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Abstract
We give a new black-box transformation from any semantically secure encryption scheme into

a non-malleable one which has a better rate than the best previous work of Coretti et al. (TCC
2016-A). We achieve a better rate by departing from the “matrix encoding” methodology used
by previous constructions, and working directly with a single codeword. We also use a Shamir
secret-share packing technique to improve the rate of the underlying error-correcting code.

1 Introduction

Non-malleable encryption. The basic security requirement for public key encryption (PKE)
schemes, known as semantic security or IND-CPA (indistinguishability under chosen plaintext at-
tack), is that an eavesdropping adversary learns nothing about the plaintext underlying a commu-
nicated ciphertext (equivalently, cannot distinguish an encryption of one plaintext from another).
Often, however, this indistinguishability guarantee is not sufficient, and a PKE satisfying stronger
properties is required.

A strong level of PKE security which is sufficient for most applications, is indistinguishability
under chosen-ciphertext attacks (IND-CCA2), wherein the adversary may ask adaptive queries to
a decryption oracle (as long as it does not query the “challenge ciphertext” itself). Unfortunately,
the various known concrete (cf. [CS03, Wee12, HJ12, LPJY14, KW15, LPJY15, GHKW16]) and
generic (cf. [DDN00, CHK04, PW08]) constructions of IND-CCA2 secure encryption either rely
on specific number theoretic assumptions, or use seemingly stronger underlying assumptions than
IND-CPA secure encryption (e.g., non-interactive zero knowledge, identity-based encryption, or
lossy trapdoor functions). Notwithstanding a partial black-box separation result [GMM07], the
relationship between IND-CPA and IND-CCA2 security remains unresolved and, therefore, various
intermediate notions of security have been proposed and studied.

In this work, we consider the notion of non-malleability under chosen-plaintext attacks (NM-
CPA), initially put forward by Dolev, Dwork and Naor [DDN00]. Roughly, non-malleability requires
that it is infeasible for an adversary to modify a ciphertext into one, or many, other ciphertexts of
messages related to the original plaintext. It was shown by Bellare and Sahai [BS99] and by Pass,
shelat and Vaikuntanathan [PSV06] that NM-CPA is equivalent to security against adversaries with
access to a non-adaptive decryption oracle, meaning that the adversary can only ask one “parallel”
∗United States Naval Academy, choi@usna.edu
†University of Maryland, danadach@ece.umd.edu
‡Columbia University, tal@cs.columbia.edu
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Figure 1: The ciphertext lengths of various NM-CPA encryption schemes. The parameter k is the
security parameter, and n is the message length. We assume the underlying IND-CPA encryption
has a constant rate for messages of length Ω(k); encrypting o(k)-long messages with IND-CPA
encryption is assumed to be Θ(k)-long. HE denotes the hybrid encryption according to Herranz
et al. [HHK10]. Note that hybrid encryption doesn’t help reduce the ciphertext length for short
messages.

CCA2 decryption query. We also consider the notion of non-malleability under bounded-CCA2
attacks (NM-q-CCA2) [CHH+07], where we allow the adversary to adaptively query the decryption
oracle at most q times (in contrast, NM-CCA2 allows an unbounded number of queries, and is
equivalent to IND-CCA2 [DDN00]).

Besides being a “stepping stone” between semantically secure and CCA2 secure encryption,
non-malleability (or NM-CPA security) is an important notion in its own right. As one motivating
example, consider the use of PKE in auctions. Buyers place their bids for an item to a seller,
encrypted under the seller’s public key, and the seller sells the item to the buyer with the highest
bid. We certainly want to rule out adversaries who consistently bid exactly one dollar more than
the previous bidders.

Previous work on achieving NM-CPA from IND-CPA. Interestingly, although NM-CPA
appears closer to IND-CCA2 than IND-CPA security, a sequence of results (i.e., a non-black-box
construction by [PSV06] followed by a black-box construction by [CDMW08]) showed that NM-CPA
schemes (and even NM-q-CCA2 schemes) can be constructed from any IND-CPA scheme.

In a recent work, Coretti et al. [CDTV16] revisited the work of [CDMW08], and investigated
(among other results) the question of how efficient the black-box transformation can be. The
measure of efficiency they consider is the rate of the resulting NM-CPA encryption scheme, defined
as n

c(n) , where n is the message length and c(n) is the length of the corresponding ciphertext.
The transformation of [CDMW08] gives an n-bit NM-CPA scheme such that its encryption algo-

rithm calls the underlying n-bit IND-CPA scheme Θ(k2) times, where k is the security parameter.1
For example, assuming a constant-rate IND-CPA encryption, the transformation gives a Θ(k)-bit
NM-CPA scheme with the ciphertext length of Θ(k3).

Coretti et al. [CDTV16] give an improved transformation by replacing the error-correcting code
used in [CDMW08] with one having a better rate, although the transformation still invokes the
same number Θ(k2) of calls to the underlying IND-CPA encryption. In particular, this allows
Θ(k3)-bit ciphertexts to encrypt Θ(k2)-bit messages. See Figure 1 for more detailed comparison.

1In fact, according to [CDMW08], the number Θ(k2) of calls to IND-CPA encryption can be optimized to
Θ(k log2 k); to achieve a negligible soundness error, the scheme checks k random positions, but observe it’s enough
to check log2 k positions since we have 1/2log2 k ∈ neg(k). However, we choose to compare the results by using the
non-optimized O(k2) calls, following the presentation of Corretti et al. [CDTV16].
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1.1 Our Results

In this work, we give a black-box transformation from IND-CPA encryption to NM-CPA encryption
with better efficiency.

Conceptual contribution. Our main conceptual contribution is that we no longer follow the
framework of [DDN00] (and all subsequent constructions) of creating k encryptions of the same
message or codeword.

In particular, as we elaborate on in the next section, previous constructions rely on a “matrix
encoding” of the plaintext as a k × ` matrix of elements, where each row in the matrix is an
encoding of the plaintext message via an appropriate code (the message itself in [DDN00], or more
sophisticated encodings in subsequent works). The rows of the matrix are indexed by a one-time
signature, so we need at least k (security parameter) rows. It follows that using this methodology
incurs a ciphertext expansion of at least a factor of k, regardless of the underlying code used. In
this sense, [CDTV16] have achieved the best possible rate within this construction framework.

We depart from this “matrix encoding” methodology and work directly with a single codeword.
This allows us to achieve the first black-box transformation that invokes Θ(k) calls to the underlying
IND-CPA encryption algorithm; previous black-box constructions need Θ(k2) calls.

Main theorem (informal) There exists a (fully) black-box construction of a non-
malleable encryption scheme from any IND-CPA encryption scheme, in which the en-
cryption algorithm calls the underlying IND-CPA encryption algorithm Θ(k) times.

We also extend the theorem to provide a black-box construction of NM-q-CCA2 secure encryp-
tion [CHH+07] from any semantically secure encryption, calling the IND-CPA encryption algorithm
Θ(k + q) times.

NM-CPA encryption with a better rate. Applying the aforementioned transformation, we
achieve an NM-CPA encryption scheme with a better rate. For this, we use a Shamir secret-
share packing technique to improve the rate of the underlying error-correcting code to encode the
plaintext in the transformation. In particular, we achieve a constant-rate NM-CPA encryption for
messages of length Ω(k2). We compare our results with the previous work in Figure 1.

We note that one can achieve a better rate for long messages by using hybrid encryption. In
particular, Herranz et al. [HHK10] showed that NM-CPA KEM plus IND-CCA2 DEM implies NM-
CPA PKE. (For shorter messages, the ciphertext length is dominated by the KEM part of encrypting
the Θ(k)-long encapsulated key, since for the DEM part, we have a constant-rate IND-CCA2 secure
symmetric encryption scheme [BN08].) Even considering the hybrid encryption framework, our
scheme achieves better efficiency: Our scheme achieves a constant rate for messages of length
Ω(k2), rather than for messages of length Ω(k3) in the previous schemes.

Potential applications to other related work. The original techniques of [CDMW08] (in
particular, the properties of the matrix encoding scheme and its use for verifying consistency) have
been used implicitly or explicitly in several works for different purposes. For example, there have
been black-box constructions of non-malleable commitments [PW09], set intersection protocols from
homomorphic encryptions [DMRY09], and a CCA2-secure encryption scheme for strings starting
from one for bits [Ms09]. The works of [Wee10, LP12, KMO14, Kiy14] used these techniques in
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the context of black-box, round-efficient secure computation. The works of [GLOV12, GOSV14]
extended the ideas to provide consistency relations beyond equality using VSS and the paradigm
of MPC-in-the-head.

We hope that our improved efficiency, constant rate transformation can be used to improve
efficiency in some of these or other application domains. In fact, a very recent work [BDKM16]
has already used our results to construct their non-malleble codes resilient against local tampering
functions and bounded-depth circuits. Indeed, their results instantiated with the previous matrix
encoding techniques would yield non-malleable codes resilient against functions with locality up to
nc for some specific c < 1 (roughly c = 1/3). However, using our results as an ingredient, they were
able to achieve resilience against locality n1−ε for any constant ε < 1 (and even n

logn with inefficient
codes), and much better rate even in lower locality ranges.

2 Techniques

2.1 Overview of Previous Techniques

We begin with an overview of previous techniques of [DDN00, PSV06, CDMW08, CDTV16], which
we will refer to below as DDN, PSV, CDMW and CDTV, respectively. We focus on the details
that will be helpful towards understanding our techniques.

Non-black-box transformations by DDN and PSV. Let k be the security parameter. The
key generation algorithm generates 2k independent keys pkbi for i = 1, . . . , k, and b ∈ {0, 1} (and
the corresponding secret keys). Encryption of message m proceeds as follows:

(a) Generate a (vksig, sksig) pair for a one-time signature (where |vksig| = k).
(b) Generate k encryptions of the message m. In particular, use keys pkvksigi

i for i = 1, . . . , k for
encryptions.

(c) Give a non-interactive zero-knowledge proof (or the relaxed “designated verifier” version)
proving that all resulting ciphertexts are encryptions of the same message.

(d) Sign the entire bundle with a one-time signature.

It is in step (c) that a general NP-reduction is used, which in return makes the construction non-
black-box (and inefficient). In the proof of security, we exploit that fact that for a well-formed
ciphertext, we can recover the message if we know the secret key for any of the k encryptions.

Black-box transformations by CDMW. Let k be the security parameter, and let ` = O(k)
(or any superlogarithmic function in k). The key generation algorithm generates 2k` independent
keys pkbi,j for i = 1, . . . , k, j = 1, . . . , `, and b ∈ {0, 1} (and the corresponding secret keys). The
encryption algorithm utilizes a Reed-Solomon error correcting code with encoding algorithm E.
Now, the encryption algorithm has the following form:

(a) Generate a (vksig, sksig) pair for a one-time signature (where |vksig| = k).
(b) Obtain an encoding w of a message m by computing w ← E(m). Generate k encryptions of

the same codeword w, using ` public keys per each of the k encryptions in a way that we
explain below.
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(d) Sign the entire bundle with a one-time signature.

Obviously, the scheme should provide some mechanism for checking the consistency of k en-
cryptions, corresponding to step (c) in DDN and PSV (i.e., the non-interactive zero-knowledge
proof). That way, even if the simulated decryption in the proof of security decrypts any of the k
ciphertexts, the decryption should be correct with overwhelming probability. CDMW achieved this
by using a w consisting of ` elements, and encrypting each element with a different public key, for
a total of k` encryptions. The decryption algorithm checks consistency of the k encryptions of w
by checking consistency of a random subset of columns (where the randomness is determined by its
secret key). Then, the decryption algorithm decrypts and error-corrects the first row, and checks
that in that same subset of locations, this codeword is not corrupted. If both these column-check
and codeword-check pass, output the decoded message.

We next describe the details of how the above outline is implemented, and the intuition behind
its security and parameter choices. Recall that a Reed-Solomon (RS) codeword consisting of `
output symbols is simply a polynomial p of degree d = O(`) over a finite field, evaluated at `
points (say 1, . . . , `). The way CDMW encode a message m is via Shamir secret-sharing, which
can be viewed as an instantiation of a RS code. Specifically, set p(0) = m, choose the values of
p(1), . . . , p(d) at random, and interpolate to obtain the unique degree d polynomial p. Let the final
encoding w ← E(m) consist of w1 = p(1), . . . , w` = p(`). The encryptions now proceed as follows:

Construct a k × ` matrix M , where Mi,j = wj and k is the number of bits in vksig =
vksig1, . . . ,vksigk. Each entry of Mi,j is then encrypted under a one of two public
keys (pk0

i,j ,pk1
i,j), depending on whether vksigi is 0 or 1.

In the actual decryption algorithm, the first row of the encrypted matrix is always decrypted
and decoded, whereas in the security proof, the decrypted row will be chosen based on which secret
keys are available to the reduction, and it is ensured that in each submitted ciphertext there is
some row for which the reduction knows all the secret keys. The key challenge is to ensure that
decrypting and decoding any one of the k rows of the encrypted matrix will yield the same message
m̃ (possibly ⊥) as the decrypting and decoding the first row. This is where the “column check”
and “codeword check” come in. In the column check, we decrypt a random subset of t = O(`)
columns, and check that all the entries in each of these columns are the same; the random subset
is chosen in key generation and embedded into the private key. Intuitively, this ensures that the
encoding in each row is “close” to the encoding in the first row. In the codeword check, we decrypt
and decode the first row and then check the resulting codeword against the received word in the
first row. Specifically, we check that t = O(`) random positions of the first row (the same ones
that were opened during the column check) agree with the corresponding t positions in the decoded
codeword. Intuitively, this is a type of a cut-and-choose check which ensures that the encoding
in the first row is “close” to a valid codeword. If either of the checks fails, we output ⊥. Put
together, the two checks ensure that with overwhelming probability, all rows must decode to the
same message (or to ⊥), and thus provide the desired consistency.

The reason CDMW needs ` to be superlogarithmic, is that for the codeword check, we need the
number of random positions t = O(`) to satisfy 2−t = negl(k) so that a codeword that is far from
valid will pass the check with negligible probability. Thus, the RS code used for each row is not
constant rate.
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More efficient black-box transformation by CDTV. The general insight of CDTV (and
also the full version of CDMW [CDMW16]) is that the above construction can be generalized
to work for a larger class of encoding schemes E, beyond just Reed-Solomon codes. Specifically,
Coretti et al. [CDTV16] note that using a LECSS (linear error-correcting secret sharing scheme) is
sufficient [CG14, CDD+15], whereas [CDMW16] introduced a notion of reconstructable probabilistic
encoding scheme (building on [DGR99]). Using these insights, the above works were able to replace
the RS code described above with a constant-rate encoding scheme (for long enough messages).
Specifically, each row with ` elements can in fact encode a message of length O(`) elements, resulting
in a constant rate code for each row (while still maintaining k rows).

2.2 Our Techniques

Our encryption scheme also utilizes reconstructable probabilistic encoding (RPE) schemes. RPE
schemes are, informally, error-correcting codes with additional secrecy and reconstruction proper-
ties. The secrecy property guarantees that the symbols at any not-too-large subset of positions
in the codeword are distributed uniformly and independently of the encoded message. The recon-
struction property says that furthermore, any assignment of symbols to such a subset of positions,
can be completed to a (correctly distributed) codeword for any given message. The parameter
regime we will be interested in is the standard one, where the error-correction is with respect to a
constant fraction of errors, and the secrecy and reconstruction are also with respect to a (smaller)
constant fraction of positions.

From k encryptions to a single encryption. Our first technical contribution is identifying
a property of RPE schemes and showing how it can be leveraged to eliminate the need for the
“repetition” encoding in previous works. The property we use is that error-correction and decoding
can be performed given any large enough (constant-fraction) sized subset λ · ` of positions of the
corrupted codeword (here 0 < λ < 1 is a constant). We call this property the “decoding from
partial views” property. Crucially, we would like this property to hold in a strong way, so that for
any such subset, we always decode to the same codeword/message (possibly ⊥), even for arbitrarily
corrupt codewords, with overwhelming probability (taken over the random choice of the secret key).

We have already discussed a similar property as underlying, at least implicitly, the previous
works relying on matrix encoding. However, in those works the property applied to decoding from
any one of the k rows (which constitute a repetition code), and was unrelated to the use of RPE for
the encoding within each row. Our novel observation is that in fact a similar property can apply
directly to RPE (with appropriate parameters). A single RPE codeword could then allow decoding
from any partial view subset, and by correctly adapting a codeword check and another layer of
(standard) encoding on the signature, we can achieve the strong version guaranteeing consistency
with overwhelming probability.

Thus, encryption of a message m proceeds as follows:

(a) Generate a (vksig, sksig) pair for a one-time signature.
(b) Let E be the encoding algorithm of a RPE with the output length `. Let C be a linear code

with relative distance λ < 1, encoding the length-k vksig to a length-` string (note that C
does not have to be efficiently error correctable). Set ~s← E(m), where ~s is a vector of length
`. Let v1 · · · v` be the output of C(vksig). For j = 1, . . . , `, encrypt each entry sj under
public key pkvjj , yielding a vector of ciphertexts.
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(c) Sign the entire bundle with a one-time signature.

In the actual decryption algorithm, the first λ · ` positions of the ciphertext vector are always
decrypted and decoded, whereas in the security proof, a specific subset of size λ · ` will be chosen
based on which secret keys are available to the reduction. In the proof, we use the fact that, due to
unforgeability of the signature scheme, the vksig for each submitted ciphertext must be different
than the vksig of the challenge ciphertext, and the fact that C has distance λ · ` to ensure that
there is always some sufficiently large subset for which the reduction knows all the secret keys.

To ensure that decoding any of subset of size λ · ` positions yields the same message m̃ as
the first subset (or both will give ⊥), we require an analogue of the codeword check only (but no
column check). As before, in the codeword check we compare the codeword obtained by decrypting
and decoding the first λ · ` positions with the received word. Specifically, we check that t random
positions throughout the entire received word agree with the corresponding t positions in the
decoded codeword.

Constant-rate RPE. Our second contribution is to show that the above framework is imple-
mentable with a constant rate RPE: we show that using Reed-Solomon codes or packed Shamir
secret sharing yields a constant rate RPE with appropriate parameters. Compared with the Reed-
Solomon based encodings used by [CDMW08] for k rows, here our encoding has a single row (of
length a constant times larger), and a longer message is encoded in each codeword via the packing
technique [FY92]. That is, the polynomial is taken to be of a larger degree, and the message is
encoded in several evaluation points of the polynomial.

3 Preliminaries and Definitions

We use [n] to denote {1, 2, . . . , n}. If A is a probabilistic polynomial time (hereafter, ppt) algorithm
that runs on input x, A(x) denotes the random variable according to the distribution of the output
of A on input x. We denote by A(x; r) the output of A on input x and random coins r. Compu-
tational indistinguishability between two ensembles A and B is denoted by A c≈ B, and statistical
indistinguishability between two distributions A and B is denoted by A s≈ B.

Distance of two strings. Given two strings v, w of length ` over an alphabet Σ, we say that v
and w are δ-far if they disagree in more than δ · ` positions, where 0 ≤ δ ≤ 1; we say that v and w
are δ-close if they agree in more than δ · ` positions.

3.1 Semantically Secure Encryption

Definition 1 (Encryption scheme). A triple (Gen,Enc,Dec) is an encryption scheme, if Gen and
Enc are ppt algorithms and Dec is a deterministic polynomial-time algorithm which satisfies the
following property:

Correctness. There exists a negligible function µ(·) such that for all sufficiently large k,
we have that with probability 1−µ(k) over (pk, sk)← Gen(1k): for all m, Pr[Decsk(Encpk(m)) =
m] = 1.
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Definition 2 (Semantic security). Let Π = (Gen,Enc,Dec) be an encryption scheme and let the
random variable INDb(Π, A, k), where b ∈ {0, 1}, A = (A1, A2) are ppt algorithms and k ∈ N,
denote the result of the following probabilistic experiment:

INDb(Π, A, k) :
(pk, sk)← Gen(1k)
(m0,m1, stateA)← A1(pk) s.t. |m0| = |m1|
y ← Encpk(mb)
D ← A2(y, stateA)
Output D

(Gen,Enc,Dec) is indistinguishable under a chosen-plaintext (CPA) attack, or semantically secure, if for
any ppt algorithms A = (A1, A2) the following two ensembles are computationally indistinguishable:{

IND0(Π, A, k)
}
k∈N

c≈
{

IND1(Π, A, k)
}
k∈N

It follows from a straight-forward hybrid argument that semantic security implies indistinguisha-
bility of multiple encryptions under independently chosen keys:

Proposition 1. Let Π = (Gen,Enc,Dec) be a semantically secure encryption scheme and let the
random variable mINDb(Π, A, k, `), where b ∈ {0, 1}, A = (A1, A2) are ppt algorithms and k ∈ N,
denote the result of the following probabilistic experiment:

mINDb(Π, A, k, `) :
For i = 1, . . . , `: (pki, ski)← Gen(1k)
(〈m1

0, . . . ,m
`
0〉, 〈m1

1, . . . ,m
`
1〉, stateA)← A1(〈pk1, . . . ,pk`〉)

s.t. |m1
0| = |m1

1| = · · · = |m`
0| = |m`

1|
For i = 1, . . . , `: yi ← Encpki(mi

b)
D ← A2(y1, . . . , y`, stateA)
Output D

then for any ppt algorithms A = (A1, A2) and for any polynomial p(k) the following two ensembles
are computationally indistinguishable:{

mIND0(Π, A, k, p(k))
}
k∈N

c≈
{

mIND1(Π, A, k, p(k))
}
k∈N

3.2 Non-malleable Encryption

Definition 3 (Non-malleable encryption [PSV06]). Let Π = (Gen,Enc,Dec) be an encryption
scheme and let the random variable NMEb(Π, A, k, `) where b ∈ {0, 1}, A = (A1, A2) are ppt algo-
rithms and k, ` ∈ N denote the result of the following probabilistic experiment:

NMEb(Π, A, k, `) :
(pk, sk)← Gen(1k)
(m0,m1, stateA)← A1(pk) s.t. |m0| = |m1|
y ← Encpk(mb)
(ψ1, . . . , ψ`)← A2(y, stateA)

Output (d1, . . . , d`) where di =
{
⊥ if ψi = y

Decsk(ψi) otherwise
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(Gen,Enc,Dec) is non-malleable under a chosen plaintext (CPA) attack if for any ppt algorithms
A = (A1, A2) and for any polynomial p(k), the following two ensembles are computationally indis-
tinguishable: {

NME0(Π, A, k, p(k))
}
k∈N

c≈
{

NME1(Π, A, k, p(k))
}
k∈N

It was shown in [PSV06] that an encryption that is non-malleable (under Definition 3) remains
non-malleable even if the adversary A2 receives several encryptions under many different public
keys (the formal experiment is the analogue of mIND for non-malleability).

3.3 Bounded-CCA2 Non-Malleability

The definition of Bounded-CCA2 Non-Malleability is almost identical to the definition of Non-
Malleability except here, we allow the adversary to query Dec at most q times in the non-malleability
experiment (but it must not query Dec on the challenge ciphertext).
Definition 4 (Bounded-CCA2 non-malleable encryption [CHH+07]). Let Π = (Gen,Enc,Dec) be
an encryption scheme and let the random variable NME-q-CCAb(Π, A, k, `) where b ∈ {0, 1}, A =
(A1, A2) are ppt algorithms and k, ` ∈ N denote the result of the following probabilistic experiment:

NME-q-CCAb(Π, A, k, `) :
(pk, sk)← Gen(1k)
(m0,m1, stateA)← AO1

1 (pk) s.t. |m0| = |m1|
y ← Encpk(mb)
(ψ1, . . . , ψ`)← AO2

2 (y, stateA)

Output (d1, . . . , d`) where di =
{
⊥ if ψi = y

Decsk(ψi) otherwise

(Gen,Enc,Dec) is non-malleable under a bounded-CCA2 attack for a function q(k) : N→ N if ∀ ppt
algorithms A = (A1, A2) which make q(k) total queries to the oracles and for any polynomial p(k),
the following two ensembles are computationally indistinguishable:{

NME-q-CCA0(Π, A, k, p(k))
}
k∈N

c≈
{

NME-q-CCA1(Π, A, k, p(k))
}
k∈N

The oracle O1 = Decsk(·) is the decryption oracle. O2 = Decysk(·) is the decryption oracle except
that O2 returns ⊥ when queried on y.

3.4 (Strong) One-Time Signature Schemes

Informally, a (strong) one-time signature scheme (GenSig,Sign,VerSig) is an existentially unforge-
able signature scheme, with the restriction that the signer signs at most one message with any key.
This means that an efficient adversary, upon seeing a signature on a message m of his choice, cannot
generate a valid signature on a different message, or a different valid signature on the same message
m. Such schemes can be constructed in a black-box way from one-way functions [Rom90, Lam79],
and thus from any semantically secure encryption scheme (Gen,Enc,Dec) using black-box access
only to Gen.

In this paper, signature/verification key pairs are sometimes represented as strings over a non-
binary alphabet; this technique has also been used in [RS10]. This augmented version can simply
be cast into the version over the binary alphabet, by trivially encoding such keys into a binary
string.
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4 Reconstructable Probabilistic Encoding Scheme (RPE)

4.1 RPE Definition

We assume that the readers are familiar with basic notions of error correcting codes, including
linear codes and Reed-Solomon codes. We define a reconstructable probabilistic encoding (RPE)
below. The secrecy property of an RPE implies that short partial codewords are not bound to
any message. The reconstruction property implies that one can later bind such a short partial
codeword to any target message and create the whole consistent codeword. Jumping ahead, this
reconstruction procedure will be used to create two different messages sharing the same partial
codeword in the reduction step of the proof.

There are several parameters in RPE schemes. A message is represented as a binary string, and
the parameter n specifies the length of a message (in bits). A codeword is represented as a string
over alphabet Σ, and the parameter ` specifies the length of a codeword in the codeword space.
The parameter δ is used to specify the relative distance between codewords. The parameter t is
used to specify a threshold to determine whether a partial codeword is short; every codeword of
length at most t is considered short.

Definition 5 (Reconstructable probabilistic encoding). We say a triple (E,D,R) is a reconstructable
probabilistic encoding scheme with parameters (n, `, δ, t,Σ), where n, `, t ∈ N, 0 < δ < 1, and Σ is
an alphabet, if it satisfies the following properties:

1. Error correction. E : {0, 1}n → Σ` is an efficient probabilistic procedure, which maps a
message m ∈ {0, 1}n to a distribution over Σ`. If we let W denote the support of E, any two
strings in W are δ-far. Moreover, D is an efficient procedure that given any w′ ∈ Σ` that is
(1− δ/2)-close to some string w in W, outputs w along with a consistent m.

2. Secrecy of short partial codewords. For all m ∈ {0, 1}n and all sets S ⊂ [`] of size t, the
projection of E(m) onto the coordinates in S, as denoted by E(m)|S, is identically distributed
to the uniform distribution over Σt.

3. Reconstruction from short partial codewords. R is an efficient procedure that given
any set S ⊂ [`] of size t, any (α1, . . . , αt) ∈ Σt, and any m ∈ {0, 1}n, samples from the
distribution E(m) with the constraint E(m)|S = (α1, . . . , αt).

We note that similar properties have been exploited already in the early work on secure multi-
party computation of Ben-Or, Goldwasser, and Wigderson [BGW88], with encoding via low-degree
polynomials (or Reed-Solomon codes or Shamir secret sharing with Berlekamp-Welch correction).
The above notion of RPE was explicitly defined in [CDMW16], extending a definition given by
Decatur, Goldreich, and Ron [DGR99], who only required error-correction and secrecy, but not
reconstruction.

4.2 Decoding from Partial Views

The following property will be useful for our construction of non-malleable encryption. Informally,
the following lemma states that for any RPE as above, given a sufficiently large “partial view”
(i.e. subset of positions), decoding with error correction can be successfully performed on this
partial view.
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Lemma 1. Let (E,D,R) be a reconstructable probabilistic encoding scheme with parameters (n, `, δ, t,Σ)
then

Let λ := (1 − δ/4), δ′ := δ/2. For any set S ∈ [`] with size s := λ · ` and given any
w′ ∈ Σs that is (1 − δ′/2)-close to w|S for some string w in W, there is an efficient
procedure D′(S,w′) that outputs w along with a consistent m.

Proof. Let S = {i1, . . . , is}, where s = λ · `. The decoding from partial views procedure D′(S,w′)
does the following. Define the string w̃ = w̃1, . . . , w̃` ∈ Σ` in the following way: For j ∈ [s], w̃ij := w′j
and for v ∈ [`] \ S, w̃v = σ, where σ is an arbitrary symbol in Σ. Note that if w′ is (1− δ′/2)-close
to w|S for some string w in W, then w̃ is (1− δ/2)-close to w for some string w in W. Therefore,
running the regular decode procedure, D(w̃) is guaranteed to output (w,m), where w ∈ W is the
corrected codeword, and m is the original message.

4.3 RPE from Reed-Solomon Codes

In this section, we construct such a constant-rate RPE scheme with a RS (Reed-Solomon) code
and packed secret-sharing [FY92]. We note this is a simple construction; similar constructions were
given in different contexts.

Construction 1. (RS-based RPE)
For any n, t, γ ∈ N, and for any δ with 0 < δ < 1, we construct an RPE scheme with parameters

(n, `, δ, t,Σ) where ` = d t+u1−δ e with u = dn/γe and Σ = GF(2γ).
We implicitly associate a string m ∈ {0, 1}n with a vector (m1,m2, . . . ,mu) where each mi ∈

GF(2γ); an integer i with 0 ≤ i < 2γ will also be implicitly encoded into a field element in GF(2γ).
We construct an RPE scheme (E,D,R) as follows:

• E(m): Let d = t+u− 1. Choose a random degree-d polynomial q over Σ such that q(`+ 1) =
m1, . . . , q(`+ u) = mu and output w = (q(1), q(2), . . . , q(`)).
• D(w′): Decode w′ using the Berlekamp-Welch algorithm and output (w,m), where w is the

corrected codeword, and m is the original message.
• R(S, (α1, . . . , αt),m): Let S = {i1, . . . , it}. Determine the degree-d polynomial q such that
q(i1) = α1, . . . , q(it) = αt and q(`+ 1) = m1, . . . , q(`+ u) = mu. Output (q(1), . . . , q(`)).

Error correction property holds since we simply use the Reed-Solomon codeW in encoding and
decoding, where

W = { (q(1), . . . , q(`)) | q is a degree-d polynomial }.

Note that W is a code over the alphabet Σ with minimum relative distance is `−d+1
` > δ, which

means we may efficiently correct up to δ/2 fraction errors. Secrecy and reconstruction properties
hold since the codeword (q(1), . . . , q(`)) is a (t + u)-out-of-` secret-sharing of m using Shamir’s
secret-sharing scheme, and (α1, . . . , αt,m1, . . . ,mu) allows the reconstruction of the (one and only)
degree-d polynomial.

Decoding from partial views with better parameters. By using the property of Reed-
Solomon codes, we can obtain a better parameters in terms of decoding from partial views.
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Lemma 2. Let (E,D,R) be an RPE scheme with parameters (n, `, δ, t,Σ), according to Construc-
tion 1. Then for any set V ⊆ [`] with size s = λ` such that t + u < s ≤ ` and for any w′ ∈ Σs

that is (1− δ′/2)-close to w|V for some string w in W, where δ′ = s−(t+u−1)
s , there is an efficient

procedure D′(V,w′) that outputs w along with a consistent m.

Proof. Let V = {i1, . . . , is}. Then,

W ′ = { (q(i1), . . . , q(is)) | q is a degree-d polynomial }

forms another Reed-Solomon code, where d = t+ u− 1. Note that W ′ is a code over the alphabet
GF(2γ) with minimum relative distance is s−d+1

s > δ′, which means we can decode w′ using the
Berlekamp-Welch algorithm, correcting up to δ′/2 fraction errors.

Example instantiation 1. By applying Construction 1 with δ = 0.9 and γ = n, we obtain an
RPE with parameters (n, 10t, 0.9, t,GF(2n)). According to Lemma 2 with λ = 0.3, the scheme can
decode a partial codeword of length 3t, correcting up to δ′/2 = 1/3 fraction errors.

Example instantiation 2 (constant-rate RPE). By applying Construction 1 with δ = 0.9
and γ = n/t, we obtain an RPE with parameters (n, 20t, 0.9, t,GF(2γ)) with rate 0.05. According
to Lemma 2 with λ = 0.3, the scheme can decode a partial codeword of length 6t, correcting up to
δ′/2 = 1/3 fraction errors.

5 Non-malleable Encryption from Semantically Secure One

5.1 Generic Construction Using Any RPE

Given a semantically secure encryption scheme (Gen,Enc,Dec) and a RPE, we construct a non-
malleable encryption scheme Π = (NMGenGen,NMEncGen,Enc,NMDecGen,Dec), summarized in Figure
2 and described as follows.

Key generation. Let k be the security parameter. Let (E,D,R) be an RPE scheme with param-
eters (n, `, δ, t,Σ) and let λ and δ′ be the parameter associated with decoding the partial views. In
addition, set t = k.

The public key contains an error correcting code C : Γt → Γ` with the distance λ`, where Γ is
an appropriately chosen finite alphabet in order to satisfy the distance condition. Let g = |Γ| and
we will implicitly associated Γ = [g]. We note this technique was used in [RS10]. In addition, there
are g · ` public keys from Gen indexed by a triplet (j, b) ∈ [`]× [g], that is, {pkbj | (j, b) ∈ [`]× [g]}.

The secret key contains the decryption keys skbjs and a random subset S of [`] with size t to be
used in decryption for consistency checks (described below).

Encryption. Encryption of a message m ∈ {0, 1}n proceeds as follows:

1. Generate (sksig,vksig) for a one-time signature where vksig ∈ Γt, and compute (v1, . . . , v`)←
C(vksig).
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Let (Gen,Enc,Dec) be an encryption scheme, (GenSig, Sign,VerSig) be a strong one-time signature scheme, and
(E,D,R) be a reconstructable probabilistic encoding scheme with parameters (n, `, δ, t,Σ). Moreover, let λ and
δ′ be the parameters associated with decoding the partial views.

Setting the RPE parameter t: To achieve NM-CPA, set t = k and to achieve NM-q-CCA2, set t = a(k + q(k)),
where a is a constant such that

(
1− λδ′

2

)a
≤ 1

2 .

NMGen(1k):

1. Choose an error correcting code C : Γt → Γ` with the distance λ`, where Γ is an appropriately chosen
finite alphabet to satisfy the distance condition. Let g = |Γ|, and we will implicitly associate Γ with [g].

2. For j ∈ [`], b ∈ [g], run Gen(1k) to generate key-pairs (pkbj , skbj).
3. Pick a random subset S ⊂ [`] of size t.

4. Set pk =
(
C, {pkbj | j ∈ [`], b ∈ [g]}

)
and sk =

(
S, {skbj | j ∈ [λ`] ∪ S, b ∈ [g]}

)
.

NMEncpk(m):

1. Run GenSig(1k) to generate (sksig,vksig). Parse vksig as an element vksig ∈ Γt. Let C(vksig) :=
(v1, . . . , v`), where v1, . . . , v` ∈ Γ`.

2. Compute (s1, . . . , s`)← E(m), where m ∈ {0, 1}n. Compute the ciphertext cj ← Encpk
vj
j

(sj), for j ∈ [`].

3. Compute the signature σ ← Signsksig(~c) where ~c = (c1, . . . , c`).
4. Output the tuple [~c,vksig, σ].

NMDecsk([~c,vksig, σ]):

1. (sig-check) Verify the signature with VerSigvksig[~c, σ].
2. (decoding-check) Let ~c = (cj) and (v1, . . . , v`) = C(vksig). For j ∈ [λ`], compute sj = Decsk

vj
j

(cj).

Compute ((w1, . . . , w`),m)← D′([λ`], (s1, . . . , sλ`)). If the decoding fails or (w1, . . . , wλ`) is δ′

2 -far from
(s1, . . . , sλ`), then output ⊥.

3. (codeword-check) Compute sj = Dec
sk

vj
j

(cj) for all j ∈ S. Check that sj = wj .

4. If all the checks accept, output the message m corresponding to the codeword w; else, output ⊥.

Figure 2: The Non-Malleable Encryption Scheme Π
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2. Compute (s1, . . . , s`)← E(m) and compute `-long vector ~c = (c1, . . . , c`) of ciphertexts where
cj = Encpk

vj
j

(sj):

~c =
(
Encpkv1

1
(s1),Encpkv2

2
(s2), . . . ,Encpkv`

`
(s`)

)
3. Create a signature σ on ~c using sksig. The ciphertext is [vksig,~c, σ].

Decryption. To decrypt, we verify the signature and perform consistency checks. A valid cipher-
text in Π is an encryption of a codeword in W. We want to design consistency checks that reject
ciphertexts that are “far” from being valid ciphertexts under Π. For simplicity, we will describe
the consistency checks as applied to the underlying vector of plaintexts. The checks depend on a
random subset S of t columns chosen during key generation.

decoding-check: Let I = {1, . . . , λ`}. We find a codeword w such that w|I is (1 − δ′

2 )-close to
the first λ` elements of the vector (s1, . . . , s`); the check fails if no such w exists. Recall that
according to Lemma 1, it can correct up to δ′/2 fraction errors of (s1, . . . , sλ`).

codeword-check: We check that the vector (s1, . . . , s`) agrees with w at the positions indexed by
S.

Finally, if all the checks accept, decode the codeword w and output the result; otherwise output ⊥.
We note that we only need a partial set of the decryption keys, in particular for I and S, in

order to achieve the decryption procedure.

5.2 Using Construction 1 for RPE.

By plugging RS-based RPE in Construction 1, using parameters (n, 20k, 0.9, k,GF(2n/k)), into the
above generic NM-CPA construction, we obtain an NM-CPA encryption scheme for messages of
length ω(k). The underlying IND-CPA scheme encrypts an element of GF(2n/k), and there are
20k of them in the overall NM-CPA ciphertext; if the underlying IND-CPA encryption is constant
rate, the overall NM-CPA also achieves a constant rate. We give a self-contained description when
n = ω(k) in Figure 3. Note we can use the binary alphabet for the error correcting code C, since it
has a small relative distance of λ = 0.3.

When the message is of length O(k), we can instantiate an NM-CPA encryption scheme by
using an RPE with parameters (n, 10k, 0.9, k,GF(2n)). Note the overall NM-CPA ciphertext length
becomes Θ(k2). The underlying IND-CPA scheme encrypts an element of GF(2n), and there are
10k of them in the overall NM-CPA ciphertext.

6 Analysis

Theorem 1. If (Gen,Enc,Dec) is a semantically secure PKE, then the PKE scheme Π described
in Figure 2 is non-malleable under a chosen plaintext attack.

6.1 Proof of Main Theorem

In the hybrid argument, we consider the following variants of NMEb as applied to Π, where vksig∗
denotes the verification key in the ciphertext y = NMEncpk(mb):
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Let (Gen,Enc,Dec) be an IND-CPA encryption scheme, (GenSig, Sign,VerSig) be a strong one-time signature
scheme.
NMGen(1k):

1. Choose an error correcting code C : {0, 1}k → {0, 1}20k with the distance 6k.
2. For j ∈ [20k], b ∈ {0, 1}, run Gen(1k) to generate key-pairs (pkbj , skbj).
3. Pick a random subset S ⊂ [20k] of size k.

4. Set pk =
(
C, {pkbj | j ∈ [20k], b ∈ {0, 1}}

)
and sk =

(
S, {skbj | j ∈ [6k] ∪ S, b ∈ {0, 1}}

)
.

NMEncpk(m) with m ∈ {0, 1}n:

1. Run GenSig(1k) to generate (sksig,vksig). Parse vksig as an element vksig ∈ {0, 1}k. Let C(vksig) :=
(v1, . . . , v20k), where v1, . . . , v20k ∈ {0, 1}20k.

2. Parse m as (m1, . . . ,mk) over GF(2γ), where γ = dn/ke. Choose a random polynomial p of degree 2k−1
over GF(2γ) such that p(20k + 1) = m1, . . . , p(20k + k) = mk. Let (s1, . . . , s20k) = (p(1), . . . , p(20k)).

3. For j ∈ [20k], compute the ciphertext cj ← Encpk
vj
j

(sj).

4. Compute σ ← Signsksig(~c) where ~c = (c1, . . . , c20k), and output [~c,vksig, σ].

NMDecsk([~c,vksig, σ]):

1. (sig-check) Verify the signature with VerSigvksig[~c, σ].
2. (decoding-check) Let ~c = (cj) and (v1, . . . , v20k) = C(vksig). For j ∈ [6k], compute sj = Decsk

vj
j

(cj).
Apply the Berlekamp-Welch algorithm to (s1, . . . , s6k) to recover a degree (2k − 1) polynomial p; if
it fails, output ⊥. Otherwise, let (m1, . . . ,mk) = (p(20k + 1), . . . , p(20k + k)) and (w1, . . . , w20k) be
(p(1), . . . , p(20k)).

3. (codeword-check) Compute sj = Dec
sk

vj
j

(cj) for all j ∈ S. Check that sj = wj .

4. If all the checks accept, output the message m; otherwise output ⊥.

Figure 3: NP-CPA PKE with message length of ω(k) using RS-based RPE

Experiment NME(1)
b : NME(1)

b proceeds exactly like NMEb, except we replace sig-check in
NMDec with sig-check∗:

(sig-check∗) Verify the signature with VerSigvksig[~c, σ]. Output ⊥ if the signature fails
to verify or if vksig = vksig∗.

Experiment NME(2)
b : NME(2)

b proceeds exactly like NME(1)
b except we replace NMDec with NMDec∗:

NMDec∗sk([~c,vksig, σ]):

1. (sig-check∗) Verify the signature with VerSigvksig[~c, σ]. Output ⊥ if the signature
fails to verify or if vksig = vksig∗.

2. (decoding-check∗) Let ~c = (cj) and C(vksig) = (v1, . . . , v`). LetX = (x1, . . . , xλ`)
be the smallest distinct values such that vxi 6= v∗xi . Note there must be these values
since C is an encoding with minimum distance λ. Compute sxi = Decsk

vxi
xi

(cxi),
i = 1, . . . , λ`. Compute w = (w1, . . . , w`) ∈ W such that (wx1 , . . . , wxλ`) is least
(1− δ′

2 )-close to (sx1 , . . . , sxλ`) by running D′(X, (sx1 , . . . , sxλ`)) based on the prop-
erty of decoding from the partial view. If no such codeword exists, output ⊥.
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3. (codeword-check∗) For all j ∈ S, check that Decsk
vj
j

(cj) = wj .

If all the checks accept, output the message m corresponding to the codeword w; else,
output ⊥.

Claim 1. For b ∈ {0, 1}, we have
{

NMEb(Π, A, k, p(k))
}

c≈
{

NME(1)
b (Π, A, k, p(k))

}
Proof. This follows readily from the security of the signature scheme.

Claim 2. For b ∈ {0, 1}, we have
{

NME(1)
b (Π, A, k, p(k))

}
s≈
{

NME(2)
b (Π, A, k, p(k))

}
Proof. We will show that both distributions are statistically close for all possible coin tosses in both
experiments (specifically, those of NMGen, A and NMEnc) except for the choice of S in NMGen. Once
we fix all the coin tosses apart from the choice of S, the output (ψ1, . . . , ψp(k)) of A2 are completely
determined and identical in both experiments NME(1)

b and NME(2)
b .

Recall the guarantees we would like from NMDec and NMDec∗:

• On input a ciphertext that is an encryption of a message m under Π, both NMDec and
NMDec∗ will output m with probability 1.
• On input a ciphertext that is “close” to an encryption of a message m under Π, both NMDec

and NMDec∗ will output m with the same probability (the exact probability is immaterial)
and ⊥ otherwise.
• On input a ciphertext that is “far” from any encryption, then both NMDec and NMDec∗

output ⊥ with high probability.

To quantify and establish these guarantees, we consider the following promise problem (ΠY ,ΠN )
that again refers to the underlying vector of plaintexts. An instance is a vector of ` entries each of
which lies in {0, 1}n ∪ ⊥.

ΠY (yes instances) — for some w ∈ W, the instance equals w.

ΠN (no instances) — either the first λ` elements of the instance is δ′/2-far from the first λ`
elements of every codeword in W or the entire instance is λδ′

2 -far from every codeword in W.

Valid encryptions correspond to the yes instances, while no instances will correspond to “far”
ciphertexts. To analyze the success probability of an adversary, we examine each ciphertext ψ it
outputs with some underlying vector ~M of plaintexts (which may be a yes or a no instance or
neither) and show that both NMDec and NMDec∗ agree on ψ with high probability. To facilitate
the analysis, we consider two cases:

• If ~M ∈ ΠN , then it fails the codeword checks in both decryption algorithms with high prob-
ability, in which case both decryption algorithms output ⊥.
Specifically, if the first λ` elements of ~M is δ′/2-far from the first λ` elements of every
codeword in W then the decoding check in NMDec rejects ~M with probability 1. Moreover,
being δ′/2-far from the first λ` elements for every codeword implies that ~M have at least
(δ′/2) · λ` different positions, where c is some constant. Therefore, the codeword check in
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NMDec∗ rejects ~M with probability at least 1 −
(
1− δ′λ

2

)t
, since the condition implies that

~M is δ′λ
2 -far from every codeword. From Lemma 1, both δ′ and λ are constant, and therefore

with overwhelming probability in t, NMDec∗ will reject ~M as well.
On the other hand, if ~M is λδ′/2-far from every codeword, both codeword checks in NMDec
and NMDec∗ rejects ~M with probability 1− (1− δ′λ

2 )t

Therefore, both NMDec and NMDec∗ reject ~M with with probability at least 1−2 · (1− δ′λ
2 )t.

• If ~M /∈ ΠN , then both decryption algorithms always output the same answer for all choices
of the set S, provided there is no forgery. Fix ~M /∈ ΠN and a set S. Note that the decoding
check in both NMDec and NMDec∗ will be successful. This is because ~M is (1−λδ′/2)-close to
w, and there are at most (λδ′/2) · ` erroneous positions compared with some codeword in W.
This implies that any λ` elements of ~M has at most (λδ′/2)·`

λ` = δ′

2 fraction error. Moreover,
the codeword check is the same in both NMDec and NMDec∗. As such, both decryption
algorithms output ⊥ with exactly the same probability, and whenever they do not output ⊥,
they output the same message m.

From the above analysis, the two hybrids are statistically close.

Claim 3. For every ppt machine A, there exists a ppt machine B such that for b ∈ {0, 1},{
NME(2)

b (Π, A, k, p(k))
}
≡
{

mINDb(E,B, k, `− t)
}

Proof. The machine B is constructed as follows: B participates in the experiment mINDb (the
“outside”) while internally simulating A = (A1, A2) in the experiment NME(2)

b .

• (pre-processing) Pick a random subset S = {u1, . . . , ut} of [`]. Choose an ECC C, and run
GenSig(1k) to generate (sksig∗,vksig∗) and set (v∗1, . . . , v∗` ) = C(vksig∗). Let φ : {j | j ∈
[`] \ S} → [`− t] be a bijection.

• (key generation) B receives 〈pk1, . . . ,pk`−t〉 from the outside and simulates NMGen as follows:
for all j ∈ [`], β ∈ [g],

(pkβj , skβj ) =
{

(pkφ(j),⊥) if β = v∗j and j /∈ S
Gen(1k) otherwise

• (message selection) Let (m0,m1) be the pair of messages A1 returns. B chooses (α1, . . . , αt)←
Σt uniformly at random and then computes

(w0
1, . . . , w

0
` )← R(S, (α1, . . . , αt),m0), (w1

1, . . . , w
1
` )← R(S, (α1, . . . , αt),m1).

Recall that R is the reconstruction algorithm of the underlying RPE scheme. For j ∈ S, let
γj = w0

j = w1
j .

B forwards (〈m0
1, . . . ,m

0
`−t〉, 〈m1

1, . . . ,m
1
`−t〉) to the outside, where mb

φ(j) = wbj , for j ∈ [`] \S.
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• (ciphertext generation) B receives 〈y1, . . . , y`−t〉 from the outside (according to the distribu-
tion Encpk1(mb

1), . . . ,Encpk`−t(mb
`−t)) and generates a ciphertext [~c,vksig∗, σ] as follows:

ci,j =


yφ(j) if j /∈ S
Enc

pk
v∗
j
j

(γj) otherwise

B then computes the signature σ ← Signsksig∗(~c) and forwards [~c,vksig∗, σ] to A2. It is
straight-forward to verify that [~c,vksig∗, σ] is indeed a random encryption of mb under Π.

• (decryption) Upon receiving a sequence of ciphertexts (ψ1, . . . , ψp(k)) from A2, B decrypts
these ciphertexts using NMDec∗ as in NME(2)

b . Note that to simulate NMDec∗, it suffices for
B to possess the secret keys {skβj | β 6= v∗j or j ∈ S}, which B generated by itself.

Combining the three claims, we conclude that for every ppt adversary A, there is a ppt adversary
B such that for b ∈ {0, 1},{

NMEb(Π, A, k, p(k))
}

c≈
{

NME(1)
b (Π, A, k, p(k))

}
s≈
{

NME(2)
b (Π, A, k, p(k))

}
≡
{

mINDb(E,B, k, `− t)
}

Due to semantic security of the underlying encryption scheme, we have mIND0(E,B, k, ` − t) c≈
mIND1(E,B, k, `− t), which concludes the proof.

7 Achieving Bounded-CCA2 Non-Malleability

We describe how our scheme may be modified to achieve non-malleability under a bounded-CCA2
attack. Recall that, informally, an encryption scheme is non-malleable against a q-bounded CCA2
attack if the adversary is allowed to query Dec adaptively at most q(k) times in the non-malleable
experiment. Our modification is the straight-forward analogue of the [CHH+07] modification of the
[PSV06] scheme: We change the parameter (n, `, δ, t,Σ) of the underlying RPE scheme such that
t = a(̇k + q(k)), where a is a constant such that

(
1− λδ′

2

)a
≤ 1

2 . See Figure 2 for more details.
We analyze security of the encryption scheme using the similar hybrid argument. We define the

following hybrid experiments as before.

• Experiment NME-q-CCA(1)
b : This experiment proceeds exactly like NME-q-CCAb, except we

replace sig-check in NMDec with sig-check∗ as described in Section 6.

• Experiment NME-q-CCA(2)
b : This experiment proceeds exactly like NME-q-CCA(1)

b except we
replace NMDec with NMDec∗ as described in Section 6.

We note that
{

NME-q-CCAb(Π, A, k, p(k))
}

and
{

NME-q-CCA(1)
b (Π, A, k, p(k))

}
are computa-

tionally indistinguishable for each b ∈ {0, 1}, which can be argued based on security of the signature
scheme as in Claim 1. Moreover,

{
NME-q-CCA(2)

b (Π, A, k, p(k))
}

and
{

mINDb(E,B, k, ` − t)
}

are
identically distributed for each b ∈ {0, 1}, which can be shown using the reduction in the proof of
Claim 3. (Recall that the value p(k) in the various NME-q-CCA experiments corresponds to the
number of (mauled) ciphertexts that the adversary would come up with, after given the challenge
ciphertext.) Therefore, we are only left to show the following claim to conclude the analysis.
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Claim 4. For b ∈ {0, 1}, we have{
NME-q-CCA(1)

b (Π, A, k, p(k))
}

s≈
{

NME-q-CCA(2)
b (Π, A, k, p(k))

}
Proof. Let q = q(k) and for a ciphertext c, let ~Mc denote the underlying plaintext matrix of c.

As before, we will show that both distributions are statistically close for all possible coin tosses
in both experiments (specifically, those of NMGen, A and NMEnc) except for the choice of S in
NMGen. Fix all the coin tosses apart from the choice of S. Here, however, unlike the case of chosen
plaintext attacks, we cannot immediately deduce that the outputs of A2 in both experiments are
completely determined and identical, since they depend on the adaptively chosen queries to NMDec,
and the answers depend on S. Still, the choice of S only affects whether the consistency checks
accept or not; therefore, for each query, the number of possible responses of NMDec/NMDec∗ is at
most two (since we fixed all the coin tosses except S). Moreover, if a query c is such that ~Mc ∈ ΠN ,
NMDec and NMDec∗ will both give only one response of ⊥ with overwhelming probability, according
to the analysis in Claim 2.

This leads us to consider a binary tree of depth q that corresponds informally to “unrolling” the q
adaptive queries thatAmakes to NMDec/NMDec∗ in the experiments NME-q-CCA(1)

b /NME-q-CCA(2)
b .

The root node of the tree corresponds to the first query A makes to NMDec/NMDec∗, and each
edge from a node to its child is labeled with the answer of NMDec/NMDec∗ to the node’s query.
In particular, the tree is inductively built as follows:

• When Amakes a query c with ~Mc ∈ ΠN , we only consider the computation path corresponding
to NMDec/NMDec∗ responding with ⊥.
• When A makes a query c with ~Mc 6∈ ΠN , we consider two computation paths, that is, one

case of NMDec/NMDec∗ responding with a valid decryption (in which case the value returned
is independent of S) and the other case of responding with ⊥.
• The query at an internal node (except the root) corresponds to the query that A makes when

following the computation path from the root to the node while NMDec/NMDec∗’s answers
correspond to the labels of the edges in the path. Each leaf node contains p(k) ciphertexts
output by A at the end of the experiment.

Observe that the construction of the computation tree is completely deterministic and independent
of the choice of S. Moreover, since NMDec and NMDec∗ behave identically for queries c with
~Mc 6∈ ΠN as shown in Claim 2, the computation tree is NME-q-CCA(1)

b is identical to that in
NME-q-CCA(2)

b . Note also that A makes at most q adaptive queries to NMDec, and therefore the
total number of ciphertexts in the tree is at most 2q+1p(k). The claim follows from combining the
following two observations:

• Let good(S) be an event in which given the choice S, for every ciphertext c in the tree such
that ~Mc ∈ ΠN , both NMDec and NMDec∗ output ⊥. We have

Pr
S

[good(S)] ≥ 1− 2 · (2q+1p(k)) · (1− λ · δ′/2)t ≥ 1− 2 · (2q+1p(k)) · (1/2)k+q = 1− negl(k).

This follows from a union bound over these ciphertexts in the tree and the analysis in Claim 2.
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• For every S such that good(S) is true, the outputs in both experiments are the same. This
follows readily by induction on the queries made by A, and using the fact both NMDec and
NMDec∗ always output the same answer for any ~M 6∈ ΠN as explained in the analysis in
Claim 2.
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