
Survey of Approaches and Techniques for Security
Verification of Computer Systems
FERHAT ERATA∗, Yale University, USA
SHUWEN DENG∗, Yale University, USA
FAISAL ZAGHLOUL∗, Yale University, USA
WENJIE XIONG∗, Virginia Tech, USA
ONUR DEMIR†, Yeditepe Üniversitesi, Turkey
JAKUB SZEFER∗, Yale University, USA

This paper surveys the landscape of security verification approaches and techniques for computer systems at
various levels: from a software-application level all the way to the physical hardware level. Different existing
projects are compared, based on the tools used and security aspects being examined. Since many systems
require both hardware and software components to work together to provide the system’s promised security
protections, it is not sufficient to verify just the software levels or just the hardware levels in a mutually
exclusive fashion. This survey especially highlights system levels that are verified by the different existing
projects and presents to the readers the state of the art in hardware and software system security verification.
Few approaches come close to providing full-system verification, and there is still much room for improvement.

CCS Concepts: • Security and privacy→ Formal security models; Security in hardware.

Additional Key Words and Phrases: formal methods, theorem provers, model checkers, security verification,
hardware-level verification, software-level verification

1 INTRODUCTION
News articles and opinion pieces by top security researchers constantly remind us that as computing
becomes more pervasive, security vulnerabilities are more likely to translate into real-world
disasters [86]. Today’s computing systems are very complex, and if the design of the hardware,
software, or the way the hardware and software interact are not perfect, then there may be security
vulnerabilities that attackers can exploit. To help find these potential vulnerabilities and prove the
designed system is trustworthy, formal methods can be used. For instance, in the development of
eXecute Only Memory (XOM) computer system [68] formal verification was used and a possible
replay attack was identified, and then the design was improved and proved to be secure. Since
the security of systems such as XOM depends on the correctness of the protections that both the
hardware and software components provide, there is a need to verify the security of both the
hardware and the software before commercializing the system.
Unlike secure architectures such as XOM, most computer architectures and systems are not

formally verified. This shortcoming leaves them open to potential vulnerabilities and future security
attacks. To help protect the systems, and to promote more security verification of computer systems,
this survey aims to show readers about existing approaches to security verification of computer
systems. In this survey, we compare different projects and tools that consider both the hardware
and the software levels of a system, and which use formal methods to verify security properties
of such systems. The different approaches and tools are analyzed and discussed in detail to help
∗This work was supported in part by the National Science Foundation (NSF) grants 1419869 and 1524680; and Semiconductor
Research Corporation (SRC) contract 2015-TS-2633. Shuwen Deng was supported through Google PhD Fellowship.
†The author’s work is supported by TUBITAK grant 2219.

Authors’ addresses: Ferhat Erata, Yale University, USA, ; Shuwen Deng, Yale University, USA, ; Faisal Zaghloul, Yale
University, USA, ; Wenjie Xiong, Virginia Tech, USA, ; Onur Demir, Yeditepe Üniversitesi, Turkey, ; Jakub Szefer, Yale
University, USA, .

HTTPS://ORCID.ORG/0000-0001-6305-4266
HTTPS://ORCID.ORG/0000-0002-9782-5038
HTTPS://ORCID.ORG/0000-0002-5371-1231
HTTPS://ORCID.ORG/0000-0002-7626-2651
HTTPS://ORCID.ORG/0000-0002-1088-6461
HTTPS://ORCID.ORG/0000-0001-9721-3640
https://orcid.org/0000-0001-6305-4266
https://orcid.org/0000-0002-9782-5038
https://orcid.org/0000-0002-5371-1231
https://orcid.org/0000-0002-7626-2651
https://orcid.org/0000-0002-1088-6461
https://orcid.org/0000-0001-9721-3640

2 F. Erata, et al.

Application

Operating System

Hypervisor

Microarchitecture

RTL

Gate

Physical

Software
Levels

Hardware
Levels

VeroCoq, Cassion,

Sapper, SecVerilog,

HyperFlow, UPEC

XOM
Micro Policies

Cache Verification, CheckMate

Moat, Ironclad Apps

Verve
SecVisor

XMHF, Minvisor

CertiKOS

seL4

ISA

RTL-ConTest,

RTLIFT, Coppelia

Fig. 1. Hardware and software levels found in a typical computer system are shown on the left. The different
security verification projects and levels which they consider are shown on the right. The verification projects
surveyed in this work focus typically on one or more of the levels. Broadly, projects either focus on multiple
software levels, or hardware levels; some projects span both software and hardware levels, but not all the
levels. Note, some projects “skip” certain levels, as indicated by the breaks in the arrows on the right-hand
side of the figure.

readers understand the state of the art in security verification and lower the barrier to enter into
this research field for interested researchers.

1.1 Software and Hardware System Levels Considered in the Verification Process
A computer system is typically composed of multiple hardware and software levels, as shown
in Figure 1. The typical software levels are Application, Operating System (OS), and Hypervisor.
These levels cover typical software running on a commodity computing system. The common
hardware levels in a computer system are: ISA (Instruction Set Architecture), Microarchitecture,
RTL (Register Transfer Level), Gate, and Physical.
Traditionally, upper levels depend on the lower levels for functionality and security. E.g., a

guest OS relies on the Hypervisor to provide isolation from other malicious guests, if the more
privileged Hypervisor has a security vulnerability, the OS cannot make any guarantees about
security. For example, an ISA is not secure at the hardware level if the microarchitecture that
implements it has a bug. Likewise, a microarchitecture realized using a flawed RTL is not secure,
and so forth. The relationship is not strictly linear, in that the upper level always depends on all
lower levels. Some secure architectures have introduced hardware that allow higher software levels
to be protected from intermediate software levels. For example, in Bastion [20] applications are
able to communicate with the Hypervisor while bypassing the OS; or in HyperWall [96] a virtual
machine does not need to rely on hypervisor for isolation as the hardware provides some basic
memory management functionality.

The software and hardware levels needed to ensure security of the system constitute the trusted
computing base (TCB) which contains all the software and hardware that need to be trusted
(although it may not be trustworthy). Thus, the TCB should be verified for security to make it
truly trustworthy. Effectively, TCB consists of different components at different levels, and security
verification tools and methods should include all the levels in the TCB when checking the security
of the system. Figure 1 on the right side shows the various projects surveyed in this work and the

Survey of Approaches and Techniques for Security Verification of Computer Systems 3

Actual System

System
Representation

Security
Properties

Representation

Formal
Verification

(a) (b)

(c)

(d)

Threat
Model

Fig. 2. General procedure for security verification of a computer system.

different system levels that their security verification covers. Because different projects consider
different levels, it may be difficult to select the right approach (or mix of approaches) for security
verification that one may desire. Especially, some of the works skip certain levels, which may not
be needed for their verification, for example Moat [94] verifies applications with respect to ISA, and
assumes hardware fully protects the applications from OS or Hypervisor, so OS and Hypervisor
levels are skipped. By studying each group of projects, this survey aims to show the state of the art
in security verification of hardware and software systems and allow researchers and practitioners
to understand how to approach security verification of their designs competently.

2 TOOLS AND MECHANISMS USED IN SECURITY VERIFICATION
This section presents a background on the different tools, mechanisms, and approaches typically
used to check security guarantees of a computer system. The general flow of the security verification
process is shown at a high level in Figure 2. The starting point is the actual system, either an already
existing system or a design of some new system whose security properties need to be verified. From
the actual system or design, a representation of the system needs to be obtained in the verification
tools, (a) in Figure 2. In parallel, the security properties of the system need to be specified, (b)
in Figure 2. The security properties are closely tied to the system’s assumed threat model. The
security properties can be specified separately or together within the representation of the system,
in which case (a) and (b) would be done together. The final step is the actual verification process
which takes the system representation and security properties as input, and returns whether the
verification passed or failed, (c) in Figure 2. If the verification fails, the design needs to be updated
and re-evaluated, (d) in Figure 2.

2.1 System Representation
In order to verify if a system complies with some properties, we need a representation of the system
that accurately expresses the behavior of the system. Ideally, the actual system description can
be used, such as the source hardware description language (HDL) code for hardware components
or a programming language source code for software components. Otherwise, a model in the
verification tool is needed. One reason a separate model may be needed is that the way a system
is described in HDL or programming language may not be compatible with the verification tool
that is being used, or the way the system is described is too complex for the verification process to
handle.
Hardware components can be described with Hardware Description Languages (HDLs). The

most popular HDLs are Verilog [97] and VHDL [70]. Recently, a new tier of HDLs is emerging that
feature more high-level abstractions and reusability than circuit-level HDLs. This new generation
of HDLs is called Hardware Generation Languages (HGLs) [72], including Chisel [6], BlueSpec [79],

4 F. Erata, et al.

and Genesis2 [90]. Most recently, there is active deployment of High-Level Synthesis (HLS) where
the hardware is inferred from software-like description of the algorithm or a program that it
should realize. There are some attempts to link these hardware and system representation methods
with security property specification to realize their security verification, which we will present in
Section 3.
Software components, meanwhile, can be described by their high-level implementation in pro-

gramming languages such as C, C++, or Java. There are ongoing efforts to integrate design processes
and system specifications with security-property specifications and include verification information
inside programming languages as annotations. Examples include TAL [28] and Dafny [61], which
we will present in Section 4.

Alternatively, some tools are developed to generate a model in the verification tool from its
original description in HDL or in software programming language. For example, this survey later
discusses VeriCoq which is a tool that can be used to translate (annotated) Verilog code to code
understood by Coq verification tools. If an automated method of creating a model is not available,
then the model has to be created manually by engineers. However, when creating models manually,
proving the correspondence between the model and the actual system is an open research problem.
These are also described in Section 3.

Formal verification is done with respect to a system representation, as described above. Most
projects assume a trusted compiler or toolchain such that the generated system implementation
flawlessly matches the system representation and does not contain extra hidden or unwanted
functionality that may compromise the system’s security. For example, after verifying the C code of
an application, there is still a concern that the compiler may not generate the correct machine code
from the C code. Amalevolent compiler might insert malicious code into the binary, as demonstrated
in [98], where a virus-infected compiler was able to inject back-doors into applications during
compilation. A number of projects include “trusted” compilers that are guaranteed not to inject
behavior that was not specified. One example of such a compiler is CompCert [62] which is a
certified compiler that generates binaries from Coq code. All surveyed work assumes trusted
toolchains.

2.2 Representation of Security Properties
Depending on the verification mechanism, either deductive mechanisms or algorithmic mechanisms
can be used, as detailed in Section 2.3 and 2.4. In deductive mechanisms, the security properties can
be represented in terms of logical formulas. A logical formula serves as a limitation on the states
the system is allowed throughout its execution. Some specialized forms of logic are used to express
the relations between the states of the system. In algorithmic mechanisms security properties
can be expressed as invariants within a system, and their validity is checked against all possible
execution paths.

2.3 Formal Verification via Deductive Mechanisms
When using deductive mechanisms, verification is achieved by deducing properties from a system
representation. Theorem provers fall in this category. The key element in deductive mechanisms
is a proof. Deductive mechanisms use formal proofs to verify that a system complies with some
given properties.

Theorem provers (a.k.a. proof assistants) aid the verification process by providing frameworks for
creating a mathematical model of the system, for specifying the security properties, and formally
proving whether the model complies with the properties or not. Theorem provers are generally
composed of a language (such as Coq), and an environment for describing the proofs (such as
CoqIDE). There are many proof assistants used actively in academia and industry, such as Coq [12],

Survey of Approaches and Techniques for Security Verification of Computer Systems 5

Isabelle/HOL [80], PVS (Prototype Verification System) [82], ACL2 (A Computational Logic for
Applicative Common Lisp) [56], and Twelf (LF) [47]. Theorem proving typically requires a lot of
effort and time to complete, and learning the required tools is seen as one of the difficult aspects of
verification using theorem provers. In the following paragraphs we will introduce different theorem
provers and give examples on their usage in functional and security verification.

2.4 Formal Verification via Algorithmic Mechanisms
Algorithmic mechanisms typically use an algorithmic search, which is performed over a system’s
representation and its states, rather than using deduction. Model checkers, SMT (Satisfiability
Modulo Theories) Solvers, and Symbolic Execution fall in this category.
As defined in [7], “model checking is an automated technique that, given a finite-state model

of a system and a formal property, systematically checks whether this property holds for a given
state in that model.” The security property that is being verified has to be defined using a logical
form. After the model and the property definition, the model checker can be run to see if the given
security property is valid in the system model. The checks can be done either for each transition or
each state using invariants, pre- and post-conditions. The execution time of the model checker is
determined by the invariants and the complexity of the model. The output can be positive (property
satisfied), negative (property violated), or the execution runs indefinitely. There are a number
of model checking tools: SPIN [51], Mur𝜑 [33], SMV [74], CBMC [59] For further details about
model-checker design, we point the readers to an early survey by Clarke et al. [23]. Model checking
has a well-known state explosion problem [24, 103], which is the exponential growth rates of states.
This may lead to memory insufficiency or extremely long run times. For fairly complex systems,
model checking needs to use more abstraction to simplify the model. However, as the level of
abstraction gets higher, we run the risk of missing some important details of the system design.

Satisfiability Modulo Theories (SMT) solvers are used to solve satisfiability problems expressed
in first-order logic over arithmetic, bit-vectors, string and arrays. They rely on efficient satisfiability
procedures for propositional logic (SAT solvers). SMT solvers such as Z3 [31], CVC5 [9], and
MathSAT5 [22] have been used as a building block for a wide range of applications from program
analysis to program verification and software testing. For verifying systems, first, the system
representation and security properties have to be transferred into formulas that SMT solvers can
work with. The validity of the property is then checked by SMT solvers [11]. Note that SMT solver
execution time can vary from a few seconds to hours depending on the size of the problem. There
are many verification tools using SMT solvers. For instance, Z3 [31] is an SMT solver used by an
intermediate verification language, Boogie [108], and Dafny [61] is a programming language and
verifier for functional correctness that uses Boogie as its target language. Vale [16], a language for
expressing and verifying high-performance assembly code, uses Dafny/Z3 as its verifier backend.

Alloy [53] is a formal specification language based on first-order relational logic. Alloy’s reasoning
engine uses SAT solving technology to simulate designs and find subtle flaws, and has been used in
a wide variety of applications from networking and security to critical systems [54].
Unlike model checking, which requires a model of the system, symbolic execution [8] deals

directly with the program semantics assuming symbolic values for inputs. It thus arrives at ex-
pressions in terms of those symbols and constraints them with the possible outcomes of each
conditional branch. Finally, program expressions can be evaluated by solving the constraints (e.g.,
by an SMT-Solver). In this way, all possible execution states can be evaluated simultaneously, at
great cost of storage and slow execution during analysis. There are many symbolic execution
engines targeting different software levels: while KLEE [18] symbolically executes programs in
the LLVM Intermediate Representation (IR) [60], Angr [91] executes lifted binary programs in
VEX IR [78], and JPF [49] executes Java bytecode. Apart from that, there are also tools such as

6 F. Erata, et al.

UCLID5 [89] created to meet the requirements from different aspects, including providing a natural
way to model both concurrent transition systems and sequential software with expressive abstract
datatypes, specifying a range of properties, providing a diverse palette of verification methods
supported by state-of-the-art computational reasoning engines including those for synthesis and
learning, supporting compositional reasoning, and giving counterexamples and feedback to users.

3 SECURITY VERIFICATION FOCUSING ON THE HARDWARE LEVELS OF A SYSTEM
In this section, we present projects which focus on the security verification of the hardware levels.
As discussed in Section 2, the formal verification tools have their own languages with formal
semantics for describing system specification, security properties or invariants, and for doing
the verification and proofs. However, these languages differ significantly from common HDLs
(Hardware Description Languages) that are used in hardware design.

To bridge the gap, in order to perform security verification, researchers most often eithermanually
or automatically convert system designs in HDL to system representations in formal verification
tools’ languages; or, conversely, generate HDL specification from the system representation written
in a verification tool’s language. With the former approach, hardware designers can design the
system in HDL as usual, and the main new effort is in generating models in the verification tools’
language and describing the security specification. With the latter approach, hardware designers
need to learn the language used by the verification tools and develop hardware, as well as the
security specification and proofs with that language. The tools then generate HDLs from the system
representation, so the system can be synthesized normally with the existing toolchain. It is required
to manually annotate the whole codebase for security verification and know beforehand which
sources and sinks for the information flow.

The following classes of projects are discussed next: manually modeling systems in verification
tools’ languages, automatically converting system designs in HDLs to models in verification tool’s
languages, adding verification features to existing HDLs, or generating HDLs from system models
written in verification tool’s language.

3.1 Approaches Requiring Manually Modeling Systems in Verification Tools’ Languages
Since the languages used in verification tools are usually very different from HDL, for security-
critical modules, sometimes it makes sense to manually model the system and verify the model
with security specifications. Depending on the size of the system, this process is time-consuming.
Moreover, this process does not guarantee that the model faithfully represents the real system.

If a proof assistant is used, the system is modeled as a set of definitions, and the security properties
are formalized as theorems. Then the proof is developedmanually and checked by the proof assistant.
If amodel checker is used, the model of the system is built in the form of a finite state machine (FSM).
The security properties are represented by a set of invariants. The model checker can automatically
search for all possible states and check if the invariants always hold. If so, the security properties
are said to be proved. Usually, the model is simplified to avoid the state explosion problem.

3.1.1 Micro-policies: verifying PUMP secure architecture. The work on Programmable Unit for
Metadata Processing (PUMP) [32] added a programmable metadata processing unit alongside with
the data computation. PUMP allows programmers to create policies and rules that enforce IFT
(Information Flow Tracking) mechanisms by manipulating the metadata tags in each instruction.
Metadata processing can thus support many safety and security policies. However, given a high-level
specification, it is nontrivial to design metadata processing rules. Whether the metadata processing
rules in PUMP comply with high-level security properties needs to be proved. Micro-Policies [5, 30]
presented an approach for formalizing and verifying the IFT policies.

Survey of Approaches and Techniques for Security Verification of Computer Systems 7

Abstract
Machine

Symbolic
Machine

Proof
Check

PASS/FAIL

(4)

(1)
Concrete
Machine

Symbolic
Machine

Proof
Check

PASS/FAIL

(5)

(2) (3)

(1)

Refinement
Proof

Refinement
Proof

Coq Coq

Fig. 3. Micro-Policies verification process.

Micro-Policies verification process is shown in Figure 3. To design a set of metadata rules,
first, an abstract machine specification with a set of instructions and information flow policies
is defined, showing the security properties the machine should have. Then, programmers design
the metadata rules (concrete machine), where the information flow policy is implemented into
the PUMP hardware. To reason about whether the concrete machine reflects the abstract machine
specification, an intermediate layer symbolic machine is added manually, as shown by arrows
labeled (1) in Figure 3. The Micro-Policies prove the equivalence by backward refinement, which
means if there is a state transition in a low-level machine, there exists a corresponding transition
in a high-level machine. They use Coq to formally prove whether the concrete machine backward
refines the symbolic machine (2), and whether the symbolic machine backward refines the abstract
machine (3). If the backward refinement verification in both (4) and (5) passes, then the concrete
machine has the security properties of the abstract machines.
The work shows the proof of a variety of security policies, including noninterference, sealing,

compartmentalization, control flow integrity, and memory safety. The whole verification process
requires about 17.7k lines of code. To apply this methodology to other architectures, abstract,
concrete, and symbolic machines need to be specified by the designer manually for each architecture.
The refinement proofs depend on the system and also need to be re-done. Currently, there is no
programmatic way to generate these from the HDL code. Reusability of this approach is low.

System
States

(1)
state and transition

enumeration,
and interference

counting

(3)

PASS/FAIL

(2)
State

Transitions

Invariants

mutual information
calculations, and
non-interference

analysis

Murphi

Fig. 4. Processor cache security verification process using Mur𝜑 model checker.

3.1.2 Cache Verification with Mur𝜑 . Processor caches are an integral part of any modern processor.
They are small, but fast memory components that are used to provide quick access to frequently
accessed data. Through a fixed algorithm, the cache logic decides which data to keep in the cache
and which data to send back to memory if a new request comes and there is no sufficient space in
the cache. Memory access timing changes depending on whether a request “hits” or “misses” in
the cache. Based on this timing difference between hits and misses, researchers have presented
numerous side-channel attacks, e.g., [71], that are able to compromise data confidentiality and
potentially leak out cryptographic keys.

In [113] researchers create side-channel leakage models based on the non-interference property
between an attacker and a victim process that are using the same processor cache. First, they model

8 F. Erata, et al.

the cache architecture in Mur𝜑 as an FSM with states representing which process is currently using
the cache line and transitions between the states based on cache operations (e.g. attacker cache
hit, victim cache miss, etc.), (1) in Figure 4. By modeling the cache operation and transitions, the
authors were able to obtain probabilities for how different operations of the victim (e.g. cache hit,
cache miss, etc.) are observed by the attacker. Zhang and Lee used Mur𝜑 to enumerate all possible
states and transitions, and count the number of interferences between attacker and victim for
the different state transitions, (2) in Figure 4. Based on this data, mutual information [27] is then
used to quantitatively analyze the interference between the two processes, and reveal side-channel
vulnerabilities, (3) in Figure 4.

Authors of [113] applied their work to six cache architectures and revealed that most cache
architectures do not satisfy the non-interference property, thus failing the verification. To apply
this method to other designs, designers need to manually create the Mur𝜑 system representation
from the cache architecture description, as there is currently no automated way to extract these
models from the system representation (e.g. from HDL code). Reusability of this approach is low.

System
States

(1)
state and transition

enumeration,
XOM tag checking

PASS/FAIL

(2)
State

Transitions

Invariants

Murphi

Fig. 5. Process for verifying XOM architecture with Mur𝜑 model checker. Two sets of states and state
transitions are show, corresponding to the “actual” and “ideal” worlds that XOM verification process compares
during verification.

3.1.3 Verifying XOM Architecture. The eXecute Only Memory [68] is a hardware design with
embedded cryptographic functionality and access control. By adding new hardware and new
instructions, XOM is able to protect user data from a malicious operating system. On-chip data is
isolated using hardware tags which label the identity of the owner of the data, while off-chip data
is protected by encryption and hashing. In [67], XOM was formally specified and then verified in
Mur𝜑 .
A model of XOM and its adversary is built in Mur𝜑 as shown in Figure 5. The model of the

XOM hardware contains arrays representing the registers, cache, and memory including data and
tags. The possible values and states the hardware is modeled as system states, (1) in Figure 5. The
effects of each operation of the processor are represented as state transitions. To model the effect
of the adversary, two identical sets of states are used, dubbed the "actual world" and the "ideal
world". In the actual world, the adversary is modeled by a set of primitive actions she can perform
as state transitions. The ideal world does not include the effect of the adversary. The actual world
states and ideal world states are concatenated, and thus updated together during model checking.
With the model and state transition function, Mur𝜑 is able to exhaustively search for all possible
combinations of these actions. Invariants are defined according to the security properties to be
verified, (2) in Figure 5: to prove the adversary cannot read user data, the model checker verifies
that the on-chip user data is tagged with user’s XOM ID and off-chip user data is always encrypted
and hashed with the user’s key. To prove that the adversary is not able to write the user data
without halting the system, the model checker compares the state of the ideal world against the
state of the actual world, and thus, knows whether the adversary will succeed.

Survey of Approaches and Techniques for Security Verification of Computer Systems 9

The authors of XOM, during verification, found a replay attack and fixed it. Moreover, it was
shown that if the operating system does not behave maliciously the liveness of the system is
guaranteed. To apply this method to other designs, designers need to manually create the Mur𝜑
system representation for the architecture. Especially, invariants about any tags need to be specified.
Again, there is currently no automated way to extract system models from the HDL system
representation. Reusability of this approach is low.

Z3 SMT Solver PASS
/FAIL

(1)

Formal models of Intel SGX & Sanctum
+

Parameterized adversary model

(3)

refine
(2)

Properties for secure
remote execution

Z3 SMT Solver
PASS
/FAIL

(3)

Trusted Abstract Platform
+

Parameterized adversary model

+ (2)

Fig. 6. Process for verifying formal models of trusted hardware platform like Intel SGX and Sanctum

3.1.4 Formal Foundation of Enclave Secure Remote Execution. Enclave is a special kind of CPU
that is able to maintain a protected memory region and take advantage of this to do operation or
isolation of sensitive code and data. The formal foundation for Secure Remote Execution (SRE)
of Enclaves [95] provides a framework and methodology to reason about the security guarantees
provided by enclave platforms.
As is shown in Figure 6, first, secure remote execution of the enclave is defined. It is used to

provide formal security features to let users remotely outsource the enclave’s execution including
attestation and secure operations of data. Three key security properties that entail SRE are integrity,
confidentiality, and secure measurement. Secure measurement allows the user to verify that the
platform is running unmodified enclave programs. The secure measurement property states that
any two enclaves with the same measurement must also have the same semantics: they must
produce equivalent execution traces for equivalent input sequences. Secondly, a Trusted Abstract
Platform (TAP) is introduced to specify trusted primitives of enclaves’ behavior. Along with that a
parameterized attacker model is defined to verify TAP’s confidentiality, etc. Proof is provided that
secure remote execution holds for TAP. In the final step, the ideal TAP is refined, and the refined
platform is shown to have equivalent functionality and security compared with some practical
enclaves like Intel SGX [25] and MIT Sanctum [26]. Consequently, these practical trusted hardware
platforms are verified to hold SRE.

All the hardware platform models including TAP, Intel SGX and MIT Sanctum are constructed by
BoogiePL and verified by Z3 SMT solver. This formal foundation is proved to be able to efficiently
and effectively verify SRE of enclaves.

3.1.5 CheckMate. CheckMate [100, 101] is an approach and automated tool for determining
whether a microarchitecture design is vulnerable to a given class of security vulnerabilities. It
can also be used to automatically synthesize proof-of-concept exploit code for real-world exploits.
Figure 7 shows the overview of the CheckMate toolflow.

CheckMate requires two inputs: manual microarchitecture specification (`spec model) and speci-
fication of a class of exploits (exploit pattern). First, a microarchitecture specification, which includes
an axiomatic description of a hardware design and its related OS support, defines microarchitec-
tural structures that micro-ops pass through at various points of execution, hardware-supported

10 F. Erata, et al.

µspec Model

CheckMate

Exploit Pattern

Specification

Alloy backend µhb Graphs

Litmus Tests

(1)

(2)

(3)

(4)

Fig. 7. Overview of the CheckMate toolflow.

micro-ops, and any hardware-specific execution event orderings (e.g., in-order Fetch or out-of-
order execution). Recently, [52] presented a tool that takes a microarchitecture design in Verilog or
systemVerilog and automatically converts RTL into `spec. The CheckMate will parse the microarchi-
tecture specification and translate it into a relational model. After that, Alloy [54], which is utilized
to implement CheckMate, maps the model into SAT. Then, CheckMate will synthesize the candidate
executions and utilize the second input, exploit pattern specification, which is the formalization of
hardware execution patterns indicative of security exploit classes, to do implementation-aware
candidate pruning. This will help output the `hb graphs representative of hardware-specific exploit
program executions when the input microarchitecture is detected to be vulnerable to the input
vulnerability. Finally, the security litmus tests can be extracted. Security litmus tests are the most
compact representation of an exploit program. Security litmus tests are much more practical to
analyze with formal techniques than a full program due to their compact nature. On the other hand,
they are easily transformed into full executable programs if needed.
CheckMate is able to showcase real-world hardware security vulnerability detection. It is used

to supply a speculative out-of-order (OoO) processor and a FLUSH+RELOAD [109] cache side-
channel attack exploit pattern. From these inputs, CheckMate is able to synthesize programs
representative of Meltdown [69] and Spectre [58] attacks. Next, holding the microarchitecture
constant and replacing the FLUSH+RELOAD exploit pattern with a PRIME+PROBE [81] exploit
pattern. CheckMate further generates corresponding new attacks and is shown to be able to leak
private information. This result further validates the CheckMate approach to automated synthesis
of real-world exploits.

3.2 Automatic Conversion from HDL to System Models in Verification Tools
To lower the verification efforts, there are attempts to develop tools that automatically convert
designs in HDL to system models that are used in verification tools. However, the security specifi-
cation and proofs still need to be done as a verification effort. For certain security properties, it is
possible to automatically generate security specifications and proofs.

3.2.1 VeriCoq. VeriCoq is a tool that provides mechanisms to transform Verilog code into code
with PCHIP (Proof-Carrying Hardware Intellectual Property), which makes it possible to verify
the security of the design written in Verilog [14]. Original VeriCoq supports an essential sub-
set of Verilog, but requires the design to be flattened and have no nested modules. The newer
VeriCoq-IFT [13] has the same constraints, but adds the ability to verify information flow properties
automatically. The information flow proofs need “initial sensitivity list” as input and labeling the
variables in the design. Given this input, VeriCoq-IFT automatically creates theorems and proofs
for guaranteeing the information flow property.
The verification process is shown in Figure 8. First, the input is the Verilog code, which is then

converted into Coq by VeriCoq, (1) in Figure 8. Based on the security properties requested, designers
create the theorems to be verified, (2) in Figure 8. With the design represented in Coq, alongside
with the theorems, developers come up with formal proofs showing that the code has the desired

Survey of Approaches and Techniques for Security Verification of Computer Systems 11

Security
Properties

Theorems

Verilog
Code

Design
in Coq

Proof
Check PASS/FAIL

(1)
(2)

(3)

(4)

(5)

(6)

(7)

VeriCoq

Proofs of
Theorems

Theorems

Proof
Generation

Custom
Tool

Custom
Tool

Custom
Tool Coq

Fig. 8. VeriCoq and VeriCoq-IFT verification process. Dashed portion on left-hand side shows the VeriCoq-IFT
process that can automatically generate the theorems and the proofs.

security properties, (3) and (4) in Figure 8. They can then verify that the design aligns with the
defined security properties by using Coq, (5) and (6) in Figure 8, and either the design passes,
meaning that it conforms the properties, or it fails to pass, (7) in Figure 8.
The advantage of VeriCoq is the automated conversion of Verilog code into Coq. VeriCoq-IFT

also adds the ability to automatically generate the theorems and proofs for information flow. To
apply this method to other designs, security properties need to be specified, and the theorems and
proofs to be developed manually since they are not focusing on information flow. Reusability of
this approach is medium.

3.2.2 Formal-HDL. Formal-HDL [55] is a hardware description language in Coq proof assistant.
In [46], a tool is developed to automatically convert design in VHDL to Formal-HDL. Different
from VeriCoq, which only allows a flattened hierarchical design (a one-level design), Formal-HDL
supports instantiation of modules within other modules.

Security
Properties

Theorems

VHDL
Code

Design
in Coq

Proof
Check PASS/FAIL

(1)(2)

(3)

(4)

(5) (7)

Formal-HDL
Conversion

Proofs of
Theorems

(6) Coq

Custom
Tool

Fig. 9. Formal-HDL verification process, the lightly shaded portions are not yet done and are presumably
future work of the authors.

The advantage of Formal-HDL is the automated conversion of VHDL code into Coq. Also, it
supports instantiation of modules within other modules. However, currently no actual security
verification is done using the Coq model. To apply this method to other designs, VHDL can
be automatically translated to Coq, but all security verification work has to be done manually.
Reusability of this approach is low (as the current work [55] does not do any actual proofs about
security, just produces Coq model).

12 F. Erata, et al.

3.2.3 UPEC. Unique Program Execution Checking (UPEC) [34, 35] is a formal method that is used
to detect and locate vulnerabilities to covert channels systematically, including unknown covert
channels. A new covert channel was found using UPEC in the RISC-V Rocketchip [4]. There is
also an example of ISA non-compliance found by the UPEC in the implementation of the RISC-V
Physical Memory Protection (PMP) mechanism in Rocketchip.

RTL Code

(1)

Computational
Model

Custom
Tool

Bounded Model
Checking

Initialize UPEC
Property

Verify UPEC
Property

Alert?

PASS/FAIL

Manually Analyze
Counterexample

Design
Secure?

Remove
Corresponding
State Bits from
Commitment

(2)

(3)

(4)

(5)

(6)
(7) (8)

(9)

Fig. 10. Unique Program Execution Checking(UPEC) verification process.

The verification flow, as is shown in Figure 10, is similar to Micro-Policies [32], shown in Sec-
tion 3.1.1, but targets on covert-channel detection similar to CheckMate [100], shown in Section 3.1.5.
The difference is that the computational model that is used for the unique program execution
checking can be derived automatically from the RTL description of the design and the user only
needs to specify the protected memory region which represents the memory region holding the
secret data.

3.2.4 RTL-ConTest. RTL-ConTest [75] is a comprehensive framework for efficiently validating the
security properties and detecting security vulnerabilities of a System-on-Chip (SoC). It performs
RTL-level concolic testing, which combines symbolic execution with concrete simulation, to detect
security vulnerabilities manifested in the hardware design of the SoC.

RTL Code

(1)

RTL-ConTest

Security
Specifications

Security
Properties

Concolic
Testing

Test Cases &
RTL Simulation

Log

(3) (4) (5)

(2)

CFG Generation
and Path

Specification

Fig. 11. RTL-ConTest framework.

As is shown in Figure 11, RTL-ConTest first extracts the process flow for symbolic execution
by generating the critical flows of target RTL as control flow graphs (CFGs). This CFG generator
drives the concrete path specification and concolic testing algorithms in order to generate RTL-level
security test cases. Furthermore, the test cases are validated by the preestablished security properties
to detect critical violations in the SoC RTL. Similarly to UPEC [35], the proposed RTL-ConTest

Survey of Approaches and Techniques for Security Verification of Computer Systems 13

algorithm is also evaluated on two open-source RISC-V-based SoCs and is able to find vulnerabilities
both within the core and in the rest of SoC, e.g., incorrect password checking logic in the debug
unit, or the address range overlap between the peripherals master and SoC.

3.2.5 RTLIFT. Information Flow Tracking (IFT) has been widely used to enforce security properties,
such as confidentiality, integrity, and non-interference [85]. To precisely reason about the security
properties in a hardware design, RTLIFT [3] tracks information flow at the RTL level. The RTLIFT
software generates extra IFT logic in the circuit and then, with standard functional verification
tools, it can evaluate the security property (information flow) of the hardware design, i.e., make
sure no 𝐻𝑖𝑔ℎ data flows to 𝐿𝑜𝑤 outputs. After the verification, the extra IFT logic is removed from
the design – so the verification does not introduce overhead into the final circuit design.

RTLIFT PASS /FAIL

(1)
Verilog
Code

 Flow Tracking
Libraries

Precision Level
Specification

Simulation /
Verification tools

(2)

IFT Enhanced
Design

Custom Tool Questa

Fig. 12. Flow of the RTLIFT verification process.

To generate IFT logic automatically, flow tracking libraries were developed for Verilog for each
basic module such as a multiplexer, decoder, etc. For each basic module two types of information
flow tracking were considered, along with an associated library: a precise library and a conservative
library. The precise library propagates the security tags of signals in such a way as to minimize
the number of false positives, while the conservative library gives smaller tracking logic with
simple OR expression, but may generate more false positives. As shown in Figure 12 (1), Verilog
code, along with the flow tracking libraries and specification of the desired precision (precise or
conservative), is used by RTLIFT to replace each basic module in the original Verilog code with its
corresponding module from the library that allows for tracking of flows through that basic module.
To deal with implicit information flows in the hardware design code, conditional statements are
treated as explicit multiplexers where security tags of multiplexer control signals propagate to the
multiplexer output. Next, as shown in Figure 12 (2), The generated circuit with IFT features is then
fed to simulation and verification tools (Quetsa Formal Verification tool in this case) to analyze
whether unwanted information flows exist. If the circuit passes the verification, then the extra
IFT checking logic that was added can be removed from the hardware design, while the design
maintains its security properties.
Compared to tracking the IFT at the gate level [99], RTLIFT has more information about the

high-level circuit, and thus, can propagate tags faster and more precisely. An RSA core, an AES core
and a bus architecture were verified using this method and hardware Trojans in the designs, which
leaked secret keys to output, were detected. To apply this method to other designs, the information
flow libraries can be re-used. Reusability of this approach is medium-high (slightly more reusable
than others so far as design specific theorems or libraries need not be developed if only 𝐻𝑖𝑔ℎ to
𝐿𝑜𝑤 IFT is considered).

3.2.6 Coppelia. Coppelia [112] is an end-to-end automated exploit generation approach to validate
security properties of processor designs. Given a processor design and a set of security properties,
Coppelia systematically explores the design using symbolic execution, and if security violations are
found it generates C programs with inline assembly that exploit bugs within the design. It adapts
KLEE [18] for the symbolic exploration of hardware designs at the register transfer level (RTL).

14 F. Erata, et al.

(1)

Processor
Code (C++)

Security
Assertions

Backward Symbolic
Execution Engine

(2)

Exploit C
Program

Coppelia

Program
Stub

Generator

(3)

(5)

(4)

KLEE backend

Fig. 13. Coppelia’s tooling workflow.

As shown in Figure 13, Coppelia takes as input an HDL implementation of a hardware design
and a set of security-critical assertions. The RTL design in Verilog is transformed into C++ (1),
and after translation, Coppelia adds the security-critical assertions (2) and compiles the newly
translated design to LLVM bytecode [60] (3) using the Clang compiler. The reason for LLVM
bytecode generation is that Coppelia is built on top of KLEE which is an LLVM-based symbolic
execution engine. Coppelia then uses the generated C programs to simulate the design and check
whether the design is vulnerable to the security properties using backward symbolic exploration.
Once a violating state is detected, Coppelia builds the sequence backwards all the way to the initial
state and finds inputs (4). Using these inputs it generates an exploit by adding program stubs in C
(5). These program stubs are generated according to the category of the security-critical assertion
violated such as control-flow, exception, and memory-access related. Coppelia is evaluated on three
processor designs: OR1200, PULPino, and Mor1kx, representing two different RISC architectures:
OR1k and RISC-V.

3.3 Adding Security Verification Features in HDL
Another approach for security verification is to add security verification features into an HDL,
e.g., by either introducing a new HDL language or introducing new syntax into existing language.
Caisson [65], Sapper [64], and SecVerilog [111] take this approach and introduce information flow
tracking (IFT) features into an HDL language. System designers can use new syntax to specify the
information flow tags and policies in their designs. If the verification passes, then designers know
their designs do not have any information flow violations.

Caisson
Code

Proof of Correctness
of Caisson

Caisson
Compilation with

Verification
PASS/FAIL

(1)

(2)

(3)

Verilog Code
No Dynamic IFT

(4)

Custom Tool

Fig. 14. Static information flow verification process of Caisson.

3.3.1 Caisson. Caisson [65] is a hardware description language for static information flow verifi-
cation at the design time. The verification process is shown in Figure 14. First, the original Caisson
code is written containing labeling of security tags, especially data ports in a hardware module are
assigned with security labels (i.e. 𝐿𝑜𝑤 to 𝐻𝑖𝑔ℎ), (1) in Figure 14. With the design written in Caisson,
and with the security labels on each register and wires, the information flow can be checked at the
design time by running the Caisson compiler, (3) in Figure 14. During compilation, it is checked
whether the information flow strictly follows the policy that data labeled 𝐻𝑖𝑔ℎ should not end up

Survey of Approaches and Techniques for Security Verification of Computer Systems 15

in a port labeled 𝐿𝑜𝑤 . If so, there will be no information flow form 𝐻𝑖𝑔ℎ to 𝐿𝑜𝑤 during the system
runtime. The checking is done based on the typed Caisson language and type checking rules in the
Caisson tools. Caisson can generate standard Verilog code as the output as well, with no labels, and
the code can be synthesized using existing tools, (4) in Figure 14, i.e. labels are removed and have no
impact on final design or performance. In the paper, authors use manual proofs to formally prove
that Caisson enforces timing-sensitive non-interference in designed hardware, (2) in Figure 14.

Using Caisson, the authors were able to create the first provably information-flow secure proces-
sor that contains a time-multiplexed pipeline and a partitioned cache [65]. To apply this method
to other designs, the designer needs to augment his or her Verilog code with the security labels.
Reusability of this approach is medium.

Sapper
Code

Proof of Correctness
of Sapper

Sapper
Compilation

(1)

(2)
Verilog Code with

Dynamic IFT
Checking

(3)

Custom Tool

Fig. 15. Dynamic information flow verification process in Sapper.

3.3.2 Sapper. Sapper [64] is a hardware description language that is based on a synthesizable subset
of Verilog. Sapper compiler automatically ensures non-interference in the generated hardware
logic, and is able to generate Verilog code with added dynamic information flow tags. Figure 15
shows the verification flow.

First, the Sapper code is written, which includes labeling of security tags and in particular input
and output ports in a hardware modules are assigned with security labels (i.e. 𝐿𝑜𝑤 to 𝐻𝑖𝑔ℎ), (1)
in Figure 15. Example of how security labels indicating an IFT policy are inserted into the code
in Sapper language shown in Figure 16. Sapper’s policy is that the hardware logic should ensure
that data flow to any output port never allows 𝐻𝑖𝑔ℎ data to reach a 𝐿𝑜𝑤 port. Especially, in the
presence of an active attacker (e.g., a malicious software in the system), who has full control over
all 𝐿𝑜𝑤 input ports, the non-interference enforced by the policy can protect all the data tagged
with 𝐻𝑖𝑔ℎ. Sapper statically analyzes the hardware logic and automatically inserts dynamic IFT
logic and generates Verilog code with extra logic for the dynamic information flow tracking, (3) in
Figure 15. In the paper, authors use pen-and-paper proofs to formally prove that Sapper enforces
non-interference of the generated system, (2) in Figure 15.

Static analysis enables the system to cover explicit, implicit, and timing-based information flows.
With the inserted IFT logic, the synthesized hardware can track and check security policy at runtime,
and any policy violations will be detected. Authors designed a processor simulating the hardware
with ModelSim [48]. A micro-kernel and a compiler were also implemented, and processes in
different security levels could run on the processor. To apply this method to other designs, the
designer needs to write his or her Sapper code with the security labels. Reusability of this approach
is medium.

3.3.3 SecVerilog. SecVerilog [111] is a well-typed language and built on top of Verilog to include
information flow annotations. It is first proposed in [110] to mitigate the timing channel in program
execution. The language semantics can be used to analyze and formally prove the security of the
system.
SecVerilog enables static checking of hardware information flows and uses an SMT checker to

verify non-interference between modules with different security levels. First, the designers define

16 F. Erata, et al.

Sapper Verilog

check
reg [7 : 0] a : % ∗ \ h l { L } ∗) ;
reg [7 : 0] b , c ;
a <= b & c ;

reg [7 : 0] a , b , c ;
reg a_tag , b_tag , c _ t ag } ;
i f (a _ t ag >= (b_ tag | c _ t ag))

a <= b & c ;

track reg [7 : 0] a , b , c ;
a <= b & c ;

reg [7 : 0] a , b , c ;
reg a_tag , b_tag , c _ t ag } ;
a <= b & c ;
a_ t ag <= (b_ tag | c _ t ag)

Fig. 16. Example Sapper code and generated Verilog code, modeled after [64], with a security label highlighted.

SecVerilog
Code

Proof of Correctness
of SecVerilog

Verification PASS/FAIL

(2)

(3)

(4)

Custom Tool

SecVerilog
Compilation

Z3

(1)

Verilog Code
No Dynamic IFT

(5)

Fig. 17. Static information flow verification process of SecVerilog.

a security policy, for example, the design has two security levels: 𝐿𝑜𝑤 and 𝐻𝑖𝑔ℎ. The policy may
be such that the adversary, who has access to all information at or below the 𝐿𝑜𝑤 security level,
and can measure the clock cycles of hardware operations, never has access to any data labeled
𝐻𝑖𝑔ℎ. Also, during the implementation of the design in SecVerilog, each variable has to be labeled
with its corresponding security label, (1) in Figure 17. Example of SecVerilog labeling the code is
given in Figure 18. Using these labels, SecVerilog generates models in Z3 for verification, (2) in
Figure 17. Then, in Z3, the information flow is checked, and a report is given whether the design
passes or fails the verification, (4) in Figure 17. On the other hand, SecVerilog generates designs
in Verilog, (5) in Figure 17. In the paper, authors use pen-and-paper proofs to prove SecVerilog
enforces timing-sensitive noninterference, (3) in Figure 17.

1 reg [1 8 : 0] % ∗ \ h l { \ { L \ } } ∗) t a g0 [2 5 6] , t a g1 [2 5 6] ;
2 reg [1 8 : 0] % ∗ \ h l { \ { H \ } } ∗) t a g2 [2 5 6] , t a g3 [2 5 6] ;
3 wire [7 : 0] % ∗ \ h l { \ { L \ } } ∗) i ndex ;
4 / / Par (0) = Par (1) = L Par (2) = Par (3) =H
5 wire [1 : 0] % ∗ \ h l { \ { Par (way) \ } } ∗) way ;
6 wire [1 8 : 0] % ∗ \ h l { \ { Par (way) \ } } ∗) t a g _ i n ;
7 wire % ∗ \ h l { \ { Par (way) \ } } ∗) w r i t e _ en a b l e ;
8
9 always @ (posedge c l o c k) begin
10 i f (w r i t e _ en a b l e) begin
11 case (way)
12 0 : begin t a g0 [index] = t a g _ i n ; end
13 1 : begin t a g1 [index] = t a g _ i n ; end
14 2 : begin t a g2 [index] = t a g _ i n ; end
15 3 : begin t a g3 [index] = t a g _ i n ; end
16 endcase
17 end
18 end

Fig. 18. Example of the split cache in SecVerilog, modeled after [111], with the security labels highlighted.

SecVerilog allows sharing of resources within a module. Static labeling does not solve all the
problems of information flow, especially if resources are shared. In the case of shared resources,
the labels might change during runtime. SecVerilog uses dependent types to handle runtime label

Survey of Approaches and Techniques for Security Verification of Computer Systems 17

changes. A design of split cache is shown in Figure 18 as an example. Type changes are detected
and updated dynamically during the runtime, e.g., 𝑃𝑎𝑟 (𝑤𝑎𝑦) in Figure 18. The dependent types can
be determined by type-valued functions: For a variable 𝑣 , the type of the variable can be determined
dynamically during runtime by a function, e.g. 𝑃𝑎𝑟 (𝑣), line 4 Figure 18.

SecVerilogLC [37] extends SecVerilog [111] to allow more sufficient hardware resource-sharing
for different security levels. For dependent labels, the information flow control type system along
with syntax and semantics supports signals to propagate on clock edges explicitly. In order to
test the next clock cycles’ label, there are also related syntax supported. The type system permits
registers to update values with labels securely and statically. Furthermore, SecVerilogLC explicitly
divides sequential and combinational variables to do corresponding security checks. Following the
changes illustrated above, it is also able to avoid implicit downgrading by explicitly implementing
it.
SecVerilogBL [38] [39] also extends SecVerilog [111], to support packed data structures, and

downgrading mechanisms. It provides an improved type system to cover the extensions. The first
new feature allows complex data structures such as arrays, network packets to be tagged with finer
granularity. That allows tagging of individual elements within arrays or packed data structures.
The second feature supports modifying the security tag of an element dynamically.

ChiselFlow [40] integrates another HDL embedded in Scala – Chisel – with the security type
system and further extends SecVerilog with new features including nonmalleable downgrades and
type inference.
A secure MIPS processor and caches were designed in SecVerilog[111] and SecVerilogLC [37].

Dynamic labeling makes the shared ports of the cache possible. SecVerilogBL is used to verify a
secure architecture based on ARMTrustZone which provides isolated memory regions for providing
confidentiality and integrity [38] [39]. SecVerilog also provides timing-sensitive non-interference,
which is proved in the paper [111]. To apply this method to other designs, the designer needs to
write his or her Verilog code with the annotations. Reusability of this approach is medium. Apart
from that, a full-featured processor [40] offering a complete RISC-V instruction set prototyped the
HyperFlow, with moderate overhead added to the area and the performance.

In [110], a well-typed language is proposed to mitigate the timing channel in program execution.
Each command in the program is extended with security labels for confidentiality and integrity,
and a new command “mitigate" is introduced to bound the execution time of another command.
The language made some assumptions on the properties of the underlying hardware. The language
semantics can be used to analyze and formally prove the security of the system. Meanwhile, a secure
hardware architecture satisfying the properties required by the language is designed, explicitly
formalized and experimentally shown to have only moderate overhead.

3.4 Generate HDL from System Model in Verification Tools
Another approach is to develop a new domain specific language, model and verify the system
using this domain specific language (and associated tools), and then generate HDL. The hardware
designers need to learn and use the new language, but the tools will then automatically generate
HDLs, so there is a one-to-one relationship between the code used for verification and the final
HDL code.

3.4.1 ReWire. ReWire [84] is a functional programming language and compiler that translates
high-level designs into HDL description of the hardware. It is a subset of Haskell, which produces a
suitable foundation for writing formal specifications. ReWire enables modular, high-level, semantics-
directed hardware circuit designs.

18 F. Erata, et al.

ReWire
Code

Formal Proof PASS/FAIL

(1) (2) (3)

(4)

VHDL

Security
Properties

(5)

Custom Tool Custom Tool

ReWire
AST

preHDL

Fig. 19. ReWire verification flow

In ReWire, combinational logic is represented by pure, non-recursive first-order functions. The
sequential logic in one clock domain is represented by a structure called “reactive resumption
monad.” This structure uses tail recursive type and functions as a continuation to map an input to
a “new” sequential logic. Monad is the method to produce new types with functions of specific
computation by robustly incorporating fundamental data type values. More information on monads
can be found in [66]. As shown in Figure 19 (1), to generate synthesizable VHDL code from ReWire
code, first the ReWire abstract syntax tree (AST) is produced by parsing Haskell concrete syntax. (2)
A preHDL is generated by compiling the monadic operations and loop flattening. (3) By replacing
the loop structures with VHDL processes, preHDL can be converted to VHDL.
In a sample dual-core processor with shared register, one core is designated as 𝐻𝑖𝑔ℎ core and

the other is 𝐿𝑜𝑤 . In ReWire, to verify the separation between the two cores as theorems, a formal
proof is written in Haskell, as in Figure 19 (4). The verification precludes storage channels, timing
channels and control flow channels. In the proof, a “harness security” function enables precise
control of information flow.

With ReWire, a single-core processor and a secure dual-core processor based on the single-core
processor were designed and synthesized, showing that ReWire compiler can produce VHDL
implementation from the high-level specification and that it supports modular design. To apply
this method to other designs, the designer needs to write his or her ReWire code and specify the
security properties. Formal proofs have to be done manually but the ReWire AST and preHDL steps
are done automatically, so VHDL will be automatically generated from the ReWire code. Reusability
of this approach is medium.

3.5 Comparison of Verification Focusing on the Hardware Levels of a System
Caisson and SecVerilog only do compile-time IFT checking. Sapper does both compile-time checking
and adds run-time IFT checking into the design, at the cost of extra hardware and decreased
performance. Caisson and Sapper do not allow sharing of resources, while SecVerilog adds dynamic
labels which allow one module to work on both 𝐻𝑖𝑔ℎ and 𝐿𝑜𝑤 data. The static IFT checking in
SecVerilog makes sure that there is no possible combination of operations or inputs that would
leak the 𝐻𝑖𝑔ℎ data to 𝐿𝑜𝑤 data – the cost is that without run-time IFT, the design has to be very
conservative and considers worst-case scenarios.
Unlike Caisson [65], data with different security labels can share resources in Sapper, e.g.,

registers, resulting in a lower overhead.
A comparison is shown in Table 1. Caisson and SecVerilog use compile-time information flow

control, while Sapper uses run-time information flow control. Compile-time information flow
tracking is done at the design time, and does not introduce any run-time overhead for the system.
Also, designers can fix information leakage at design time, and thus do not need to worry about
the effects of security violations at runtime, since no violations will appear then. Compared to
Caisson [65], dynamic labeling in SecVerilog and run-time IFT in Sapper make resource sharing
possible, thereby reducing area and timing overheads.

Survey of Approaches and Techniques for Security Verification of Computer Systems 19

Table 1. Comparisons of Caisson, SecVerilog and Sapper

Caisson SecVerilog Sapper
Type of Information Flow
Checking Compile-Time Compile-Time Run-Time

Type of Label Static Label Dynamic Label Dynamic Label

Prototype Circuit Time Mux pipeline;
Split Cache, Split Ports

Time Mux pipeline;
Split Cache, Shared Ports

Time Mux pipeline;
Split Cache, Shared Ports

Table 2 compares different verification tools focusing on the hardware levels of a system. Verifica-
tion to HDL Code Relationship column shows whether there is a programmatic way to verify HDL
code or manual effort is needed to construct the corresponding model from HDL for verification.
Reusability column shows the effort to verify a new system utilizing the corresponding verification
tools as well as the effort needed to verify a new property for the system.

Table 2. Comparison of verification tools focusing on the hardware levels of a system.

Verif. to HDL Code
Relationship Reusability Source Code Public

Micro-Policies manual low https://github.com/micro-policies
Cache Verif. manual low no
XOM manual low no
VeriCoq programmatic medium no
Formal-HDL programmatic low no
CheckMate manual medium-high https://github.com/ctrippel/checkmate
UPEC programmatic medium-high https://github.com/tojauch/riscv-boom-UPEC
RTL-ConTest programmatic medium-high no
RTLIFT programmatic medium-high no
Coppelia programmatic medium-high https://github.com/rzhang2285/Coppelia
Caisson programmatic medium https://github.com/vineethk/Caisson
Sapper programmatic medium no
SecVerilog programmatic medium http://www.cs.cornell.edu/projects/secverilog/
HyperFlow programmatic medium https://github.com/apl-cornell/ChiselFlow (ChiselFlow)
ReWire programmatic medium http://mu-chaco.github.io/ReWire/

3.6 Commercial Tools
Even though they are relatively new, there is a number of commercial security verification tools
for hardware design. These tools are quite similar to works in Section 3.2.

Mentor Graphics Questa Secure Check. The application is part of the Mentor Graphics Questa
package. It receives RTL data and a spec for secure storage and paths. The spec is defined in
Tool Command Language (TCL). Secure Check then finds ports/black-box inputs and generates
properties for integrity and confidentiality. Black box inputs are generated in a way that it assures
that no information flows outside its designated path. The application then verifies these properties.
The output of the application is an exhaustive proof of integrity and confidentiality of the design
and/or counterexamples showing how your spec can be violated [44].

Cadence JasperGold Security Path Verification (SPV) App. Similar to Questa Secure Check, SPV
App takes RTL data and path specs. The user defines illegal sources and destinations of the data. SPV
App proves that the defined secure data maintains confidentiality and integrity during operation

https://github.com/micro-policies
https://github.com/ctrippel/checkmate
https://github.com/tojauch/riscv-boom-UPEC
https://github.com/rzhang2285/Coppelia
https://github.com/vineethk/Caisson
http://www.cs.cornell.edu/projects/secverilog/
https://github.com/apl-cornell/ChiselFlow
http://mu-chaco.github.io/ReWire/

20 F. Erata, et al.

and even after a hardware fault occurs. Verification is performed exhaustively using Jasper’s path
sensitization technology. Path sensitization technology utilizes the path cover property in which
there is a source signal and a destination signal. By proving path cover property, the signal at the
source of the path is tainted. The app formally verifies if it is possible to cover a tainted signal at
the destination. When the property is covered, a waveform displays how data can propagate from
source to destination. The property can also be determined to be unreachable, which means that it
is not possible for data to propagate from source to destination. Verification can also be tuned by
the user by creating black box modules where data can enter or not. This will simplify the process
of verification to scale well [19].

4 SECURITY VERIFICATION FOCUSING ON SOFTWARE LEVELS OF A SYSTEM
The second class of projects that our survey deals with focuses on verifying the security properties
of software, while considering the ISA or a machine model of the hardware. Here, we investigate
how the security of software is verified in the literature with a hardware model, e.g., some memory
model, register files, and other components of the hardware that constitute the environment on
which the code will run. Software security verification work that does not consider any hardware in
the verification process is outside the scope of this survey. For software-only security verification,
we refer the reader to the following surveys [10, 43, 83, 92, 105].

The surveyed projects fall in two categories. First, verification with respect to ISA is where the
verification process involves generating assembly code that is considered correct and embodies the
program with desired security properties. Typically, assembly code has one-to-one correspondence
to the ISA; thus the verification process ties the software to the hardware ISA level. Second,
verification with respect to a machine model is where the verification process involves a model
of the target machine, such as the memory, registers, etc. The machine model is typically very
simplified, but it considers key hardware features in the verification process nevertheless.

4.1 Verification with Respect to ISA
4.1.1 seL4. [57] was the first operating systemmicrokernel that was formally verified for functional
correctness. The aim of the seL4 verification effort is to provide a system free of programming errors
that introduce vulnerabilities that may cause failures or facilitate attacks. seL4 is a software-only
work and assumes that the underlying hardware, the compiler, and the low-level device driver
code are provided free of errors. It uses capability-based security model [63] for access control
to enable formal reasoning about object accessibility. seL4’s implementation is formally proven
correct against its specification and has been proved to enforce strong security properties.

Haskell Prototype

Abstract
Specification

Executable
Specification

Low-Level
C Implementation

(1)

(3) (4)(2)

Refinement
Proof

Isabelle/HOL
(5) Pass/Fail

Fig. 20. The seL4 verification process.

The verification process is shown in Figure 20. In Figure 20, the system prototype is coded in
Haskell according to a high-level specification (1). The specification includes a detailed functional

Survey of Approaches and Techniques for Security Verification of Computer Systems 21

and behavioral description of the system (2). Isabelle/HOL theorem prover generates an Executable
Specification out of the Haskell code (3). This process is critical since it will directly impact the
correctness of the system, any misrepresentations can render the verification ineffective. This spec-
ification contains all implementation details and data structures that the low-level implementation
must have. The last layer is the actual C implementation of seL4 (4). These three layers used in the
formal verification are: abstract specification, executable specification, and C implementation, (5)
in Figure 20. The total effort for SeL4 was 11 person years with 14k lines in Haskell/C and 33k lines
in Isabelle. The total size of the proof is 200k including generated proofs.

4.1.2 CertiKOS and Deep Specifications. [45] presents a design technique based on modern com-
puter system architectures (such as OSes) where each system consists of abstraction levels such as
kernels, hypervisors, device drivers, network protocols. Each hides the implementation through
a definition of an interface. Deep Specifications is based on the verification of abstraction layers
that define interfaces to other layers hiding the implementation details. In mCertiKOS, each layer
represents an abstraction, and its behavior is defined in a specification as shown in Figure 21. These
specifications are called deep specifications and any two implementations that have the same deep
specification must have contextually equal behavior regardless of the implementation method.
Hence, mCertiKOS relies on deep specification of layers rather than their specific implementations
and as long as an implementation of an abstraction layer can be proven to be equivalent to its
deep specification, it can be used without violating the general correctness of the system. An
error-free and functionally-correct implementation of the whole system relies on implementing
the abstraction layers correctly. Unlike seL4 [57], where the whole system is verified at once,
mCertiKOS can be verified layer by layer or as a whole.

Client Program

Layer 1 PASS/FAIL

CompCert x86 Assembly

Layer 2 PASS/FAIL

Deep Spec. of Layer 1

Deep Spec. of Layer 2

Verification

Verification

Fig. 21. CertiKOS verification process.

mCertiKOS uses two core languages for high-level and assembly-level code to describe the
behavior of the system: ClightX and LAsm. ClightX is based on CompCert Clight language [15], a
formally verified optimizing compiler for a large subset of the C99 programming language (known as
Clight), and LAsm is an assembly language customized for CertiKOS development. These languages
can be used to implement abstraction layers. The layer interfaces and Deep Specifications are
described using Coq. mCertiKOS uses the CompCertX compiler for both languages. CompCertX is
a specialized version of CompCert compiler that works with the mCertiKOS memory and machine
model. If implementations M1 andM2 implement the same DeepSpec, they should have contextually
equivalent behavior. The whole CertiKOS took 11.5 person months to finish.

4.1.3 Verve and Ironclad Apps. Verve [107] is an operating system that is verified to guarantee
memory and type safety. Verve’s architecture consists of two levels. The first level is called the

22 F. Erata, et al.

“nucleus” that implements the core functionality needed to access memory and hardware. On top
of the nucleus, there is a kernel level which supports functionality such as preemptive threads. The
applications run on top of these two levels.
Verve uses two strategies to verify the nucleus and kernel. The nucleus is written in Boogie

programming language and verified by Boogie. The code of nucleus is manually annotated with
assertions that include preconditions, post-conditions and loop invariants. Some of the code is
written in assembly and the assembly instructions from the nucleus code are also converted into
Boogie so that they can have the annotations. The kernel ensures type safety using Typed Assembly
Language (TAL) [76] and a TAL-checker [21]. The kernel is written in safe C# and the code is then
compiled to TAL by a special compiler. TAL-checker is used to verify that the assembly code does
not violate the primitive abstractions of the language.

Verve is still an experimental OS which lacks some modern features such as exception handling
and multiprocessor support, and it assumes the hardware is trusted. However, it supports type
safety in the whole OS including the applications. It demonstrates that using automated techniques,
high level code (such as safe C#) can be verified for type safety in assembly level using type-safe
assembly languages (such as TAL). The specification and proof cost 5494 lines of Boogie code, while
the system implementation uses 1377 instructions, resulting a 4× annotation ratio.

Ironclad Apps [50] focuses on the execution of remote applications in a secure and a functionally-
verified manner. Ironclad uses Verve as the operating system. The verification process covers the
code that is executed remotely, the remote OS, libraries, and drivers. Therefore, Ironclad Apps can be
regarded as a multi-level verification system which assumes that the hardware is secure. However,
the BIOS, and peripheral devices can be malicious. Ironclad Apps eliminates data leaks and software
based vulnerabilities. However, it is not designed for hardware-based attacks (side-channels, etc.)
nor denial-of-service attacks.

High Level
Spec

(Dafny)

Low Level
Spec

Implementation
in High Level

Language
(Dafny)

Implementation
In verifiable
Assembly
Language

(Boogie X86)

Implementation
İn Machine Code

PASS/FAIL

(1) (2) (3)

(4)

(5)
(6)

(7)
(8)

Verifier

 Compiler

Spec
 Translator

Fig. 22. Ironclad verification process.

The verification process requires an implementation in a high-level language and a high-level
specification of the application code which are written in Dafny [61]. The spec and the code are
handled in parallel. The code is compiled to output assembly code in the BoogieX86 assembly
language (note that the verifier Boogie and the assembly language BoogieX86 are different) [107],
(5), (6), and (7) in Figure 22. Meanwhile, the high-level spec is translated into a low-level spec by a
spec-translator tool, (1), (2), and (3) in Figure 22. The low level spec and assembly code are then
verified together to see if they are functionally equivalent and free of software vulnerabilities. If
the verifier fails, the process has to be restarted with fixed code and spec. When verification passes
successfully, the assembler and linker tools convert the assembly code into machine code, (8) in
Figure 22.

4.1.4 Komodo. Even though hardware based security mechanisms provide powerful solutions, they
are somehow slower to adapt new changes and to provide defenses for new security threats. For

Survey of Approaches and Techniques for Security Verification of Computer Systems 23

example, Intel SGX has not been improved to provide defenses against “controlled-channel" attacks
that leak information using the ability of the OS to observe page faults in enclaves. Komodo [36]
provides a different approach to Intel SGX-like architectures by moving the management structure
of enclaves to a privileged software monitor. Komodo is the first formally-verified, software-based
implementation of an SGX-like enclave isolation mechanism [36]. Its design decouples enclave
hardware primitives from security-critical but formally verified software, enabling independent
evolution of the two. It employs noninterference to prove high-level guarantees of confidentiality
and integrity.

The specification of Komodo including its monitor code is then formally proved that it protects
the confidentiality and integrity of enclave code and data from the other software (including
OS and hypervisor) running on the same machine. The proof establishes that enclave state and
out-of-enclave state do not interfere with each other. As in SGX, Komodo does not prove that user
code inside the enclave cannot leak information.
The implementation uses the Vale programming language [16], which consists of assembly

language instructions together with annotations, such as preconditions, postconditions, and loop
invariants, that describe the behavior of the instructions. The Vale generates an abstract-syntax-
tree (AST) representation of the instructions and proof about the behavior of the instructions in
Dafny Language [61]. Dafny uses Z3 to verify the proofs generated by Vale. A trusted assembly
printer turns the instruction ASTs into GNU assembly format. A prototype of Komodo has been
implemented in ARM TrustZone, since it is capable of providing its basic hardware requirements.
The hardware specification covers a subset of the ARMv7 architecture.

4.2 Verification with respect to a Machine Model
4.2.1 SecVisor. SecVisor [42, 88] is a hypervisor designed to provide execution and code integrity.
It guarantees that code can execute in kernel mode only if the code is approved by the user, and
the code can only be modified by SecVisor. SecVisor leverages hardware memory protections and
kernel privilege level to achieve execution and code integrity. The design assumes that the attacker
has control of everything except the CPU, the memory controller, and the system memory. The
small codebase makes the formal verification of SecVisor possible.

A model in Mur𝜑 is developed to verify the system. The model consists of three parts: a hardware
model, a SecVisor model, and an attacker model. Since the security of SecVisor is based on the
hardware memory protections, it is crucial to specify the hardware model and the page table in the
SecVisor model correctly. The hardware model includes physical memory, CPU mode bits, program
counter, and a Device Exclusion Vector (DEV) that controls DMA permissions. The initialization,
CPU mode transitions, and page-table synchronization in SecVisor are modeled in Mur𝜑 . To deal
with the state space explosion problem, the authors simplify the model conservatively to avoid
false negatives. So when Mur𝜑 returns with success, the SecVisor is proved to satisfy all the
security properties.
To model the attacker, an actual model where the attacker behavior is modeled and an ideal

model without the attacker model, akin to the models used in the verification of XOM [67]. In the
actual model, the attacker can write to any memory pages with the permission bits set and can
update page tables. The execution integrity is the equality between the actual model and ideal
model where the attacker behavior is not modeled. The code integrity means that the attacker
cannot modify the approved code. The execution integrity and code integrity invariants are checked
by the Mur𝜑 model checker. The whole model costs 500 lines in Mur𝜑 , and takes 343.97 s to finish
the model checking for models with 4-page table entries.

24 F. Erata, et al.

4.2.2 MinVisor. MinVisor [29] is a simple hypervisor, which protects its own memory from
malicious guests. This work was presented as a follow-up work on SecVisor, but using a theorem-
proving approach. The goal of the project is to fully verify the MinVisor at the assembly level using
ACL2. A series of detailed and accurate models of the AMD64 instruction set architecture (ISA),
including the memory model, registers, and state transitions, were developed. Several theorems,
such as the one where isolation of model-specific registers and MinVisor memory are guaranteed
against guest modifications, are proved to show the security properties of MinVisor.

4.2.3 AAMP7G. The AAMP7G microprocessor [106] provides “Intrinsic partitioning”, where each
partition has exclusive time slices of CPU execution, and exclusive memory space. The time and
space partitioning is achieved by its “separation kernel” in microcode. To verify separation kernel,
a formal security specification abstractly describing the separation kernel, and a microcode-level
functional design model closely corresponding to the implementation are built in ACL2. The entire
AAMP7G model is about 3000 lines of definitions. The National Security Agency evaluation team
conducts a code-to-spec review to validate the microcode-level model. It is then proved that an
abstract model enforces the security specification, and the microcode-level corresponds to the
abstract model. The strict partition is formally verified in ACL2. Furthermore, a formal model of
the instruction set is built, which can be used for analysis of user programs.

4.2.4 Verification of Noninterference at ISA Level. Fox [41], who improved upon work of Myreen,
et al. [77], presented a framework for decompilation of machine (assembly) code into statements
that can be processed by the HOL4 interactive theorem prover. One of the contributions of [41] is
design of a domain specific language, L3, to describe the properties of an ISA. L3 can be converted
to statements which can be processed by HOL4. Another contribution is the definition of numerous
instruction behaviors of ISAs in L3. Later, Schwarz, et al. [87], derive noninterference properties of
ARM and MIPS ISAs using the ISA definitions from [41]. Their framework determines automatically
which system components (e.g., program counter or status registers) are accessible at given privilege
level, based on the ISA definition. Noninterference is proved by checking how different components
(e.g., status registers used by a given instruction) affect state or any return value of an instruction.
For the verification, the user has to manually label certain components as “low”, such as the program
counter is low. Then the tools check all possible instructions from the ISA to determine which
components can affect the “low” component, and these components are themselves re-labeled as
“low.” At the end, the tools output which components should be considered as “low”, given the
initial specification.

4.2.5 XMHF. XMHF [104] is an extensible and modular hypervisor. The focus of verification is to
preserve the fundamental hypervisor security property of memory integrity (i.e., ensuring that the
hypervisor’s memory is not modified by software running at a lower privilege level). To verify the
memory integrity, security invariants are inserted into the C code as assertions. However, the full
functional correctness is not verified. 5208 lines of the C code is verified automatically by CBMC
model checker [59], while the remaining 422 lines of C and 388 lines of assembly are manually
audited.

4.3 Tools Automatically Converting Software to System Models in Verification Tools
Tools are also developed to convert the system implementation and automatically insert assertions
for verification. Many architectures provide security features like isolated memory regions, e.g.,
ARM TrustZone, Intel SGX, and AMDmemory encryption. In the following, there are two examples
that verify the security of an application with the security feature provided by hardware.

Survey of Approaches and Techniques for Security Verification of Computer Systems 25

4.3.1 MOAT. MOAT [94] proposed to find vulnerabilities in enclave user programs that run on
Intel SGX architecture. To protect sensitive data and code from disclosure or modification by
infrastructure attackers (e.g., malicious OS) or other malicious programs, Intel developed Software
Guard Extensions (SGX) [2]. Intel SGX makes such protection possible by providing an isolated
memory region called enclave. The hardware primitives provided by SGX enforce that only the
code inside the enclave can access data within the enclave. However, it cannot protect an enclave
user program from leaking sensitive information from within if the software running in the enclave
is not programmed properly, thus the need for verification.

Boogie
Verifier

PASS
/FAIL

(1)

Annotations
of Secrets
(MOAT)

X86+SGX
Assembly

(3)
BAP Assembly

+
Havoc Adversary

+
Security assertions

(4)(2)

BAP Assembly

1 lea -0x720(%ebp),%eax
2 mov %eax,(%esp)

1 eax:=sub(ebp,720)
2 mem:=store(mem,esp,eax)1 Ceax=Cebp

2 havoc mem¬epc
3 eax:=sub(ebp,720)

4 assert ¬Cesp˄(¬enc(esp) ¬Ceax)→
5 Cmem[esp]:=Ceax
6 havoc mem¬epc
7 mem:=store(mem,esp,eax)

Fig. 23. MOAT verification toolchain.

The input of MOAT is the x86+SGX assembly code of an enclave user program, (1) in Figure 23,
alongside with annotations indicating the location of secret data. The usage of assembly code as
input to the verification process eliminates the need for a trusted compiler. MOAT then translates the
assembly code to BAP (Binary Analysis Platform) assembly, which is a simple, RISC-like instruction
set [17], as shown by (1) in Figure 23. MOAT uses BAP assembly for precise modeling of x86 and
SGX instructions in Boogie verifier.
Inside MOAT, BAP assembly and the secret annotations are converted to code with assertions

that Boogie can process. Two kinds of adversaries are considered: active adversaries who can
write to any location in non-enclave memory and passive adversaries who can read any location
in non-enclave memory. To model the adversary, MOAT introduced a havocing adversary, “who
symbolically modifies all the non-enclave memory after every instruction of the enclave code,
and is able to observe all non-enclave memory." To show the effect of the adversary, a havoc
instruction (havoc mem¬𝑒𝑝𝑐) is added before every BAP instruction, (2) in Figure 23. To reason
about confidentiality, ghost variables (𝐶𝑥) are also added. If 𝐶𝑥 is true then the data 𝑥 in registers
or memory is dependent on a secret. Based on the value of the 𝐶𝑥 , one can judge whether there
is secret data leaking to non-enclave memory. E.g. line 4 of (2) in Figure 23, asserts data in %𝑒𝑎𝑥
can be written to mem[%𝑒𝑠𝑝] only if %𝑒𝑠𝑝 does not depend on any secret (no control flow), and
if %𝑒𝑠𝑝 is in non-enclave memory (¬𝑒𝑛𝑐 (𝑒𝑠𝑝)) then %𝑒𝑎𝑥 must not depend on a secret. This way,
assumptions and assertions about the ghost variable are added, see (2) in Figure 23. The system’s
security assertions are verified by Boogie verifier (3). If the assertions do not always hold, then
there is violation to confidentiality, and the verifier returns the violating piece of code, otherwise
the design passes; see (4) in Figure 23.
MOAT provides a methodology to prove the security properties of software developed for the

Intel SGX architecture. Several applications such as One-time password (OTP) service, query
processing over encrypted databases are verified as an example. The query processing enclave code,

26 F. Erata, et al.

consisting 575 instructions, needs 9 policy annotations and takes 55 sec to proof. It is also the first
work to create a formal model of Intel’s new SGX instructions.

4.3.2 SIR. Another similar work [93] considers the applications in containers that provide isolation,
referred to as Secure Isolated Regions (SIR), such as SGX. It presents a methodology for designing
them to certify that code and data in SIR remain confidential. This approach decomposes an
application to user code (U) that implements the functionality of the application and a small
runtime library (L) that provides a narrow interface between U and the untrusted platform outside
SIR. It compiles the user code with a compiler that inserts run-time checks that aid verification,
and linking it with a verified runtime that implements secure communication channels. The focus
of the work is to prove the confidentiality of the U running in SIR by verifying that U satisfies the
“WCFI-RW” property (weak form of control-flow integrity along with restrictions on reads and
writes).

Different fromMOAT where annotations from programmers are needed for fine-grained informa-
tion flow tracking in the application memory, this work requires U to perform communication with
outside SIR only through a narrowed constrained interface provided by L, and everything in U’s
memory is considered confidential. This is thus a more modular and scalable approach compared
to MOAT.

This work first uses a compiler to generate machine code of U with runtime checks to guarantee
WCFI-RW. To model the x86 and SGX assembly code, BAP assembly [17] is used. As the compiler
is not trusted, it can further optimize out or modify the runtime checks. Therefore, the final
assembly generated from the compiler is taken as input to the verification. In the syntax of U code,
havoc statements are used to model the action of adversary on memory variables. A static verifier
generates proof obligations for each instruction in the procedure by inserting assertions. These
static assertions are then discharged automatically by an SMT solver, here is the Boogie verifier.

Three large MapReduce examples are verified and evaluated in their work. The overhead of the
runtime checks is 15% on average, and the static verification takes less than 20s.

5 SUMMARY AND CONCLUSION
Tables 3 and 4 present a summary of the main projects reviewed in Sections 3 and 4, respectively. In
these tables, we compare the existing works in terms of their verification methods, the levels they
consider in a system, and the security aspects being verified to help summarize the projects for the
readers of this survey. We also highlight some take-away lessons from the tools and approaches
reviewed in this survey.
Most of the projects surveyed use general-purpose verification tools, as shown in the Tool

column of Tables 3 and 4. The current general-purpose tools used in security verification are
not compatible with conventional hardware or software languages, such as C or Verilog, and
verification is performed as an additional step after design and implementation is done. Security
specifications are often described as formulas in theorem provers like Coq, or as invariants in model
checkers like Mur𝜑 , as shown in the Specification column of Tables 3 and 4. Often, a model (system
representation) that is separate from the system implementation (actual system) is required, e.g.,
Micro-Policies [30], Cache verification [113], XOM [68], SecVisor [42]. Designers have to make
sure their model accurately mirrors the system implementation, otherwise the result of verification
might not be correct.

Meanwhile, some of the projects take the approach of designing new domain-specific languages
that allow making verification an integral part of the design and implementation process. In these
projects, tools are developed to transform the system description in the new domain-specific
language into another form that is amenable to use with verification tools, e.g., VeriCoq [14],

Survey of Approaches and Techniques for Security Verification of Computer Systems 27

Dafny [61], or TAL-compiler [28]. For example, in Dafny, the code has annotations for pre- and
post-conditions, invariants, and ghost variables. With use of annotations and through automatic
transformation SMT solvers can check if the invariants always hold. Alternatively, other projects
embed security-related tags into a conventional language, and facilitate describing the security-
properties to be verified. These projects tend to develop custom tools, as shown in Tables 3 and 4 to
make sure the generated design has the desired security properties, such as Sapper [64], Caisson [65],
and SecVerilog [111].

Confidentiality and integrity are the two main security properties often sought in a system. The
verification of computer system often then covers these properties, but the security checks can
also be formulated in a more generic form (e.g. non-interference) or a more specific form (e.g.,
memory integrity). The formulation of these properties depends on the levels that the system spans,
and on the tools used. The analysis of information flow provides a useful basis for proving these
security properties of a system. Monitoring information flow requires data labeling, declassification,
and information flow rules specific to the system. We observe that many hardware projects use
the analysis of information flow for proving information flow policies, non-interference, and
confidentiality and integrity, as seen in Table 3. Software projects, as illustrated in Table 4, have a
wider variety of verification aspects, which try to verify confidentiality or integrity, but only within
the selected levels. Designers generally try to provide verification of integrity or confidentiality for
a system given the defined threat model. For example, SecVisor [42] verifies execution and code
integrity which is a subsection of the whole memory.
The Trusted Computing Base (TCB) often encompasses multiple levels of the system from

hardware to software. However, as can be seen in Tables 3 and 4, verification projects are typically
focused on the hardware levels, or focused on the software levels. Bringing the hardware and
software levels together is difficult but needed. For example, enhancing the security of software
levels by using support in hardware levels is becoming a more viable approach, especially for
remote computing. Hardware based TCBs are emerging quite rapidly, such as ARM TrustZone [102],
Intel SGX [73], and AMD memory encryption[1]. The working of this hardware with software
needs to be verified for security, and requires spanning many system levels.

To conclude, formal verification research has been mostly focused on the functional correctness
of the hardware or software systems. Security verification of software-only is also well studied.
Hardware security verification, however, remains an emerging research area which is necessitated
by the fact that modern systems require both software and hardware for their correct and secure op-
eration. Especially with the introduction of security-focused hardware, such as Intel SGX. Trusting
remote software and hardware is more critical now than before, as it handles users’ ever-increasing
sensitive information. Any vulnerabilities in these computing systems can be exploited by attackers.
Thus, the whole system, including both the hardware and software parts, should be considered in
the security verification.

28
F.Erata,et

al.

Table 3. Summary of projects that focus on hardware verification. These projects were detailed in Section 3.

Name System
Representation

Verification
Tool

Custom Tool Levels Verification Method Verification
Aspect

A
pp

O
S

H
yp

er
vi
so
r

IS
A

uA
rc
h

RT
L

G
at
e

Ph
ys
ic
al

Micro-Policies [30] Coq Language Coq IDE none ✓ Theorem Prover Non-interference,
sealing, etc.

Cache Verification
[113, 114] Mur𝜑 Language Mur𝜑 [33] none ✓ Model Checking Confidentiality,

Integrity

XOM [68] Mur𝜑 Language Mur𝜑 none ✓ ✓ Model Checking Confidentiality,
Integrity

CheckMate [100,
101] Alloy Language Alloy [54] none ✓ Model Checking Covert Channels

VeriCoq [14] Verilog Coq IDE VeriCoq ✓ ✓ Theorem Prover Information Flow
Formal-HDL [46] VHDL Coq IDE VHDL converter ✓ ✓ Theorem Prover
RTLIFT [85] Verilog none RTLIFT Tool ✓ Model Checking Information Flow
UPEC [35] Chisel Language none UPEC Tool ✓ ✓ Model Checking Covert Channels

RTL-ConTest [75] Chisel Language none RTL-ConTest
Tool ✓

Concolic Tesing
Theorem Prover Information Flow

Coppelia [112] Verilog KLEE [18] Coppelia Tool ✓
Backward Symbolic
Execution

CPU security
assertions

Caisson [65] Cassion
Language none Cassion Tool ✓ ✓

Information Flow
Tracking Non-interference

Sapper [64] Sapper
Language none Sapper Tool ✓ ✓

Information Flow
Tracking Non-interference

SecVerilog [111] SecVerilog
Language Z3 [31] SecVerilog Tool ✓ ✓

Information Flow
Tracking Non-interference

HyperFlow [40] ChiselFlow
Language Z3 [31] ChiselFlow Tool ✓ ✓

Information Flow
Tracking Non-interference

ReWire [84] ReWire Haskell ReWire Tool ✓ ✓ Theorem Prover Non-interference

Survey
ofA

pproaches
and

Techniques
for

Security
Verification

ofC
om

puter
System

s
29

Table 4. Summary of projects that focus on software verification with respect to the ISA or machine model. These projects were detailed in Section 4.

Name System
Representation

Verification
Tool Levels Verification

Method
Verification
Aspect

Verification
Effort

A
pp

O
S

H
yp

er
vi
so
r

IS
A

`
A
rc
h

SeL4 [57] C, Haskell Isabelle/HOL ✓ Theorem Prover Functional Correctness,
Capability-based Security

200k lines of Isabelle to
verify 8700 lines of C code
in 22 person-years

CetriKOS [45] Clight, LAsm Coq IDE ✓ ✓ ✓ Theorem Prover Functional Correctness,
Non-interference 11.5 person-months

Verve [107] TAL, C#,
Boogie Lang.

Boogie/Z3 verifier,
TAL checker ✓ ✓ SMT solver Type & Memory Safety 5.5k lines of Boogie in 9

person-months

Ironclad Apps [50] Dafny Boogie/Z3 verifier,
Custom Compiler ✓ ✓ SMT solver Functional Correctness,

Memory Safety
36k lines spec and proof in
3 person-years

Komodo [36] Vale, Dafny Boogie/Z3 verifier,
Custom Translator ✓ ✓ SMT solver Non-interference 23K spec and proof in 2

person-years
XMHF [104] C, assertions CBMC ✓ ✓ Model Checking Memory Integrity 5208 lines of C code

SecVisor [42] Mur𝜙
Language Mur𝜙 ✓ ✓ Model Checking Execution and code

Integrity 500 lines Mur𝜙

MinVisor [29] ACL2
Language ACL2 ✓ ✓ ✓ Theorem Prover Code Integrity 1K lines of binary code to

be verified.

AAMP7G [106] ACL2
Language ACL2 ✓ ✓ ✓ Theorem Prover Non-interference 3k lines in ACL2

ISA [87] L3 HOL4 ✓ ✓ Theorem Prover Non-interference N/A

MOAT [94] BAP Assembly Boogie/Z3 verifier,
BAP ✓ ✓ SMT solver Confidentiality a few policy annotations

Verification of
SIR [93] BAP Assembly Boogie/Z3 verifier,

BAP ✓ ✓ SMT solver Confidentiality less than 20s

30 F. Erata, et al.

REFERENCES
[1] AMD. 2016. AMD Memory Encryption. http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_

Memory_Encryption_Whitepaper_v7-Public.pdf, accessed May 2016.
[2] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative technology for CPU based attestation

and sealing. In Proceedings of the 2nd International Workshop on Hardware and Architectural Support for Security and
Privacy.

[3] Armaiti Ardeshiricham, Wei Hu, Joshua Marxen, and Ryan Kastner. 2017. Register transfer level information flow
tracking for provably secure hardware design. In 2017 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 1691–1696.

[4] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Biancolin, Christopher Celio, Henry Cook,
Daniel Dabbelt, John Hauser, Adam Izraelevitz, et al. 2016. The rocket chip generator. EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2016-17 4 (2016).

[5] Arthur Azevedo de Amorim, Nathan Collins, André DeHon, Delphine Demange, Cătălin Hriţcu, David Pichardie,
Benjamin C Pierce, Randy Pollack, and Andrew Tolmach. 2014. A verified information-flow architecture. In ACM
SIGPLAN Notices, Vol. 49. ACM, 165–178.

[6] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižienis, John Wawrzynek, and
Krste Asanović. 2012. Chisel: constructing hardware in a scala embedded language. In Proceedings of the 49th Annual
Design Automation Conference. ACM, 1216–1225.

[7] Christel Baier, Joost-Pieter Katoen, et al. 2008. Principles of model checking. MIT press Cambridge.
[8] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. 2018. A survey of

symbolic execution techniques. ACM Computing Surveys (CSUR) 51, 3 (2018), 1–39.
[9] Haniel Barbosa, ClarkW. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, AbdalrhmanMohamed,

Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng,
Cesare Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT Solver. In Tools and Algorithms
for the Construction and Analysis of Systems - 28th International Conference, TACAS 2022, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings,
Part I (Lecture Notes in Computer Science, Vol. 13243), Dana Fisman and Grigore Rosu (Eds.). 415–442. https:
//doi.org/10.1007/978-3-030-99524-9_24

[10] Béatrice Bérard, Michel Bidoit, Alain Finkel, François Laroussinie, Antoine Petit, Laure Petrucci, and Philippe
Schnoebelen. 2013. Systems and software verification: model-checking techniques and tools. Springer Science &
Business Media.

[11] Josh Berdine and Nikolaj Bjørner. 2014. Computing all implied equalities via SMT-based partition refinement. In
Automated Reasoning. Springer, 168–183.

[12] Yves Bertot and Pierre Castéran. 2013. Interactive theorem proving and program development: Coq’Art: the calculus of
inductive constructions. Springer Science & Business Media.

[13] M. M. Bidmeshki and Y. Makris. 2015. Toward automatic proof generation for information flow policies in third-party
hardware IP. In International Symposium on Hardware Oriented Security and Trust (HOST). 163–168.

[14] Mohammad-Mahdi Bidmeshki and Yiorgos Makris. 2015. VeriCoq: A Verilog-to-Coq converter for proof-carrying
hardware automation. In International Symposium on Circuits and Systems (ISCAS). IEEE, 29–32.

[15] Sandrine Blazy and Xavier Leroy. 2009. Mechanized semantics for the Clight subset of the C language. Journal of
Automated Reasoning 43, 3 (2009), 263–288.

[16] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K Rustan M Leino, Jacob R Lorch, Bryan Parno, Ashay Rane, Srinath
Setty, and Laure Thompson. 2017. Vale: Verifying high-performance cryptographic assembly code. In 26th USENIX
Security Symposium (USENIX Security 17). 917–934.

[17] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. 2011. BAP: A Binary Analysis Platform.
Springer Berlin Heidelberg, Berlin, Heidelberg, 463–469.

[18] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: unassisted and automatic generation of high-
coverage tests for complex systems programs.. In OSDI, Vol. 8. 209–224.

[19] CADENCE. 2016. JasperGold Security Path Verification App. url-
http://www.cadence.com/products/fv/jaspergold_security/pages/default.aspx.

[20] David Champagne and Ruby B Lee. 2010. Scalable architectural support for trusted software. In International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 1–12.

[21] Juan Chen, Chris Hawblitzel, Frances Perry, Mike Emmi, Jeremy Condit, Derrick Coetzee, and Polyvios Pratikaki.
2008. Type-preserving compilation for large-scale optimizing object-oriented compilers. In ACM SIGPLAN Notices,
Vol. 43. ACM, 183–192.

[22] Alessandro Cimatti, Alberto Griggio, Bastiaan Schaafsma, and Roberto Sebastiani. 2013. The MathSAT5 SMT Solver.
In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 93–107.

http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24

Survey of Approaches and Techniques for Security Verification of Computer Systems 31

[23] Edmund Clarke, Orna Grumberg, and D Long. 1993. Verification tools for finite-state concurrent systems. In A decade
of concurrency reflections and perspectives. Springer, 124–175.

[24] Edmund M Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani. 2011. Model checking and the state explosion
problem. In LASER Summer School on Software Engineering. Springer, 1–30.

[25] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. Cryptology ePrint Archive, Paper 2016/086.
https://eprint.iacr.org/2016/086 https://eprint.iacr.org/2016/086.

[26] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2015. Sanctum: Minimal Hardware Extensions for Strong Software
Isolation. Cryptology ePrint Archive, Paper 2015/564. https://eprint.iacr.org/2015/564 https://eprint.iacr.org/2015/564.

[27] Thomas M Cover and Joy A Thomas. 2012. Elements of information theory. John Wiley & Sons.
[28] Karl Crary. 2003. Toward a foundational typed assembly language. ACM.
[29] Mike Dahlin, Ryan Johnson, Robert Bellarmine Krug, Michael McCoyd, and William Young. 2011. Toward the

verification of a simple hypervisor. arXiv preprint arXiv:1110.4672 (2011).
[30] Arthur Azevedo De Amorim, Maxime Dénes, Nick Giannarakis, Catalin Hritcu, Benjamin C Pierce, Antal Spector-

Zabusky, and Andrew Tolmach. 2015. Micro-policies: Formally verified, tag-based security monitors. In IEEE
Symposium on Security and Privacy (SP). IEEE, 813–830.

[31] Leonardo DeMoura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 337–340.

[32] Udit Dhawan, Nikos Vasilakis, Raphael Rubin, Silviu Chiricescu, Jonathan M Smith, Thomas F Knight Jr, Benjamin C
Pierce, and André DeHon. 2014. Pump: a programmable unit for metadata processing. In Proceedings of the Third
Workshop on Hardware and Architectural Support for Security and Privacy.

[33] David L Dill. 1996. The Mur 𝜙 verification system. In Computer Aided Verification. Springer, 390–393.
[34] Mohammad Rahmani Fadiheh, Johannes Müller, Raik Brinkmann, Subhasish Mitra, Dominik Stoffel, and Wolfgang

Kunz. 2020. A formal approach for detecting vulnerabilities to transient execution attacks in out-of-order processors.
In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[35] Mohammad Rahmani Fadiheh, Dominik Stoffel, Clark Barrett, Subhasish Mitra, and Wolfgang Kunz. 2019. Proces-
sor hardware security vulnerabilities and their detection by unique program execution checking. In 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 994–999.

[36] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. 2017. Komodo: Using verification to
disentangle secure-enclave hardware from software. In Proceedings of the 26th Symposium on Operating Systems
Principles. ACM, 287–305.

[37] Andrew Ferraiuolo, Weizhe Hua, Andrew C Myers, and G Edward Suh. 2017. Secure information flow verification
with mutable dependent types. In Design Automation Conference (DAC), 2017 54th ACM/EDAC/IEEE. IEEE, 1–6.

[38] Andrew Ferraiuolo, Rui Xu, Danfeng Zhang, Andrew C. Myers, and G. Edward Suh. 2017. Lightweight Verification
of Secure Hardware Isolation Through Static Information Flow Analysis. Technical Report. Technical report, Cornell
University.

[39] Andrew Ferraiuolo, Rui Xu, Danfeng Zhang, Andrew C Myers, and G Edward Suh. 2017. Verification of a Practical
Hardware Security Architecture Through Static Information Flow Analysis. In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages and Operating Systems. ACM, 555–568.

[40] Andrew Ferraiuolo, Mark Zhao, Andrew C Myers, and G Edward Suh. 2018. HyperFlow: A processor architecture for
nonmalleable, timing-safe information flow security. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. 1583–1600.

[41] Anthony Fox. 2015. Improved tool support for machine-code decompilation in HOL4. In International Conference on
Interactive Theorem Proving. Springer, 187–202.

[42] Jason Franklin, Arvind Seshadri, Ning Qu, Sagar Chaki, and Anupam Datta. 2008. Attacking, repairing, and verifying
SecVisor: A retrospective on the security of a hypervisor. Technical Report. Technical Report CMU-CyLab-08-008,
Carnegie Mellon University.

[43] Iván Garcıa-Ferreira, Carlos Laorden, Igor Santos, and Pablo Garcia Bringas. 2014. A survey on static analysis and
model checking. In International Joint Conference SOCO. 443.

[44] Mentor Graphics. 2016. Mentor Graphics Questa Secure Check. https://www.mentor.com/products/fv/questa-
secure-check

[45] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan Newman Wu, Shu-Chun Weng,
Haozhong Zhang, and Yu Guo. 2015. Deep specifications and certified abstraction layers. In ACM SIGPLAN Notices,
Vol. 50. ACM, 595–608.

[46] Xiaolong Guo, Raj Gautam Dutta, Prabhat Mishra, and Yier Jin. 2016. Automatic RTL-to-Formal Code Converter
for IP Security Formal Verification. In Microprocessor and SOC Test and Verification (MTV), 2016 17th International
Workshop on. IEEE, 35–38.

https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2015/564
https://eprint.iacr.org/2015/564
https://www.mentor.com/products/fv/questa-secure-check
https://www.mentor.com/products/fv/questa-secure-check

32 F. Erata, et al.

[47] Robert Harper, Furio Honsell, and Gordon Plotkin. 1993. A framework for defining logics. Journal of the ACM (JACM)
40, 1 (1993), 143–184.

[48] Uwe Hatnik and Sven Altmann. 2004. Using ModelSim, Matlab/Simulink and NS for simulation of distributed systems.
In International Conference on Parallel Computing in Electrical Engineering. IEEE, 114–119.

[49] Klaus Havelund and Thomas Pressburger. 2000. Model checking java programs using java pathfinder. International
Journal on Software Tools for Technology Transfer 2, 4 (2000), 366–381.

[50] Chris Hawblitzel, Jon Howell, Jacob R Lorch, Arjun Narayan, Bryan Parno, Danfeng Zhang, and Brian Zill. 2014.
Ironclad Apps: End-to-end security via automated full-system verification. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI). 165–181.

[51] Gerard J Holzmann. 1997. The model checker SPIN. IEEE Transactions on software engineering 23, 5 (1997), 279.
[52] Yao Hsiao, Dominic P Mulligan, Nikos Nikoleris, Gustavo Petri, and Caroline Trippel. 2021. Synthesizing Formal

Models of Hardware from RTL for Efficient Verification of Memory Model Implementations. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture. 679–694.

[53] Daniel Jackson. 2012. Software Abstractions: logic, language, and analysis. MIT press.
[54] Daniel Jackson. 2019. Alloy: a language and tool for exploring software designs. Commun. ACM 62, 9 (2019), 66–76.
[55] Yier Jin and YiorgosMakris. 2013. A proof-carrying based framework for trustedmicroprocessor IP. In Computer-Aided

Design (ICCAD), 2013 IEEE/ACM International Conference on. IEEE, 824–829.
[56] Matt Kaufmann and J Strother Moore. 2008. An ACL2 tutorial. In Theorem Proving in Higher Order Logics. Springer,

17–21.
[57] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe,

Kai Engelhardt, Rafal Kolanski, Michael Norrish, et al. 2009. seL4: Formal verification of an OS kernel. In Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles. ACM, 207–220.

[58] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan
Mangard, Thomas Prescher, et al. 2019. Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 1–19.

[59] Daniel Kroening and Michael Tautschnig. 2014. CBMC–C bounded model checker. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. Springer, 389–391.

[60] Chris Lattner. 2008. LLVM and Clang: Next generation compiler technology. In The BSD conference, Vol. 5.
[61] K Rustan M Leino. 2010. Dafny: An automatic program verifier for functional correctness. In Logic for Programming,

Artificial Intelligence, and Reasoning. Springer, 348–370.
[62] Xavier Leroy. 2012. The CompCert C verified compiler. Documentation and user’s manual. INRIA Paris-Rocquencourt

(2012).
[63] Henry M Levy. 2014. Capability-based computer systems. Digital Press.
[64] Xun Li, Vineeth Kashyap, Jason K Oberg, Mohit Tiwari, Vasanth Ram Rajarathinam, Ryan Kastner, Timothy Sherwood,

Ben Hardekopf, and Frederic T Chong. 2014. Sapper: A language for hardware-level security policy enforcement. In
ACM SIGARCH Computer Architecture News, Vol. 42. ACM, 97–112.

[65] Xun Li, Mohit Tiwari, Jason K Oberg, Vineeth Kashyap, Frederic T Chong, Timothy Sherwood, and Ben Hardekopf.
2011. Caisson: a hardware description language for secure information flow. In ACM SIGPLAN Notices, Vol. 46. ACM,
109–120.

[66] Sheng Liang. 1998. Modular monadic semantics and compilation. (1998).
[67] David Lie, John Mitchell, Chandramohan A Thekkath, and Mark Horowitz. 2003. Specifying and verifying hardware

for tamper-resistant software. In Symposium on Security and Privacy. IEEE, 166–177.
[68] David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh, John Mitchell, and Mark Horowitz.

2000. Architectural support for copy and tamper resistant software. ACM SIGPLAN Notices 35, 11 (2000), 168–177.
[69] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan

Mangard, Paul Kocher, Daniel Genkin, et al. 2018. Meltdown: Reading kernel memory from user space. In 27th
USENIX Security Symposium (USENIX Security 18). 973–990.

[70] Roger Lipsett, Carl F Schaefer, and Cary Ussery. 2012. VHDL: Hardware description and design. Springer Science &
Business Media.

[71] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-level cache side-channel attacks are
practical. In IEEE Symposium on Security and Privacy. 605–622.

[72] Derek Lockhart and Christopher Batten. 2014. Hardware Generation Languages as a Foundation for Credible, Repro-
ducible, and Productive Research Methodologies. InWorkshop on Reproducible Research Methodologies (REPRODUCE).

[73] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi, Vedvyas Shanbhogue, and Uday R
Savagaonkar. 2013. Innovative instructions and software model for isolated execution. In Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for Security and Privacy. ACM.

[74] Kenneth L McMillan. 1993. The SMV system. In Symbolic Model Checking. Springer, 61–85.

Survey of Approaches and Techniques for Security Verification of Computer Systems 33

[75] Xingyu Meng, Shamik Kundu, Arun K Kanuparthi, and Kanad Basu. 2021. Rtl-contest: Concolic testing on rtl for
detecting security vulnerabilities. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(2021).

[76] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. 1999. From System F to typed assembly language. ACM
Transactions on Programming Languages and Systems (TOPLAS) 21, 3 (1999), 527–568.

[77] Magnus O Myreen and Michael JC Gordon. 2007. Hoare logic for realistically modelled machine code. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 568–582.

[78] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavyweight dynamic binary instrumentation.
ACM Sigplan notices 42, 6 (2007), 89–100.

[79] Rishiyur Nikhil. 2004. Bluespec System Verilog: efficient, correct RTL from high level specifications. In Formal
Methods and Models for Co-Design, 2004. MEMOCODE’04. Proceedings. Second ACM and IEEE International Conference
on. IEEE, 69–70.

[80] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. 2002. Isabelle/HOL: a proof assistant for higher-order logic.
Vol. 2283. Springer Science & Business Media.

[81] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and countermeasures: the case of AES. In
Cryptographers’ track at the RSA conference. Springer, 1–20.

[82] Sam Owre, John M Rushby, and Natarajan Shankar. 1992. PVS: A prototype verification system. In Automated
Deduction—CADE-11. Springer, 748–752.

[83] Christine Paulin-Mohring. 2011. Introduction to the Coq proof-assistant for practical software verification. In Tools
for Practical Software Verification. Springer, 45–95.

[84] Adam Procter, William L Harrison, Ian Graves, Michela Becchi, and Gerard Allwein. 2015. Semantics driven hardware
design, implementation, and verification with ReWire. In ACM SIGPLAN Notices, Vol. 50. ACM, 13.

[85] Andrei Sabelfeld and Andrew C Myers. 2003. Language-based information-flow security. Selected Areas in Communi-
cations, IEEE Journal on 21, 1 (2003), 5–19.

[86] Bruce Schneier. 2016. The Internet of Things Will Turn Large-Scale Hacks into Real World Disaster. https:
//motherboard.vice.com/read/the-internet-of-things-will-cause-the-first-ever-large-scale-internet-disaster, accessed
July 25, 2016..

[87] Oliver Schwarz and Mads Dam. 2016. Automatic Derivation of Platform Noninterference Properties. In International
Conference on Software Engineering and Formal Methods. Springer, 27–44.

[88] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. 2007. SecVisor: A tiny hypervisor to provide lifetime kernel
code integrity for commodity OSes. ACM SIGOPS Operating Systems Review 41, 6 (2007), 335–350.

[89] Sanjit A Seshia and Pramod Subramanyan. 2018. UCLID5: Integrating modeling, verification, synthesis and learning.
In 2018 16th ACM/IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE).
IEEE, 1–10.

[90] Ofer Shacham, Megan Wachs, Andrew Danowitz, Sameh Galal, John Brunhaver, Wajahat Qadeer, Sabarish Sankara-
narayanan, Artem Vassiliev, Stephen Richardson, and Mark Horowitz. 2012. Avoiding game over: Bringing design to
the next level. In Proceedings of the 49th Annual Design Automation Conference. ACM, 623–629.

[91] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Andrew Dutcher, John Grosen, Siji
Feng, Christophe Hauser, Christopher Kruegel, et al. 2016. Sok: (state of) the art of war: Offensive techniques in
binary analysis. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 138–157.

[92] Vijay D Silva, Daniel Kroening, and Georg Weissenbacher. 2008. A survey of automated techniques for formal
software verification. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 27, 7 (2008),
1165–1178.

[93] Rohit Sinha, Manuel Costa, Akash Lal, Nuno P Lopes, Sriram Rajamani, Sanjit A Seshia, and Kapil Vaswani. 2016. A
design and verification methodology for secure isolated regions. In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation. ACM, 665–681.

[94] Rohit Sinha, Sriram Rajamani, Sanjit Seshia, and Kapil Vaswani. 2015. Moat: Verifying Confidentiality of Enclave
Programs. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and Communications Security (CCS ’15).
1169–1184.

[95] Pramod Subramanyan, Rohit Sinha, Ilia Lebedev, Srinivas Devadas, and Sanjit Seshia. [n. d.]. A Formal Foundation
for Secure Remote Execution of Enclaves. ([n. d.]).

[96] Jakub Szefer and Ruby B Lee. 2012. Architectural support for hypervisor-secure virtualization. In ACM SIGPLAN
Notices, Vol. 47. ACM, 437–450.

[97] Donald Thomas and Philip Moorby. 2008. The Verilog® Hardware Description Language. Springer Science & Business
Media.

[98] Ken Thompson. 1984. Reflections on trusting trust. Commun. ACM 27, 8 (1984), 761–763.

https://motherboard.vice.com/read/the-internet-of-things-will-cause-the-first-ever-large-scale-internet-disaster
https://motherboard.vice.com/read/the-internet-of-things-will-cause-the-first-ever-large-scale-internet-disaster

34 F. Erata, et al.

[99] Mohit Tiwari, Hassan M.G. Wassel, Bita Mazloom, Shashidhar Mysore, Frederic T. Chong, and Timothy Sherwood.
2009. Complete Information Flow Tracking from the Gates Up. In Proceedings of the 14th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS XIV). 109–120.

[100] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2018. Checkmate: Automated synthesis of hardware exploits
and security litmus tests. In 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE,
947–960.

[101] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2019. Security verification via automatic hardware-aware
exploit synthesis: The CheckMate approach. IEEE Micro 39, 3 (2019), 84–93.

[102] ARM Trustzone. 2016. TrustZone Information Page. Technical Report. http://www.arm.com/products/processors/
technologies/trustzone/

[103] Antti Valmari. 1996. The state explosion problem. In Advanced Course on Petri Nets. Springer, 429–528.
[104] Amit Vasudevan, JonathanMMccune, James Newsome, and Cylab Carnegie Mellon. 2012. Design and Implementation

of an eXtensible and Modular Hypervisor Framework. (2012).
[105] Dolores R Wallace and Roger U Fujii. 1989. Software verification and validation: an overview. Ieee Software 6, 3

(1989), 10.
[106] Matthew M Wilding, David A Greve, Raymond J Richards, and David S Hardin. 2010. Formal verification of partition

management for the AAMP7Gmicroprocessor. In Design and Verification of Microprocessor Systems for High-Assurance
Applications. Springer, 175–191.

[107] Jean Yang and Chris Hawblitzel. 2010. Safe to the last instruction: automated verification of a type-safe operating
system. In ACM Sigplan Notices, Vol. 45. ACM, 99–110.

[108] Jean Yang and Chris Hawblitzel. 2011. Safe to the last instruction: automated verification of a type-safe operating
system. Commun. ACM 54, 12 (2011), 123–131.

[109] Yuval Yarom and Katrina Falkner. 2014. {FLUSH+ RELOAD}: A High Resolution, LowNoise, L3 Cache {Side-Channel}
Attack. In 23rd USENIX security symposium (USENIX security 14). 719–732.

[110] Danfeng Zhang, Aslan Askarov, and Andrew C Myers. 2012. Language-based control and mitigation of timing
channels. ACM SIGPLAN Notices 47, 6 (2012), 99–110.

[111] Danfeng Zhang, Yao Wang, G Edward Suh, and Andrew C Myers. 2015. A hardware design language for timing-
sensitive information-flow security. In ACM SIGARCH Computer Architecture News, Vol. 43. ACM, 503–516.

[112] Rui Zhang, Calvin Deutschbein, Peng Huang, and Cynthia Sturton. 2018. End-to-end automated exploit genera-
tion for validating the security of processor designs. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 815–827.

[113] Tianwei Zhang and Ruby B Lee. 2014. New models of cache architectures characterizing information leakage from
cache side channels. In Proceedings of the 30th Annual Computer Security Applications Conference. ACM, 96–105.

[114] Tianwei Zhang and Ruby B Lee. 2014. Secure cache modeling for measuring side-channel leakage. Technical Report.
Tech. Report, http://palms. ee. princeton. edu/node.

http://www.arm.com/products/processors/technologies/trustzone/
http://www.arm.com/products/processors/technologies/trustzone/

	Abstract
	1 Introduction
	1.1 Software and Hardware System Levels Considered in the Verification Process

	2 Tools and Mechanisms used in Security Verification
	2.1 System Representation
	2.2 Representation of Security Properties
	2.3 Formal Verification via Deductive Mechanisms
	2.4 Formal Verification via Algorithmic Mechanisms

	3 Security Verification Focusing on the Hardware Levels of a System
	3.1 Approaches Requiring Manually Modeling Systems in Verification Tools' Languages
	3.2 Automatic Conversion from HDL to System Models in Verification Tools
	3.3 Adding Security Verification Features in HDL
	3.4 Generate HDL from System Model in Verification Tools
	3.5 Comparison of Verification Focusing on the Hardware Levels of a System
	3.6 Commercial Tools

	4 Security Verification Focusing on Software Levels of a System
	4.1 Verification with Respect to ISA
	4.2 Verification with respect to a Machine Model
	4.3 Tools Automatically Converting Software to System Models in Verification Tools

	5 Summary and Conclusion
	References

