating worst-case glitches propagation in a circuit. In essence, the model
analyses how a change in the inputs propagates and which kind of response is
triggered in the gates. In their work, Brzozowski and Ésik use a higher level of
abstraction than bit-strings to simulate signals.

De�nition 1. A transient is a bit-string with no repetitions. More formally, a
bit-string t = a1 . . . ar ∈ Z∗2 is a transient if ai 6= ai+1 for all 1 ≤ i ≤ r − 1.
Equivalently, t = bp1

1 . . . b
pr′
r′ ∈ Z∗2 is a transient if pi = 1 for every 1 ≤ i ≤ r′.

Informally, transients can only be of the form 1010 . . . or 0101 . . . for an
arbitrary �nite length r ≥ 1 (note that bits 0 and 1 can be considered as tran-
sients for which r = 1). We de�ne a map from bit-strings to transients called the
contraction map and denoted by γ : Z∗2 → Z∗2 such that:

γ(bp1

1 . . . bpn
n ) = b1 . . . bn.
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We denote by T = γ(Z∗2) ⊆ Z∗2 the set of all possible transients.

De�nition 2. Let t, t′ ∈ T be two transients such that `(t) ≤ `(t′). We say that
t is a pre�x of order o = `(t′)− `(t) of t′ if α(t) = α(t′). We adopt the notation
t �o t

′. Note that if o = 0, �0 is equivalent to equality between transients.

The rationale behind transients is the following. Contracting bit-strings is
equivalent to neglecting time periods during which a signal assumes constant
values 1 or 0. This results in transients being exclusively designed to represent
which changes occur, but not when: the order of switches can then be freely
tuned, in such a way that the worst glitchy behaviour is always shown at the
output of a gate. That is to say if two transients modelling two changing signals
are given as inputs to a gate, then the output will be a transient modelling the
signal showing the highest possible number of changes. Next subsection speci�es
how to combine transients so to emulate gates' logic.

3.1 Operations among transients

As the previous discussion has suggested, the choice of transients rather than
general bit-strings as a formalisation of signals relies on the operations that it
is possible to de�ne among them. Since the circuits we study are only formed of
logic gates, we want those operations to preserve gates' functionalities. Therefore
we aim at building a function f̂ : Tn → T associated to a Boolean function
f : Zn

2 → Z2 whose inputs are n transients, namely t = (t1, . . . , tn) ∈ Tn.

Example 1. Let us suppose that two signals s1 and s2 are given as input to a
gate implementing a Boolean function f : Z2

2 → Z2. Firstly, they are �xed at
constant values b1 ∈ Z2 and b2 ∈ Z2 respectively. Suddenly, s1 changes from
b1 to c ∈ Z2, with c 6= b1. This is represented by the transient s1 = b1c which
can be either 01 or 10. Then, the idea behind the function f̂ is to emulate the
behaviour of the function f , but taking as inputs the two transients s1 = b1c
and s2 = b2 (seen as a length-one transient) and producing a transient with the
highest number of switches, i.e. as if the highest number of glitches occurred.
Note that we write a variable in boldface if it is seen as a transient and that bit
concatenation is denoted by simply writing one bit after the other.

The remainder of this subsection describes how to achieve the functionality
discussed in Example 1. The idea is that, given two input transients t1 = a1 . . . an
and t2 = b1 . . . bm, the �rst bit the gate computes is f(a1, b1). This will be
also called the initial stable state. Then the two inputs change to a2 and b2
respectively, and we have the freedom to decide which is the �rst one to a�ect the
gate such that another change in the output (if any) is triggered. This process is
built thanks to two graphs which look at all possible combinations of propagation
times. Firstly, we de�ne the directed graph D(t) as follows.
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De�nition 3. Given t = (t1, . . . , tn) ∈ Tn, we de�ne the directed graph D(t) =
(V,E) such that:

V = {v ∈ Tn | vi �oi ti for every 0 ≤ oi < `(ti) and 1 ≤ i ≤ n}
E = {(v, w) ∈ V × V | ∃!i such that vi �1 wi and vj = wj for every j 6= i}

Note thatD(t) is the graph whose nodes are all the pre�xes of the components
of t, the simplest being (α(t1), . . . , α(tn)) and the longest being t itself. Edges are
drawn if there exists only one change in exactly one of two nodes' components.
At this point we label each vertex v = (v1, . . . , vn) ∈ V with the bit fω(v) =
f(ω(v1), . . . , ω(vn)) ∈ Z2 and we construct the following graph.

De�nition 4. Let f : Zn
2 → Z2 be a Boolean function. Given t = (t1, . . . , tn) ∈

Tn and D(t) = (V,E), we de�ne its labelled directed graph Df (t) = (Vf , Ef )
such that:

Vf = {fω(v) ∈ Z2 | v ∈ V }
Ef = {(fω(v), fω(w)) ∈ Vf × Vf | (v, w) ∈ E}

It is straightforward that the graph Df (t) has the same shape as D(t). In
particular there is a bijection between E and Ef , hence every path in D(t) can
be reconstructed in Df (t). Thanks to this, the output of f̂ is computed by �rst
considering all the paths in D(t) from (α(t1), . . . , α(tn)) to (t1, . . . , tn) and then
reconstructing them in Df (t). Since elements of Vf are bits, each path in the
latter graph uniquely de�nes a bit-string by concatenating its successive vertices.
The contraction map γ is then applied to every such bit-strings and the output
of f̂(t1, . . . , tn) is de�ned as the longest contraction.

Theorem 1. Let f : Zn
2 → Z2 be a Boolean function. The function f̂ : Tn → T

is well de�ned for any given input t = (t1, . . . , tn) ∈ Tn.

Proof. We only need to prove that if two paths in D(t) lead to bit-strings
whose contractions have the same length and are the longest, then such con-
tractions are equal. In other words, let s1 = a1 . . . ak and s2 = b1 . . . bm be two
bit-strings computed from the two paths such that `(γ(s1)) = `(γ(s2)), where
ai, bj ∈ Z2. Since we are only considering paths in D(t) from (α(t1), . . . , α(tn))
to (t1, . . . , tn), it is true that α(s1) = α(s2) = f(α(t1), . . . , α(tn)) and ω(s1) =
ω(s2) = f(ω(t1), . . . , ω(tn)). It follows that α(γ(s1)) = α(γ(s2)) and ω(γ(s1)) =
ω(γ(s2)), because the contraction map cannot change the �rst and last bits.
Since `(γ(s1)) = `(γ(s2)) holds too, γ(s1) and γ(s2) are two transients with
same �rst and last bits and same length, hence γ(s1) = γ(s2). ut

Example 2. We report how to construct ˆAND : T 2 → T between the two tran-
sients 010, 01 ∈ T .

In Fig. 1 (left), D(010, 01) is built according to De�nition 3 while in Fig.
1 (right) DAND(010, 01) is computed with the function AND : Z2

2 → Z2 as in
De�nition 4. In the graph D(010, 01) there are only three possible paths from
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Fig. 1. D(010, 01) and DAND(010, 01)

(0, 0) to (010, 01), whose corresponding bit-strings are 0000, 0010 and 0010.
By applying the contraction map to each of them, we obtain that the possible
outputs of ˆAND are γ(0000) = 0, γ(0010) = 010 and γ(0010) = 010. Hence, by
taking the longest possible transient we obtain that ˆAND(010, 01) = 010. In Fig. 1
(right), the chosen path is highlighted with thicker arrows and another possible
one leading to the same result is highlighted with thicker dash arrows.

We want to highlight the rationale behind those graphs. Each edge corre-
sponds to a change in exactly one of the inputs. Deciding a path in those graphs
is then equivalent to assuming an "order of arrival" of the inputs' changes to
the gate. Such an order is chosen according to our previously discussed "longest
possible output" rule.

Remark 1. The above construction is only a formal procedure to build f̂ from a
generic Boolean function f . In practice, once f is �xed, a simple rule to compute
f̂ can be derived from the graph. For instance, it is possible to prove (as it is
done in [5]) that ˆAND : T 2 → T can be de�ned for any two transients t, t′ ∈ T as
follows:

� ˆAND(t, 1) = ˆAND(1, t) = t;
� ˆAND(t, 0) = ˆAND(0, t) = 0;
� if `(t), `(t′) > 1, ˆAND(t, t′) is the transient w such that:
• α(w) = α(t) ∧ α(t′);
• ω(w) = ω(t) ∧ ω(t′);
• u(w) = u(t) + u(t′)− 1;

where u : T → N denotes the number of ones of a transient. Such a simpli�cation
also has an impact on the performance of f̂ : since we no longer need any graphs,
f̂ can be considered linear in the number of inputs (their lengths do not matter).
We refer to the work of Brzozowski and Ésik [5] for more examples.

3.2 Glitch-counting algorithm

We are �nally ready to state the glitch-counting algorithm, which simulates the
propagation of signals inside a circuit in terms of transients. First of all, a change
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in one or more inputs is assumed and represented as a transient. The glitch-
counting algorithm assigns a transient to each gate as soon as the change reaches
it. If the gate implements a Boolean function f , then the result is computed
according to f̂ .

Given a circuit with m inputs and k gates, we denote by X = (X1, . . . , Xm)
the vector of input variables and by s = (s1, . . . , sk) the vector of state variables,
which are the gates' outputs. We use boldface to distinguish when variables are
used as transients, as in Example 1.

De�nition 5. We call excitation the Boolean function Sj : Zm
2 ×Zk−1

2 → Z2 by
which the state variable sj is computed.

sj = Sj(X, s) = Sj(X1, . . . , Xm, s1, . . . , sj−1, sj+1, . . . , sk)

The above de�nition simply establishes a notation for the Boolean function
each gate implements. It can be further extended so as to take into account all
the excitations in a given circuit.

De�nition 6. Given a circuit with m inputs and k gates, the function S : Zm
2 ×

Zk
2 → Zk

2 de�ned by S(X, s) = (S1(X, s), . . . , Sk(X, s)) is called the vector of
excitations of the circuit.

Note that in De�nition 6, the jth component of the vector s is dropped when
given as input to each Sj for every 1 ≤ j ≤ k, according to De�nition 5. This is
because we only deal with feedback-free circuits.

Example 3. Let us consider the circuit in Fig. 2. It has input vector X =
(X1, X2, X3), state vector s = (s1, s2, s3) and excitation functions given by the
following Boolean expressions.

s1 =S1(X1, X2, X3, s2, s3) = X1 ∧X2

s2 =S2(X1, X2, X3, s1, s3) = X2 ∨X3

s3 =S3(X1, X2, X3, s1, s2) = s1 ⊕ s2

Fig. 2. Example of a circuit with input and state variables

8



Initially, suppose that the inputX assumes the valueX = a′ = (a′1, . . . , a
′
m) ∈

Zm
2 , and that the state has the value s = b = (b1, . . . , bk) ∈ Zk

2 . We as-
sume that the circuit is stable, i.e. S(a′, b) = b, and that the input changes
to a = (a1, . . . , am) ∈ Zm

2 . We call this a transition and we denote it by
a′1 . . . a

′
m → a1 . . . am.

De�nition 7. The transition function ◦ : Z2×Z2 → T , given a, b ∈ Z2, returns:

a ◦ b =

{
a if a = b

ab if a 6= b

where ab denotes the concatenation of a and b, which is a transient. This notation
is extended to vectors. If a′ = (a′1, . . . , a

′
m) and a = (a1, . . . , am), then:

a′ ◦ a = (a′1 ◦ a1, . . . , a′m ◦ am)

The glitch-counting algorithm starts with the circuit in the initial stable state
(a′, b). The input is then set to a = a′◦a and is kept constant at that value for the
duration of the algorithm. After the input changes, some state variables become
unstable in the sense that they no longer represent the correct logic output of
their gate. We set all unstable variables at the same time to their excitations
as soon as the input change propagates till their gate. We then obtain a new
internal state, which is a vector of transients, and the process is repeated until
all the state variables become stable again, i.e. their value is the correct Boolean
output of their gate. Formally, the glitch-counting algorithm is speci�ed below.

Algorithm 1 Glitch-counting algorithm
Input: The initial stable state (a′, b), the new input a and the vector of excitations

among transients Ŝ(X, s) of a circuit.
Output: A list of k transients, one per each gate's output, describing the worst possible

switching activity during the transition a = a′ ◦ a.
1: h← 0;
2: a← a′ ◦ a;
3: s0 ← b;
4: repeat

5: h← h + 1;
6: sh ← Ŝ(a, sh−1);

7: until sh = sh−1;

8: return sh;

Example 4. Suppose that, in the situation of Example 3, the input changes from
a′ = (1, 0, 0) to a = (0, 1, 0), hence the transition 100 → 010 occurs. The ex-
ecution of the algorithm is summarised in Table 1, where each row represents
one iteration of the cycle and each column refers to one variable (both input
and state) of the circuit. The last two rows are identical, meaning that we have
reached a stable state again and the algorithm terminates. At each step, the algo-
rithm computes the whole vector of excitations of the circuit, hence considering
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all gates. However, it follows the behaviour of real-world signal propagation,
hence earlier gates (i.e. closer to circuit inputs) are a�ected �rst. Indeed the
�rst row just represents the initial state (when only inputs have changed), the
second one depicts a change in the �rst line of gates while in the third row sig-
nals propagate till the last XOR. Figure 3 is a graphical representation of the �nal
situation, which is the output of the algorithm without intermediate steps. Note
that the �nal logic situation can be retrieved from Table 1 by computing ω(s1),
ω(s2) and ω(s3) which are the correct (i.e. stable) Boolean outputs for inputs
ω(X1), ω(X2) and ω(X3).

Table 1. Example of a glitch-counting algorithm's execution

h X1 X2 X3 s1 s2 s3
0 10 01 0 0 0 0
1 10 01 0 010 01 0
2 10 01 0 010 01 0101
3 10 01 0 010 01 0101

Fig. 3. Example of a glitch-counting algorithm's execution

We conclude the present section with a theorem stating the asymptotic running-
time of the glitch-counting algorithm. The proof is extensively discussed by Br-
zozowski and Ésik [5] and is then omitted here.

Theorem 2 (Section 8 of [5]). Given a feedback-free circuit and a transition
of its inputs, the glitch-counting algorithm always terminates. Moreover, it runs
in O(m+ k2) time where m is the number of inputs and k the number of gates.

4 LP model

The glitch-counting algorithm was developed in the �rst place to prevent un-
necessary power consumption by discarding netlists being particularly exposed
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to glitches propagation [5]. Our main contribution is the LP (Leakage Path)
model, which is a mathematical abstraction that expands the functionalities of
the glitch-counting algorithm and relates its simulations to the notion of leak-
age. Our result leads to a tool that allows to evaluate if a circuit has a critical
leakage from the security point of view. The remaining of this section explains
the structure of the LP model, which is formed of the following mathematical
entities:

input variables are the only part of a circuit that can trigger a signal propa-
gation. If no input variable changes, no signal propagates and no power is
consumed, therefore no leakage exists according to our power model;

literal transients are sets of input variables. For each gate reached by a signal's
change, a literal transient contains which variables have caused the change
and could then be leaked;

literi�ers are the link between transients and leakage. Essentially, they relate
the input and output transients of a gate to the appropriate literal transient.

The general idea behind the above three objects is the following. The process
begins with a change in the input variables, which generates a signal propagation
inside the circuit and a�ects some gates. The gates are then supposed to produce
a new output based on the new inputs and their �nal result depends on which
variables have changed and how. In this framework, literi�ers are responsible to
retrieve the variables involved and represent them via literal transients.

4.1 Structure of LP model

We now describe in details each part of the LP model with respect to a single
gate. This means that when we talk of input variables, we mean the variables
that are directly given as inputs to it. Next subsection will proved a broader
view, showing how to apply notions for single gates to a whole circuit. Following
the same notation as the input variables of a circuit, we denote such variables
by Xj and by Xj if they are seen as transients; we assume that f : Zn

2 → Z2 is
the Boolean function implemented by the gate and we denote by f̂ : Tn → T
the corresponding function among transients.

As stated in the introduction of this section, input variables are of great
importance for both the glitch-counting algorithm, since nothing could be sim-
ulated without a change of theirs, and the LP model. In essence, they are the
objects our study targets as we aim at following their propagation along the
circuit.

De�nition 8. Given a gate with n inputs, namely X1, . . . , Xn, we call literal
transient any subset of {1, . . . , n}. The set of literal transients is denoted by
I = P({1, . . . , n}).

Literal transients are a generalisation of transients: instead of being �nite
alternated sequences of zeros and ones, they are �nite sets of input variables. In
a sense, they are the result we are looking for: the analysis of a circuit by means
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of the LP model consists in assigning a literal transient to each gate. Their utility
stems from the fact that they list which input variables are responsible for the
power consumption and could then be leaked according to our power model.
This is strictly connected with the rationale behind transients. In both cases
we assume the worst possible scenario: transients are supposed to switch as if
the worst possible combination of glitches occurred in the same way as literal
transients list all variables being leaked in the worst possible case. It is clear
from the above discussion that the core of the LP model is the way we assign
literal transients to gates.

Literi�ers are functions establishing which input variables are leaked by a
gate, i.e. the ones having caused a change in its output. They depend on how
the gate's inputs change, i.e. which transients enter in it, and on the implemented
logic.

First of all, we represent the input of a gate as the following vector of couples:

((t1, l1), . . . , (tn, ln)) ∈ (T × I)n.

We call it transient-variable representation: the �rst component of each couple
is a transient modelling how that input signal changes, while the second one is
a literal transient listing the input variables responsible for that change.

Example 5. Recalling Figs. 1 and 3, the gate computing s1 = 010 has the fol-
lowing input according to the transient-variable representation.

((10, {1}), (01, {2}))

In Example 5 we have assumed that the literal transient of a circuit's in-
put is just the singleton containing its index. As for now, the transient-variable
representation is directly possible only for gates at height 1, i.e. whose inputs
are inputs of the circuit itself. In that case each literal transient is simply the
singleton of a variable. In the next subsection we will show a procedure similar
to the glitch-counting algorithm to meaningfully apply literi�ers also to gates
whose inputs have already been processed. Such gates are said to have height
grater than 1. Informally speaking, the height of a gate is inductively de�ned
to be 1 if all its inputs are circuit inputs, and to be the maximum height of its
inputs plus one otherwise. We intentionally omit any further formalisation to
avoid heavy notations. As an example, in the circuit in Fig. 2 the AND and OR

gates are at height 1 and the XOR is at height 2.
When building the output of the function f̂ , Theorem 1 guarantees that the

described procedure yields a unique result. This means that, without loss of
generality, we can always assume a unique path in D(t) producing the output
of f̂ exists. Since a path is nothing more than a collection of edges, we denote
it by P ⊆ E. Note that considering P as a subset of E results in neglecting the
order of the vertices. Although this could be an issue with generic graphs, the
particular structure of E makes such a set representation unambiguous.

De�nition 9. Let f : Zn
2 → Z2 be the Boolean function implemented by a gate

and let D(t) be the graph used to compute f̂ on input ((t1, l1), . . . , (tn, ln)) ∈ (T×
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I)n. For every edge (v, w) ∈ E, we de�ne the edge-label function elab : E → I
as follows:

elab(v, w) = li

where i is such that vi �1 wi and vj = wj for every j 6= i.

Note that elab is well de�ned by de�nition of E. The de�nition of literi�er for
a single gate assuming its input is in transient-variable representation follows.

De�nition 10. The literi�er of a gate implementing a Boolean function f :
Zn
2 → Z2 is the function Lf : (T × I)n → I such that:

Lf ((t1, l1), . . . , (tn, ln)) =
⋃

(v,w)∈P

elab(v, w)

Recall that each edge of D(t) represents a change in one component of the
vector t = (t1, . . . , tn). For instance, let us assume that e ∈ P links two vertices
which di�er in the jth component. The edge-label function elab is �rstly used to
label e with the literal transient corresponding to the jth component, hence lj .
Once this is done for every edge in the path P , the literi�er returns the union of
the labels.

Example 6. Following Example 4, let us compute the literi�er LAND((10, {1}), (01, {2}))
associated to the gate computing s1. Figure 4 depicts a similar situation as in
Fig. 1 and the same discussion follows. In addition, we apply the edge-label
function elab to the edges in path P and compute the following literi�er.

LAND((10, {1}), (01, {2})) = {2} ∪ {1} = {1, 2}

Fig. 4. D(10, 01) and DAND(10, 01)

Remark 2. Similarly to Remark 1, the above is just a formal procedure to com-
pute literi�ers. Once f is known and �xed, more straightforward approaches are
possible. For instance, the following is the literi�er associated to a gate imple-
menting the Boolean function AND : Zn

2 → Z2:

LAND((t1, l1), . . . , (tn, ln)) =

∅ if ∃j ∈ {1, . . . , n} such that tj = 0⋃
j∈J

lj otherwise
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where J = {j ∈ {1, . . . , n} | `(tj) > 1}. Intuitively, the upper branch states
that if there exists one input which is the �xed 0, then the output will be the
�xed 0 no matter how other inputs change. Since the output is �xed, no power
is consumed and the set of leaked variables is empty. Otherwise, the union of
all literal transients corresponding to non-constant transients is returned. Since
we are in the second branch there is no constant 0 transient, which results in
the rule excluding only literal transients equal to the constant 1, as they do not
contribute to the switch activity of an AND gate. We refer to Appendix A for a
list of other compact de�nitions of literi�ers. As before, we stress that such a
simpli�cation has a positive impact on performance.

4.2 Application to circuits

We conclude this section by showing how to apply the LP model to a given
circuit with m inputs and k gates. For instance in Figs. 1 and 3, on one hand it
is immediate that the transient-variable representation of gate computing s1 is
the one shown in Example 5, but on the other it is less clear what it should be for
gates whose inputs are not the inputs of the circuit, e.g. for the one computing
s3.

We recall that we denote by X = (X1, . . . , Xm) the input variables and by
s = (s1, . . . , sk) the state variables of a circuit. Moreover we denote by Sj(X, s)
the Boolean function sj is computed by, which can depend on all input and state
variables except sj itself.

The idea is simply proceeding by height: the only gates we can directly com-
pute literi�ers for are those at height 1, since the input literal transients are just
singletons of input variables. Once all literi�ers at height 1 have been computed,
we can apply those at height 2: their input literal transients can be either sin-
gleton of input variables or outputs of gates at height 1. This procedure always
terminates as there are �nitely many gates and is well-de�ned as there are no
feedbacks.

Example 7. We conclude what Example 6 has begun by computing all literi�ers
of Example 4. The only other gate at height 1 is the one computing s2, for which
we have the following.

LOR((01, {2}), (0, {3})) = {2}

We now have all the information to compute the literi�er for the last gate.

LXOR((010, {1, 2}), (01, {2})) = {1, 2} ∪ {2} = {1, 2}

Compact de�nitions of LOR and LXOR, in the same fashion as in Remark 2, can
be found in Appendix A.

Figure 5 depicts the �nal outcome of the LP model applied to the circuit in
Fig. 2 during transition 100 → 010. Essentially, the LP model adds one literal
transient per gate to the output of the glitch-counting algorithm. They describe
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Fig. 5. Application of literi�ers to a circuit

which input variables cause a particular gate to switch and whose values could
then be leaked through the power consumption. Collecting such an information
for all transitions gives the designer a powerful tool to predict possible �aws. In
the next section we deepen this discussion while providing a real-world use case.

Final remarks. In the present subsection, we have shown how to practically
apply the LP model to the netlist of a circuit. Although the example we have
considered was trivial, the LP model is a formal tool to analyse netlists with
an arbitrary number of inputs and gates, where an ad hoc analysis would re-
quire much more e�ort. Once a netlist and an input transition are �xed, the
LP model provides a list of variables based on which a risk assessment in the
context of side-channel analysis is facilitate. As the next section will suggest,
a full analysis would require the LP model to run over every non-trivial input
transition, hence 22m − 2m times where m is the number of inputs and where
we have subtracted transitions from an input to itself as they clearly do not
produce any consumption in our power model. Such exponential requirement is
a drawback of our approach: a deeper insight will be given in Sec. 6. Also, it is
possible to reduce the number of transitions over which the LP model needs to
be run by developing heuristics speci�cally designed for a circuit. Finally, for a
�xed transition the overall complexity is asymptotically bounded by the running
time of the glitch-counting algorithm, described in Theorem 2.

5 Case of study: Keccak

The present section provides an application of the LP model to Keccak. We
show how to face the following issue thanks to our tool: an unprotected imple-
mentation of Keccak's non-linear layer is obviously susceptible to side-channel
attacks, but a possible 2-shares scheme is still weak in the �rst order because of
glitches. We formally show the validity of the latter statement while suggesting
a deeper insight on how to circumvent the issue without adopting more costly
countermeasures. The reason why we chose to adopt Keccak as our case of
study mainly relies on it being deployed in real-world applications while still
having a not too complex structure. It is then the ideal candidate for being a
test bench.
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Keccak is a family of sponge functions that uses a permutation from a
set of seven possible ones as a building block [2]. The permutations are de�ned
over a state s ∈ Zb

2 where b = 25 × 2` is called width of the permutation and
` ∈ {0, . . . , 6}. Each round is formed of �ve maps: three linear maps aiming
at di�usion and dispersion, one non-linear map aiming at confusion and one
addition with round constants. When it comes to implement sharing schemes,
linear maps can be directly applied to each share separately. By contrast, non-
linear maps need to handle every share to preserve correctness. Therefore we
focus on the only non-linear map of Keccak, namely χ : Z5

2 → Z5
2 acting on

groups of �ve bits of the state called rows. For a complete description of Keccak
we invite the reader to refer to the work of Bertoni et al. [2].

The map χ can be seen as the parallel application of �ve identical maps each
de�ned on three consecutive bits (modulo 5) of a row. Formally:

χi : ri ← ri ⊕ ri+1ri+2 (1)

where r ∈ Z5
2 denotes a row of the Keccak state and the index i is computed

modulo 5. For our analysis, it is important to note that the �ve instances of the
map χi : Z3

2 → Z2 are completely independent, they do not share gates in their
computation. As a result, we can focus on a speci�c χi without loss of generality.
The sharing scheme we adopt in our analysis is a 2-shares Boolean scheme, i.e.
each row is split in two shares a, b ∈ Z5

2 such that r = a ⊕ b [1]. Our results
can be easily generalised to many shares. In this setting, (1) can be masked as
follows:

ai ← ai ⊕ ai+1ai+2 ⊕ ai+1bi+2

bi ← bi ⊕ bi+1bi+2 ⊕ bi+1ai+2

(2)

where a straightforward computation shows that (2) are correct as (1) is simply
retrieved by XORing them. If the order of operations was kept �xed from left
to right, e.g. using software constraints, then the above sharing scheme would
be secure in the �rst order. However if (2) were implemented in hardware, such
condition could not be guaranteed, for instance because of glitches. This results
in possible vulnerabilities when the values ai+2 and bi+2 are involved in the
computation of the 3-inputs XOR at the same time, in one of the two branches.

As both the glitch-counting algorithm and the LP model work with netlists,
the �rst step in the analysis of (2) is to produce one. It can be easily seen that
the two branches are symmetric, hence we can focus only on the �rst without loss
of generality, i.e. the one computing ai. Figure 6 depicts its representation as an
hardware netlist, where the naming conventions presented at the beginning of
Subsec. 3.2 have been used. In particular, the input vector X = (X1, X2, X3, X4)
corresponds to (ai, bi+2, ai+1, ai+2).

Our analysis targets the netlist in Fig. 6 and proceeds as follows. First of all
an input transition is �xed among all the 28−24 = 240 non-trivial possible ones.
Then, the glitch-counting algorithm is applied as shown in Subsec. 3.2 and all
the transients are computed, one per gate. Table 2 reports the execution of the
glitch-counting algorithm for the input transition 0110→ 0001.
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Fig. 6. Netlist of χi for one share

Table 2. Glitch-counting algorithm's execution for the shared χi circuit

h X1 X2 X3 X3 s1 s2 s3 s4
0 0 10 10 01 1 0 0 1
1 0 10 10 01 10 01 0 1
2 0 10 10 01 10 01 01 10
3 0 10 10 01 10 01 01 101
4 0 10 10 01 10 01 01 101

At this point, suitable literi�ers can be applied as described in Subsec. 4.2,
hence starting from gates at height 1. In our example, this means computing the
literi�ers corresponding to s1 and s2 �rst, respectively an AND and NOT literi�ers.

LAND((10, {2}), (10, {3})) = {2} ∪ {3} = {2, 3}
LNOT(10, {3}) = {3}

There are two gates at height higher than 1: �rst we compute LAND for the gate
computing s3 and �nally LXOR is applied.

LAND((01, {3}), (01, {4})) = {3} ∪ {4} = {3, 4}
LXOR((0, {1}), (10, {2, 3}), (01, {3, 4})) = {2, 3} ∪ {3, 4} =

= {2, 3, 4}

We refer the reader to Appendix A for the de�nitions of LNOT and LXOR. Figure
7 summarises the execution of both the glitch-counting algorithm and of the LP
model for the transition 0110→ 0001.

To take the most out of the proposed method, a vulnerability de�nition based
on critical combinations of variables needs to be formulated. This is checked
among all the literal transients produced by the model, which has been run over
all possible non-trivial input transition.

In the speci�c case of Keccak, a natural vulnerability of the circuit in Fig.
6 arises when the two variables ai+2 and bi+2 are processed in the same moment
by the last XOR gate, as this could leak the value ai+2 ⊕ bi+2 = ri+2 which
is unshared. In our model, this translates to the existence of {2} and {4} in
the same literal transient corresponding to the XOR gate, since X2 and X4 are
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Fig. 7. Shared χi circuit after LP model

the input variables corresponding to ai+2 and bi+2. By running the model for
all the 28 − 24 non-trivial possible input transitions, we have found that 32
out of 240 match our vulnerability de�nition and could then lead to a critical
�rst order leakage. At this point, the designer possesses valuable information to
base security improvements on. In particular, leaving our gate-level abstraction,
the designer can carefully tune place-and-route paths in order to minimise the
occurrence and impact of those critical transitions. If such an operation is not
feasible, the designer still has a valid and sound criterion why to switch to an
higher number of shares (3 in the case of Keccak, since χ has degree 2). It is
important to note that further analyses, possibly by means of di�erent and �ner
vulnerability de�nitions, can be carried out without rerunning the whole model.

The sharing scheme we have analysed [1] has not gained much popularity
due to its weakness in the presence of glitches. However, our analysis is able to
capture more details: we can quantify and list all those transitions threatening
the security of unshared values. In this case a designer could just patch them
while being sure that all the others will never show a critical leakage of the �rst
order even in the presence of glitches. Since our aim was just to exemplify the
potentiality of our model, we consider the latter modi�cation as being out of
scope for the present work, but an interesting future direction towards sound
and lightweight countermeasures.

6 Computational e�ort and multi-output circuits

As we brie�y mentioned while justifying the choice of Keccak, its combinatorial
circuits are relatively simple and allow to verify the correctness of the proposed
method easily. Since our aim is not to �nd a speci�c method for Keccak but
a rather generic methodology, there are two further topics that need to be ad-
dressed: the computational complexity for a generic circuit and the applicability
of the method to multi-output combinatorial circuits.

The former topic has been partially addressed in Subsec. 3.2 for the glitch-
counting algorithm (Theorem 2) and in Subsec. 4.2 for the LP model. If we
refer to Keccak as a practical example and we think at an implementation
performing one round in one clock cycle, the target combinatorial circuit is the
concatenation of θ, one of the linear maps, and χ [2]. This combinatorial circuit
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can be seen as a circuit with 33 input bits and 1 output bit in the unprotected
version, while the protected version using two shares is a 44-inputs circuit [1].
As described in Subsec. 4.2 this would turn in computing the propagation of
glitches through k gates for each of the 22m − 2m non-trivial input transitions.
Considering that the computation can be parallelised and the evaluation of the
glitch-counting algorithm is not a very complex computation, we claim that the
method could be applicable for a circuit with 44 inputs but would require a well
optimized implementation.

Multi-output circuits are also a very interesting target. In such circuits there
are gates contributing to the computation of di�erent output bits. One approach
for tackling these circuits is to divide the circuit in n independent circuits with
single output, where n is the number of outputs of the initial combinatorial logic,
and apply the proposed method to each of them separately. Such approach could
however introduce an overhead as a single input might be used by more than
one sub-circuits. A further, more advanced solution for approaching multi-output
circuits and the computational e�ort when the number of inputs is large would
be the development of heuristic approaches as adopted by silicon compilers. We
see this as a future development. Finally note that there is nothing preventing
the model to be applied to multi-output circuits as it is, but it would be required
to develop meaningful vulnerability de�nitions based also on the cryptographic
algorithm. A similar discussion applies to high-order analysis. The LP model
can still be used but more sophisticated vulnerability de�nitions are needed to
interpret its results.

7 Conclusions

In their work, Brzozowski and Ésik [5] have developed a mathematical structure
to estimate the potential waste of power of a circuit due to glitches. Our �rst
contribution is the expansion of such framework to include a formal de�nition
of leakage. We have then de�ned a formal procedure to analyse circuits in the
context of side-channel analysis which take into account the e�ect of glitches
on the order of operations. Our work analyses only the combinatorial logic,
hence achieves a good level of generality since it is not touched by real-world
constraints. As a consequence, the LP model allows to retrieve how much a given
protection scheme can be a�ected by glitches, thus enabling a deep analysis.
Using the proposed methodology, a designer might explore alternative designs
for solving local problems of glitches instead of adopting more costly solutions.
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A Appendix

We report the compact de�nition of literi�ers for the most basic gates, namely
NOT, AND, OR and XOR, in the same fashion of Remark 2 of the main paper.

A.1 NOT

The idea is simple: if the input transient does not switch, so does the output
and then no power is consumed. Otherwise, the only possible literal transient is
returned.

LNOT(t, l) =

{
∅ if `(t) = 1

l otherwise

A.2 AND, OR

The AND literi�er has already been presented in the main paper in Remark 2 and
a completely similar discussion applies to the OR.

LAND((t1, l1), . . . , (tn, ln)) =

∅ if ∃j ∈ {1, . . . , n} such that tj = 0⋃
j∈J

lj otherwise

LOR((t1, l1), . . . , (tn, ln)) =

∅ if ∃j ∈ {1, . . . , n} such that tj = 1⋃
j∈J

lj otherwise

where J = {j ∈ {1, . . . , n} | `(tj) > 1}.

A.3 XOR

This case is slightly di�erent than the previous two, since a XOR gate switches
whenever at least one input switches. This restricts the cases in which LXOR

returns the empty set.

LXOR((t1, l1), . . . , (tn, ln)) =

∅ if ∀j ∈ {1, . . . , n}, `(tj) = 1⋃
j∈J

lj otherwise

where J = {j ∈ {1, . . . , n} | tj 6= 0}.
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