
Survey of Approaches for Security Verification of
Hardware/Software Systems

Onur Demir1, Wenjie Xiong2, Faisal Zaghloul2, Jakub Szefer2

1 Yeditepe Üniversitesi, Istanbul, Turkey
odemir@cse.yeditepe.edu.tr

2 Yale University, New Haven, CT, USA
{wenjie.xiong, faisal.zaghloul, jakub.szefer}@yale.edu

Abstract

Variety of computing systems have been proposed to provide protection for sensi-
tive code or data through hardware or software mechanisms. This paper surveys
the landscape of security verification approaches and techniques for hardware/-
software systems at different levels: from a software-application level all the way
to the physical hardware level. Different existing projects are compared, based
on the tools used and security aspects being examined. Since many systems re-
quire both hardware and software components to work together to provide the
system’s promised security protections, it is no longer sufficient to verify the soft-
ware levels or the hardware levels in a mutually exclusive fashion. This survey
highlights common sets of system levels that are verified by the different existing
projects and presents to the readers the state of the art in hardware security ver-
ification. Few approaches come close to providing full-system verification, and
there is still much room for improvement. In this survey, readers will gain in-
sights into existing approaches in formal modeling and security verification of
hardware/software systems, and gain insights for future research directions.

1 Introduction

News articles and opinion pieces by top security researchers constantly remind
us that as computing becomes more pervasive, security vulnerabilities are more
likely to translate into real-world disasters [124]. In order to promote information
security, many hardware/software mechanisms have been designed. However, if
the designs are not perfect, they are vulnerable to attackers, resulting in the
failure of protection. Formal methods provide the possibility of ruling out every
security vulnerability in the designed system. Formal methods have been used
in the functional verification of hardware and software for a long time. Recently,
the use of formal methods for security verification of both the hardware and the
software of a system has emerged as an important research topic.

Since the security of the systems depends on the correctness of the protections
that both the hardware and software components provide, there is the need to
verify the security of both the software and, especially, the hardware components

at design time. Unlike software, hardware is almost impossible to patch once it
is fabricated. The lack of formal verification may leave some vulnerabilities in
the designed system. For example, Intel’s Core 2 Duo processor family is known
to have 129 bugs [68]. The number of known bugs illustrates the limitations
of the existing verification approaches; and these do not even consider security
yet. This has motivated researchers to look into the verification of the security
properties of these systems at design time, and into developing new methods for
the security verification of hardware/software systems, as outlined in this survey.

There is a lack of familiarity with verification tools among researchers and
academics working on hardware/software security architectures. This results in
designs that are only tested with certain security property test cases, which
may not be exhaustive, and architectures whose security properties lack formal
specifications. Many hardware/software “secure architectures” have also been
designed which provide enhanced security features in hardware, but most, if not
all, of these designs do not come with a formal proof of security properties. In
academia, many secure architectures have been designed [91, 135, 74, 83, 43, 26,
70, 136, 145]. The absence of formal verification of the security of system ar-
chitectures may be one reason why industry has been very slow to adopt the
academic research in this field. Nonetheless, a number of designs from processor
vendors also provide some hardware features for security, e.g. ARM TrustZone
[140], Intel SGX [100], and most recently AMD Memory Encryption [4]. These
designs all rely on the implicit assumption that the hardware is correct. The in-
dustry designs we know about do not have any publicly available formal security
guarantees nor specifications.

In this survey, we compare projects that consider both hardware and software
and use formal methods to verify the security of computer systems. We show
the state of the art in security verification of hardware/software and lower the
barrier to entry into this field for interested researchers.

1.1 Software and Hardware System Levels Considered in
Verification Process

A system is typically composed of multiple hardware and software levels, as
shown in Figure 1. The typical software levels in a computer system are: Applica-
tion, Operating System, and Hypervisor. These levels represent typical software
levels for a commodity processor. The typical hardware levels in a computer
system, as shown in Figure 1 are: ISA (Instruction Set Architecture), Microar-
chitecture, RTL (Register Transfer Level), Gate, and Physical.

Traditionally, upper levels depend on the lower levels for functionality and
security. A guest OS relies on the hypervisor to provide isolation from other
malicious guests; a secure operating system cannot protect information leakage
if the underlying hardware has a backdoor. Meanwhile, an ISA requires a mi-
croarchitecture that implements it, a microarchitecture requires an RTL that
implements it, and so forth. The relationship is not strictly linear in that up-
per level always depends on all lower levels. The verification process needs to
consider which levels are important for system verification. Some of the secure

hardware/software systems have introduced hardware or instructions that allow
higher levels to be protected from intermediate levels. For example, in Bastion
[26]applications are able to communicate with the hypervisor bypassing the OS,
while in HyperWall [136] a virtual machine can bypass the hypervisor, and the
hardware provides some of the basic memory management functionality.

Application

Operating System

Hypervisor

ISA

Microarchitecture

RTL

Gate

Physical

Software
Levels

Hardware
Levels

VeroCoq, Cassion,

Sapper, SecVerilog

XOM
Micro Policies

Cache Verification

Moat, Ironclad Apps

Verve
SecVisor

XMHF, Minvisor

CertiKOS

seL4

Fig. 1. Hardware and software levels found in a typical commodity computing system.
The verification projects surveyed in this work focus typically on one or more levels.
Broadly, projects either focus on spanning multiple software levels, or hardware levels;
some projects can span both software and hardware levels. Tables 2 and 3 at the end
of the survey present summary of the projects and the levels they cover.

The software and hardware levels needed for correct operation constitute the
trusted computing base (TCB) which contains all the software and hardware
that need to be trusted (although may not be trustworthy). The TCB should be
verified for security to make it truly trustworthy. A number of software security
verification work has focused on the software levels only, assuming the hardware
is trusted and correct [47]. Only more recently, researchers started looking at
security verification that considers both hardware and software levels, as outlined
in this survey. Effectively, TCB consists of some components in some levels, and
verification tools and methods should include all the levels in TCB. Figure 1 on
the right side shows the various surveyed projects and the different system levels
that their security verification covers. The details of these projects are given
in Sections 4 and 5, which highlight the different system levels each project
considers for security verification.

1.2 Survey Outline

The remainder of the survey is structured as follows. Section 2 discusses various
security properties that designers want to prove about their systems. Section 3
discusses various tools used for security verification. Section 4 presents survey
of hardware focused works. Section 5 presents survey of software focused works.
Section 6 summarizes our findings. Section 7 concludes the survey.

2 Overview of Security Properties

Security verification of a system makes sense in a context where the system
explicitly claims to provide some security guarantees, and where there exists a
Trusted Computing Base (TCB) upon which those security guarantees depend.
The TCB is comprised of one or more layers previously shown in Figure 1. As
these layers work together to implement the system operation, they need to be
verified. The key security properties are discussed below.

2.1 Confidentiality, Integrity, and Availability

There are typically three major security properties that we consider when ana-
lyzing a system: confidentiality, integrity, and availability [82].

– “Confidentiality is the prevention of the disclosure of secret or sensitive in-
formation to unauthorized users or entities.”

– “Integrity is the prevention of unauthorized modification of protected infor-
mation without detection.”

– “Availability is the provision of services and systems to legitimate users when
requested or needed.”

From a security perspective, confidentiality, integrity, and availability assume
a sophisticated attacker who attempts to maximize their chance of breaking the
system. Security verification assumes that reliability, i.e. protection from random
faults or errors, is already provided by the system, and focuses instead on the
deliberate attacks by a smart adversary.

Of the three properties, confidentiality and integrity are provided more com-
monly. Availability is not often considered in the surveyed papers, as it is difficult
to provide and prove; an attacker can simply turn off the power, disable network
connections, or use a plethora of other methods make the system unreachable.
If a system is not available, it does not disclose any information to the attacker,
nor does it allow information to be modified; the system is just unusable. Thus,
availability is rarely proved as a part of security verification for a single system
– availability can be achieved through a mixture replication, distribution, and
power failover.

2.2 Non-interference

Non-interference is a property that typically refers to how low-security entities
interact with high-security entities. The interference between these entities is
analyzed to confirm that the low-security entity should not be able to observe
any differences in its own behavior, or the behavior of the system, in response to,
or as a byproduct of, a high-security entity processing sensitive or non-sensitive
inputs. The high-security entity, however, may observe differences in the behavior
of system or the low-security entity. Non-interference essentially means that
information about the operation of the “secure” entity does not leak to the
“insecure” entity. Non-interference can be used to verify confidentiality, when a
system is partitioned into isolated entities such as low/high, secret/public etc.

2.3 Isolation

The isolation property is closely related to non-interference, and typically deals
with the separation of two entities which are considered equal (i.e. the isolation of
two virtual machines from each other). Through isolation, one component should
not be able to affect integrity or confidentiality of another component. Isolation
is often considered as part of functional verification, but in such scenarios only
data isolation is considered. The timing information observations are typically
added if isolation is to be proved as a part of security verification.

2.4 Information Flow

Information flow is actually both a security property and also a technique used in
verification. The information flow property refers to the transfer of information
between different entities. Information flow can be explicit, e.g. a = b where data
or information in b is moved to a; or it can be implicit, e.g. b = 0; if(a) then b =
1; where the value of b reflects whether a is true, but there was never a direct
assignment, or copying of data, from a to b. Again, typically when discussing
information flow there is a low-security entity that interacts with a high-security
entity. A system could have a desired property such as “there is no information
flow between the components x and y” or “component x’s file z is never accessible
by component y”. Information flow can happen through data or through timing
information.

2.5 Type and Memory Safety

Type and memory safety are software-centric properties. Type safety is a pro-
gramming language level property which ensures that data may only be copied
between variables of same type. Meanwhile, memory safety deals with how mem-
ory is accessed, and prevents errors such as buffer overflow. Type and memory
safety focus on correctness of the program or system itself, by proving these
properties it can be ensured that bugs cannot be easily exploited in the pro-
gram, since bugs could lead to confidentiality or integrity breaches.

2.6 Memory Integrity, and Execution and Code Integrity

Note that memory integrity and memory safety are two different concepts. As
explained above, memory safety is a software development concept. However,
memory integrity requires hardware mechanisms as well. As explained above, in-
tegrity prevents unauthorized modification of protected data. Memory integrity
treats the whole memory or a part of memory such as a set of virtual machines,
processes, or parts thereof, as protected data. The unauthorized modification
of these areas is prohibited. Execution and code integrity is a special subset of
memory integrity where the code segment, of a process or a virtual machine,
and the data associated with it are treated as protected.

3 General Tools and Mechanisms

This section presents a background on the different tools, mechanisms, and ap-
proaches typically needed to check security guarantees, which we discussed in the
previous section. The general flow of the security verification process is shown
at a high level in Figure 2. The starting point is the actual system, either an al-
ready existing system or a design of some new system whose security properties
need to be verified. From the actual system, or design, a representation of the
system needs to be obtained in the verification tools, (a) in Figure 2. In paral-
lel, the security properties of the system need to be specified, (b) in Figure 2.
The security properties are closely tied to the system’s assumed threat model.
The security properties can be specified separately or together within the repre-
sentation of the system, in which case (a) and (b) would be done together. The
final step is the actual verification process which takes the system representation
and security properties as input, and returns whether the verification passed or
failed, (c) in Figure 2. If the verification fails, the design needs to be updated
and re-evaluated, (d) in Figure 2.

Actual System

System
Representation

Security
Properties

Formal
Verification

(a) (b)

(c)

(d)

Threat
Model

Fig. 2. General procedure for security verification.

3.1 System Representation

In order to check if a system complies with some properties, we need a repre-
sentation of the system that expresses the behavior of the system accurately.
Ideally, the actual system description can be used, such as the source hardware
description language (HDL) code for hardware components, or a programming
language source code for software components. Otherwise, a model in the ver-
ification tool is needed. One reason a model may be needed is that the way a
system is described in HDL or programming language may not be compatible
with the verification tool that is being used, or the way the system is described
is too complex for the verification process to handle.

Hardware components can be described with Hardware Description Lan-
guages (HDLs). The most popular HDLs are Verilog [138] and VHDL [93].
Recently, a new tier of HDLs is emerging that feature more high-level abstrac-
tions and reusability than circuit-level HDLs. This new generation of HDLs is
called Hardware Generation Languages (HGLs) [95], including Chisel [7], BluS-
pec [109], and Genesis2 [128]. There are some attempts to link hardware and
circuit system representation methods with security-property specification to-
wards security verification, which we will present in Section 4.

Software components can be described by their high-level implementation
in programming languages such as C, C++, or Java. There are also ongo-
ing efforts to integrate design processes and system specification with security-
property specification and including verification information inside programming
languages as annotations. Examples include TAL [33] and Dafny [85].

Alternatively, some tools require a model of the system based on its original
description. For example, this survey later discusses VeriCoq which is a tool that
can be used to translate (annotated) Verilog code to code understood by Coq
verification tools. If automated method of creating a model is not available, then
model has to be created manually by engineers. However, when creating models
manually, proving the correspondence between the model and the actual system
is an open research problem.

Formal verification is done with respect to a system representation, as de-
scribed above. Most projects assume a trusted compiler or tool chain such that
the system realization indeed matches the system representation, and does not
contain extra hidden, or unwanted, functionality that may compromise the se-
curity of the system. For example, after verifying the C code of an application,
there is still a concern that the compiler may not generate the correct machine
code from the C code. A malevolent compiler might insert malicious code into
the binary, as demonstrated in [139], where a virus-infected compiler as able
to inject back-doors into applications during compilation. A number of projects
include “trusted” compilers that are guaranteed not to inject behavior that was
not specified. One example of such a compiler is CompCert [87] which is a certi-
fied compiler that generates binaries from Coq code. All surveyed work assumes
trusted toolchains.

3.2 Security Properties

In Section 2, we listed the security properties that designers may be interested in
checking. Depending on the verification mechanism, either deductive mechanism
or algorithmic mechanism in Section 3.3 and 3.4, the security properties are
represented in the corresponding verification tools. In deductive mechanisms,
the security properties can be represented in terms of logical formula. A logical
formula serves as a constraint on the states the system is allowed throughout
its execution. Some specialized forms of logic are used to express the relations
between the states of the system. In algorithmic mechanisms security properties
can be expressed as invariants within a system, and their validity is checked
against all possible execution paths.

3.3 Formal Verification via Deductive Mechanisms

When using deductive mechanisms, verification is achieved by deducing prop-
erties from a system representation. Theorem provers fall in this category. The
key element in deductive mechanisms is a proof. Deductive mechanisms use for-
mal proofs to verify that a system complies with some given properties. Security
verification can be done using theorem provers in a number of ways as outlined
in [112]:

– General Property Verification – For security verification by theorem proving,
a security property can be represented in an theorem prover by a type T ,
which is similar to types in programming languages. Type T represents all
the systems that have the given specific security property. For example, a
type can be used to represent the non-interference property. If system P can
be proved to be of type T , then the system is verified. Otherwise, it means
that the system does not comply with the given properties of type T and
needs to be redesigned. In this approach, any system that can be represented
as P can undergo same verification.

– Individual Verification – In a different approach, the system P can be treated
individually. In this case, there is no need to define security properties as
types. One can express the desired property directly, e.g. ”the program P
complies with the security property A”, as mathematical statements in a
theorem prover. If this statement is proved to be true in the theorem prover,
then the system passes the verification. Otherwise, the system is redesigned
accordingly. There is a lot of effort needed for this type of proofs, and the
method is not general.

The above approaches can be realized with the help of a number of theorem
provers. Theorem provers (also referred to as proof assistants) aid the verifica-
tion process by providing frameworks for creating a mathematical model of the
system, for specifying the security properties, and for formally proving whether
the model complies with the properties or not. Theorem provers are generally
composed of a language (such as Coq), and an environment for describing the

proofs (such as CoqIDE). There is a number of proof assistants used actively in
academia and industry such as: Coq [14], Isabelle/HOL [110], PVS (Prototype
Verification System) [111], ACL2 (A Computational Logic for Applicative Com-
mon Lisp) [71], and Twelf (LF) [55]. Theorem proving typically requires a lot
of effort and time to complete, and learning the required tools is seen as one of
the difficult aspects of verification using theorem provers. In the following para-
graphs we will introduce different theorem provers and give examples on their
usage in functional and security verification.

Coq [14] is based on higher-order typed lambda calculus which is referred to
as Calculus of Constructions. Coq is composed of two parts: the Coq language
and the environment. In the first part, there is a Coq language in which the
primitive functions, definitions, types, and sorts (types of types) are defined. Coq
language is also used to define new objects, functions, propositions, and proofs.
It is implemented in ML which is a functional programming language [103]. The
second part contains an environment for designing theorems and proofs (CoqIDE
or Emac’s Proof General) with some support for extensible notations, tactics for
proof automation, and support libraries. Coq’s logical deduction system follows
Curry-Howard isomorphism which is a direct relationship between programming
and mathematical proofs.

Isabelle/HOL [110] is a theorem prover based on higher-order logic. It is a
branch of Isabelle [113] which is a more generic theorem prover that is also used
to express logical formalisms. Isabelle/HOL has been used to verify a number
of systems. Most noteably, it was used for functionally verifying the seL4 [75]
operating system, the Java compiler [133], verifying high level C applications
[122] and many others [20, 6, 84, 37, 38]. Isabelle/HOL is also implemented in
ML.

ACL2 (A Computational Logic for Applicative Common Lisp) [71] is theorem
prover based on first-order logic. It consists of a language and a theorem prover.
ACL2 language is a variation of Common LISP [72]. There are many examples
of ACL2’s usage in industry. In [52] the authors used ACL2 for the security
verification of a security policy within the Rockwell Collins AAMP7 separation
kernel. Other examples fall in functional verification category as in [107], [119],
[118].

Twelf is a proof assistant which uses LF (The Edinburgh Logical Frame-
work) logic [55]. LF is based on a general treatment of syntax, rules, and proofs
by means of a typed-calculus with dependent types. Twelf consists of a logic
programming interpreter, a reasoning environment, and a module system [114],
[125]. Several research projects have been using Twelf for verification. In [33],
Twelf was used to verify the soundness of typed assembly language. In [81], it is
used to verify Standard ML.

Other interactive theorem provers exist which we could not all list above.
[144] describes 17 interactive theorem provers and demonstrate how a theorem
can be proved in each tool. The interactive theorem provers listed in their paper
are HOL [49], Mizar [50], PVS [111], Coq [67], Otter/Ivy [99], Isabelle/Isar [143],

Alfa/Agda [54], ACL2 [71], PhoX [137], IMPS [45], Metamath [102], Theorema
[23], Lego [96], Nuprl [76], Ωmega [11], B-method [1], and Minlog [126].

Pen-and-Paper Proofs Although theorem provers are mostly used for prov-
ing security properties, manually proving security properties with pen and paper
is still a method used by developers. Some projects such as Sapper [88], Cais-
son [89], and SecVerilog [148] in Section 4 use pen-and-paper proofs. In these
projects, a new language is built. The system representation and security prop-
erty specifications are written in the new language, and translated into Verilog.
The designers proved on paper that the translation process guarantees a selected
security property. In this case, any future system designers who use the tool do
not need to prove anything as long as the translator is not modified. Prior works
show it is feasible to verify on paper the part of the system that are unlikely to
change, e.g., the translators in Sapper, Caisson and SecVerilog.

3.4 Formal Verification via Algorithmic Mechanisms

Algorithmic mechanisms typically use an algorithmic search, which is performed
over a system’s representation and its states, rather than using deduction. Model
checkers (Section 3.4), SMT (Satisfiability Modulo Theories) Solvers (Section
3.4), and Symbolic Execution (Section 3.4) fall in this category.

Model Checking According to [8] “model checking is an automated technique
that, given a finite-state model of a system and a formal property, systematically
checks whether this property holds for a given state in that model.” The security
property that is being verified has to be defined using a logical form. After
the model and the property definition, the model checker can be run to see if
the given security property is valid in the system model. The checks can be
done either for each transition or each state using invariants, pre- and post-
conditions. The execution time of the model checker depends on the complexity
of the model. The output can be positive (property satisfied), negative (property
violated), or the execution runs indefinitely. Model checking has a well-known
state explosion problem, which is the exponential growth rates of states. This
may lead to memory insufficiency or extremely long run times. For fairly complex
systems, model checking needs to use more abstraction to reduce the number of
the states. However, as the level of abstraction gets higher, we run the risk of
missing some important details of the system design.

Modeling should represent the behavior of the system. Finite state reacha-
bility graphs are the most common way of modeling applications. Reachability
graphs or Kripke Structures are designed as a graph where the nodes represent
each reachable state while the edges represent the transitions between states
[34]. The properties of the system are modeled using a finite set AP of atomic
propositions. A Kripke Structure can be defined as K = (S, S0, R, L) where S
is a finite set of states, S0 ⊆ S is a set of initial states, R ⊆ S × S is transition
relation between states, and L is labeling function that labels a state with atomic
propositions L : S → 2AP .

To formally express the behavior of a system over time with respect to certain
properties, we use temporal logic. There are several varieties of temporal logic:

– Linear Temporal Logic (LTL) is a common type of temporal logic where
execution paths can be checked [73]. LTL is formulated by a finite set of
propositions P , boolean operators not (¬), and (∧), and basic temporal op-
erators Next, Previous, Until, and Since (N,R,U, S). A temporal formula
p is an infinite sequence of states σ : s0, s1, s2,,where each state sj gives a
value for the variables in p. Given a model σ, a temporal formula p holding
at a position j in σ is denoted by (σ, j) |= p. If (σ, 0) |= p , it is described as
p holds on σ, and denoted it by σ |= p. A formula p is called satisfiable if it
holds on some model. A formula is called temporally valid if it holds on all
models.

– Computation Tree Logic (CTL) shares its basic operations with mathemat-
ical logic (¬,∧,∨,⇒, ⇐⇒). However, it also supports operations to check
path operators. These operators indicate if a condition is met within one,
some, or none of the paths in an execution path [47]. Universal (∀) and ex-
istential (∃) operators are used to determine if a condition is met in one or
more execution paths in the whole reachability graph. The unary operator
�ψ (eventually) is used to indicate if a path is going to satisfy a property at a
given time. The unary operator ◦ψ (next) is used to indicate if a property is
satisfied in the next state of a path. The unary operator �ψ (always) is used
to indicate if a property is satisfied in all states of a graph. The operator
ψUφ (until) is used to check if a property is satisfied in a path starting at ψ
until the path meets φ.

Note that there are other variations of temporal logic which do not present
here. In the following paragraphs, we introduce some of the important model
checkers, and illustrate their use in formal verification. For further details about
model-checker design, we point the readers to an early survey by Clarke et al.
[30].

SPIN [63] is a model checking tool that supports verification of software
models with respect to properties expressed in LTL. SPIN is designed to for the
verification of multi-threaded software systems [132]. SPIN includes a specifica-
tion language called PROMELA [62] which allows modeling distributed systems.
SPIN has been used for functional verification of protocols [106, 117, 80], indus-
trial control software [44, 65], and mission-critical software [64, 58, 57, 48, 123].

Murϕ [42] is a model checking tool that provides a compiler and a descrip-
tion language where a finite-state concurrent system model and properties can
be defined. The finite-state concurrent system is modeled after the actual sys-
tem being verified. After defining the system, Murϕ model checker generates
all reachable states using breadth-first search algorithm. Then Murϕ checks the
given properties of the system in all reachable states. If the model checker reaches
a state where the properties do not hold, it returns with an error. Murϕ is used
for the functional verification of cache coherence protocols [29], cryptographic
protocols [104, 105], network protocols [129], and critical software verification
[35].

SMV (Symbolic Model Verifier) is a model checker for checking specifications
written in CTL in finite-state systems [101]. SMV is used for the verification of
PLC (Programmable Logic Controller) programs [116], communication protocols
[66], and security protocols [31].

CBMC (C Bounded Model Checker) [78] is a model checking tool for C
and C++ programs. CBMC can verify bounded assertions in programs such as
division by zero, array bound check, pointer checks, arithmetic overflow checks
and user defined assertion checks. CBMC is widely used for proving safety of
software systems such as [10], [18], [79], [22] and [77].

SMT Solvers Satisfiability Modulo Theories (SMT) solvers are used to solve
satisfiability problems expressed in first-order logic with respect to some logical
theory. For verifying systems, first they have to be transferred into formulas
that SMT solvers can work with. The validity of the property is then checked
by SMT solvers [13]. Note that SMT solver execution time can vary from a few
seconds to hours depending on the size of the problem. There a number of SMT
solvers available for public or commercial use. Here, we describe Z3 which is an
SMT-based solver, then we discuss an intermediate verification tool, Boogie, and
finally we overview a high-level language with verification abilities, Dafny. We
will present a number of projects that use these tools in Section 5.

Z3 [40] is an SMT solver from Microsoft Research. It is a low-level tool for
building other tools (such as Dafny and Boogie) that require solving logical
formulas. Z3 follows SMT-LIB 2.0 standard which defines the standard API for
SMT solvers [9]. Z3 can be used as a scripting language as well. Z3 can be used
as a verifier if the programs are expressed in first-order logic. The difficulty of
such an effort resulted in higher-level tools that reside between the programming
language and Z3, such as Boogie, or entire languages that support annotations
to help to construct logic formulas, such as Dafny.

Boogie [147] is an intermediate verification tool and language that use Z3
for providing a layer on which verifiers can be built for other languages. For
example, there are verifiers that use Boogie for high level languages such as C,
Dafny, Chalice, and Spec#. Boogie was used for creating tools for the functional
verification of race and divergence-free GPU Kernels [15], and prove type and
memory safety of the Verve [146] operating system.

Dafny [85] is a high-level language that uses Boogie for verifying programs
during compilation. Dafny supports verification by using high-level annotations
to keep track of correctness of the system. Security invariants are assured through-
out the code by maintaining properties that has to hold throughout the execu-
tion time. These properties are checked using pre and post-conditions within the
code. Dafny has been used for high level software and system verification [86,
97, 60], as well as algorithm verification [115].

Symbolic Execution In symbolic execution [25], symbols are used in lieu of
the actual values of program variables or hardware components. As the simula-
tion executes, the symbols can be updated, combined, turned into expressions,

and sometimes simplified. Since the values of the symbols may not be clearly
identified, each possible execution-branch is followed. In this way, all possible ex-
ecution states can be evaluated simultaneously, at great cost of storage and slow
execution during testing. There are variations of this technique, such as symbolic
trajectory evaluation [61]. Unlike model checking, which requires a model of the
system, symbolic execution deals directly with the source code, in case of soft-
ware applications. The source code is executed in an interpreted environment
that is able to keep track of all possible values of all variables, pointers, etc., of
the code as it runs.

In [134], the authors used symbolic simulation for verifying security properties
of firmware by introducing a property specification language and an algorithm
based on symbolic execution to verify these properties. Symbolic execution is also
used to verify the security properties of cryptographic protocols [2]. There are
many symbolic execution tools including S2E [28], TRACER [69], Woodpecker
[36], Triton [121], and Java PathFinder [59].

4 Security Verification focusing on the Hardware Levels
of a System

In this section, we present projects which focus on the security verification of
the hardware levels. There are three groups of approaches to verify the design:
using proof assistants, using verified hardware languages with information flow
tracking, and using model checkers. In the first group, the hardware design is
first converted to an equivalent representation that works with a proof assistant,
and then the designers write the proof of the design in the proof assistant as well.
The second group comprises of new HDLs that feature information flow tracking
annotations. It is proven that the Verilog code generated from the new HDL has
some security properties, e.g. confidentiality. So hardware designers can consider
security at design time by adding annotations in their code. It is guaranteed
that the generated HDL design would have the desired security properties. In
the third group, given the description of the architecture or system operation, a
finite state model is created. The desired security properties are represented by
invariants in the model. The model checker performs a search to check whether
the security invariants always hold.

4.1 Hardware Design Security Verification using a Proof Assistant

VeriCoq VeriCoq is a tool that provides mechanisms to transform Verilog code
into code with PCHIP (Proof-Carrying Hardware Intellectual Property), which
makes it possible for the customers to verify the security of the design written in
Verilog. In addition, the newer version of VeriCoq also supports the verification
of the information flow property [17].

The verification process is shown in Figure 3. Given the functional specifi-
cation by the customer, the designers implement the system in Verilog, (1) in

Security
Properties

Theorems

Functional
Specification

Verilog
Code

VeriCoq

Proof
Development

Design in Coq

Proofs of
 Security Property

Theorems

Proof
Check

PASS/FAIL

(1)(2)

(3)

(4)

(5)

(6)

(7)

(8)

Fig. 3. VeriCoq design process.

Figure 3. Verilog code is then converted into Coq by VeriCoq. Based on the se-
curity properties requested by the customer, designers create the theorems to be
verified, (2). With the design represented in Coq, alongside with the theorems,
developers come up with formal proofs showing that the code has the desired
security properties, (3), (4), and (5). The customer receives both the design in
Verilog and the proofs. They can then verify that the design aligns with the
defined security properties by using Coq, (6) and (7) in Figure 3. CoqIDE will
either pass the design, meaning that it conforms the properties, or fail it, (8) in
Figure 3.

The basic advantage of VeriCoq is the automated conversion of Verilog code
into Coq. VeriCoq supports an essential subset of Verilog. The newer version
of VeriCoq addresses information flow verification and automation of PCHIP
framework at the same time [16]. The information flow proofs need an extra
step for labeling the variables in the design. VeriCoq then implicitly creates
theorems and proofs for guaranteeing the information flow property. VeriCoq is
still an ongoing project where the developers aim to extend its capabilities to
support more Verilog statements.

Micro-Policies A recent work on Programmable Unit for Metadata Processing
(PUMP) [41] allows flexible computation of metadata alongside with the main
computation with a modest performance overhead. PUMP allows programmers
to create policies and rules that enforce IFT mechanisms by manipulating the
metadata tags in each instruction. Metadata processing can thus support many
safety and security policies, e.g. memory safety, control-flow integrity, confiden-
tiality, etc. However, given a high-level specification, it is nontrivial to design
metadata processing rules. Whether the metadata processing rules in PUMP
comply a high-level security properties needs to be proved. Micro-Policies rep-
resent a generic framework for formalizing and verifying arbitrary policies in
PUMP architecture.

Abstract
Machine

Symbolic
Machine

Refinement
Proof

PASS/FAIL

(4)

(1)
Concrete
Machine

Symbolic
Machine

Refinement
Proof

PASS/FAIL

(5)

(2) (3)

(1)

Fig. 4. Micro-Policies verification process.

To design a set of metadata rules, first, an abstract machine specification with
a set of instructions and information flow policies is defined, showing what secu-
rity properties the machine should have. Then, programmers design the meta-
data rules (concrete machine), where the information flow policy is implemented
into the PUMP hardware. To reason whether the concrete machine reflects the
abstract machine specification, an intermediate layer symbolic machine is added,
as shown by arrows labeled (1) in Figure 4. The Micro-Policies prove the equiv-
alence by backward refinement, which means if there is a state transition in
low-level machine, there exists a corresponding transition in high-level machine.
Using Coq, it can be formally proven whether the concrete machine backward
refines the symbolic machine (2), and whether the symbolic machine backwards
refines the abstract machine (3). With the backward refinement verification, (4)
and (5), the designers make sure that concrete machine has the security proper-
ties of abstract machines. The micro-Policies paper shows the proof of a variety of
security policies, including sealing, compartmentalization, control flow integrity,
and memory safety [39].

A Comparison of VeriCoq and Micro-Policies VeriCoq and Micro-Policies
provide us with a better view of how verification can be handled in different
domains. Their common character is to use Coq for theorem proving. However,
in VeriCoq the development starts with Verilog and in Micro-Policies it starts
with Coq. In VeriCoq, the code is directly verified by proving that the security
properties are valid for the code. On the other hand, Micro-Policies are designed
for systems where directly proving security properties might be very hard. Micro-
Policies offer a solution which employs refinement strategy.

4.2 Security Verification Leveraging HDLs with Information Flow
Tracking

Information Flow Tracking (IFT) has been widely used to enforce security prop-
erties, such as confidentiality, integrity, and non-interference [120]. Programming
language techniques can be used to specify and implement information flow
tracking policies. While most of the works exploring IFT focus on the software
domain, there is no reason it cannot be used in hardware design. Caisson [89],

Sapper [88], and SecVerilog [148] introduce information flow tracking into Ver-
ilog.

Information flow tracking guarantees that the security policy is applied to all
information flows in a system. The policy, access groups and permission, rules
and exceptions are designed to achieve high-level security properties. Assuming
correctness of the policy, the systems can defend against information leakage
using information flow control. The following projects embed IFT in Verilog,
and also prove the information flow policy guarantees non-interference.

Security
level

Specification

HDL Code
With Information

Flow
Formal Proof

Compilation with
Verification

PASS/FAIL

(1)
(2) (3)

(4)

Fig. 5. Static information flow verification process in Caisson and SecVerilog.

Caisson Caisson [89] is a hardware description language with static information
flow verification at design time. The verification process is shown in Figure 5.
First, data ports in a hardware module are assigned with security levels (i.e. Low,
High). The security goal of the design is to make sure there is no information
flow form High to Low, (1) in Figure 5. The design is written in Caisson with
the security labels on each register and wires. In this way, information flow
is considered at design time, (2) in Figure 5. During compilation, it is checked
whether the information flow strictly follows the defined policy. If so, there will be
no information flow form High to Low during the system runtime, which means
security is statically-verifiable. The design’s Verilog code can be generated from
Caisson through the compiler, and can then be synthesized using existing tools,
(4) in Figure 5. In the paper, it is formally proved that Caisson type system
enforces timing-sensitive non-interference in designed hardware, (3) in Figure 5.

Using Caisson, the authors were able to create the first provably information-
flow secure processor that contains a time-multiplexed pipeline and a partitioned
cache. The design exhibited only minor overhead. The pipeline is secured by
secure time multiplexing (or time lease) with separated context (i.e., registers
and memory) for each security level. The cache is statically partitioned between
different security levels.

Sapper Sapper [88] is a hardware description language that automatically en-
forces security policies in hardware logic. It is an extension of a synthesizable
subset of Verilog. Figure 6 shows the design flow: (1) A system with a set of
input and output ports each of which has a security level is considered, e.g.
high (H) and low (L). The hardware logic should ensure that data flowing to

Security
level

Specification

HDL Code
With Information

Flow

Proof of
Non-InterferenceCompilation

Runtime Dynamic IFT

(1) (2)
(3)

(4)

(5)End Product
With Extra Logic

For Violation
Detection

Fig. 6. Dynamic information flow verification process in Sapper.

any output port follows the information flow policy. In the presence of an ac-
tive attacker (e.g. a malicious software in the system), who has full control over
all L input ports, the non-interference enforced by the hardware can protect
all the data tagged with H. Non-interference here means if an L-observer can
not distinguish between two configurations at the beginning of each clock cycle,
then she should not be able to distinguish between them at the beginning of
next cycle. (2) Security labels indicating an IFT policy is inserted to the code in
Sapper language (highlighted in Figure 7). If the security check shows that the
IFT policy is violated, the hardware should not pass the information on. (4) At
compile time, Sapper statically analyzes the hardware logic and automatically
inserts dynamic IFT logic. Figure 7 shows how Sapper inserts the information
flow checking and tracking logic using tags in the generated Verilog code. Static
analysis enables the system to cover explicit, implicit, and timing-based infor-
mation flows. With the inserted IFT logic, the synthesized hardware can track
and check security policy at runtime, and any policy violations will be detected.
(3) A proof sketch of non-interference of the system generated by Sapper is given
in the paper.

With Sapper, a processor is designed and simulated in ModelSim [56]. A
micro-kernel and a compiler are also implemented, and processes in different
security levels can run on the processor. Unlike Caisson [89], data with different
security labels can share resources in Sapper, e.g. registers, resulting in a lower
overhead.

Sapper Verilog

check
reg [7 : 0] a : L ;
reg [7 : 0] b , c ;
a <= b & c ;

reg [7 : 0] a , b , c ;
reg a tag , b tag , c tag } ;
i f (a tag >= (b tag | c tag))

a <= b & c ;

track reg [7 : 0] a , b , c ;
a <= b & c ;

reg [7 : 0] a , b , c ;
reg a tag , b tag , c tag } ;
a <= b & c ;
a tag <= (b tag | c tag)

Fig. 7. Sapper code and generated Verilog code, modeled after [88]. Security label is
highlighted.

SecVerilog SecVerilog [148] is also Verilog extended with information flow an-
notation. It enables static check of hardware information flow. Unlike Sapper,
which uses dynamic information flow at runtime, information flow checking in
SecVerilog is done during compile time which provides a better run time per-
formance. SecVerilog’s advantage over Caisson is that it supports fine-grained
sharing of hardware resources across security levels.

Since SecVerilog also makes use of static IFT, the design flow is very similar
to Caisson in Figure 5. (1) The designers first define a security-label policy. For
example, suppose the security policy of a design has two security levels: Low
and High. The adversary has access to all information at or below the Low
security level, and can measure the clock cycles of hardware operations. High
labels the data that should be protected from such an adversary. (2) During
the implementation of the design in Verilog, each variable has to be labeled
with its corresponding security label, highlighted in Figure 8 . (4) Using these
labels, the information flow is checked during compile time by SecVerilog, and
any violations are highlighted.

1 reg [1 8 : 0] {L} tag0 [2 5 6] , tag1 [2 5 6] ;
2 reg [1 8 : 0] {H} tag2 [2 5 6] , tag3 [2 5 6] ;
3 wire [7 : 0] {L} index ;
4 //Par(0)=Par(1)=L Par(2)=Par(3)=H
5 wire [1 : 0] {Par(way)} way ;
6 wire [1 8 : 0] {Par(way)} t a g i n ;
7 wire {Par(way)} w r i t e e n a b l e ;
8
9 always @ (posedge c l o ck) begin

10 i f (w r i t e e n a b l e) begin
11 case (way)
12 0 : begin tag0 [index] = t a g i n ; end
13 1 : begin tag1 [index] = t a g i n ; end
14 2 : begin tag2 [index] = t a g i n ; end
15 3 : begin tag3 [index] = t a g i n ; end
16 endcase
17 end
18 end

Fig. 8. Split cache in SecVerilog, modeled after [148]. Security labels are highlighted.

Labeling does not solve all the problems of information flow, especially if
resources are shared. This is a limitation of static information flow tracking, e.g.
in Caisson [89]. In the case of shared resources, the labels might change during
runtime. SecVerilog use dependent types to handle runtime label changes. A de-
sign of split cache is shown in Figure 8 as an example. Type changes are detected
and updated dynamically during the runtime, e.g. Par(way) in Figure 8. The
dependent types can be determined by type-valued functions: For a variable v,
the type of the variable can be determined dynamically during runtime by a
function, e.g. Par(v), line 4 Figure 8.

A secure MIPS processor and caches were designed in SecVerilog. Dynamic
labeling makes the shared ports of the cache possible. SecVerilog provides timing-
sensitive non-interference, which is proved in the paper [148].

Table 1. Comparisons of Caisson, SecVerilog and Sapper

Caisson SecVerilog Sapper

Type of
Information
Flow

Static
(Compile time)

Static
(Compile time)

Dynamic (Runtime)

Type of Label Static Label Dynamic Label Run-time Label

Pipeline design Time Mux Time Mux Time Mux

Cache design
Split Cache
Split Ports

Split Cache
Shared Ports

Split Cache
Shared Ports

Comparison of Caisson, Sapper and SecVerilog A comparison of Cais-
son, Sapper, and SecVerilog is shown in the Table 1. Caisson and SecVerilog
use static information flow control, while Sapper uses dynamic information flow
control. Static information flow tracking is done at the design time, and does not
introduce any runtime overhead for the system. Also, designers can fix informa-
tion leakage at design time, and thus do not need to worry about the effects of
security violations at runtime, since no violations will appear then. Compared to
Caisson [89], dynamic labeling in SecVerilog and dynamic IFT in Sapper make
resources sharing possible, thereby reducing area and timing overheads.

4.3 Security Verification using Model Checkers

Another approach to verify the security properties of hardware systems is using
model checkers. First, the model of the system separated from system design
should be built in the form of a finite state machine (FSM). Usually, the model
is simplified to avoid the state explosion problem. The security properties are
represented by a set of invariants. The model checker can automatically search
for all possible states, and check if the invariants always hold. If so, the security
properties are said to be proved.

(1)
Cache

Architecture
Description

(2)
Murphi
Model

state and transition
enumeration,

and interference
counting

(4)

PASS/FAIL
mutual information
calculations, and
non-interference

analysis

(3)

Fig. 9. Processor cache security verification Murϕ model checker.

Cache Verification Processor caches are integral part of any modern processor.
They are small, but fast memory components that are used to provide quick
access to frequently accessed data. Through a fixed algorithm, the cache logic
decides which data to keep in the cache and which data to send back to memory

if a new request comes and there is not sufficient space in the cache. Memory
access timing changes depending on whether a request “hits” or “misses” in the
cache. Based on this timing difference between hits and misses, researchers have
presented numerous side-channel attacks, e.g., [94], that are able to compromise
data confidentiality and potentially leak out cryptographic keys.

In [149] researchers create side-channel leakage models based on the non-
interference property between an attacker and a victim process that are using
same processor cache. Starting with an architecture description, (1) in Figure 9,
they model the cache architecture as an FSM with states representing which pro-
cess is currently using the cache line and transitions between the states based on
cache operations (e.g. attacker cache hit, victim cache miss, etc.). By modeling
the cache operation and transitions, the authors were able to obtain probabilities
for how different operations of the victim (e.g. cache hit, cache miss, etc.) are ob-
served by the attacker. For example, if cache line changes state (that attacker can
observe) due to an action of the victim, then there is some interference, breaking
the non-interference property. Zhang and Lee used Murϕ to enumerate all possi-
ble states and transitions, and count the number of inferences between attacker
and victim for the different state transitions, (2) and (3) in Figure 9. Based on
this data, mutual information [32] is then used to quantitatively analyze the
interference between the two processes, and reveal side-channel vulnerabilities,
(4) in Figure 9.

The method is applied to six cache architectures and reveals that most cache
architectures do not satisfy the non-interference property, thus fail the verifica-
tion. To apply this method to other designs, designers need to manually create
the Murϕ system representation from the cache architecture description, as there
is currently no automated way to extract these models from the system repre-
sentation (e.g. from HDL code).

System
States

Symbolic
Machine

Murphi
Model

PASS/FAIL

(2)(1)

InvariantsState
Transitions

(3)

(4)

Fig. 10. Verifying XOM in Murϕ Model Checker

XOM The eXecute Only Memory [91] is a hardware design with embedded
cryptographic functionality and access control. By adding new hardware and
new instructions, XOM is able to protect user data from a malicious operating
system. On-chip data is isolated using hardware tags labeling the owner of data,

while off-chip data is protected by encryption and hashing. In [90], XOM was
formally specified and then verified against an adversary in Murϕ.

A model of XOM and its adversary is build in Murϕ as in Figure 10. The
model of the XOM hardware contains arrays representing the register, cache,
and memory, including data and tags, (1) in Figure 10. The function of each
instruction, which is the state transition function in Murϕ, is defined according
the design of XOM (2). To model the effect of the adversary, two identical sets
of states are used, dubbed the ”actual world” and the ”ideal world”. In the
actual world, the adversary is modeled by a set of primitive actions she can
perform as state transition functions, (2) in Figure 10. The ideal world does not
include the effect of the adversary. The actual world states and ideal world states
are concatenated, and thus updated together during model checking. With the
model and state transition function, Murϕ is able to exhaustively search for all
possible combinations of these actions. Invariants are defined according to the
security properties to be verified, (3). To prove the adversary is never able to
read user data, the model checker verifies that the user data is either tagged with
user XOM ID or encrypted and hashed with the user’s key. To prove that the
adversary cannot modify the user data without halting the system, the model
checker compares the state of the ideal world against the state actual world, and
thus, knows whether the adversary will succeed.

During verification, a replay attack was identified and fixed. Moreover, it was
shown that if the operating system does not behave maliciously, and the liveness
of the system is guaranteed.

Comparison of XOM and Cache Verification Cache Verification and XOM
use a similar approach for verification using Murϕ. The main difference is that
Cache Verification concerned only about non-interference. XOM, on the other
hand has a different model for detecting attacks by tagging each memory location
with ID of the owner of the memory location. The security property being sought
can be customized for XOM verification with the help of the tagging mechanism.

4.4 Commerical Tools

Even though they are relatively new, there is a number of commercial security
verification tools for hardware design.

Mentor Graphics Questa Secure Check The application is part of Mentor Graph-
ics Questa package. It receives RTL data and a spec for secure storage and paths.
The spec is defined in TCL language. Secure Check then finds ports/black box
inputs and generates properties for integrity and confidentiality. Black box in-
puts are generated in a way that it assures that no information flows outside of
its designated path. The application then verifies these properties. The output
of the application is an exhaustive proof of integrity and confidentiality of the
design and/or counterexamples showing how your spec can be violated [51].

Cadence JasperGold Security Path Verification (SPV) App Similar to Questa
Secure Check, SPV App takes RTL data and path specs. The user defines illegal
sources and destinations of the data. SPV App proves that the defined secure
data maintains confidentiality and integrity during operation and even after a
hardware fault occurs. Verification is performed exhaustively using Jaspers path
sensitization technology. Path sensitization technology utilizes the path cover
property in which there is a source signal and a destination signal. By proving
path cover property, the signal at the source of the path is tainted. The app
formally verifies if it is possible to cover a tainted signal at the destination. When
the property is covered, a waveform displays how data can propagate from source
to destination. The property can also be determined to be unreachable, which
means that it is not possible for data to propagate from source to destination.
Verification can also be tuned by the user by creating black box modules where
data can enter or not. This will simplify the process of verification to scale well
[24].

5 Security Verification Focusing on Software Levels of a
System

The second class of projects that we survey deals with works that verify secu-
rity properties of software, while considering the ISA or a machine model of
the hardware, typically at the microarchitecture level. Verification here consid-
ers some memory model, register files, and other components of the hardware
that constitute the environment on which the code will run. Software security
verification work that does not consider any hardware in the verification process
is outside of the scope of this survey. For software-only security verification, we
refer the reader to the following surveys [47, 12, 112, 130, 142].

5.1 Security Verification using Model Checkers and SMT Solvers

MOAT MOAT [131] proposed to find vulnerabilities in enclave user programs
that run on Intel SGX architecture. To protect sensitive data and code from
disclosure or modification by infrastructure attackers (e.g. malicious OS) or other
malicious programs, Intel developed Software Guard Extensions(SGX) [5]. Intel
SGX makes such protection possible by providing an isolated memory region
called enclave. The hardware primitives provided by SGX enforce that only the
code inside the enclave can access data within the enclave. However, it cannot
protect an enclave user program from leaking sensitive information from within
if the software running in the enclave is not programmed properly, thus the need
for verification.

The input of MOAT is the x86+SGX assembly code, (1) in Figure 11, of
an enclave user program, alongside with annotations that indicate: a) program
points where secrets are generated (e.g. decryption) and b) memory locations
where secrets stored. The usage of assembly code as input to the verification
process eliminates the need for a trusted compiler. MOAT then translates the

Boogie
Verifier

PASS
/FAIL

(1)

Annotations
of Secrets

X86+SGX
Assembly

(3)
BAP Assembly

+
Havoc Adversary

+
Security assertions

(4)(2)

BAP Assembly

1 lea 0x720(%ebp),%eax
2 mov %eax,(%esp)

1 eax:=sub(ebp,720)
2 mem:=store(mem,esp,eax)1 Ceax=Cebp

2 havoc mem¬epc
3 eax:=sub(ebp,720)

4 assert ¬Cesp (¬enc(esp)→¬Ceax)˄
5 Cmem[esp]:=Ceax
6 havoc mem¬epc
7 mem:=store(mem,esp,eax)

Fig. 11. MOAT verification.

assembly code to BAP (Binary Analysis Platform) assembly [21], as shown by
(1) in Figure 11. MOAT uses BAP assembly for precise modeling of x86 and
SGX instructions in Boogie verifier.

Inside MOAT, BAP assembly and the secret annotations are converted to
code with assertions that Boogie can process. Two kinds of adversaries are con-
sidered: active adversaries who can write to any locations in non-enclave memory
and passive adversaries who can read any location in non-enclave memory. To
model the adversary, MOAT introduced a havocing adversary, who can modify
all non-enclave memory locations between any consecutive statements of the en-
clave program and can observe all non-enclave memory. To show the effect of the
adversary, a havoc instruction (havoc mem¬epc) is added before every BAP in-
struction, (2) in Figure 11. To reason about confidentiality, ghost variables (Cx)
are also added. If Cx is true then the data x in registers or memory is dependent
on a secret. Based on the value of the Cx, one can judge whether there is se-
cret data leaking to non-enclave memory. E.g. line 4 of (2) in Figure 11, asserts
data in %eax can be written to mem[%esp] only if %esp does not depend on
any secret (no control flow), and if %esp is in non-enclave memory (¬enc(esp))
then %eax must not depend on a secret. This way, assumptions and assertions
about the ghost variable are added, see (2) in Figure 11. The system’s security
assertions are verified by Boogie verifier (3). If the assertions do not always hold,
then there is violation to confidentiality, and the verifier returns the violating
piece of code, otherwise the design passes; see (4) in Figure 11.

MOAT provides a methodology to prove the security properties of software
developed for the Intel SGX architecture. One-time password (OTP) service
enclave program is verified as an example. It is also the first work to create
formal a model of Intel’s new SGX instructions.

Verve Verve [146] is an operating system that is verified to guarantee memory
and type safety. Verve’s architecture consists of two levels. The first level is
called the “nucleus” that implements the core functionality needed to access
memory and hardware. On top of nucleus, there is a kernel level which supports

functionality such as preemptive threads. The applications run on top of these
two levels.

Verve uses two strategies to verify the nucleus and kernel. The nucleus is
written in Boogie programming language and verified by Boogie. The code of
nucleus is manually annotated with assertions that include preconditions, post-
conditions and loop invariants. Some of the code is written in assembly and the
assembly instructions from the nucleus code are also converted into Boogie so
that they can have the annotations. The kernel ensures type safety using Typed
Assembly Language (TAL) [108] and a TAL-checker [27]. The kernel is written
in safe C# and the code is then compiled to TAL by a special compiler. TAL is
used to verify that the assembly code does not violate the primitive abstractions
of the language. TAL provides abstractions for basic types, labels, and pointers.
Using these abstractions, invalid operations such as arithmetic operations on
pointers are not allowed.

Verve is still an experimental OS which lacks some of the modern features
such as exception handling and multiprocessor support. However, it supports
type safety in the whole OS including the applications. It demonstrates that
using automated techniques, high level code (such as safe C#) can be verified
for type safety in assembly level using type-safe assembly languages (such as
TAL).

Ironclad Apps Ironclad Apps is a project [60] focuses on the execution of re-
mote applications in a secure and a functionally-verified manner. The verification
process covers the code that is executed remotely, the remote OS, libraries, and
drivers. Therefore, Ironclad Apps can be regarded as a multi-level verification
system which assumes that the hardware is secure. Ironclad Apps eliminates
data leaks and software based vulnerabilities. However, it is not designed for
hardware-based attacks (side-channels, etc.) nor denial-of-service attacks.

High Level
Spec

(Dafny)

Low Level
Spec

Implementation
in High Level

Language
(Dafny)

Implementation
In verifiable
Assembly
Language

(Boogie X86)

Implementation
İn Machine Code

PASS/FAIL

(1) (2) (3)

(4)

(5)
(6)

(7)
(8)

Verifier

 Compiler

Spec
 Translator

Fig. 12. Ironclad verification process.

Ironclad uses Verve as the OS. The verification process requires a high-level
code and a high-level specification of the application code which are written in
Dafny [85]. The spec and the code are handled in parallel. The code is compiled

to output assembly code in the BoogieX86 assembly language (note that the
verifier Boogie and the assembly language BoogieX86 are different) [146], (5),
(6), and (7) in Figure 12.

Meanwhile, the high-level spec is translated into a low-level spec by a spec-
translator tool, (1), (2), and (3) in Figure 12. The low level spec and assembly
code are then verified together to see if they are functionally equivalent and free
of software vulnerabilities. If the verifier fails, the process has to be restarted
with fixed code and spec. When verification passes successfully, the assembler
and linker tools convert the assembly code into machine code, (8) in Figure 12.

Ironclad Apps is designed to protect against software-only attacks. The threat
model assumes there might be some potentially malicious software running be-
fore Ironclad Apps starts and after it ends. The main hardware components are
assumed to be trusted. However, the BIOS, and peripheral devices can be ma-
licious. Even though the verification process is performed over low-level code,
developers do not need to program in low-level code. As seen in the step labelled
as (5) in Figure 12, the implementation language is Dafny [85]. Along with the
actual implementation, the designers also generate a high-level specification, as
seen in step (1). The verification is performed after Dafny code has been com-
piled into BoogieX86 assembly language as seen in steps (6), (7), and (4) in
Figure 12.

SecVisor SecVisor [127, 46] is a hypervisor designed to provide execution and
code integrity. It guarantees that only user-approved code can execute in ker-
nel mode, and the approved code can only be modified by SecVisor. SecVisor
leverages hardware memory protections and kernel privilege level to achieve ex-
ecution and code integrity. The design assumes that the attacker has control
of everything except the CPU, the memory controller, and the system memory.
The small codebase makes the formal verification of SecVisor possible.

A model in Murϕ is developed to verify the system. The model consists
of three parts: a model of the hardware, a model of SecVisor, and a model of
the attacker. Since the security of SecVisor is based on the hardware memory
protections, it is crucial to specify the hardware model and the page table in
the SecVisor model correctly. The hardware model includes physical memory,
CPU mode bits, program counter, and a Device Exclusion Vector (DEV) that
controls DMA permissions. The initialization, CPU mode transitions, and page-
table synchronization in SecVisor are modeled in Murϕ. To deal with the state
space explosion problem, the authors model SecVisor conservatively. So when
Murϕ returns with success, the SecVisor is proved to satisfy all the security
properties.

To model the attacker, an ideal model and an actual model are used, akin to
the models used in the verification of XOM[90]. In the actual model, the attacker
can write to any memory pages with the read/write bit set, or physical pages
whose DEV bit is not set and also update kernel page tables. The execution
integrity is the equality between the approved status of a page in the actual
model and that in ideal model (without an attacker). The code integrity means

that the attacker cannot modify the approved code. The execution integrity and
code integrity invariants are checked by the Murϕ model checker.

XMHF XMHF (eXtensible and Modular Hypervisor Framework) [141] is de-
signed to achieve a modular extensibility, automated verification, and high per-
formance. The focus of verification is on memory integrity, which means memory
regions can only be modified by the hypervisor. To verify the memory integrity,
security invariants assertions are inserted into the C code. Most of the C code is
verified automatically by CBMC model checker, while the remaining is manually
audited.

5.2 Security Verification using Formal Proofs

seL4 [75] was the first OS that was formally verified for functional correctness.
Even though this survey focuses on security verification, we want to mention the
effort that has been done for seL4, since it sheds some light on how verification
can be handled at the system level. The aim of the seL4 verification effort is to
provide a system free of programming errors that introduce vulnerabilities that
may cause failures or facilitate attacks. seL4 is a software-only work and assumes
that the underlying hardware, the compiler, and the low-level device driver code
are provided free of errors. Under these circumstances, seL4 guarantees that it
will never crash and never lead to an unsafe operation that can be exploited.

Haskell Prototype

Abstract
Specification

Executable
Specification

Low-Level
C Implementation

(1)

(3) (4)(2)

Refinement
Proof

Isabelle/HOL
(5) Pass/Fail

Fig. 13. The seL4 verification process.

seL4 operating system is based on L4 [92] and features a virtual-address
space, threading, inter-process communication, and capabilities for authoriza-
tion. The designers of seL4 follow an approach well-suited for cooperation be-
tween system designers and system verifiers. They use Haskell as OS-design pro-
totype language. However, while the Haskell prototype is used for higher-level
verification, the actual low-level implementation does not use Haskell. The pro-
grammers manually reproduce the same model in C. They follow this approach

because Haskell code is rather unsuitable for low-level functions performance-
wise, and because C is easier to verify. For formal verification, the Isabelle/HOL
theorem prover is used interactively. The property of the proof they used is a
refinement which establishes a one-to-one correspondence between the higher-
level and lower-level representations of the system. If the system has a security
property in the higher level, refinement guarantees that it would be preserved
in the kernel code. This approach makes both specifying the proofs and proving
them more feasible in the higher levels. The same work at the kernel level would
require much more time and effort.

The verification process is depicted in Figure 13. The system prototype is
coded in Haskell according to a high-level specification, (1) in Figure 13. The
specification includes a detailed functional and behavioral description of the
system, (2) in the figure. Isabelle/HOL theorem prover generates an Executable
Specification out of the Haskell code, (3) in the figure. This process is critical
since it will directly impact the correctness of the system, any misrepresentations
can render the verification ineffective. This specification contains all data struc-
tures and implementation details that the low-level implementation must have.
The last layer is the actual C implementation of seL4, (4) in Figure. These three
layers – abstract specification, executable specification, and C implementation –
are the refinement layers used in the formal verification, (5) in Figure 13.

CertiKOS and Deep Specifications [53] presents a design technique based
on modern computer system architectures (such as OSes) where each system
consists of abstraction levels such as kernels, hypervisors, device drivers, net-
work protocols. Each layer defines an interface and hides the implementation.
Deep Specifications is based on the verification of abstraction layers that define
interfaces to other layers hiding the implementation details.

Deep specification has been used to implement four variants of mCertiKOS
kernel. In mCertiKOS, each layer represents an abstraction, and its behavior is
defined in a specification as shown in Figure 14. These specifications are called
deep specifications and any two implementations that have the same deep speci-
fication must have contextually equal behavior regardless of the implementation
method. Hence, mCertiKOS relies on deep specification of layers rather than
their specific implementations and as long as an implementation of an abstrac-
tion layer can be proven to be equivalent to its corresponding deep specifica-
tion, it can be used without violating the general correctness of the system. An
error-free and functionally-correct implementation of the whole system relies on
implementing the abstraction layers correctly. Unlike seL4 [75], where the whole
system is verified at once, mCertiKOS can be verified layer by layer or as a
whole.

mCertiKOS uses two core languages for high-level and assembly-level code:
ClightX and LAsm. ClightX is based on CompCert Clight language [19], and
LAsm is an assembly language customized for CertiKOS development. These
languages can be used to implement abstraction layers. The layer interfaces and
Deep Specifications are described using Coq. mCertiKOS uses the CompCertX

Client Program

Layer 1 PASS/FAIL

CompCert x86 Assembly

Layer 2 PASS/FAIL

Deep Spec. of Layer 1

Deep Spec. of Layer 2

Verification

Verification

Fig. 14. CertiKOS verification process.

compiler for both languages. CompCertX is a specialized version of CompCert
compiler that works with the mCertiKOS memory and machine model. If imple-
mentations M1 and M2 implement the same DeepSpec, they should have con-
textually equivalent behavior. Three other versions of mCertiKOS (mCertiKOS-
hyp, mCertiKOS-rz and mCertiKOS-emb) [53] are implemented to demonstrate
how additional layers or different implementations can be added to the ker-
nel. mCertiKOS-hyp kernel provides support for user-level hypervisors based
on AMD SVM [3] technology. mCertiKOS-rz is implemented to demonstrate
how existing layers can be augmented with the support of ring 0 processes.
mCertiKOS-emb is a minimalist kernel where memory protection and system
call interfaces are eliminated. It shows how layers can be eliminated and the
whole system still be verified using DeepSpec.

MinVisor MinVisor [98] is a simple hypervisor, which protects its own memory
from malicious guests. This work was presented as a follow-up work on SecVisor,
but using theorem proving approach. The goal of the project is to fully verify the
MinVisor at the assembly level using ACL2. A series of detailed and accurate
models of the AMD64 instruction set architecture (ISA), including the memory
model, registers, and state transitions, were developed. Several theorems, such
as the one where isolation of model specific registers and MinVisor memory
are guaranteed against guest modifications, are proved to show the security
properties of MinVisor.

6 Analysis of Existing Work

Tables 2 and 3 present a summary of the main projects reviewed in Sections 4 and
5. In these tables, we compare the existing works in terms of their verification
methods, the levels they consider in a system, and the security aspects being
verified.

6.1 Verification Methods

Most of the projects use general purpose verification tools, as shown in the Tool
column of Tables 2 and 3. The current general-purpose tools used in security ver-
ification are not compatible with conventional hardware or software languages,
such as C or Verilog, and verification is performed as an additional step after
design and implementation. Security specifications are described as formulas in
theorem provers like Coq, or as invariants in model checkers like Murϕ, as shown
in the Specification column of Tables 2 and 3. A model (system representation)
separate from the system implementation (actual system) is built, e.g. Micro-
Policies [39], Cache verification [149], XOM [91], SecVisor [46]. Designers have to
make sure their model accurately mirrors the system implementation, otherwise
the result of verification might be not correct.

Some projects take approach of designing new domain-specific languages that
allow making verification an integral part of the design and implementation pro-
cess. In these projects, tools are developed to transform the system description
in the new domain-specific language into another form that is amenable to use
with verification tools, e.g. VeriCoq, Dafny, or TAL-compiler. For example, in
Dafny, the code has annotations for pre- and post-conditions, invariants, and
ghost variables. With use of annotations and through automatic transformation
SMT solvers can check if the invariants always hold. Meanwhile, other projects
embed security-related tags into a conventional language, and facilitate describ-
ing the security-properties to be verified. These projects tend to develop custom
tools, as shown in Tables 2 and 3 to make sure the generated design has the
desired security properties, such as Sapper [88], Caisson [89], and SecVerilog
[148].

Designers should decide which approach to take for their development cycle.
On the one hand, they can develop their system in a “traditional” language.
This allows for quick development of the functional design with tools familiar to
engineers, but does incur the effort of having to also separately write their design
in a representation that their preferred security verifier understands. On the
other hand, they can implement their system in a verification-friendly language.
This has higher initial effort, but may pay off in long term with less effort due to
not having to write the representation second time for verification. The drawback
is that the verification-friendly language may not support all the aspects the
designer desires to verify.

6.2 Verification Aspects

Confidentiality and integrity are the two main security properties often sought
in a system. The verification aspect of a system often covers these properties,
but can be formulated in a more generic form (e.g. non-interference) or a more
specific form (e.g. memory integrity). The formulation of these properties de-
pends on the levels that the system spans, and on the tools used. The analysis of
information flow provides a useful basis for proving these security properties of a
system. Monitoring information flow requires data labeling, declassification, and

information flow rules specific to the system. We observe that many hardware
projects use the analysis of information flow for proving information flow policies,
non-interference, and confidentiality and integrity, as seen in Table 2. Software
projects, as illustrated in Table 3, have a wider variety of verification aspects,
which try to verify confidentiality and/or integrity, but only within the selected
levels. Designers generally try to provide partial integrity or confidentiality for
a system. For example, SecVisor [46] verifies execution and code integrity which
is a subsection of the whole memory.

Designers should decide which security aspects to prove in their design, that
suit well with both implementation and verification of the system at the same
time.

Table 2. Summary of projects that focus on hardware verification. These projects were detailed in Section 4.

Name Specification
Tool
(Sec. 3)

Custom
Tool

Levels
Ver. Method
(Sec. 3)

Ver. Aspect
(Sec. 2)

A
p
p

O
S

H
y
p

er
v
is

o
r

IS
A

u
A

rc
h

R
T

L
G

a
te

P
h
y
si

ca
l

VeriCoq
[17]

Spec. in Coq
Lang. + Ver-
ilog

Coq
IDE

VeriCoq X X
Theorem
Prover

Information
Flow

Micro-Policies
[39]

Spec. in Coq
Lang.

Coq
IDE

none X
Theorem
Prover

Information
Flow

Caisson
[89]

Cassion
Language

none
Cassion
Tool

X X
Pen-and-paper
Proof

Non-
interference

Sapper
[88]

Sapper
Language

none
Sapper
Tool

X X
Pen-and-paper
Proof

Non-
interference

SecVerilog
[148]

SecVerilog
Language

none
SecVerilog
Tool

X X
Pen-and-paper
Proof

Non-
interference

Cache
Verification
[150, 149]

Murϕ
Language

Murϕ none X
Model Check-
ing

Confidentiality
+ Integrity

XOM
[91]

Murϕ
Language

Murϕ none X X
Model Check-
ing

Confidentiality
+ Integrity

Table 3. Summary of projects that focus on software verification with respect to the ISA or machine model. These projects were detailed
in Section 5.

Name Spec Tool (Sec. 3)
Custom
Tool

Levels
Ver. Method
(Sec. 3)

Ver. Aspect
(Sec. 2)

A
p
p

O
S

H
y
p

er
v
is

o
r

IS
A

u
A

rc
h

R
T

L
G

a
te

P
h
y
si

ca
l

MOAT
[131]

Assembly +
Annotations

Boogie, BAP,
Z3

none X X SMT solvers Confidentiality

Verve
[146]

Typed As-
sembly +
Annotations
+ C#

Boogie, TAL
Checker

none X X SMT solvers
Type and Mem-
ory Safety

Ironclad Apps
[60]

High-level
Spec.

Dafny, Boo-
gie, Z3

Custom
Compiler
+ Spec.
Translator

X X SMT solvers
Memory Safety
+ Functional
correctness

SecVisor
[46]

High Level
Spec

Murφ none X X
Model Check-
ing

Execution and
code Integrity

XMHF
[141]

C CBMC none X X X
Model
Checking

Memory In-
tegrity

CetriKOS
[53]

Clight +
LAsm

Coq IDE none X X X
Theorem
Prover

Non-
interference
+ Functional
Correctness

SeL4
[75]

C + Haskell Isabelle/HOL none X
Theorem
Prover

Functional Cor-
rectness

MinVisor
[98]

Assembly ACL2 none X X X
Theorem
Prover

Code Integrity

6.3 Verification Levels

The Trusted Computing Base (TCB) often encompasses multiple levels of the
system from hardware to software. However, as can be seen in Tables 2 and 3,
verification projects are typically focused on the hardware levels, or focused on
the software levels. Bringing the hardware and software levels together is difficult,
however, needed. For example, enhancing the security of software levels by using
support in hardware levels is becoming a more viable approach, especially for
remote computing. Hardware based TCBs are emerging quite rapidly, such as
ARM TrustZone [140], Intel SGX [100], and AMD memory encryption[4]. The
working of this hardware with software needs to be verified for security, and
requires spanning many system levels.

Designers should consider expanding their approaches to include more levels
into security verification, to allow truly full-system verification.

7 Conclusion

Formal verification research has been mostly focused on the functional correct-
ness of the hardware or software systems. Security verification of software-only
is also well studied. Hardware security verification, however, is an emerging re-
search area which is necessitated by the fact that modern systems require both
software and hardware for their correct and secure operation. Especially with
introduction of security-focused hardware, such as Intel SGX. Trusting remote
software and hardware is more critical now than before, as it handles users’ even-
increasing sensitive information. Any vulnerabilities in these computing systems
can be exploited by attackers. Thus, the whole system, including both the hard-
ware and software parts, should be considered in the security verification.

Security verification is a branch of formal verification where the correctness
properties are extended to include security properties, e.g. confidentiality and
integrity. The process requires a formal, mathematical specification of the se-
curity properties, an accurate representation of the implementation, and some
verification mechanisms, e.g. theorem proving and model checking, to prove that
the implementation complies with the needed security properties.

In this survey, we focused on the security verification projects that involve at
least some hardware and software levels. Since security properties are provided
by multiple levels in the system, only verifying some particular level or levels
cannot guarantee whole system’s security. With the improvement of verification
tools and methods, as presented in this survey, there is a trend to include more
and more system levels in verification, but not yet all levels. We provide an
insight into the tools and mechanisms used for security verification, and com-
pare projects based on security verification of hardware and software levels they
consider.

There are many open research topics in the security verification of hardware
and software systems. The most critical, however, is the need for full-system
security verification, which spans more levels than can be done through today’s
existing projects.

Acknowledgement

This work is supported in part by the National Science Foundation (NSF) grants
1419869 and 1524680; and Semiconductor Research Corporation (SRC) contract
2015-TS-2633. Dr. Demir’s work is supported by TUBITAK grant 2219.

References

1. Abrial, J.R., Lee, M.K., Neilson, D., Scharbach, P., Sørensen, I.H.: The b-method.
In: VDM’91 Formal Software Development Methods. pp. 398–405. Springer (1991)

2. Aizatulin, M., Gordon, A.D., Jürjens, J.: Extracting and verifying cryptographic
models from c protocol code by symbolic execution. In: Proceedings of the 18th
ACM Conference on Computer and Communications Security. pp. 331–340. CCS,
ACM (2011)

3. AMD: Amd64 architecture programmers manual volume 3: General-purpose and
system instructions. Tech. rep. (2013)

4. AMD: AMD Memory Encryption (2016), http://amd-dev.wpengine.netdna-
cdn.com/wordpress/media/2013/12/AMD Memory Encryption Whitepaper v7-
Public.pdf, accessed May 2016

5. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for cpu
based attestation and sealing. In: Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy (2013)

6. Armstrong, A., Struth, G., Weber, T.: Program analysis and verification based
on kleene algebra in isabelle/hol. In: Interactive Theorem Proving, pp. 197–212.
Springer (2013)

7. Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avižienis, R.,
Wawrzynek, J., Asanović, K.: Chisel: constructing hardware in a scala embedded
language. In: Proceedings of the 49th Annual Design Automation Conference. pp.
1216–1225. ACM (2012)

8. Baier, C., Katoen, J.P., et al.: Principles of model checking. MIT press Cambridge
(2008)

9. Barrett, C., Fontaine, P., Tinelli, C.: The smt-lib standard version 2.6 (2010)
10. Basler, G., Mazzucchi, M., Wahl, T., Kroening, D.: Symbolic counter abstraction

for concurrent software. In: Proceedings of CAV 2009. LNCS, vol. 5643, pp. 64–78.
Springer (2009)

11. Benzmüller, C., Cheikhrouhou, L., Fehrer, D., Fiedler, A., Huang, X., Kerber, M.,
Kohlhase, M., Konrad, K., Meier, A., Melis, E., et al.: mega: Towards a mathemat-
ical assistant. In: Automated DeductionCADE-14, pp. 252–255. Springer (1997)

12. Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Sch-
noebelen, P.: Systems and software verification: model-checking techniques and
tools. Springer Science & Business Media (2013)

13. Berdine, J., Bjørner, N.: Computing all implied equalities via smt-based partition
refinement. In: Automated Reasoning, pp. 168–183. Springer (2014)

14. Bertot, Y., Castéran, P.: Interactive theorem proving and program development:
CoqArt: the calculus of inductive constructions. Springer Science & Business Me-
dia (2013)

15. Betts, A., Chong, N., Donaldson, A., Qadeer, S., Thomson, P.: Gpuverify: A
verifier for gpu kernels. SIGPLAN Not. 47(10), 113–132 (Oct 2012)

16. Bidmeshki, M.M., Makris, Y.: Toward automatic proof generation for information
flow policies in third-party hardware ip. In: International Symposium on Hardware
Oriented Security and Trust (HOST). pp. 163–168 (May 2015)

17. Bidmeshki, M.M., Makris, Y.: Vericoq: A verilog-to-coq converter for proof-
carrying hardware automation. In: International Symposium on Circuits and Sys-
tems (ISCAS). pp. 29–32. IEEE (2015)

18. Blanc, N., Kroening, D.: Race analysis for SystemC using model checking. In:
Proceedings of ICCAD 2008. pp. 356–363. IEEE (2008)

19. Blazy, S., Leroy, X.: Mechanized semantics for the clight subset of the c language.
Journal of Automated Reasoning 43(3), 263–288 (2009)

20. Blech, J.O., Gesellensetter, L., Glesner, S.: Formal verification of dead code elim-
ination in isabelle/hol. In: International Conference on Software Engineering and
Formal Methods. pp. 200–209. IEEE (2005)

21. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: A Binary Analysis
Platform, pp. 463–469. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

22. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.:
Deciding bit-vector arithmetic with abstraction. In: Proceedings of TACAS 2007.
Lecture Notes in Computer Science, vol. 4424, pp. 358–372. Springer (2007)

23. Buchberger, B., Crciun, A., Jebelean, T., Kovács, L., Kutsia, T., Nakagawa,
K., Piroi, F., Popov, N., Robu, J., Rosenkranz, M., et al.: Theorema: Towards
computer-aided mathematical theory exploration. Journal of Applied Logic 4(4),
470–504 (2006)

24. CADENCE: Jaspergold security path verification app (2016), url-
http://www.cadence.com/products/fv/jaspergold security/pages/default.aspx

25. Carter, W.C., Joyner Jr, W.H., Brand, D.: Symbolic simulation for correct ma-
chine design. In: Conference on Design Automation. pp. 280–286. IEEE (1979)

26. Champagne, D., Lee, R.B.: Scalable architectural support for trusted software. In:
International Symposium on High Performance Computer Architecture (HPCA).
pp. 1–12. IEEE (2010)

27. Chen, J., Hawblitzel, C., Perry, F., Emmi, M., Condit, J., Coetzee, D., Pratikaki,
P.: Type-preserving compilation for large-scale optimizing object-oriented com-
pilers. In: ACM SIGPLAN Notices. vol. 43, pp. 183–192. ACM (2008)

28. Chipounov, V., Kuznetsov, V., Candea, G.: S2E: A platform for in-vivo multi-
path analysis of software systems, vol. 47. ACM (2012)

29. Chou, C.T., Mannava, P.K., Park, S.: Formal Methods in Computer-Aided De-
sign: 5th International Conference, FMCAD 2004, Austin, Texas, USA, November
15-17, 2004. Proceedings, chap. A Simple Method for Parameterized Verification
of Cache Coherence Protocols, pp. 382–398. Springer Berlin Heidelberg, Berlin,
Heidelberg (2004)

30. Clarke, E., Grumberg, O., Long, D.: Verification tools for finite-state concurrent
systems. In: A decade of concurrency reflections and perspectives, pp. 124–175.
Springer (1993)

31. Clarke, E., Jha, S., Marrero, W.: A machine checkable logic of knowledge for
specifying security properties of electronic commerce protocols. In: Workshop on
Formal Methods and Security Protocols (1998)

32. Cover, T.M., Thomas, J.A.: Elements of information theory. John Wiley & Sons
(2012)

33. Crary, K.: Toward a foundational typed assembly language. ACM (2003)

34. Cresswell, M.J., Hughes, G.E.: A new introduction to modal logic. Routledge
(2012)

35. Crow, J., Di Vito, B.: Formalizing space shuttle software requirements: Four case
studies. ACM Trans. Softw. Eng. Methodol. 7(3), 296–332 (Jul 1998)

36. Cui, H., Hu, G., Wu, J., Yang, J.: Verifying systems rules using rule-directed
symbolic execution. SIGPLAN Not. 48(4), 329–342 (Mar 2013)

37. Daum, M., Dörrenbächer, J., Schmidt, M., Wolff, B.: A verification approach for
system-level concurrent programs. In: Verified Software: Theories, Tools, Experi-
ments, pp. 161–176. Springer (2008)

38. Daum, M., Schirmer, N.W., Schmidt, M.: Implementation correctness of a real-
time operating system. Third IEEE International Conference on Software Engi-
neering and Formal Methods (SEFM) pp. 23–32 (2009)

39. De Amorim, A.A., Dénes, M., Giannarakis, N., Hritcu, C., Pierce, B.C., Spector-
Zabusky, A., Tolmach, A.: Micro-policies: Formally verified, tag-based security
monitors. In: IEEE Symposium on Security and Privacy (SP). pp. 813–830. IEEE
(2015)

40. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Tools and Algorithms
for the Construction and Analysis of Systems, pp. 337–340. Springer (2008)

41. Dhawan, U., Vasilakis, N., Rubin, R., Chiricescu, S., Smith, J.M., Knight Jr, T.F.,
Pierce, B.C., DeHon, A.: Pump: a programmable unit for metadata processing.
In: Proceedings of the Third Workshop on Hardware and Architectural Support
for Security and Privacy (2014)

42. Dill, D.L.: The mur φ verification system. In: Computer Aided Verification. pp.
390–393. Springer (1996)

43. Dwoskin, J.S., Lee, R.B.: Hardware-rooted trust for secure key management and
transient trust. In: Proceedings of the 14th ACM conference on Computer and
communications security. pp. 389–400. ACM (2007)

44. Engineering, N., Center, S.: Technical support to the national highway traffic
safety administration (nhtsa) on the reported toyota motor corporation (tmc)
unintended acceleration (ua) investigation. Tech. rep., NASA Engineering and
Safety Center Technical Assessment Report (2011)

45. Farmer, W.M., Guttman, J.D., Thayer, F.J.: Imps: An interactive mathematical
proof system. Journal of Automated Reasoning 11(2), 213–248 (1993)

46. Franklin, J., Seshadri, A., Qu, N., Chaki, S., Datta, A.: Attacking, repairing, and
verifying secvisor: A retrospective on the security of a hypervisor. Tech. rep.,
Technical Report CMU-CyLab-08-008, Carnegie Mellon University (2008)

47. Garcıa-Ferreira, I., Laorden, C., Santos, I., Bringas, P.G.: A survey on static
analysis and model checking. In: International Joint Conference SOCO. p. 443
(2014)

48. Gluck, P.R., Holzmann, G.J.: Using spin model checking for flight software ver-
ification. In: Aerospace Conference Proceedings, 2002. IEEE. vol. 1, pp. 1–105.
IEEE (2002)

49. Gordon, M.: From lcf to hol: a short history. In: Proof, language, and interaction.
pp. 169–185. MIT Press (2000)

50. Grabowski, A., Kornilowicz, A., Naumowicz, A.: Mizar in a nutshell. Journal of
Formalized Reasoning 3(2), 153–245 (2010)

51. Graphics, M.: Mentor graphics questa secure check (2016),
https://www.mentor.com/products/fv/questa-secure-check

52. Greve, D., Wilding, M., Vanfleet, W.M.: A separation kernel formal security pol-
icy. In: Proc. Fourth International Workshop on the ACL2 Theorem Prover and
Its Applications (2003)

53. Gu, R., Koenig, J., Ramananandro, T., Shao, Z., Wu, X.N., Weng, S.C., Zhang,
H., Guo, Y.: Deep specifications and certified abstraction layers. In: ACM SIG-
PLAN Notices. vol. 50, pp. 595–608. ACM (2015)

54. Hallgren, T.: Alfa web site (2012), http://www.cs.chalmers.se/ hallgren/Alfa/
55. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of

the ACM (JACM) 40(1), 143–184 (1993)
56. Hatnik, U., Altmann, S.: Using modelsim, matlab/simulink and ns for simulation

of distributed systems. In: International Conference on Parallel Computing in
Electrical Engineering. pp. 114–119. IEEE (2004)

57. Havelund, K., Lowry, M., Park, S., Pecheur, C., Penix, J., Visser, W., White, J.,
et al.: Formal analysis of the remote agent before and after flight. In: Proceedings
of the 5th NASA Langley Formal Methods Workshop. vol. 134 (2000)

58. Havelund, K., Lowry, M., Penix, J.: Formal analysis of a space-craft controller
using spin. Software Engineering, IEEE Transactions on 27(8), 749–765 (2001)

59. Havelund, K., Pressburger, T.: Model checking java programs using java
pathfinder. International Journal on Software Tools for Technology Transfer 2(4),
366–381 (2000)

60. Hawblitzel, C., Howell, J., Lorch, J.R., Narayan, A., Parno, B., Zhang, D., Zill,
B.: Ironclad apps: End-to-end security via automated full-system verification. In:
USENIX Symposium on Operating Systems Design and Implementation (OSDI).
pp. 165–181 (2014)

61. Hazelhurst, S., Seger, C.J.H.: Symbolic trajectory evaluation. In: Formal Hard-
ware Verification, pp. 3–78. Springer (1997)

62. Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice Hall,
Englewood Cliffs, N.J. (1991)

63. Holzmann, G.J.: The model checker spin. IEEE Transactions on software engi-
neering 23(5), 279 (1997)

64. Holzmann, G.J.: Mars code. Communications of the ACM 57(2), 64–73 (2014)
65. Holzmann, G.J., Smith, M.H.: Automating software feature verification. Bell Labs

Technical Journal 5(2), 72–87 (2000)
66. Hua, W., Li, X., Guan, Y., Shi, Z., Zhang, J., Dong, L.: Formal verification

for spacewire communication protocol based on environment state machine. In:
International Conference on Wireless Communications, Networking and Mobile
Computing (WiCOM). pp. 1–4 (2012)

67. Huet, G., Kahn, G., Paulin-Mohring, C.: The coq proof assistant a tutorial. Rap-
port Technique 178 (1997)

68. 4th gen core family desktop specification update (2016),
http://www.intel.com/content/dam/www/public/us/en/documents/specification-
updates/4th-gen-core-family-desktop-specification-update.pdf

69. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: Tracer: A symbolic execu-
tion tool for verification. In: Computer Aided Verification. pp. 758–766. Springer
(2012)

70. Jin, S., Ahn, J., Cha, S., Huh, J.: Architectural support for secure virtualization
under a vulnerable hypervisor. In: Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture. pp. 272–283. ACM (2011)

71. Kaufmann, M., Moore, J.S.: An acl2 tutorial. In: Theorem Proving in Higher
Order Logics, pp. 17–21. Springer (2008)

72. Keene, S.E.: A programmer’s guide to object-oriented programming in Common
LISP. Addison-Wesley Longman Publishing Co., Inc. (1988)

73. Kesten, Y., Pnueli, A., Raviv, L.o.: Algorithmic verification of linear tempo-
ral logic specifications. In: Automata, Languages and Programming, pp. 1–16.
Springer (1998)

74. Kgil, T., Falk, L., Mudge, T.: Chiplock: support for secure microarchitectures.
ACM SIGARCH Computer Architecture News 33(1), 134–143 (2005)

75. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., et al.: sel4: Formal verifica-
tion of an os kernel. In: Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles. pp. 207–220. ACM (2009)

76. Kreitz, C.: Building reliable, high-performance networks with the nuprl proof
development system. Journal of Functional Programming 14(01), 21–68 (2004)

77. Kroening, D., Sharygina, N.: Approximating predicate images for bit-vector logic.
In: Proceedings of TACAS 2006. Lecture Notes in Computer Science, vol. 3920,
pp. 242–256. Springer Verlag (2006)

78. Kroening, D., Tautschnig, M.: Cbmc–c bounded model checker. In: International
Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems. pp. 389–391. Springer (2014)

79. Kroening, D., Weissenbacher, G.: Counterexamples with loops for predicate ab-
straction. In: Proceedings of CAV 2006. Lecture Notes in Computer Science, vol.
4144, pp. 152–165. Springer Verlag (2006)

80. Langevelde, I.v., Romijn, J., Goga, N.: Founding firewire bridges through promela
prototyping. In: Proceedings of 17th International Parallel and Distributed Pro-
cessing Symposium (IPDPS), 8th International Workshop on Formal Methods for
Parallel Programming: Theory and Applications (FMPPTA). IEEE Computer
Society Press (2003)

81. Lee, D.K., Crary, K., Harper, R.: Towards a mechanized metatheory of standard
ml. In: ACM SIGPLAN Notices. vol. 42, pp. 173–184. ACM (2007)

82. Lee, R.B.: Security basics for computer architects. Synthesis Lectures on Com-
puter Architecture 8(4), 1–111 (2013)

83. Lee, R.B., Kwan, P., McGregor, J.P., Dwoskin, J., Wang, Z.: Architecture for
protecting critical secrets in microprocessors. In: Computer Architecture, 2005.
ISCA’05. Proceedings. 32nd International Symposium on. pp. 2–13. IEEE (2005)

84. Leinenbach, D., Petrova, E.: Pervasive compiler verification–from verified pro-
grams to verified systems. Electronic Notes in Theoretical Computer Science 217,
23–40 (2008)

85. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: Logic for Programming, Artificial Intelligence, and Reasoning. pp. 348–370.
Springer (2010)

86. Leino, K.R.M.: Developing verified programs with dafny. In: Proceedings of the
2013 International Conference on Software Engineering. pp. 1488–1490. ICSE ’13,
IEEE Press (2013)

87. Leroy, X.: The compcert c verified compiler. Documentation and users manual.
INRIA Paris-Rocquencourt (2012)

88. Li, X., Kashyap, V., Oberg, J.K., Tiwari, M., Rajarathinam, V.R., Kastner, R.,
Sherwood, T., Hardekopf, B., Chong, F.T.: Sapper: A language for hardware-level
security policy enforcement. In: ACM SIGARCH Computer Architecture News.
vol. 42, pp. 97–112. ACM (2014)

89. Li, X., Tiwari, M., Oberg, J.K., Kashyap, V., Chong, F.T., Sherwood, T., Hard-
ekopf, B.: Caisson: a hardware description language for secure information flow.
In: ACM SIGPLAN Notices. vol. 46, pp. 109–120. ACM (2011)

90. Lie, D., Mitchell, J., Thekkath, C.A., Horowitz, M.: Specifying and verifying hard-
ware for tamper-resistant software. In: Symposium on Security and Privacy. pp.
166–177. IEEE (2003)

91. Lie, D., Thekkath, C., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J., Horowitz,
M.: Architectural support for copy and tamper resistant software. ACM SIG-
PLAN Notices 35(11), 168–177 (2000)

92. Liedtke, J.: Toward real microkernels. Communications of the ACM 39(9), 70–77
(1996)

93. Lipsett, R., Schaefer, C.F., Ussery, C.: VHDL: Hardware description and design.
Springer Science & Business Media (2012)

94. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: IEEE Symposium on Security and Privacy. pp. 605–622
(2015)

95. Lockhart, D., Batten, C.: Hardware generation languages as a foundation for
credible, reproducible, and productive research methodologies. In: Workshop on
Reproducible Research Methodologies (REPRODUCE) (2014)

96. Luo, Z., Pollack, R.: LEGO proof development system: User’s manual. University
of Edinburgh, Department of Computer Science, Laboratory for Foundations of
Computer Science (1992)

97. Mai, H., Pek, E., Xue, H., King, S.T., Madhusudan, P.: Verifying security in-
variants in expressos. In: ACM SIGPLAN Notices. vol. 48, pp. 293–304. ACM
(2013)

98. McCoyd, M., Krug, R.B., Goel, D., Dahlin, M., Young, W.: Building a hypervisor
on a formally verifiable protection layer. In: System Sciences (HICSS), 2013 46th
Hawaii International Conference on. pp. 5069–5078. IEEE (2013)

99. McCune, W., Shumsky, O.: Ivy: A preprocessor and proof checker for first-order
logic. In: Computer-Aided reasoning, pp. 265–281. Springer (2000)

100. McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V., Shafi, H., Shanbhogue,
V., Savagaonkar, U.R.: Innovative instructions and software model for isolated
execution. In: Proceedings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy. ACM (2013)

101. McMillan, K.L.: The smv system. In: Symbolic Model Checking, pp. 61–85.
Springer (1993)

102. Megill, N.: Metamath. In: The Seventeen Provers of the World, pp. 88–95.
Springer (2006)

103. Milner, R.: The definition of standard ML: revised. MIT press (1997)
104. Mitchell, J.C., Mitchell, M., Stern, U.: Automated analysis of cryptographic pro-

tocols using murϕ. In: Security and Privacy, 1997. Proceedings., 1997 IEEE Sym-
posium on. pp. 141–151. IEEE (1997)

105. Mitchell, J.C., Shmatikov, V., Stern, U.: Finite-state analysis of ssl 3.0. In:
USENIX Security (1998)

106. Mooij, A.J., Goga, N., Wesselink, W., Bosnacki, D.: An analysis of medical device
communication standard ieee 1073.2. Communication Systems and Networks pp.
74–79 (2003)

107. Moore, J.S., Lynch, T.W., Kaufmann, M.: A mechanically checked proof of the
amd5 k 86 tm floating-point division program. Computers, IEEE Transactions on
47(9), 913–926 (1998)

108. Morrisett, G., Walker, D., Crary, K., Glew, N.: From system f to typed as-
sembly language. ACM Transactions on Programming Languages and Systems
(TOPLAS) 21(3), 527–568 (1999)

109. Nikhil, R.: Bluespec system verilog: efficient, correct rtl from high level specifi-
cations. In: Formal Methods and Models for Co-Design, 2004. MEMOCODE’04.
Proceedings. Second ACM and IEEE International Conference on. pp. 69–70.
IEEE (2004)

110. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: a proof assistant for higher-
order logic, vol. 2283. Springer Science & Business Media (2002)

111. Owre, S., Rushby, J.M., Shankar, N.: Pvs: A prototype verification system. In:
Automated DeductionCADE-11, pp. 748–752. Springer (1992)

112. Paulin-Mohring, C.: Introduction to the coq proof-assistant for practical soft-
ware verification. In: Tools for Practical Software Verification, pp. 45–95. Springer
(2011)

113. Paulson, L.C.: Isabelle: A generic theorem prover, vol. 828. Springer Science &
Business Media (1994)

114. Pfenning, F., Schürmann, C.: System description: Twelfa meta-logical framework
for deductive systems. In: Automated DeductionCADE-16, pp. 202–206. Springer
(1999)

115. van de Pol, J.C.: Automated verification of nested dfs. In: International Workshop
on Formal Methods for Industrial Critical Systems. pp. 181–197. Springer (2015)

116. Rausch, M., Krogh, B.H.: Formal verification of plc programs. In: American Con-
trol Conference. vol. 1, pp. 234–238 (1998)

117. Romijn, J.: Improving the quality of protocol standards: Correcting IEEE 1394.1
firewire net update. Nieuwsbrief van de Nederlandse Vereniging voor Theoretische
Informatici 8, 23–30 (2004)

118. Russinoff, D., Kaufmann, M., Smith, E., Sumners, R.: Formal verification of
floating-point rtl at amd using the acl2 theorem prover. Proceedings of the 17th
IMACS World Congrress on Scientific Computation, Applied Mathematics and
Simulation, Paris, France (2005)

119. Russinoff, D.M.: A case study in formal verification of register-transfer logic with
acl2: The floating point adder of the amd athlon tm processor. In: Formal Methods
in Computer-Aided Design. pp. 22–55. Springer (2000)

120. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. Selected
Areas in Communications, IEEE Journal on 21(1), 5–19 (2003)

121. Saudel, F., Salwan, J.: Triton: A dynamic symbolic execution framework. In: Sym-
posium sur la sécurité des technologies de l’information et des communications,
SSTIC, France, Rennes, June 3-5 2015. pp. 31–54. SSTIC (2015)

122. Schirmer, N., et al.: Verification of sequential imperative programs in Isabelle-
HOL. Ph.D. thesis, Technical University Munich (2006)

123. Schneider, F., Easterbrook, S.M., Callahan, J.R., Holzmann, G.J.: Validating re-
quirements for fault tolerant systems using model checking. In: Requirements En-
gineering, 1998. Proceedings. 1998 Third International Conference on. pp. 4–13.
IEEE (1998)

124. Schneier, B.: The internet of things will turn large-scale hacks into real world
disaster (2016), https://motherboard.vice.com/read/the-internet-of-things-will-
cause-the-first-ever-large-scale-internet-disaster, accessed July 25, 2016.

125. Schürmann, C.: The twelf proof assistant. In: Theorem Proving in Higher Order
Logics, pp. 79–83. Springer (2009)

126. Schwichtenberg, H., et al.: Proof-and program-extraction system minlog. Free
code and documentation at http://www. minlog-system. de (2006)

127. Seshadri, A., Luk, M., Qu, N., Perrig, A.: Secvisor: A tiny hypervisor to pro-
vide lifetime kernel code integrity for commodity oses. ACM SIGOPS Operating
Systems Review 41(6), 335–350 (2007)

128. Shacham, O., Wachs, M., Danowitz, A., Galal, S., Brunhaver, J., Qadeer, W.,
Sankaranarayanan, S., Vassiliev, A., Richardson, S., Horowitz, M.: Avoiding game
over: Bringing design to the next level. In: Proceedings of the 49th Annual Design
Automation Conference. pp. 623–629. ACM (2012)

129. Shmatikov, V., Mitchell, J.C.: Analysis of a fair exchange protocol. In: Network
& Distributed System Security Symposium (2000)

130. Silva, V.D., Kroening, D., Weissenbacher, G.: A survey of automated techniques
for formal software verification. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on 27(7), 1165–1178 (2008)

131. Sinha, R., Rajamani, S., Seshia, S., Vaswani, K.: Moat: Verifying confidentiality
of enclave programs. In: Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security. pp. 1169–1184. CCS ’15, ACM (2015)

132. SPIN: (2016), http://spinroot.com/spin/whatispin.html
133. Strecker, M.: Formal verification of a java compiler in isabelle. In: International

Conference on Automated Deduction. pp. 63–77. Springer (2002)
134. Subramanyan, P., Malik, S., Khattri, H., Maiti, A., Fung, J.: Verifying information

flow properties of firmware using symbolic execution. In: 2016 Design, Automation
& Test in Europe Conference & Exhibition (DATE). pp. 337–342. IEEE (2016)

135. Suh, G.E., Clarke, D., Gassend, B., Van Dijk, M., Devadas, S.: Aegis: architecture
for tamper-evident and tamper-resistant processing. In: Proceedings of the 17th
annual international conference on Supercomputing. pp. 160–171. ACM (2003)

136. Szefer, J., Lee, R.B.: Architectural support for hypervisor-secure virtualization.
In: ACM SIGPLAN Notices. vol. 47, pp. 437–450. ACM (2012)

137. Thévenon, P.: Validation of proofs using phox. Electronic Notes in Theoretical
Computer Science 140, 55–66 (2005)

138. Thomas, D., Moorby, P.: The Verilog R© Hardware Description Language. Springer
Science & Business Media (2008)

139. Thompson, K.: Reflections on trusting trust. Communications of the ACM 27(8),
761–763 (1984)

140. Trustzone, A.: Trustzone information page. Tech. rep. (2016),
http://www.arm.com/products/processors/technologies/trustzone/

141. Vasudevan, A., Mccune, J.M., Newsome, J., Mellon, C.C.: Design and implemen-
tation of an extensible and modular hypervisor framework (2012)

142. Wallace, D.R., Fujii, R.U.: Software verification and validation: an overview. Ieee
Software 6(3), 10 (1989)

143. Wenzel, M., et al.: Isabelle/Isara versatile environment for human-readable formal
proof documents. Ph.D. thesis, Institut für Informatik, Technische Universität
München. http://tumb1. biblio. tu-muenchen. de/publ/diss/in/2002/wenzel.
html (2002)

144. Wiedijk, F.: The seventeen provers of the world: Foreword by Dana S. Scott, vol.
3600. Springer (2006)

145. Woodruff, J., Watson, R.N., Chisnall, D., Moore, S.W., Anderson, J., Davis, B.,
Laurie, B., Neumann, P.G., Norton, R., Roe, M.: The cheri capability model:
Revisiting risc in an age of risk. In: Proceeding of the 41st annual international
symposium on Computer architecuture. pp. 457–468. IEEE Press (2014)

146. Yang, J., Hawblitzel, C.: Safe to the last instruction: automated verification of a
type-safe operating system. In: ACM Sigplan Notices. vol. 45, pp. 99–110. ACM
(2010)

147. Yang, J., Hawblitzel, C.: Safe to the last instruction: automated verification of a
type-safe operating system. Commun. ACM 54(12), 123–131 (2011)

148. Zhang, D., Wang, Y., Suh, G.E., Myers, A.C.: A hardware design language for
timing-sensitive information-flow security. In: ACM SIGARCH Computer Archi-
tecture News. vol. 43, pp. 503–516. ACM (2015)

149. Zhang, T., Lee, R.B.: New models of cache architectures characterizing infor-
mation leakage from cache side channels. In: Proceedings of the 30th Annual
Computer Security Applications Conference. pp. 96–105. ACM (2014)

150. Zhang, T., Lee, R.B.: Secure cache modeling for measuring side-channel leakage.
Tech. rep., Tech. Report, http://palms. ee. princeton. edu/node (2014)

